A Single Nuclease Active Site of the Escherichia coli RecBCD Enzyme Catalyzes Single-stranded DNA Degradation in Both Directions

The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called χ. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, an...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 275; no. 1; pp. 507 - 513
Main Authors Wang, Jingdi, Chen, Ruiwu, Julin, Douglas A.
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 07.01.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called χ. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp 1067 and Lys 1082 , abolished nuclease activity on both single- and double-stranded DNA. Together with Asp 1080 , these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce χ-specific fragments that are thought to result from the 3′-5′ and 5′-3′ single-stranded exonuclease activities of the enzyme during its reaction with χ-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.
AbstractList The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called χ. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp 1067 and Lys 1082 , abolished nuclease activity on both single- and double-stranded DNA. Together with Asp 1080 , these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce χ-specific fragments that are thought to result from the 3′-5′ and 5′-3′ single-stranded exonuclease activities of the enzyme during its reaction with χ-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi . In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp super(1067) and Lys super(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp super(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi -specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi -containing double-stranded DNA. The results show that the nuclease active site in the RecB C- terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.
Author Jingdi Wang
Douglas A. Julin
Ruiwu Chen
Author_xml – sequence: 1
  givenname: Jingdi
  surname: Wang
  fullname: Wang, Jingdi
– sequence: 2
  givenname: Ruiwu
  surname: Chen
  fullname: Chen, Ruiwu
– sequence: 3
  givenname: Douglas A.
  surname: Julin
  fullname: Julin, Douglas A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10617645$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r3DAQxUVJaDZpj7kW9dKbN5ItWdZxs7v5gJBAP6A3IcvjtYJtpZK2YXPKnx4lu6ElFDqXgeE3j5n3DtHe6EZA6JiSKSWCndzWZpoLPqVTTsQ7NKGkKrKC0597aEJITjOZ8-oAHYZwS1IxSd-jA0pKKkrGJ-hxhr_ZcdUDvl6bHnQAPDPR_oY0joBdi2MHeBlMB96azmpsXG_xVzCn8wVejg-bAfBcR91vHiDstLIQvR4baPDieoYXsPK60dG6EdsRn7rY4YX1YJ4n4QPab3Uf4OOuH6EfZ8vv84vs6ub8cj67ykxR8ZiZ9GNVldyk01nTUgYSckqkkFrkxvC6YTmRraC04SA51S2DipV1lWsBTVEWR-jLVvfOu19rCFENNhjoez2CWwclSEVzKdl_QSpYMq_gCfy0A9f1AI2683bQfqNezU1AsQWMdyF4aJWx8cWHZI_tE6ieI1QpQpXeU1SlCNNW9mbrj_C_-c9bvrOr7j75qmrrUlzDX8wTpk6npA
CitedBy_id crossref_primary_10_1128_JB_00368_11
crossref_primary_10_1093_nar_gkac229
crossref_primary_10_1093_nar_gkn333
crossref_primary_10_1128_ecosalplus_4_4_7
crossref_primary_10_1074_jbc_M112_346361
crossref_primary_10_1080_10409238_2019_1651816
crossref_primary_10_1534_genetics_105_052076
crossref_primary_10_1074_jbc_M600882200
crossref_primary_10_1016_j_resmic_2016_04_005
crossref_primary_10_1021_ja408729b
crossref_primary_10_1074_jbc_M108627200
crossref_primary_10_1093_genetics_160_2_381
crossref_primary_10_1016_j_biochi_2012_05_008
crossref_primary_10_1016_j_jmb_2023_168381
crossref_primary_10_1016_S0923_2508_00_01142_6
crossref_primary_10_1016_S0923_2508_01_01183_4
crossref_primary_10_1038_s41598_017_09403_x
crossref_primary_10_1021_ja065159b
crossref_primary_10_1046_j_1365_2958_2002_02785_x
crossref_primary_10_1128_JB_183_13_4071_4078_2001
crossref_primary_10_1128_ecosalplus_7_2_7
crossref_primary_10_1371_journal_pone_0001242
crossref_primary_10_1016_j_dnarep_2021_103229
crossref_primary_10_1016_j_jmb_2007_05_053
crossref_primary_10_1111_j_1742_4658_2008_06342_x
crossref_primary_10_1093_genetics_161_2_483
crossref_primary_10_1074_jbc_M808526200
crossref_primary_10_1128_JB_00130_06
crossref_primary_10_7554_eLife_40836
crossref_primary_10_1128_JB_00711_08
crossref_primary_10_1128_mmbr_00041_23
crossref_primary_10_1016_j_jmb_2006_07_025
crossref_primary_10_1007_s00792_011_0385_0
crossref_primary_10_1016_j_dnarep_2009_12_016
crossref_primary_10_1073_pnas_1918859117
crossref_primary_10_1093_nar_gkp1194
crossref_primary_10_1093_genetics_163_4_1255
crossref_primary_10_1128_JB_00980_07
crossref_primary_10_1038_emboj_2012_9
crossref_primary_10_1128_JB_01513_14
crossref_primary_10_1016_j_biochi_2008_04_002
crossref_primary_10_1016_j_resmic_2010_12_001
crossref_primary_10_1016_j_dnarep_2014_02_002
crossref_primary_10_1046_j_1365_2958_2001_02573_x
crossref_primary_10_1093_genetics_163_2_485
crossref_primary_10_1128_MMBR_00020_08
crossref_primary_10_1128_JB_187_4_1350_1356_2005
crossref_primary_10_1534_genetics_106_063750
crossref_primary_10_1073_pnas_121164898
crossref_primary_10_1146_annurev_biochem_060614_034352
Cites_doi 10.1093/nar/25.17.3389
10.1016/0022-2836(75)90078-9
10.1016/0959-440X(95)80004-K
10.1073/pnas.83.15.5558
10.1101/gad.11.5.571
10.1101/gad.13.7.890
10.1093/emboj/17.5.1526
10.1146/annurev.ge.28.120194.000405
10.1016/S0092-8674(00)80315-3
10.1128/jb.160.2.788-791.1984
10.1093/nar/27.21.4200
10.1093/nar/27.5.1223
10.1046/j.1365-2958.1998.01018.x
10.1016/0092-8674(85)90069-8
10.1093/nar/21.16.3875
10.1111/j.1432-1033.1997.t01-6-00001.x
10.1093/nar/22.22.4673
10.1016/S0021-9258(18)42927-4
10.1016/0092-8674(81)90333-0
10.1006/jmbi.1998.2127
10.1016/S0021-9258(18)46006-1
10.1074/jbc.270.41.24459
10.1111/j.1365-2958.1995.tb02403.x
10.1021/bi00198a022
10.1093/genetics/77.3.425
10.1073/pnas.95.14.7893
10.1006/jmbi.1998.1694
10.1073/pnas.95.3.981
10.1073/pnas.89.12.5226
10.1021/bi00069a024
10.1093/nar/14.21.8573
10.1128/jb.134.3.1141-1156.1978
10.1046/j.1365-2958.1998.00749.x
10.1016/0006-291X(82)91737-5
10.1016/S0021-9258(19)50698-6
10.1126/science.285.5430.1074
10.1074/jbc.272.15.10072
10.1098/rstb.1995.0003
10.1073/pnas.91.8.2980
10.1016/0092-8674(91)90625-9
10.1093/emboj/17.18.5466
10.1093/genetics/126.1.25
10.1021/bi00433a018
10.1016/0022-2836(77)90276-5
10.1016/0092-8674(85)90070-4
10.1016/S0021-9258(19)39788-1
10.1128/jb.155.2.664-680.1983
10.1093/nar/14.21.8583
10.1006/jmbi.1993.1008
10.1073/pnas.95.2.626
10.1016/0968-0004(92)90338-A
10.1016/S0021-9258(18)34972-X
10.1046/j.1365-2443.1997.1410339.x
10.1016/0092-8674(93)90162-J
10.1128/jb.112.1.161-169.1972
10.1093/nar/20.21.5647
10.1093/nar/14.11.4437
10.1128/mr.58.3.401-465.1994
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
C1K
7X8
DOI 10.1074/jbc.275.1.507
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 513
ExternalDocumentID 10617645
10_1074_jbc_275_1_507
275_1_507
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM39777
GroupedDBID -
02
08R
186
2WC
34G
39C
3O-
53G
55
5BI
5GY
5RE
5VS
85S
AARDX
AAWZA
ABFLS
ABOCM
ABPPZ
ABPTK
ABUFD
ABZEH
ACNCT
ADACO
ADBBV
ADBIT
ADCOW
AEILP
AENEX
AFFNX
AFMIJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
C1A
CJ0
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
FA8
FH7
FRP
GJ
GX1
H13
HH5
IH2
KM
KQ8
L7B
LI
MVM
MYA
N9A
NHB
O0-
OHM
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
RPM
SJN
TBC
TN5
UHB
UKR
UPT
UQL
VH1
VQA
WH7
WOQ
X
X7M
XFK
XHC
Y6R
YZZ
ZA5
ZE2
ZGI
ZY4
---
-DZ
-ET
-~X
.55
.7T
.GJ
0R~
18M
29J
4.4
41~
6TJ
79B
AAEDW
AAFWJ
AALRI
AAXUO
AAYJJ
AAYOK
AAYWO
AAYXX
ABDNZ
ABFSI
ABRJW
ACGFO
ACSFO
ACVFH
ACYGS
ADCNI
ADIYS
ADNWM
ADVLN
ADXHL
AEUPX
AEXQZ
AFOSN
AFPKN
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BAWUL
BTFSW
CITATION
E.L
FDB
GROUPED_DOAJ
HYE
J5H
QZG
ROL
TR2
W8F
WHG
XJT
XSW
YQT
YSK
YWH
YYP
~02
~KM
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QL
7TM
C1K
7X8
ID FETCH-LOGICAL-c385t-c2758865c1064df14e9e210979a72cc5bd4209f711d5e951af4e846b82a7ed363
ISSN 0021-9258
IngestDate Fri Jul 11 11:58:27 EDT 2025
Fri Jul 11 04:31:56 EDT 2025
Wed Feb 19 02:29:45 EST 2025
Tue Jul 01 01:00:31 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Tue Jan 05 15:29:54 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-c2758865c1064df14e9e210979a72cc5bd4209f711d5e951af4e846b82a7ed363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://www.jbc.org/article/S0021925819528927/pdf
PMID 10617645
PQID 17461735
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_70812994
proquest_miscellaneous_17461735
pubmed_primary_10617645
crossref_citationtrail_10_1074_jbc_275_1_507
crossref_primary_10_1074_jbc_275_1_507
highwire_biochem_275_1_507
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-01-07
PublicationDateYYYYMMDD 2000-01-07
PublicationDate_xml – month: 01
  year: 2000
  text: 2000-01-07
  day: 07
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2000
Publisher American Society for Biochemistry and Molecular Biology
Publisher_xml – name: American Society for Biochemistry and Molecular Biology
References Palas (10.1074/jbc.275.1.507_bib47) 1990; 265
Dixon (10.1074/jbc.275.1.507_bib15) 1991; 66
Chedin (10.1074/jbc.275.1.507_bib54) 1998; 29
Anderson (10.1074/jbc.275.1.507_bib16) 1997; 90
Finch (10.1074/jbc.275.1.507_bib5) 1986; 14
Sasaki (10.1074/jbc.275.1.507_bib28) 1982; 109
Dixon (10.1074/jbc.275.1.507_bib18) 1993; 73
Muskavitch (10.1074/jbc.275.1.507_bib19) 1982; 257
Korangy (10.1074/jbc.275.1.507_bib45) 1994; 33
Kuzminov (10.1074/jbc.275.1.507_bib9) 1995; 16
Kowalczykowski (10.1074/jbc.275.1.507_bib2) 1994; 58
Roman (10.1074/jbc.275.1.507_bib31) 1989; 28
Aravind (10.1074/jbc.275.1.507_bib34) 1999; 27
Korangy (10.1074/jbc.275.1.507_bib27) 1992; 267
Thompson (10.1074/jbc.275.1.507_bib60) 1994; 22
Yu (10.1074/jbc.275.1.507_bib26) 1998; 95
Ganesan (10.1074/jbc.275.1.507_bib49) 1993; 229
Stahl (10.1074/jbc.275.1.507_bib14) 1974; 94
Schultz (10.1074/jbc.275.1.507_bib50) 1983; 155
Chen (10.1074/jbc.275.1.507_bib32) 1997; 272
Aggarwal (10.1074/jbc.275.1.507_bib35) 1995; 5
Yu (10.1074/jbc.275.1.507_bib25) 1998; 283
Hsieh (10.1074/jbc.275.1.507_bib41) 1992; 20
Taylor (10.1074/jbc.275.1.507_bib20) 1985; 41
Ponticelli (10.1074/jbc.275.1.507_bib21) 1985; 41
Chaudhury (10.1074/jbc.275.1.507_bib10) 1984; 160
Zhang (10.1074/jbc.275.1.507_bib40) 1999; 27
Finch (10.1074/jbc.275.1.507_bib4) 1986; 14
Korangy (10.1074/jbc.275.1.507_bib43) 1993; 32
Chang (10.1074/jbc.275.1.507_bib30) 1978; 134
Smith (10.1074/jbc.275.1.507_bib3) 1995; 347
Oliver (10.1074/jbc.275.1.507_bib7) 1977; 116
Cardon (10.1074/jbc.275.1.507_bib17) 1993; 21
Boehmer (10.1074/jbc.275.1.507_bib24) 1992; 267
Taylor (10.1074/jbc.275.1.507_bib55) 1992; 89
Sambrook (10.1074/jbc.275.1.507_bib29) 1989
Taylor (10.1074/jbc.275.1.507_bib57) 1999; 13
Dixon (10.1074/jbc.275.1.507_bib56) 1994; 91
Chen (10.1074/jbc.275.1.507_bib46) 1998; 278
Simmon (10.1074/jbc.275.1.507_bib8) 1972; 112
Smith (10.1074/jbc.275.1.507_bib12) 1981; 24
Koonin (10.1074/jbc.275.1.507_bib42) 1992; 17
Anderson (10.1074/jbc.275.1.507_bib23) 1997; 11
Taylor (10.1074/jbc.275.1.507_bib22) 1995; 270
Kovall (10.1074/jbc.275.1.507_bib37) 1998; 95
Ban (10.1074/jbc.275.1.507_bib38) 1998; 17
Altschul (10.1074/jbc.275.1.507_bib59) 1997; 25
Amundsen (10.1074/jbc.275.1.507_bib11) 1990; 126
Sourice (10.1074/jbc.275.1.507_bib53) 1998; 27
Newman (10.1074/jbc.275.1.507_bib39) 1998; 17
Finch (10.1074/jbc.275.1.507_bib6) 1986; 14
Silvian (10.1074/jbc.275.1.507_bib58) 1999; 285
Phillips (10.1074/jbc.275.1.507_bib44) 1997; 254
Amundsen (10.1074/jbc.275.1.507_bib48) 1986; 83
El Karoui (10.1074/jbc.275.1.507_bib52) 1998; 95
Lam (10.1074/jbc.275.1.507_bib13) 1974; 77
Handa (10.1074/jbc.275.1.507_bib51) 1997; 2
Korangy (10.1074/jbc.275.1.507_bib33) 1992; 267
Myers (10.1074/jbc.275.1.507_bib1) 1994; 28
Pingoud (10.1074/jbc.275.1.507_bib36) 1997; 246
References_xml – volume: 25
  start-page: 3389
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib59
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 94
  start-page: 203
  year: 1974
  ident: 10.1074/jbc.275.1.507_bib14
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(75)90078-9
– volume: 5
  start-page: 11
  year: 1995
  ident: 10.1074/jbc.275.1.507_bib35
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/0959-440X(95)80004-K
– volume: 83
  start-page: 5558
  year: 1986
  ident: 10.1074/jbc.275.1.507_bib48
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.83.15.5558
– volume: 11
  start-page: 571
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib23
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.5.571
– volume: 13
  start-page: 890
  year: 1999
  ident: 10.1074/jbc.275.1.507_bib57
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.7.890
– volume: 17
  start-page: 1526
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib38
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.5.1526
– volume: 28
  start-page: 49
  year: 1994
  ident: 10.1074/jbc.275.1.507_bib1
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.28.120194.000405
– volume: 90
  start-page: 77
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib16
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80315-3
– volume: 160
  start-page: 788
  year: 1984
  ident: 10.1074/jbc.275.1.507_bib10
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.160.2.788-791.1984
– volume: 27
  start-page: 4200
  year: 1999
  ident: 10.1074/jbc.275.1.507_bib40
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.21.4200
– volume: 27
  start-page: 1223
  year: 1999
  ident: 10.1074/jbc.275.1.507_bib34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.5.1223
– volume: 29
  start-page: 1369
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib54
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01018.x
– volume: 41
  start-page: 145
  year: 1985
  ident: 10.1074/jbc.275.1.507_bib21
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90069-8
– volume: 21
  start-page: 3875
  year: 1993
  ident: 10.1074/jbc.275.1.507_bib17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/21.16.3875
– volume: 246
  start-page: 1
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib36
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.t01-6-00001.x
– volume: 22
  start-page: 4673
  year: 1994
  ident: 10.1074/jbc.275.1.507_bib60
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 267
  start-page: 4981
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib24
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42927-4
– year: 1989
  ident: 10.1074/jbc.275.1.507_bib29
– volume: 24
  start-page: 429
  year: 1981
  ident: 10.1074/jbc.275.1.507_bib12
  publication-title: Cell
  doi: 10.1016/0092-8674(81)90333-0
– volume: 283
  start-page: 797
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib25
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2127
– volume: 267
  start-page: 1727
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib33
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)46006-1
– volume: 270
  start-page: 24459
  year: 1995
  ident: 10.1074/jbc.275.1.507_bib22
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.41.24459
– volume: 16
  start-page: 373
  year: 1995
  ident: 10.1074/jbc.275.1.507_bib9
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02403.x
– volume: 33
  start-page: 9552
  year: 1994
  ident: 10.1074/jbc.275.1.507_bib45
  publication-title: Biochemistry
  doi: 10.1021/bi00198a022
– volume: 77
  start-page: 425
  year: 1974
  ident: 10.1074/jbc.275.1.507_bib13
  publication-title: Genetics
  doi: 10.1093/genetics/77.3.425
– volume: 95
  start-page: 7893
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib37
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.14.7893
– volume: 278
  start-page: 89
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib46
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.1694
– volume: 95
  start-page: 981
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib26
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.3.981
– volume: 89
  start-page: 5226
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib55
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.12.5226
– volume: 32
  start-page: 4873
  year: 1993
  ident: 10.1074/jbc.275.1.507_bib43
  publication-title: Biochemistry
  doi: 10.1021/bi00069a024
– volume: 14
  start-page: 8573
  year: 1986
  ident: 10.1074/jbc.275.1.507_bib6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/14.21.8573
– volume: 134
  start-page: 1141
  year: 1978
  ident: 10.1074/jbc.275.1.507_bib30
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.134.3.1141-1156.1978
– volume: 27
  start-page: 1021
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib53
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.00749.x
– volume: 109
  start-page: 414
  year: 1982
  ident: 10.1074/jbc.275.1.507_bib28
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(82)91737-5
– volume: 267
  start-page: 3088
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib27
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50698-6
– volume: 285
  start-page: 1074
  year: 1999
  ident: 10.1074/jbc.275.1.507_bib58
  publication-title: Science
  doi: 10.1126/science.285.5430.1074
– volume: 272
  start-page: 10072
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib32
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.15.10072
– volume: 347
  start-page: 13
  year: 1995
  ident: 10.1074/jbc.275.1.507_bib3
  publication-title: Phil. Trans. R. Soc. Lond. B.
  doi: 10.1098/rstb.1995.0003
– volume: 91
  start-page: 2980
  year: 1994
  ident: 10.1074/jbc.275.1.507_bib56
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.8.2980
– volume: 66
  start-page: 361
  year: 1991
  ident: 10.1074/jbc.275.1.507_bib15
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90625-9
– volume: 17
  start-page: 5466
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib39
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.18.5466
– volume: 126
  start-page: 25
  year: 1990
  ident: 10.1074/jbc.275.1.507_bib11
  publication-title: Genetics
  doi: 10.1093/genetics/126.1.25
– volume: 28
  start-page: 2863
  year: 1989
  ident: 10.1074/jbc.275.1.507_bib31
  publication-title: Biochemistry
  doi: 10.1021/bi00433a018
– volume: 116
  start-page: 877
  year: 1977
  ident: 10.1074/jbc.275.1.507_bib7
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(77)90276-5
– volume: 41
  start-page: 153
  year: 1985
  ident: 10.1074/jbc.275.1.507_bib20
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90070-4
– volume: 265
  start-page: 3447
  year: 1990
  ident: 10.1074/jbc.275.1.507_bib47
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39788-1
– volume: 155
  start-page: 664
  year: 1983
  ident: 10.1074/jbc.275.1.507_bib50
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.155.2.664-680.1983
– volume: 14
  start-page: 8583
  year: 1986
  ident: 10.1074/jbc.275.1.507_bib5
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/14.21.8583
– volume: 229
  start-page: 67
  year: 1993
  ident: 10.1074/jbc.275.1.507_bib49
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1008
– volume: 254
  start-page: 319
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib44
  publication-title: Mol. Gen. Genet.
– volume: 95
  start-page: 626
  year: 1998
  ident: 10.1074/jbc.275.1.507_bib52
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.2.626
– volume: 17
  start-page: 495
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib42
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(92)90338-A
– volume: 257
  start-page: 2641
  year: 1982
  ident: 10.1074/jbc.275.1.507_bib19
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34972-X
– volume: 2
  start-page: 525
  year: 1997
  ident: 10.1074/jbc.275.1.507_bib51
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1997.1410339.x
– volume: 73
  start-page: 87
  year: 1993
  ident: 10.1074/jbc.275.1.507_bib18
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90162-J
– volume: 112
  start-page: 161
  year: 1972
  ident: 10.1074/jbc.275.1.507_bib8
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.112.1.161-169.1972
– volume: 20
  start-page: 5647
  year: 1992
  ident: 10.1074/jbc.275.1.507_bib41
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.21.5647
– volume: 14
  start-page: 4437
  year: 1986
  ident: 10.1074/jbc.275.1.507_bib4
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/14.11.4437
– volume: 58
  start-page: 401
  year: 1994
  ident: 10.1074/jbc.275.1.507_bib2
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.58.3.401-465.1994
SSID ssj0000491
Score 1.8633014
Snippet The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 507
SubjectTerms Amino Acid Sequence
Catalytic Domain
DNA damage
DNA Helicases - genetics
DNA Helicases - metabolism
DNA, Bacterial - metabolism
DNA, Single-Stranded - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins
Exodeoxyribonuclease V
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Models, Biological
Molecular Sequence Data
Mutagenesis, Site-Directed
Nucleic Acid Conformation
RecBCD enzyme
Sequence Homology, Amino Acid
Title A Single Nuclease Active Site of the Escherichia coli RecBCD Enzyme Catalyzes Single-stranded DNA Degradation in Both Directions
URI http://www.jbc.org/content/275/1/507.abstract
https://www.ncbi.nlm.nih.gov/pubmed/10617645
https://www.proquest.com/docview/17461735
https://www.proquest.com/docview/70812994
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOcAFQcsj5TUH1EtwiB_rx9FNU1VQBSESKbfV7mZdBaUOatxDcuKnM-O1YweIeFwsy94dWf4-j2dmZ2cYe8tDmQXS9R1JjQDR38icRMnICSLPV4r7imdltc9ReDEJPkz5tClPUO4uKVRPb367r-R_UMVriCvtkv0HZLdC8QKeI754RITx-FcYp90v-OdZGPT58Y6kGiOl-sLLzer_cEW4zCmnuYuoz8lSPB2cdYf5Zn1taAugXKw3ZlXJcij2QWHx7tkoRXV0dSNt2yWKjJwirrWWrON8Xxu-taxbW9zJlh-pe8o1wfsqDbjJLbDKb7vqRLu2rTpMd8IS_TIsEbVVLeV-eLYue61qPdslZYdTVnHyaq79B3O7P_UX9Y72Dql3pXsoqef2trPaZbRHn8T55PJSjIfT8V12z0P_gRTgx89NGXl0i2wrxeoZq-KrKP79jvBdY6UuIL3fGSmNkvEj9rB635Baajxmd0x-yI7SXBbL6zWcQJnfWy6cHLL7gxqHI_Y9BYs21MwByxwg5sAyA2QOtJgDxBywzAHLHNgyB35iDiBzoMUcmOdAzIGGOU_Y5Hw4Hlw4VS8OR_sxLxyN7ySOQ65dtGFnmRuYxHiUvZDIyNOaq1ng9ZMsct0ZN2i1owYwaNqq2JORmfmh_5Qd5MvcPGfA0UXylA77fqJRVBybMEwUD7Th3ARh0mHv6pcudFWonvqlLESZMBEFAjES-DzCFYhRh51sh3-zFVr2DTyuERT4ERD52zff1JgKxIJWzWRulrcrgS47Wvk-3z8iQrMarbqgw55ZMrSeA6eGAT_-o_QX7EHzFb1kB8XNrXmF5m6hXpfU_QGo-qqF
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Nuclease+Active+Site+of+the+Escherichia+coli+RecBCD+Enzyme+Catalyzes+Single-stranded+DNA+Degradation+in+Both+Directions&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Wang%2C+J&rft.au=Chen%2C+R&rft.au=Julin%2C+DA&rft.date=2000-01-07&rft.issn=0021-9258&rft.volume=275&rft.issue=1&rft.spage=507&rft.epage=513&rft_id=info:doi/10.1074%2Fjbc.275.1.507&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon