First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure
The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε -O 8 is dynamically unstable a...
Saved in:
Published in | Journal of molecular modeling Vol. 28; no. 11; p. 360 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vibrational, mechanical, electronic, and optical properties of the
ε
-O
8
phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that
ε
-O
8
is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that
ε
-O
8
remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of
ε
-O
8
in the pressure range of 11.4–70 GPa. The results show that the band gap of
ε
-O
8
decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range. |
---|---|
AbstractList | The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range. The vibrational, mechanical, electronic, and optical properties of the ε-O₈ phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O₈ is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O₈ remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O₈ in the pressure range of 11.4–70 GPa. The results show that the band gap of ε-O₈ decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range. The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε -O 8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε -O 8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε -O 8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε -O 8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range. The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4-70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50-60 GPa, which reveals that the metallic phase transition occurs within this pressure range.The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4-70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50-60 GPa, which reveals that the metallic phase transition occurs within this pressure range. |
ArticleNumber | 360 |
Author | Hong, Dan Zhang, Jian-Qiong Liu, Zheng-Tang Liu, Qi-Jun Bao, Shi-Yuan Lu, Yi-Chen |
Author_xml | – sequence: 1 givenname: Shi-Yuan surname: Bao fullname: Bao, Shi-Yuan email: bsy199820@163.com organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University – sequence: 2 givenname: Dan surname: Hong fullname: Hong, Dan organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University – sequence: 3 givenname: Yi-Chen surname: Lu fullname: Lu, Yi-Chen organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University – sequence: 4 givenname: Qi-Jun surname: Liu fullname: Liu, Qi-Jun organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University – sequence: 5 givenname: Zheng-Tang surname: Liu fullname: Liu, Zheng-Tang organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University – sequence: 6 givenname: Jian-Qiong surname: Zhang fullname: Zhang, Jian-Qiong email: qilinxing@163.com organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University |
BookMark | eNqFkcFu1TAQRS1UJB6lP8AqEhsWNYzHiWMvUUVbpErdwDrycybUlV8SbAeJbvkmfoNvwnlBQuqirOzRPXc0M_clOxmnkRh7LeCdAGjfJwBtag6IHBrZIH94xnZgas0bQHnCdkIJ4GhqeMHOUroHAIGNahB37OeljynzOfrR-TlQ5WxwS7DZT2OqpqHKd1SlHBeXl2jDefXd7-NRXYsDuTs7erf-KZDLcSrVeWXHvprmvArVHKeZYvZ0bPf7F7_V1TL2FItCKS2RXrHngw2Jzv6-p-zL5cfPF9f85vbq08WHG-6kbjJ3jRL1UCslWoW9tZr6tlYDlm1s74QDI8we9oM2fYNSEKLpW63ASpASB5Cn7O3Wt4z0baGUu4NPjkKwI01L6lDr0rkWpv0_2mLdaBQ1FvTNI_R-WmI5z0Yp0wpYKb1RLk4pRRo65_PxjjlaHzoB3Zplt2XZlSy7Y5bdQ7HiI2tJ62Djj6dNcjOlNdqvFP9N9YTrDxahtM0 |
CitedBy_id | crossref_primary_10_1007_s00894_023_05651_z crossref_primary_10_3390_molecules29194744 |
Cites_doi | 10.1016/j.mssp.2020.105447 10.1016/j.physrep.2004.06.002 10.1090/S0025-5718-1970-0274029-X 10.1063/1.5127929 10.1103/PhysRevB.65.172106 10.1524/zkri.220.5.567.65075 10.1016/j.mssp.2015.02.015 10.1103/PhysRevLett.74.4690 10.1039/C9CP05267D 10.1016/j.cocom.2017.12.004 10.1016/j.jallcom.2015.01.085 10.1103/PhysRevLett.97.085503 10.1088/0370-1298/65/5/307 10.1038/s41598-019-45314-9 10.1016/j.optlastec.2019.105875 10.1103/PhysRevB.76.064101 10.7498/aps.60.117309 10.1063/1.5132985 10.1016/j.actamat.2022.118137 10.1016/j.mtphys.2021.100583 10.1103/PhysRevB.92.085148 10.1103/PhysRevB.13.5188 10.1016/j.ijleo.2016.10.021 10.1063/1.1758781 10.1021/acs.jpcc.6b10010 10.1103/PhysRevB.43.1993 10.1063/1.4934348 10.1063/1.478401 10.1016/j.jpcs.2021.110083 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1007/s00894-022-05352-z |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
EndPage | 360 |
ExternalDocumentID | 10_1007_s00894_022_05352_z |
GrantInformation_xml | – fundername: the 21th Key Laboratory Open Project of Southwest Jiaotong University grantid: Grant No. ZD2022130093 – fundername: the Fundamental Research Funds for the Central Universities grantid: Grant Nos. 2682020ZT102 – fundername: the Sichuan Science and Technology Development Project grantid: Grant No. 2021ZYD0027 – fundername: the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University grantid: Grant No. XJ2021KJZK055 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-c5614f4661762daa8ed746f2001adc1c0919b0bf89d5231e229d7860a30332f03 |
IEDL.DBID | U2A |
ISSN | 1610-2940 0948-5023 |
IngestDate | Tue Aug 05 11:19:23 EDT 2025 Fri Jul 11 02:22:50 EDT 2025 Fri Jul 25 11:03:59 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Tue Jul 01 02:46:00 EDT 2025 Fri Feb 21 02:44:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mechanical properties Electronic properties Optical properties O High pressure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-c5614f4661762daa8ed746f2001adc1c0919b0bf89d5231e229d7860a30332f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2724697102 |
PQPubID | 2043656 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2887624197 proquest_miscellaneous_2724582142 proquest_journals_2724697102 crossref_citationtrail_10_1007_s00894_022_05352_z crossref_primary_10_1007_s00894_022_05352_z springer_journals_10_1007_s00894_022_05352_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJPayneMCJ Phys: Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D ErnzerhofaMScuseriaGEJ Chem Phys1999110502910.1063/1.478401 DriverKPSoubiranFZhangSMilitzerBJ Chem Phys20151431:STN:280:DC%2BC28zns1Kgsg%3D%3D10.1063/1.493434826520527 ZhongMZengWLiuFSFanDHTangBLiuQJMater Today Phys2022221005831:CAS:528:DC%2BB38Xnt1OntLk%3D10.1016/j.mtphys.2021.100583 AnhLTWadaMFukuiHKawatsuTIitakaTSci Rep20199873110.1038/s41598-019-45314-9312175446584638 MonkhorstHJPackJDPhys Rev B197613518810.1103/PhysRevB.13.5188 SunJWangHTMingNBAppl Phys Lett20048445441:CAS:528:DC%2BD2cXkt1KhsbY%3D10.1063/1.1758781 LiuYHLiuZMMaYMHeZTianFBCuiTLiuBBZouGTChin Phys Lett2007113203 Ochoa-CalleAJZicovich-WilsonCMRamírez-SolísAPhys Rev B20159208514810.1103/PhysRevB.92.085148 ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZ Kristallogr20052205671:CAS:528:DC%2BD2MXmsVSitbk%3D10.1524/zkri.220.5.567.65075 Born M, Huang K (2006) Lattice dynamics theory. Peking University Press. LiuWHLiuQJZhongMGanYDLiuFSLiXHTangBActa Mater20222361181371:CAS:528:DC%2BB38Xhslenu7bJ10.1016/j.actamat.2022.118137 IslamMNHadiMAPodderJAIP Adv2019912532110.1063/1.5132985 LiaYLLiuYRYangJOpt Laser Technol202012210587510.1016/j.optlastec.2019.105875 Liu QJ, Zheng R, Liu FS, Liu ZT (2015) J Alloys Compounds 631:192. KholilMIBhuiyanMTHJ Phys Chem Solids20211541100831:CAS:528:DC%2BB3MXotVWrsbg%3D10.1016/j.jpcs.2021.110083 ShannoDFMath Comput19702464710.1090/S0025-5718-1970-0274029-X YurtsevenaHTariOOptik201712811310.1016/j.ijleo.2016.10.021 TroullierNMartinsJLPhys Rev B19914319931:CAS:528:DyaK3MXovVyktw%3D%3D10.1103/PhysRevB.43.1993 FreimanYJodlHPhys Rep200440111:CAS:528:DC%2BD2cXhtVGjs73F10.1016/j.physrep.2004.06.002 FujihisaHAkahamaYKawamuraHOhishiYShimomuraOYamawakiHSakashitaMGotohYTakeyaSHondaKPhys Rev Lett20069708550310.1103/PhysRevLett.97.08550317026315 DatchiFWeckGZ Kristallogr20142291351:CAS:528:DC%2BC2cXmtlSgu7Y%3D ElatreshSFBonevSAPhys Chem Chem Phys202022125771:CAS:528:DC%2BB3cXpsFyhtbg%3D10.1039/C9CP05267D32452471 GorelliFASantoroMUliviLHanflandMPhys Rev B20026510.1103/PhysRevB.65.172106 HillRProc Phys Soc Section A19526534910.1088/0370-1298/65/5/307 Akahama Y, Kawamura H, H¨ausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690. DengYWangRZXuLCFangHYanHActa Phys Sin20116011730910.7498/aps.60.117309 EdreesSJShukurMMObeidMMComput Condensed Matter2018142010.1016/j.cocom.2017.12.004 LiYHLopezDMVargasVRZhangJNYangKSJ Chem Phys20201520841061:CAS:528:DC%2BB3cXktVentbY%3D10.1063/1.512792932113342 ShenTHuCYangWLLiuHCWeiXLMater Sci Semicond Process2015341141:CAS:528:DC%2BC2MXjtlCmtLo%3D10.1016/j.mssp.2015.02.015 GaoJZengWTangBZhongMLiuQJMater Sci Semicond Process20211211054471:CAS:528:DC%2BB3cXitVKgsb3J10.1016/j.mssp.2020.105447 MaYMOganovARGlassCWPhys Rev B20077606410110.1103/PhysRevB.76.064101 DregerZAStashAIYuZGChenYSTaoYCGuptaYMJ Phys Chem C2016120276001:CAS:528:DC%2BC28XhvVGqsb3O10.1021/acs.jpcc.6b10010 SF Elatresh (5352_CR1) 2020; 22 MI Kholil (5352_CR27) 2021; 154 F Datchi (5352_CR8) 2014; 229 YH Liu (5352_CR19) 2007; 11 HJ Monkhorst (5352_CR18) 1976; 13 KP Driver (5352_CR3) 2015; 143 SJ Clark (5352_CR14) 2005; 220 N Troullier (5352_CR15) 1991; 43 R Hill (5352_CR24) 1952; 65 H Fujihisa (5352_CR10) 2006; 97 MN Islam (5352_CR31) 2019; 9 AJ Ochoa-Calle (5352_CR4) 2015; 92 J Gao (5352_CR30) 2021; 121 DF Shanno (5352_CR17) 1970; 24 LT Anh (5352_CR2) 2019; 9 Y Deng (5352_CR21) 2011; 60 FA Gorelli (5352_CR7) 2002; 65 YL Lia (5352_CR25) 2020; 122 WH Liu (5352_CR12) 2022; 236 5352_CR20 M Zhong (5352_CR28) 2022; 22 H Yurtsevena (5352_CR6) 2017; 128 5352_CR22 SJ Edrees (5352_CR23) 2018; 14 M Ernzerhofa (5352_CR16) 1999; 110 J Sun (5352_CR32) 2004; 84 YM Ma (5352_CR11) 2007; 76 MD Segall (5352_CR13) 2002; 14 ZA Dreger (5352_CR26) 2016; 120 YH Li (5352_CR29) 2020; 152 T Shen (5352_CR33) 2015; 34 Y Freiman (5352_CR5) 2004; 401 5352_CR9 |
References_xml | – reference: FreimanYJodlHPhys Rep200440111:CAS:528:DC%2BD2cXhtVGjs73F10.1016/j.physrep.2004.06.002 – reference: YurtsevenaHTariOOptik201712811310.1016/j.ijleo.2016.10.021 – reference: LiuWHLiuQJZhongMGanYDLiuFSLiXHTangBActa Mater20222361181371:CAS:528:DC%2BB38Xhslenu7bJ10.1016/j.actamat.2022.118137 – reference: MonkhorstHJPackJDPhys Rev B197613518810.1103/PhysRevB.13.5188 – reference: MaYMOganovARGlassCWPhys Rev B20077606410110.1103/PhysRevB.76.064101 – reference: ShannoDFMath Comput19702464710.1090/S0025-5718-1970-0274029-X – reference: DregerZAStashAIYuZGChenYSTaoYCGuptaYMJ Phys Chem C2016120276001:CAS:528:DC%2BC28XhvVGqsb3O10.1021/acs.jpcc.6b10010 – reference: AnhLTWadaMFukuiHKawatsuTIitakaTSci Rep20199873110.1038/s41598-019-45314-9312175446584638 – reference: Liu QJ, Zheng R, Liu FS, Liu ZT (2015) J Alloys Compounds 631:192. – reference: ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZ Kristallogr20052205671:CAS:528:DC%2BD2MXmsVSitbk%3D10.1524/zkri.220.5.567.65075 – reference: DatchiFWeckGZ Kristallogr20142291351:CAS:528:DC%2BC2cXmtlSgu7Y%3D – reference: GorelliFASantoroMUliviLHanflandMPhys Rev B20026510.1103/PhysRevB.65.172106 – reference: ZhongMZengWLiuFSFanDHTangBLiuQJMater Today Phys2022221005831:CAS:528:DC%2BB38Xnt1OntLk%3D10.1016/j.mtphys.2021.100583 – reference: IslamMNHadiMAPodderJAIP Adv2019912532110.1063/1.5132985 – reference: ErnzerhofaMScuseriaGEJ Chem Phys1999110502910.1063/1.478401 – reference: DengYWangRZXuLCFangHYanHActa Phys Sin20116011730910.7498/aps.60.117309 – reference: EdreesSJShukurMMObeidMMComput Condensed Matter2018142010.1016/j.cocom.2017.12.004 – reference: Born M, Huang K (2006) Lattice dynamics theory. Peking University Press. – reference: LiaYLLiuYRYangJOpt Laser Technol202012210587510.1016/j.optlastec.2019.105875 – reference: SunJWangHTMingNBAppl Phys Lett20048445441:CAS:528:DC%2BD2cXkt1KhsbY%3D10.1063/1.1758781 – reference: ShenTHuCYangWLLiuHCWeiXLMater Sci Semicond Process2015341141:CAS:528:DC%2BC2MXjtlCmtLo%3D10.1016/j.mssp.2015.02.015 – reference: KholilMIBhuiyanMTHJ Phys Chem Solids20211541100831:CAS:528:DC%2BB3MXotVWrsbg%3D10.1016/j.jpcs.2021.110083 – reference: LiYHLopezDMVargasVRZhangJNYangKSJ Chem Phys20201520841061:CAS:528:DC%2BB3cXktVentbY%3D10.1063/1.512792932113342 – reference: Akahama Y, Kawamura H, H¨ausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690. – reference: TroullierNMartinsJLPhys Rev B19914319931:CAS:528:DyaK3MXovVyktw%3D%3D10.1103/PhysRevB.43.1993 – reference: ElatreshSFBonevSAPhys Chem Chem Phys202022125771:CAS:528:DC%2BB3cXpsFyhtbg%3D10.1039/C9CP05267D32452471 – reference: Ochoa-CalleAJZicovich-WilsonCMRamírez-SolísAPhys Rev B20159208514810.1103/PhysRevB.92.085148 – reference: HillRProc Phys Soc Section A19526534910.1088/0370-1298/65/5/307 – reference: DriverKPSoubiranFZhangSMilitzerBJ Chem Phys20151431:STN:280:DC%2BC28zns1Kgsg%3D%3D10.1063/1.493434826520527 – reference: LiuYHLiuZMMaYMHeZTianFBCuiTLiuBBZouGTChin Phys Lett2007113203 – reference: FujihisaHAkahamaYKawamuraHOhishiYShimomuraOYamawakiHSakashitaMGotohYTakeyaSHondaKPhys Rev Lett20069708550310.1103/PhysRevLett.97.08550317026315 – reference: SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJPayneMCJ Phys: Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D – reference: GaoJZengWTangBZhongMLiuQJMater Sci Semicond Process20211211054471:CAS:528:DC%2BB3cXitVKgsb3J10.1016/j.mssp.2020.105447 – volume: 14 start-page: 2717 year: 2002 ident: 5352_CR13 publication-title: J Phys: Condens Matter – volume: 121 start-page: 105447 year: 2021 ident: 5352_CR30 publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2020.105447 – volume: 401 start-page: 1 year: 2004 ident: 5352_CR5 publication-title: Phys Rep doi: 10.1016/j.physrep.2004.06.002 – volume: 24 start-page: 647 year: 1970 ident: 5352_CR17 publication-title: Math Comput doi: 10.1090/S0025-5718-1970-0274029-X – volume: 152 start-page: 084106 year: 2020 ident: 5352_CR29 publication-title: J Chem Phys doi: 10.1063/1.5127929 – volume: 65 year: 2002 ident: 5352_CR7 publication-title: Phys Rev B doi: 10.1103/PhysRevB.65.172106 – volume: 220 start-page: 567 year: 2005 ident: 5352_CR14 publication-title: Z Kristallogr doi: 10.1524/zkri.220.5.567.65075 – volume: 34 start-page: 114 year: 2015 ident: 5352_CR33 publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2015.02.015 – ident: 5352_CR9 doi: 10.1103/PhysRevLett.74.4690 – volume: 22 start-page: 12577 year: 2020 ident: 5352_CR1 publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP05267D – volume: 14 start-page: 20 year: 2018 ident: 5352_CR23 publication-title: Comput Condensed Matter doi: 10.1016/j.cocom.2017.12.004 – volume: 229 start-page: 135 year: 2014 ident: 5352_CR8 publication-title: Z Kristallogr – ident: 5352_CR22 doi: 10.1016/j.jallcom.2015.01.085 – volume: 97 start-page: 085503 year: 2006 ident: 5352_CR10 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.97.085503 – volume: 65 start-page: 349 year: 1952 ident: 5352_CR24 publication-title: Proc Phys Soc Section A doi: 10.1088/0370-1298/65/5/307 – volume: 9 start-page: 8731 year: 2019 ident: 5352_CR2 publication-title: Sci Rep doi: 10.1038/s41598-019-45314-9 – volume: 122 start-page: 105875 year: 2020 ident: 5352_CR25 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.105875 – volume: 76 start-page: 064101 year: 2007 ident: 5352_CR11 publication-title: Phys Rev B doi: 10.1103/PhysRevB.76.064101 – volume: 60 start-page: 117309 year: 2011 ident: 5352_CR21 publication-title: Acta Phys Sin doi: 10.7498/aps.60.117309 – ident: 5352_CR20 – volume: 9 start-page: 125321 year: 2019 ident: 5352_CR31 publication-title: AIP Adv doi: 10.1063/1.5132985 – volume: 236 start-page: 118137 year: 2022 ident: 5352_CR12 publication-title: Acta Mater doi: 10.1016/j.actamat.2022.118137 – volume: 22 start-page: 100583 year: 2022 ident: 5352_CR28 publication-title: Mater Today Phys doi: 10.1016/j.mtphys.2021.100583 – volume: 92 start-page: 085148 year: 2015 ident: 5352_CR4 publication-title: Phys Rev B doi: 10.1103/PhysRevB.92.085148 – volume: 13 start-page: 5188 year: 1976 ident: 5352_CR18 publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume: 128 start-page: 113 year: 2017 ident: 5352_CR6 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.021 – volume: 11 start-page: 3203 year: 2007 ident: 5352_CR19 publication-title: Chin Phys Lett – volume: 84 start-page: 4544 year: 2004 ident: 5352_CR32 publication-title: Appl Phys Lett doi: 10.1063/1.1758781 – volume: 120 start-page: 27600 year: 2016 ident: 5352_CR26 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b10010 – volume: 43 start-page: 1993 year: 1991 ident: 5352_CR15 publication-title: Phys Rev B doi: 10.1103/PhysRevB.43.1993 – volume: 143 year: 2015 ident: 5352_CR3 publication-title: J Chem Phys doi: 10.1063/1.4934348 – volume: 110 start-page: 5029 year: 1999 ident: 5352_CR16 publication-title: J Chem Phys doi: 10.1063/1.478401 – volume: 154 start-page: 110083 year: 2021 ident: 5352_CR27 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2021.110083 |
SSID | ssj0001256522 |
Score | 2.327125 |
Snippet | The vibrational, mechanical, electronic, and optical properties of the
ε
-O
8
phase in the pressure range of 11.4–70 GPa were studied by the first-principle... The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle... The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle... The vibrational, mechanical, electronic, and optical properties of the ε-O₈ phase in the pressure range of 11.4–70 GPa were studied by the first-principle... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 360 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Dispersion curve analysis dispersions Energy gap exhibitions First principles Mathematical analysis methodology Molecular Medicine Optical properties Original Paper phase transition Phase transitions Theoretical and Computational Chemistry Unit cell |
Title | First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure |
URI | https://link.springer.com/article/10.1007/s00894-022-05352-z https://www.proquest.com/docview/2724697102 https://www.proquest.com/docview/2724582142 https://www.proquest.com/docview/2887624197 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQiPnF9EcGbDbTZZJseF3EVRb24oKfSNgkI2l121YNXf5N_w9_kTNruqqjgqYemaclMM9_MZL4BOHCqELmygidOheiguDbPZai5ytHWI6DQsc_gX1x2Tvvy7Ebd1EVh4-a0e5OS9Dv1pNgNrRXR2KLz5DlJ-MsszCvy3VGL-6L7KbKCIMWnDxDNhFwkMqyrZX6e5qtFmsLMb5lRb3B6y7BUI0XWrUS7AjO2XIWFo6ZB2xq89u4QuvFhEy5nuNxF3Y1rzAaOIbZjFT8scWsE7Jlc4yr2F7AHSzW_JKKATXvhBCwrDRsMfYSbDSlSPyLKVZru_Y1faUZFZyPmj88-jew69HvH10envO6pwIu2Vo-8IOZPJ9Eq4y5oskxbE8uOo5NVmSmiAuFDkoe504lBFzWyQiQm1p0wQ1PXFi5sb8BcOSjtJjBlXJIbGTtXaKkik-V4yUQH94jYxqFoQdSsa1rUhOPU9-I-nVAle1mkKIvUyyJ9acHh5JlhRbfx5-idRlxp_euNUxELdPkJOLVgf3IbRUOZkKy0g6dqDFUIy7_GaDIUMkriFgSNKkxf8_tXbf1v-DYsCtJGX9-4A3OoFnYXgc5jvgfz3ZPb8-M9r98f4072iw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGGBBPEWhgJHYiKXEdRpnrBBVeS9UYouS2JaQIK3awsDKb-Jv8Ju4c5IWECAxZYjjRD7H993rO4AjG-YiC43gsQ19NFBsi2fSVzzMUNcjoFCRi-BfXbd7fXl-F95VRWHjOtu9Dkm6k3pa7Ibaimhs0XhynCT8ZR4WEQwoSuTqi84nzwqCFBc-QDTjcxFLv6qW-XmarxppBjO_RUadwumuwkqFFFmnFO0azJliHZZO6gZtG_DavUfoxoe1u5zhcudVN64xG1iG2I6V_LDEreGxZzKNS9-fxx4N1fySiDw264XjsbTQbDB0Hm42JE_9iChXabr3N36jGBWdjZhLn30amU3od09vT3q86qnA85YKJzwn5k8rUSvjKajTVBkdybalzKpU50GO8CHO_MyqWKOJGhghYh2ptp-iqmsJ67e2YKEYFGYbWKhtnGkZWZsrGQY6zfCSijaeEZGJfNGAoF7XJK8Ix6nvxUMypUp2skhQFomTRfLSgOPpM8OSbuPP0c1aXEn1640TEQk0-Qk4NeBwehtFQ5GQtDCDp3IMVQjLv8YoUhQyiKMGePVWmL3m96_a-d_wA1jq3V5dJpdn1xe7sCxoZ7paxyYs4BYxewh6Jtm-2-Mf7EL36g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXQm4oH2AKCysV-JGrCaukzjHVdmq-yocqNRblMS2tBKkUR8ceuU38Tf4Tcw4SVvQ7kqccojjRJ6J55sZzzcAH2xYiDw0gic29NFBsX2eS1_xMEdbj4BCxS6DfzuORhN5NQ2nO1X87rR7m5KsaxqIpalc9ipte5vCN7RcRGmLjpTjJ-HrJ7CP23FAej0R5ztRFgQsLpWAyMbnIpF-Uzlz_zR_W6ct5PwnS-qMz_AAXjSokZ3XYj6EPVMewbNB26ztGH4O7xDG8aoNnTNc-qLpzLVgM8sQ57GaK5Z4Njz2g9zkOg7ose-G6n9JXB7b9sXxWFZqNqtctJtVFLWfE_0qTff7F_-sGBWgzZk7Sruam5cwGV58HYx401-BF30VLnlBLKBWooXGHVFnmTI6lpGlU1aZLoICoUSS-7lViUZ3NTBCJDpWkZ-h2esL6_dfQaecleY1sFDbJNcytrZQMgx0luMlExHuF7GJfdGFoF3XtGjIx6kHxrd0Q5vsZJGiLFIni3TdhY-bZ6qaeuPR0SetuNLmN1ykIhbo_hOI6sLZ5jaKhrIiWWlmq3oMVQvLx8YoMhoySOIueK0qbF_z8Fe9-b_hp_D0y6dhenM5vn4LzwUppit7PIEOaoh5h_hnmb93Kv4HD6n8Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principle+calculations+of+the+structural%2C+vibrational%2C+mechanical%2C+electronic%2C+and+optical+properties+of+%CE%B5-O8+under+pressure&rft.jtitle=Journal+of+molecular+modeling&rft.au=Bao%2C+Shi-Yuan&rft.au=Hong%2C+Dan&rft.au=Lu%2C+Yi-Chen&rft.au=Liu%2C+Qi-Jun&rft.date=2022-11-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=28&rft.issue=11&rft_id=info:doi/10.1007%2Fs00894-022-05352-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_022_05352_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |