First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure

The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε -O 8 is dynamically unstable a...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 28; no. 11; p. 360
Main Authors Bao, Shi-Yuan, Hong, Dan, Lu, Yi-Chen, Liu, Qi-Jun, Liu, Zheng-Tang, Zhang, Jian-Qiong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε -O 8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε -O 8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε -O 8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε -O 8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range.
AbstractList The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range.
The vibrational, mechanical, electronic, and optical properties of the ε-O₈ phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O₈ is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O₈ remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O₈ in the pressure range of 11.4–70 GPa. The results show that the band gap of ε-O₈ decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range.
The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε -O 8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε -O 8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε -O 8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε -O 8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range.
The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4-70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50-60 GPa, which reveals that the metallic phase transition occurs within this pressure range.The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4-70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50-60 GPa, which reveals that the metallic phase transition occurs within this pressure range.
ArticleNumber 360
Author Hong, Dan
Zhang, Jian-Qiong
Liu, Zheng-Tang
Liu, Qi-Jun
Bao, Shi-Yuan
Lu, Yi-Chen
Author_xml – sequence: 1
  givenname: Shi-Yuan
  surname: Bao
  fullname: Bao, Shi-Yuan
  email: bsy199820@163.com
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 2
  givenname: Dan
  surname: Hong
  fullname: Hong, Dan
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 3
  givenname: Yi-Chen
  surname: Lu
  fullname: Lu, Yi-Chen
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 4
  givenname: Qi-Jun
  surname: Liu
  fullname: Liu, Qi-Jun
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 5
  givenname: Zheng-Tang
  surname: Liu
  fullname: Liu, Zheng-Tang
  organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
– sequence: 6
  givenname: Jian-Qiong
  surname: Zhang
  fullname: Zhang, Jian-Qiong
  email: qilinxing@163.com
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
BookMark eNqFkcFu1TAQRS1UJB6lP8AqEhsWNYzHiWMvUUVbpErdwDrycybUlV8SbAeJbvkmfoNvwnlBQuqirOzRPXc0M_clOxmnkRh7LeCdAGjfJwBtag6IHBrZIH94xnZgas0bQHnCdkIJ4GhqeMHOUroHAIGNahB37OeljynzOfrR-TlQ5WxwS7DZT2OqpqHKd1SlHBeXl2jDefXd7-NRXYsDuTs7erf-KZDLcSrVeWXHvprmvArVHKeZYvZ0bPf7F7_V1TL2FItCKS2RXrHngw2Jzv6-p-zL5cfPF9f85vbq08WHG-6kbjJ3jRL1UCslWoW9tZr6tlYDlm1s74QDI8we9oM2fYNSEKLpW63ASpASB5Cn7O3Wt4z0baGUu4NPjkKwI01L6lDr0rkWpv0_2mLdaBQ1FvTNI_R-WmI5z0Yp0wpYKb1RLk4pRRo65_PxjjlaHzoB3Zplt2XZlSy7Y5bdQ7HiI2tJ62Djj6dNcjOlNdqvFP9N9YTrDxahtM0
CitedBy_id crossref_primary_10_1007_s00894_023_05651_z
crossref_primary_10_3390_molecules29194744
Cites_doi 10.1016/j.mssp.2020.105447
10.1016/j.physrep.2004.06.002
10.1090/S0025-5718-1970-0274029-X
10.1063/1.5127929
10.1103/PhysRevB.65.172106
10.1524/zkri.220.5.567.65075
10.1016/j.mssp.2015.02.015
10.1103/PhysRevLett.74.4690
10.1039/C9CP05267D
10.1016/j.cocom.2017.12.004
10.1016/j.jallcom.2015.01.085
10.1103/PhysRevLett.97.085503
10.1088/0370-1298/65/5/307
10.1038/s41598-019-45314-9
10.1016/j.optlastec.2019.105875
10.1103/PhysRevB.76.064101
10.7498/aps.60.117309
10.1063/1.5132985
10.1016/j.actamat.2022.118137
10.1016/j.mtphys.2021.100583
10.1103/PhysRevB.92.085148
10.1103/PhysRevB.13.5188
10.1016/j.ijleo.2016.10.021
10.1063/1.1758781
10.1021/acs.jpcc.6b10010
10.1103/PhysRevB.43.1993
10.1063/1.4934348
10.1063/1.478401
10.1016/j.jpcs.2021.110083
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1007/s00894-022-05352-z
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
EndPage 360
ExternalDocumentID 10_1007_s00894_022_05352_z
GrantInformation_xml – fundername: the 21th Key Laboratory Open Project of Southwest Jiaotong University
  grantid: Grant No. ZD2022130093
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: Grant Nos. 2682020ZT102
– fundername: the Sichuan Science and Technology Development Project
  grantid: Grant No. 2021ZYD0027
– fundername: the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University
  grantid: Grant No. XJ2021KJZK055
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
7X8
7S9
L.6
ID FETCH-LOGICAL-c385t-c5614f4661762daa8ed746f2001adc1c0919b0bf89d5231e229d7860a30332f03
IEDL.DBID U2A
ISSN 1610-2940
0948-5023
IngestDate Tue Aug 05 11:19:23 EDT 2025
Fri Jul 11 02:22:50 EDT 2025
Fri Jul 25 11:03:59 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 02:46:00 EDT 2025
Fri Feb 21 02:44:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mechanical properties
Electronic properties
Optical properties
O
High pressure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c5614f4661762daa8ed746f2001adc1c0919b0bf89d5231e229d7860a30332f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2724697102
PQPubID 2043656
PageCount 1
ParticipantIDs proquest_miscellaneous_2887624197
proquest_miscellaneous_2724582142
proquest_journals_2724697102
crossref_citationtrail_10_1007_s00894_022_05352_z
crossref_primary_10_1007_s00894_022_05352_z
springer_journals_10_1007_s00894_022_05352_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Computational Chemistry - Life Science - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJPayneMCJ Phys: Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D
ErnzerhofaMScuseriaGEJ Chem Phys1999110502910.1063/1.478401
DriverKPSoubiranFZhangSMilitzerBJ Chem Phys20151431:STN:280:DC%2BC28zns1Kgsg%3D%3D10.1063/1.493434826520527
ZhongMZengWLiuFSFanDHTangBLiuQJMater Today Phys2022221005831:CAS:528:DC%2BB38Xnt1OntLk%3D10.1016/j.mtphys.2021.100583
AnhLTWadaMFukuiHKawatsuTIitakaTSci Rep20199873110.1038/s41598-019-45314-9312175446584638
MonkhorstHJPackJDPhys Rev B197613518810.1103/PhysRevB.13.5188
SunJWangHTMingNBAppl Phys Lett20048445441:CAS:528:DC%2BD2cXkt1KhsbY%3D10.1063/1.1758781
LiuYHLiuZMMaYMHeZTianFBCuiTLiuBBZouGTChin Phys Lett2007113203
Ochoa-CalleAJZicovich-WilsonCMRamírez-SolísAPhys Rev B20159208514810.1103/PhysRevB.92.085148
ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZ Kristallogr20052205671:CAS:528:DC%2BD2MXmsVSitbk%3D10.1524/zkri.220.5.567.65075
Born M, Huang K (2006) Lattice dynamics theory. Peking University Press.
LiuWHLiuQJZhongMGanYDLiuFSLiXHTangBActa Mater20222361181371:CAS:528:DC%2BB38Xhslenu7bJ10.1016/j.actamat.2022.118137
IslamMNHadiMAPodderJAIP Adv2019912532110.1063/1.5132985
LiaYLLiuYRYangJOpt Laser Technol202012210587510.1016/j.optlastec.2019.105875
Liu QJ, Zheng R, Liu FS, Liu ZT (2015) J Alloys Compounds 631:192.
KholilMIBhuiyanMTHJ Phys Chem Solids20211541100831:CAS:528:DC%2BB3MXotVWrsbg%3D10.1016/j.jpcs.2021.110083
ShannoDFMath Comput19702464710.1090/S0025-5718-1970-0274029-X
YurtsevenaHTariOOptik201712811310.1016/j.ijleo.2016.10.021
TroullierNMartinsJLPhys Rev B19914319931:CAS:528:DyaK3MXovVyktw%3D%3D10.1103/PhysRevB.43.1993
FreimanYJodlHPhys Rep200440111:CAS:528:DC%2BD2cXhtVGjs73F10.1016/j.physrep.2004.06.002
FujihisaHAkahamaYKawamuraHOhishiYShimomuraOYamawakiHSakashitaMGotohYTakeyaSHondaKPhys Rev Lett20069708550310.1103/PhysRevLett.97.08550317026315
DatchiFWeckGZ Kristallogr20142291351:CAS:528:DC%2BC2cXmtlSgu7Y%3D
ElatreshSFBonevSAPhys Chem Chem Phys202022125771:CAS:528:DC%2BB3cXpsFyhtbg%3D10.1039/C9CP05267D32452471
GorelliFASantoroMUliviLHanflandMPhys Rev B20026510.1103/PhysRevB.65.172106
HillRProc Phys Soc Section A19526534910.1088/0370-1298/65/5/307
Akahama Y, Kawamura H, H¨ausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690.
DengYWangRZXuLCFangHYanHActa Phys Sin20116011730910.7498/aps.60.117309
EdreesSJShukurMMObeidMMComput Condensed Matter2018142010.1016/j.cocom.2017.12.004
LiYHLopezDMVargasVRZhangJNYangKSJ Chem Phys20201520841061:CAS:528:DC%2BB3cXktVentbY%3D10.1063/1.512792932113342
ShenTHuCYangWLLiuHCWeiXLMater Sci Semicond Process2015341141:CAS:528:DC%2BC2MXjtlCmtLo%3D10.1016/j.mssp.2015.02.015
GaoJZengWTangBZhongMLiuQJMater Sci Semicond Process20211211054471:CAS:528:DC%2BB3cXitVKgsb3J10.1016/j.mssp.2020.105447
MaYMOganovARGlassCWPhys Rev B20077606410110.1103/PhysRevB.76.064101
DregerZAStashAIYuZGChenYSTaoYCGuptaYMJ Phys Chem C2016120276001:CAS:528:DC%2BC28XhvVGqsb3O10.1021/acs.jpcc.6b10010
SF Elatresh (5352_CR1) 2020; 22
MI Kholil (5352_CR27) 2021; 154
F Datchi (5352_CR8) 2014; 229
YH Liu (5352_CR19) 2007; 11
HJ Monkhorst (5352_CR18) 1976; 13
KP Driver (5352_CR3) 2015; 143
SJ Clark (5352_CR14) 2005; 220
N Troullier (5352_CR15) 1991; 43
R Hill (5352_CR24) 1952; 65
H Fujihisa (5352_CR10) 2006; 97
MN Islam (5352_CR31) 2019; 9
AJ Ochoa-Calle (5352_CR4) 2015; 92
J Gao (5352_CR30) 2021; 121
DF Shanno (5352_CR17) 1970; 24
LT Anh (5352_CR2) 2019; 9
Y Deng (5352_CR21) 2011; 60
FA Gorelli (5352_CR7) 2002; 65
YL Lia (5352_CR25) 2020; 122
WH Liu (5352_CR12) 2022; 236
5352_CR20
M Zhong (5352_CR28) 2022; 22
H Yurtsevena (5352_CR6) 2017; 128
5352_CR22
SJ Edrees (5352_CR23) 2018; 14
M Ernzerhofa (5352_CR16) 1999; 110
J Sun (5352_CR32) 2004; 84
YM Ma (5352_CR11) 2007; 76
MD Segall (5352_CR13) 2002; 14
ZA Dreger (5352_CR26) 2016; 120
YH Li (5352_CR29) 2020; 152
T Shen (5352_CR33) 2015; 34
Y Freiman (5352_CR5) 2004; 401
5352_CR9
References_xml – reference: FreimanYJodlHPhys Rep200440111:CAS:528:DC%2BD2cXhtVGjs73F10.1016/j.physrep.2004.06.002
– reference: YurtsevenaHTariOOptik201712811310.1016/j.ijleo.2016.10.021
– reference: LiuWHLiuQJZhongMGanYDLiuFSLiXHTangBActa Mater20222361181371:CAS:528:DC%2BB38Xhslenu7bJ10.1016/j.actamat.2022.118137
– reference: MonkhorstHJPackJDPhys Rev B197613518810.1103/PhysRevB.13.5188
– reference: MaYMOganovARGlassCWPhys Rev B20077606410110.1103/PhysRevB.76.064101
– reference: ShannoDFMath Comput19702464710.1090/S0025-5718-1970-0274029-X
– reference: DregerZAStashAIYuZGChenYSTaoYCGuptaYMJ Phys Chem C2016120276001:CAS:528:DC%2BC28XhvVGqsb3O10.1021/acs.jpcc.6b10010
– reference: AnhLTWadaMFukuiHKawatsuTIitakaTSci Rep20199873110.1038/s41598-019-45314-9312175446584638
– reference: Liu QJ, Zheng R, Liu FS, Liu ZT (2015) J Alloys Compounds 631:192.
– reference: ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZ Kristallogr20052205671:CAS:528:DC%2BD2MXmsVSitbk%3D10.1524/zkri.220.5.567.65075
– reference: DatchiFWeckGZ Kristallogr20142291351:CAS:528:DC%2BC2cXmtlSgu7Y%3D
– reference: GorelliFASantoroMUliviLHanflandMPhys Rev B20026510.1103/PhysRevB.65.172106
– reference: ZhongMZengWLiuFSFanDHTangBLiuQJMater Today Phys2022221005831:CAS:528:DC%2BB38Xnt1OntLk%3D10.1016/j.mtphys.2021.100583
– reference: IslamMNHadiMAPodderJAIP Adv2019912532110.1063/1.5132985
– reference: ErnzerhofaMScuseriaGEJ Chem Phys1999110502910.1063/1.478401
– reference: DengYWangRZXuLCFangHYanHActa Phys Sin20116011730910.7498/aps.60.117309
– reference: EdreesSJShukurMMObeidMMComput Condensed Matter2018142010.1016/j.cocom.2017.12.004
– reference: Born M, Huang K (2006) Lattice dynamics theory. Peking University Press.
– reference: LiaYLLiuYRYangJOpt Laser Technol202012210587510.1016/j.optlastec.2019.105875
– reference: SunJWangHTMingNBAppl Phys Lett20048445441:CAS:528:DC%2BD2cXkt1KhsbY%3D10.1063/1.1758781
– reference: ShenTHuCYangWLLiuHCWeiXLMater Sci Semicond Process2015341141:CAS:528:DC%2BC2MXjtlCmtLo%3D10.1016/j.mssp.2015.02.015
– reference: KholilMIBhuiyanMTHJ Phys Chem Solids20211541100831:CAS:528:DC%2BB3MXotVWrsbg%3D10.1016/j.jpcs.2021.110083
– reference: LiYHLopezDMVargasVRZhangJNYangKSJ Chem Phys20201520841061:CAS:528:DC%2BB3cXktVentbY%3D10.1063/1.512792932113342
– reference: Akahama Y, Kawamura H, H¨ausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690.
– reference: TroullierNMartinsJLPhys Rev B19914319931:CAS:528:DyaK3MXovVyktw%3D%3D10.1103/PhysRevB.43.1993
– reference: ElatreshSFBonevSAPhys Chem Chem Phys202022125771:CAS:528:DC%2BB3cXpsFyhtbg%3D10.1039/C9CP05267D32452471
– reference: Ochoa-CalleAJZicovich-WilsonCMRamírez-SolísAPhys Rev B20159208514810.1103/PhysRevB.92.085148
– reference: HillRProc Phys Soc Section A19526534910.1088/0370-1298/65/5/307
– reference: DriverKPSoubiranFZhangSMilitzerBJ Chem Phys20151431:STN:280:DC%2BC28zns1Kgsg%3D%3D10.1063/1.493434826520527
– reference: LiuYHLiuZMMaYMHeZTianFBCuiTLiuBBZouGTChin Phys Lett2007113203
– reference: FujihisaHAkahamaYKawamuraHOhishiYShimomuraOYamawakiHSakashitaMGotohYTakeyaSHondaKPhys Rev Lett20069708550310.1103/PhysRevLett.97.08550317026315
– reference: SegallMDLindanPJDProbertMJPickardCJHasnipPJClarkSJPayneMCJ Phys: Condens Matter20021427171:CAS:528:DC%2BD38XivFGrs7c%3D
– reference: GaoJZengWTangBZhongMLiuQJMater Sci Semicond Process20211211054471:CAS:528:DC%2BB3cXitVKgsb3J10.1016/j.mssp.2020.105447
– volume: 14
  start-page: 2717
  year: 2002
  ident: 5352_CR13
  publication-title: J Phys: Condens Matter
– volume: 121
  start-page: 105447
  year: 2021
  ident: 5352_CR30
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2020.105447
– volume: 401
  start-page: 1
  year: 2004
  ident: 5352_CR5
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2004.06.002
– volume: 24
  start-page: 647
  year: 1970
  ident: 5352_CR17
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 152
  start-page: 084106
  year: 2020
  ident: 5352_CR29
  publication-title: J Chem Phys
  doi: 10.1063/1.5127929
– volume: 65
  year: 2002
  ident: 5352_CR7
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.172106
– volume: 220
  start-page: 567
  year: 2005
  ident: 5352_CR14
  publication-title: Z Kristallogr
  doi: 10.1524/zkri.220.5.567.65075
– volume: 34
  start-page: 114
  year: 2015
  ident: 5352_CR33
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2015.02.015
– ident: 5352_CR9
  doi: 10.1103/PhysRevLett.74.4690
– volume: 22
  start-page: 12577
  year: 2020
  ident: 5352_CR1
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP05267D
– volume: 14
  start-page: 20
  year: 2018
  ident: 5352_CR23
  publication-title: Comput Condensed Matter
  doi: 10.1016/j.cocom.2017.12.004
– volume: 229
  start-page: 135
  year: 2014
  ident: 5352_CR8
  publication-title: Z Kristallogr
– ident: 5352_CR22
  doi: 10.1016/j.jallcom.2015.01.085
– volume: 97
  start-page: 085503
  year: 2006
  ident: 5352_CR10
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.97.085503
– volume: 65
  start-page: 349
  year: 1952
  ident: 5352_CR24
  publication-title: Proc Phys Soc Section A
  doi: 10.1088/0370-1298/65/5/307
– volume: 9
  start-page: 8731
  year: 2019
  ident: 5352_CR2
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45314-9
– volume: 122
  start-page: 105875
  year: 2020
  ident: 5352_CR25
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.105875
– volume: 76
  start-page: 064101
  year: 2007
  ident: 5352_CR11
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.76.064101
– volume: 60
  start-page: 117309
  year: 2011
  ident: 5352_CR21
  publication-title: Acta Phys Sin
  doi: 10.7498/aps.60.117309
– ident: 5352_CR20
– volume: 9
  start-page: 125321
  year: 2019
  ident: 5352_CR31
  publication-title: AIP Adv
  doi: 10.1063/1.5132985
– volume: 236
  start-page: 118137
  year: 2022
  ident: 5352_CR12
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2022.118137
– volume: 22
  start-page: 100583
  year: 2022
  ident: 5352_CR28
  publication-title: Mater Today Phys
  doi: 10.1016/j.mtphys.2021.100583
– volume: 92
  start-page: 085148
  year: 2015
  ident: 5352_CR4
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.92.085148
– volume: 13
  start-page: 5188
  year: 1976
  ident: 5352_CR18
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.13.5188
– volume: 128
  start-page: 113
  year: 2017
  ident: 5352_CR6
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.021
– volume: 11
  start-page: 3203
  year: 2007
  ident: 5352_CR19
  publication-title: Chin Phys Lett
– volume: 84
  start-page: 4544
  year: 2004
  ident: 5352_CR32
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1758781
– volume: 120
  start-page: 27600
  year: 2016
  ident: 5352_CR26
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b10010
– volume: 43
  start-page: 1993
  year: 1991
  ident: 5352_CR15
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.43.1993
– volume: 143
  year: 2015
  ident: 5352_CR3
  publication-title: J Chem Phys
  doi: 10.1063/1.4934348
– volume: 110
  start-page: 5029
  year: 1999
  ident: 5352_CR16
  publication-title: J Chem Phys
  doi: 10.1063/1.478401
– volume: 154
  start-page: 110083
  year: 2021
  ident: 5352_CR27
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2021.110083
SSID ssj0001256522
Score 2.327125
Snippet The vibrational, mechanical, electronic, and optical properties of the ε -O 8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle...
The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle...
The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle...
The vibrational, mechanical, electronic, and optical properties of the ε-O₈ phase in the pressure range of 11.4–70 GPa were studied by the first-principle...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 360
SubjectTerms Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Dispersion curve analysis
dispersions
Energy gap
exhibitions
First principles
Mathematical analysis
methodology
Molecular Medicine
Optical properties
Original Paper
phase transition
Phase transitions
Theoretical and Computational Chemistry
Unit cell
Title First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure
URI https://link.springer.com/article/10.1007/s00894-022-05352-z
https://www.proquest.com/docview/2724697102
https://www.proquest.com/docview/2724582142
https://www.proquest.com/docview/2887624197
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQiPnF9EcGbDbTZZJseF3EVRb24oKfSNgkI2l121YNXf5N_w9_kTNruqqjgqYemaclMM9_MZL4BOHCqELmygidOheiguDbPZai5ytHWI6DQsc_gX1x2Tvvy7Ebd1EVh4-a0e5OS9Dv1pNgNrRXR2KLz5DlJ-MsszCvy3VGL-6L7KbKCIMWnDxDNhFwkMqyrZX6e5qtFmsLMb5lRb3B6y7BUI0XWrUS7AjO2XIWFo6ZB2xq89u4QuvFhEy5nuNxF3Y1rzAaOIbZjFT8scWsE7Jlc4yr2F7AHSzW_JKKATXvhBCwrDRsMfYSbDSlSPyLKVZru_Y1faUZFZyPmj88-jew69HvH10envO6pwIu2Vo-8IOZPJ9Eq4y5oskxbE8uOo5NVmSmiAuFDkoe504lBFzWyQiQm1p0wQ1PXFi5sb8BcOSjtJjBlXJIbGTtXaKkik-V4yUQH94jYxqFoQdSsa1rUhOPU9-I-nVAle1mkKIvUyyJ9acHh5JlhRbfx5-idRlxp_euNUxELdPkJOLVgf3IbRUOZkKy0g6dqDFUIy7_GaDIUMkriFgSNKkxf8_tXbf1v-DYsCtJGX9-4A3OoFnYXgc5jvgfz3ZPb8-M9r98f4072iw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGGBBPEWhgJHYiKXEdRpnrBBVeS9UYouS2JaQIK3awsDKb-Jv8Ju4c5IWECAxZYjjRD7H993rO4AjG-YiC43gsQ19NFBsi2fSVzzMUNcjoFCRi-BfXbd7fXl-F95VRWHjOtu9Dkm6k3pa7Ibaimhs0XhynCT8ZR4WEQwoSuTqi84nzwqCFBc-QDTjcxFLv6qW-XmarxppBjO_RUadwumuwkqFFFmnFO0azJliHZZO6gZtG_DavUfoxoe1u5zhcudVN64xG1iG2I6V_LDEreGxZzKNS9-fxx4N1fySiDw264XjsbTQbDB0Hm42JE_9iChXabr3N36jGBWdjZhLn30amU3od09vT3q86qnA85YKJzwn5k8rUSvjKajTVBkdybalzKpU50GO8CHO_MyqWKOJGhghYh2ptp-iqmsJ67e2YKEYFGYbWKhtnGkZWZsrGQY6zfCSijaeEZGJfNGAoF7XJK8Ix6nvxUMypUp2skhQFomTRfLSgOPpM8OSbuPP0c1aXEn1640TEQk0-Qk4NeBwehtFQ5GQtDCDp3IMVQjLv8YoUhQyiKMGePVWmL3m96_a-d_wA1jq3V5dJpdn1xe7sCxoZ7paxyYs4BYxewh6Jtm-2-Mf7EL36g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXQm4oH2AKCysV-JGrCaukzjHVdmq-yocqNRblMS2tBKkUR8ceuU38Tf4Tcw4SVvQ7kqccojjRJ6J55sZzzcAH2xYiDw0gic29NFBsX2eS1_xMEdbj4BCxS6DfzuORhN5NQ2nO1X87rR7m5KsaxqIpalc9ipte5vCN7RcRGmLjpTjJ-HrJ7CP23FAej0R5ztRFgQsLpWAyMbnIpF-Uzlz_zR_W6ct5PwnS-qMz_AAXjSokZ3XYj6EPVMewbNB26ztGH4O7xDG8aoNnTNc-qLpzLVgM8sQ57GaK5Z4Njz2g9zkOg7ose-G6n9JXB7b9sXxWFZqNqtctJtVFLWfE_0qTff7F_-sGBWgzZk7Sruam5cwGV58HYx401-BF30VLnlBLKBWooXGHVFnmTI6lpGlU1aZLoICoUSS-7lViUZ3NTBCJDpWkZ-h2esL6_dfQaecleY1sFDbJNcytrZQMgx0luMlExHuF7GJfdGFoF3XtGjIx6kHxrd0Q5vsZJGiLFIni3TdhY-bZ6qaeuPR0SetuNLmN1ykIhbo_hOI6sLZ5jaKhrIiWWlmq3oMVQvLx8YoMhoySOIueK0qbF_z8Fe9-b_hp_D0y6dhenM5vn4LzwUppit7PIEOaoh5h_hnmb93Kv4HD6n8Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principle+calculations+of+the+structural%2C+vibrational%2C+mechanical%2C+electronic%2C+and+optical+properties+of+%CE%B5-O8+under+pressure&rft.jtitle=Journal+of+molecular+modeling&rft.au=Bao%2C+Shi-Yuan&rft.au=Hong%2C+Dan&rft.au=Lu%2C+Yi-Chen&rft.au=Liu%2C+Qi-Jun&rft.date=2022-11-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=28&rft.issue=11&rft_id=info:doi/10.1007%2Fs00894-022-05352-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_022_05352_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon