A Single Nuclease Active Site of the Escherichia coli RecBCD Enzyme Catalyzes Single-stranded DNA Degradation in Both Directions
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called Ï. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, an...
Saved in:
Published in | The Journal of biological chemistry Vol. 275; no. 1; pp. 507 - 513 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
07.01.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide
sequence called Ï. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit,
and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp 1067 and Lys 1082 , abolished nuclease activity on both single- and double-stranded DNA. Together with Asp 1080 , these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases.
The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases.
Furthermore, the mutant enzymes were unable to produce Ï-specific fragments that are thought to result from the 3â²-5â² and
5â²-3â² single-stranded exonuclease activities of the enzyme during its reaction with Ï-containing double-stranded DNA. The
results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD
that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and
RecBCD-DNA interaction is offered. |
---|---|
AbstractList | The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered. The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered. The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called Ï. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp 1067 and Lys 1082 , abolished nuclease activity on both single- and double-stranded DNA. Together with Asp 1080 , these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce Ï-specific fragments that are thought to result from the 3â²-5â² and 5â²-3â² single-stranded exonuclease activities of the enzyme during its reaction with Ï-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered. The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi . In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp super(1067) and Lys super(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp super(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi -specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi -containing double-stranded DNA. The results show that the nuclease active site in the RecB C- terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered. |
Author | Jingdi Wang Douglas A. Julin Ruiwu Chen |
Author_xml | – sequence: 1 givenname: Jingdi surname: Wang fullname: Wang, Jingdi – sequence: 2 givenname: Ruiwu surname: Chen fullname: Chen, Ruiwu – sequence: 3 givenname: Douglas A. surname: Julin fullname: Julin, Douglas A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10617645$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1r3DAQxUVJaDZpj7kW9dKbN5ItWdZxs7v5gJBAP6A3IcvjtYJtpZK2YXPKnx4lu6ElFDqXgeE3j5n3DtHe6EZA6JiSKSWCndzWZpoLPqVTTsQ7NKGkKrKC0597aEJITjOZ8-oAHYZwS1IxSd-jA0pKKkrGJ-hxhr_ZcdUDvl6bHnQAPDPR_oY0joBdi2MHeBlMB96azmpsXG_xVzCn8wVejg-bAfBcR91vHiDstLIQvR4baPDieoYXsPK60dG6EdsRn7rY4YX1YJ4n4QPab3Uf4OOuH6EfZ8vv84vs6ub8cj67ykxR8ZiZ9GNVldyk01nTUgYSckqkkFrkxvC6YTmRraC04SA51S2DipV1lWsBTVEWR-jLVvfOu19rCFENNhjoez2CWwclSEVzKdl_QSpYMq_gCfy0A9f1AI2683bQfqNezU1AsQWMdyF4aJWx8cWHZI_tE6ieI1QpQpXeU1SlCNNW9mbrj_C_-c9bvrOr7j75qmrrUlzDX8wTpk6npA |
CitedBy_id | crossref_primary_10_1128_JB_00368_11 crossref_primary_10_1093_nar_gkac229 crossref_primary_10_1093_nar_gkn333 crossref_primary_10_1128_ecosalplus_4_4_7 crossref_primary_10_1074_jbc_M112_346361 crossref_primary_10_1080_10409238_2019_1651816 crossref_primary_10_1534_genetics_105_052076 crossref_primary_10_1074_jbc_M600882200 crossref_primary_10_1016_j_resmic_2016_04_005 crossref_primary_10_1021_ja408729b crossref_primary_10_1074_jbc_M108627200 crossref_primary_10_1093_genetics_160_2_381 crossref_primary_10_1016_j_biochi_2012_05_008 crossref_primary_10_1016_j_jmb_2023_168381 crossref_primary_10_1016_S0923_2508_00_01142_6 crossref_primary_10_1016_S0923_2508_01_01183_4 crossref_primary_10_1038_s41598_017_09403_x crossref_primary_10_1021_ja065159b crossref_primary_10_1046_j_1365_2958_2002_02785_x crossref_primary_10_1128_JB_183_13_4071_4078_2001 crossref_primary_10_1128_ecosalplus_7_2_7 crossref_primary_10_1371_journal_pone_0001242 crossref_primary_10_1016_j_dnarep_2021_103229 crossref_primary_10_1016_j_jmb_2007_05_053 crossref_primary_10_1111_j_1742_4658_2008_06342_x crossref_primary_10_1093_genetics_161_2_483 crossref_primary_10_1074_jbc_M808526200 crossref_primary_10_1128_JB_00130_06 crossref_primary_10_7554_eLife_40836 crossref_primary_10_1128_JB_00711_08 crossref_primary_10_1128_mmbr_00041_23 crossref_primary_10_1016_j_jmb_2006_07_025 crossref_primary_10_1007_s00792_011_0385_0 crossref_primary_10_1016_j_dnarep_2009_12_016 crossref_primary_10_1073_pnas_1918859117 crossref_primary_10_1093_nar_gkp1194 crossref_primary_10_1093_genetics_163_4_1255 crossref_primary_10_1128_JB_00980_07 crossref_primary_10_1038_emboj_2012_9 crossref_primary_10_1128_JB_01513_14 crossref_primary_10_1016_j_biochi_2008_04_002 crossref_primary_10_1016_j_resmic_2010_12_001 crossref_primary_10_1016_j_dnarep_2014_02_002 crossref_primary_10_1046_j_1365_2958_2001_02573_x crossref_primary_10_1093_genetics_163_2_485 crossref_primary_10_1128_MMBR_00020_08 crossref_primary_10_1128_JB_187_4_1350_1356_2005 crossref_primary_10_1534_genetics_106_063750 crossref_primary_10_1073_pnas_121164898 crossref_primary_10_1146_annurev_biochem_060614_034352 |
Cites_doi | 10.1093/nar/25.17.3389 10.1016/0022-2836(75)90078-9 10.1016/0959-440X(95)80004-K 10.1073/pnas.83.15.5558 10.1101/gad.11.5.571 10.1101/gad.13.7.890 10.1093/emboj/17.5.1526 10.1146/annurev.ge.28.120194.000405 10.1016/S0092-8674(00)80315-3 10.1128/jb.160.2.788-791.1984 10.1093/nar/27.21.4200 10.1093/nar/27.5.1223 10.1046/j.1365-2958.1998.01018.x 10.1016/0092-8674(85)90069-8 10.1093/nar/21.16.3875 10.1111/j.1432-1033.1997.t01-6-00001.x 10.1093/nar/22.22.4673 10.1016/S0021-9258(18)42927-4 10.1016/0092-8674(81)90333-0 10.1006/jmbi.1998.2127 10.1016/S0021-9258(18)46006-1 10.1074/jbc.270.41.24459 10.1111/j.1365-2958.1995.tb02403.x 10.1021/bi00198a022 10.1093/genetics/77.3.425 10.1073/pnas.95.14.7893 10.1006/jmbi.1998.1694 10.1073/pnas.95.3.981 10.1073/pnas.89.12.5226 10.1021/bi00069a024 10.1093/nar/14.21.8573 10.1128/jb.134.3.1141-1156.1978 10.1046/j.1365-2958.1998.00749.x 10.1016/0006-291X(82)91737-5 10.1016/S0021-9258(19)50698-6 10.1126/science.285.5430.1074 10.1074/jbc.272.15.10072 10.1098/rstb.1995.0003 10.1073/pnas.91.8.2980 10.1016/0092-8674(91)90625-9 10.1093/emboj/17.18.5466 10.1093/genetics/126.1.25 10.1021/bi00433a018 10.1016/0022-2836(77)90276-5 10.1016/0092-8674(85)90070-4 10.1016/S0021-9258(19)39788-1 10.1128/jb.155.2.664-680.1983 10.1093/nar/14.21.8583 10.1006/jmbi.1993.1008 10.1073/pnas.95.2.626 10.1016/0968-0004(92)90338-A 10.1016/S0021-9258(18)34972-X 10.1046/j.1365-2443.1997.1410339.x 10.1016/0092-8674(93)90162-J 10.1128/jb.112.1.161-169.1972 10.1093/nar/20.21.5647 10.1093/nar/14.11.4437 10.1128/mr.58.3.401-465.1994 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM C1K 7X8 |
DOI | 10.1074/jbc.275.1.507 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 513 |
ExternalDocumentID | 10617645 10_1074_jbc_275_1_507 275_1_507 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM39777 |
GroupedDBID | - 02 08R 186 2WC 34G 39C 3O- 53G 55 5BI 5GY 5RE 5VS 85S AARDX AAWZA ABFLS ABOCM ABPPZ ABPTK ABUFD ABZEH ACNCT ADACO ADBBV ADBIT ADCOW AEILP AENEX AFFNX AFMIJ AIZTS ALMA_UNASSIGNED_HOLDINGS C1A CJ0 CS3 DIK DL DU5 DZ E3Z EBS EJD ET F20 F5P FA8 FH7 FRP GJ GX1 H13 HH5 IH2 KM KQ8 L7B LI MVM MYA N9A NHB O0- OHM OHT OK1 P-O P0W P2P R.V RHF RHI RNS RPM SJN TBC TN5 UHB UKR UPT UQL VH1 VQA WH7 WOQ X X7M XFK XHC Y6R YZZ ZA5 ZE2 ZGI ZY4 --- -DZ -ET -~X .55 .7T .GJ 0R~ 18M 29J 4.4 41~ 6TJ 79B AAEDW AAFWJ AALRI AAXUO AAYJJ AAYOK AAYWO AAYXX ABDNZ ABFSI ABRJW ACGFO ACSFO ACVFH ACYGS ADCNI ADIYS ADNWM ADVLN ADXHL AEUPX AEXQZ AFOSN AFPKN AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP AMRAJ AOIJS BAWUL BTFSW CITATION E.L FDB GROUPED_DOAJ HYE J5H QZG ROL TR2 W8F WHG XJT XSW YQT YSK YWH YYP ~02 ~KM ABTAH CGR CUY CVF ECM EIF NPM PKN Z5M 7QL 7TM C1K 7X8 |
ID | FETCH-LOGICAL-c385t-c2758865c1064df14e9e210979a72cc5bd4209f711d5e951af4e846b82a7ed363 |
ISSN | 0021-9258 |
IngestDate | Fri Jul 11 11:58:27 EDT 2025 Fri Jul 11 04:31:56 EDT 2025 Wed Feb 19 02:29:45 EST 2025 Tue Jul 01 01:00:31 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Tue Jan 05 15:29:54 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-c2758865c1064df14e9e210979a72cc5bd4209f711d5e951af4e846b82a7ed363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://www.jbc.org/article/S0021925819528927/pdf |
PMID | 10617645 |
PQID | 17461735 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_70812994 proquest_miscellaneous_17461735 pubmed_primary_10617645 crossref_citationtrail_10_1074_jbc_275_1_507 crossref_primary_10_1074_jbc_275_1_507 highwire_biochem_275_1_507 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-01-07 |
PublicationDateYYYYMMDD | 2000-01-07 |
PublicationDate_xml | – month: 01 year: 2000 text: 2000-01-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2000 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Palas (10.1074/jbc.275.1.507_bib47) 1990; 265 Dixon (10.1074/jbc.275.1.507_bib15) 1991; 66 Chedin (10.1074/jbc.275.1.507_bib54) 1998; 29 Anderson (10.1074/jbc.275.1.507_bib16) 1997; 90 Finch (10.1074/jbc.275.1.507_bib5) 1986; 14 Sasaki (10.1074/jbc.275.1.507_bib28) 1982; 109 Dixon (10.1074/jbc.275.1.507_bib18) 1993; 73 Muskavitch (10.1074/jbc.275.1.507_bib19) 1982; 257 Korangy (10.1074/jbc.275.1.507_bib45) 1994; 33 Kuzminov (10.1074/jbc.275.1.507_bib9) 1995; 16 Kowalczykowski (10.1074/jbc.275.1.507_bib2) 1994; 58 Roman (10.1074/jbc.275.1.507_bib31) 1989; 28 Aravind (10.1074/jbc.275.1.507_bib34) 1999; 27 Korangy (10.1074/jbc.275.1.507_bib27) 1992; 267 Thompson (10.1074/jbc.275.1.507_bib60) 1994; 22 Yu (10.1074/jbc.275.1.507_bib26) 1998; 95 Ganesan (10.1074/jbc.275.1.507_bib49) 1993; 229 Stahl (10.1074/jbc.275.1.507_bib14) 1974; 94 Schultz (10.1074/jbc.275.1.507_bib50) 1983; 155 Chen (10.1074/jbc.275.1.507_bib32) 1997; 272 Aggarwal (10.1074/jbc.275.1.507_bib35) 1995; 5 Yu (10.1074/jbc.275.1.507_bib25) 1998; 283 Hsieh (10.1074/jbc.275.1.507_bib41) 1992; 20 Taylor (10.1074/jbc.275.1.507_bib20) 1985; 41 Ponticelli (10.1074/jbc.275.1.507_bib21) 1985; 41 Chaudhury (10.1074/jbc.275.1.507_bib10) 1984; 160 Zhang (10.1074/jbc.275.1.507_bib40) 1999; 27 Finch (10.1074/jbc.275.1.507_bib4) 1986; 14 Korangy (10.1074/jbc.275.1.507_bib43) 1993; 32 Chang (10.1074/jbc.275.1.507_bib30) 1978; 134 Smith (10.1074/jbc.275.1.507_bib3) 1995; 347 Oliver (10.1074/jbc.275.1.507_bib7) 1977; 116 Cardon (10.1074/jbc.275.1.507_bib17) 1993; 21 Boehmer (10.1074/jbc.275.1.507_bib24) 1992; 267 Taylor (10.1074/jbc.275.1.507_bib55) 1992; 89 Sambrook (10.1074/jbc.275.1.507_bib29) 1989 Taylor (10.1074/jbc.275.1.507_bib57) 1999; 13 Dixon (10.1074/jbc.275.1.507_bib56) 1994; 91 Chen (10.1074/jbc.275.1.507_bib46) 1998; 278 Simmon (10.1074/jbc.275.1.507_bib8) 1972; 112 Smith (10.1074/jbc.275.1.507_bib12) 1981; 24 Koonin (10.1074/jbc.275.1.507_bib42) 1992; 17 Anderson (10.1074/jbc.275.1.507_bib23) 1997; 11 Taylor (10.1074/jbc.275.1.507_bib22) 1995; 270 Kovall (10.1074/jbc.275.1.507_bib37) 1998; 95 Ban (10.1074/jbc.275.1.507_bib38) 1998; 17 Altschul (10.1074/jbc.275.1.507_bib59) 1997; 25 Amundsen (10.1074/jbc.275.1.507_bib11) 1990; 126 Sourice (10.1074/jbc.275.1.507_bib53) 1998; 27 Newman (10.1074/jbc.275.1.507_bib39) 1998; 17 Finch (10.1074/jbc.275.1.507_bib6) 1986; 14 Silvian (10.1074/jbc.275.1.507_bib58) 1999; 285 Phillips (10.1074/jbc.275.1.507_bib44) 1997; 254 Amundsen (10.1074/jbc.275.1.507_bib48) 1986; 83 El Karoui (10.1074/jbc.275.1.507_bib52) 1998; 95 Lam (10.1074/jbc.275.1.507_bib13) 1974; 77 Handa (10.1074/jbc.275.1.507_bib51) 1997; 2 Korangy (10.1074/jbc.275.1.507_bib33) 1992; 267 Myers (10.1074/jbc.275.1.507_bib1) 1994; 28 Pingoud (10.1074/jbc.275.1.507_bib36) 1997; 246 |
References_xml | – volume: 25 start-page: 3389 year: 1997 ident: 10.1074/jbc.275.1.507_bib59 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 94 start-page: 203 year: 1974 ident: 10.1074/jbc.275.1.507_bib14 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(75)90078-9 – volume: 5 start-page: 11 year: 1995 ident: 10.1074/jbc.275.1.507_bib35 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/0959-440X(95)80004-K – volume: 83 start-page: 5558 year: 1986 ident: 10.1074/jbc.275.1.507_bib48 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.83.15.5558 – volume: 11 start-page: 571 year: 1997 ident: 10.1074/jbc.275.1.507_bib23 publication-title: Genes Dev. doi: 10.1101/gad.11.5.571 – volume: 13 start-page: 890 year: 1999 ident: 10.1074/jbc.275.1.507_bib57 publication-title: Genes Dev. doi: 10.1101/gad.13.7.890 – volume: 17 start-page: 1526 year: 1998 ident: 10.1074/jbc.275.1.507_bib38 publication-title: EMBO J. doi: 10.1093/emboj/17.5.1526 – volume: 28 start-page: 49 year: 1994 ident: 10.1074/jbc.275.1.507_bib1 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.ge.28.120194.000405 – volume: 90 start-page: 77 year: 1997 ident: 10.1074/jbc.275.1.507_bib16 publication-title: Cell doi: 10.1016/S0092-8674(00)80315-3 – volume: 160 start-page: 788 year: 1984 ident: 10.1074/jbc.275.1.507_bib10 publication-title: J. Bacteriol. doi: 10.1128/jb.160.2.788-791.1984 – volume: 27 start-page: 4200 year: 1999 ident: 10.1074/jbc.275.1.507_bib40 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.21.4200 – volume: 27 start-page: 1223 year: 1999 ident: 10.1074/jbc.275.1.507_bib34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.5.1223 – volume: 29 start-page: 1369 year: 1998 ident: 10.1074/jbc.275.1.507_bib54 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.01018.x – volume: 41 start-page: 145 year: 1985 ident: 10.1074/jbc.275.1.507_bib21 publication-title: Cell doi: 10.1016/0092-8674(85)90069-8 – volume: 21 start-page: 3875 year: 1993 ident: 10.1074/jbc.275.1.507_bib17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.16.3875 – volume: 246 start-page: 1 year: 1997 ident: 10.1074/jbc.275.1.507_bib36 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.t01-6-00001.x – volume: 22 start-page: 4673 year: 1994 ident: 10.1074/jbc.275.1.507_bib60 publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.22.4673 – volume: 267 start-page: 4981 year: 1992 ident: 10.1074/jbc.275.1.507_bib24 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42927-4 – year: 1989 ident: 10.1074/jbc.275.1.507_bib29 – volume: 24 start-page: 429 year: 1981 ident: 10.1074/jbc.275.1.507_bib12 publication-title: Cell doi: 10.1016/0092-8674(81)90333-0 – volume: 283 start-page: 797 year: 1998 ident: 10.1074/jbc.275.1.507_bib25 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2127 – volume: 267 start-page: 1727 year: 1992 ident: 10.1074/jbc.275.1.507_bib33 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)46006-1 – volume: 270 start-page: 24459 year: 1995 ident: 10.1074/jbc.275.1.507_bib22 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.41.24459 – volume: 16 start-page: 373 year: 1995 ident: 10.1074/jbc.275.1.507_bib9 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02403.x – volume: 33 start-page: 9552 year: 1994 ident: 10.1074/jbc.275.1.507_bib45 publication-title: Biochemistry doi: 10.1021/bi00198a022 – volume: 77 start-page: 425 year: 1974 ident: 10.1074/jbc.275.1.507_bib13 publication-title: Genetics doi: 10.1093/genetics/77.3.425 – volume: 95 start-page: 7893 year: 1998 ident: 10.1074/jbc.275.1.507_bib37 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.14.7893 – volume: 278 start-page: 89 year: 1998 ident: 10.1074/jbc.275.1.507_bib46 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1694 – volume: 95 start-page: 981 year: 1998 ident: 10.1074/jbc.275.1.507_bib26 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.3.981 – volume: 89 start-page: 5226 year: 1992 ident: 10.1074/jbc.275.1.507_bib55 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.12.5226 – volume: 32 start-page: 4873 year: 1993 ident: 10.1074/jbc.275.1.507_bib43 publication-title: Biochemistry doi: 10.1021/bi00069a024 – volume: 14 start-page: 8573 year: 1986 ident: 10.1074/jbc.275.1.507_bib6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/14.21.8573 – volume: 134 start-page: 1141 year: 1978 ident: 10.1074/jbc.275.1.507_bib30 publication-title: J. Bacteriol. doi: 10.1128/jb.134.3.1141-1156.1978 – volume: 27 start-page: 1021 year: 1998 ident: 10.1074/jbc.275.1.507_bib53 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.00749.x – volume: 109 start-page: 414 year: 1982 ident: 10.1074/jbc.275.1.507_bib28 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(82)91737-5 – volume: 267 start-page: 3088 year: 1992 ident: 10.1074/jbc.275.1.507_bib27 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50698-6 – volume: 285 start-page: 1074 year: 1999 ident: 10.1074/jbc.275.1.507_bib58 publication-title: Science doi: 10.1126/science.285.5430.1074 – volume: 272 start-page: 10072 year: 1997 ident: 10.1074/jbc.275.1.507_bib32 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.15.10072 – volume: 347 start-page: 13 year: 1995 ident: 10.1074/jbc.275.1.507_bib3 publication-title: Phil. Trans. R. Soc. Lond. B. doi: 10.1098/rstb.1995.0003 – volume: 91 start-page: 2980 year: 1994 ident: 10.1074/jbc.275.1.507_bib56 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.8.2980 – volume: 66 start-page: 361 year: 1991 ident: 10.1074/jbc.275.1.507_bib15 publication-title: Cell doi: 10.1016/0092-8674(91)90625-9 – volume: 17 start-page: 5466 year: 1998 ident: 10.1074/jbc.275.1.507_bib39 publication-title: EMBO J. doi: 10.1093/emboj/17.18.5466 – volume: 126 start-page: 25 year: 1990 ident: 10.1074/jbc.275.1.507_bib11 publication-title: Genetics doi: 10.1093/genetics/126.1.25 – volume: 28 start-page: 2863 year: 1989 ident: 10.1074/jbc.275.1.507_bib31 publication-title: Biochemistry doi: 10.1021/bi00433a018 – volume: 116 start-page: 877 year: 1977 ident: 10.1074/jbc.275.1.507_bib7 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(77)90276-5 – volume: 41 start-page: 153 year: 1985 ident: 10.1074/jbc.275.1.507_bib20 publication-title: Cell doi: 10.1016/0092-8674(85)90070-4 – volume: 265 start-page: 3447 year: 1990 ident: 10.1074/jbc.275.1.507_bib47 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39788-1 – volume: 155 start-page: 664 year: 1983 ident: 10.1074/jbc.275.1.507_bib50 publication-title: J. Bacteriol. doi: 10.1128/jb.155.2.664-680.1983 – volume: 14 start-page: 8583 year: 1986 ident: 10.1074/jbc.275.1.507_bib5 publication-title: Nucleic Acids Res. doi: 10.1093/nar/14.21.8583 – volume: 229 start-page: 67 year: 1993 ident: 10.1074/jbc.275.1.507_bib49 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1008 – volume: 254 start-page: 319 year: 1997 ident: 10.1074/jbc.275.1.507_bib44 publication-title: Mol. Gen. Genet. – volume: 95 start-page: 626 year: 1998 ident: 10.1074/jbc.275.1.507_bib52 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.2.626 – volume: 17 start-page: 495 year: 1992 ident: 10.1074/jbc.275.1.507_bib42 publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(92)90338-A – volume: 257 start-page: 2641 year: 1982 ident: 10.1074/jbc.275.1.507_bib19 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34972-X – volume: 2 start-page: 525 year: 1997 ident: 10.1074/jbc.275.1.507_bib51 publication-title: Genes Cells doi: 10.1046/j.1365-2443.1997.1410339.x – volume: 73 start-page: 87 year: 1993 ident: 10.1074/jbc.275.1.507_bib18 publication-title: Cell doi: 10.1016/0092-8674(93)90162-J – volume: 112 start-page: 161 year: 1972 ident: 10.1074/jbc.275.1.507_bib8 publication-title: J. Bacteriol. doi: 10.1128/jb.112.1.161-169.1972 – volume: 20 start-page: 5647 year: 1992 ident: 10.1074/jbc.275.1.507_bib41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.21.5647 – volume: 14 start-page: 4437 year: 1986 ident: 10.1074/jbc.275.1.507_bib4 publication-title: Nucleic Acids Res. doi: 10.1093/nar/14.11.4437 – volume: 58 start-page: 401 year: 1994 ident: 10.1074/jbc.275.1.507_bib2 publication-title: Microbiol. Rev. doi: 10.1128/mr.58.3.401-465.1994 |
SSID | ssj0000491 |
Score | 1.8633014 |
Snippet | The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 507 |
SubjectTerms | Amino Acid Sequence Catalytic Domain DNA damage DNA Helicases - genetics DNA Helicases - metabolism DNA, Bacterial - metabolism DNA, Single-Stranded - metabolism Escherichia coli Escherichia coli - enzymology Escherichia coli Proteins Exodeoxyribonuclease V Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Models, Biological Molecular Sequence Data Mutagenesis, Site-Directed Nucleic Acid Conformation RecBCD enzyme Sequence Homology, Amino Acid |
Title | A Single Nuclease Active Site of the Escherichia coli RecBCD Enzyme Catalyzes Single-stranded DNA Degradation in Both Directions |
URI | http://www.jbc.org/content/275/1/507.abstract https://www.ncbi.nlm.nih.gov/pubmed/10617645 https://www.proquest.com/docview/17461735 https://www.proquest.com/docview/70812994 |
Volume | 275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOcAFQcsj5TUH1EtwiB_rx9FNU1VQBSESKbfV7mZdBaUOatxDcuKnM-O1YweIeFwsy94dWf4-j2dmZ2cYe8tDmQXS9R1JjQDR38icRMnICSLPV4r7imdltc9ReDEJPkz5tClPUO4uKVRPb367r-R_UMVriCvtkv0HZLdC8QKeI754RITx-FcYp90v-OdZGPT58Y6kGiOl-sLLzer_cEW4zCmnuYuoz8lSPB2cdYf5Zn1taAugXKw3ZlXJcij2QWHx7tkoRXV0dSNt2yWKjJwirrWWrON8Xxu-taxbW9zJlh-pe8o1wfsqDbjJLbDKb7vqRLu2rTpMd8IS_TIsEbVVLeV-eLYue61qPdslZYdTVnHyaq79B3O7P_UX9Y72Dql3pXsoqef2trPaZbRHn8T55PJSjIfT8V12z0P_gRTgx89NGXl0i2wrxeoZq-KrKP79jvBdY6UuIL3fGSmNkvEj9rB635Baajxmd0x-yI7SXBbL6zWcQJnfWy6cHLL7gxqHI_Y9BYs21MwByxwg5sAyA2QOtJgDxBywzAHLHNgyB35iDiBzoMUcmOdAzIGGOU_Y5Hw4Hlw4VS8OR_sxLxyN7ySOQ65dtGFnmRuYxHiUvZDIyNOaq1ng9ZMsct0ZN2i1owYwaNqq2JORmfmh_5Qd5MvcPGfA0UXylA77fqJRVBybMEwUD7Th3ARh0mHv6pcudFWonvqlLESZMBEFAjES-DzCFYhRh51sh3-zFVr2DTyuERT4ERD52zff1JgKxIJWzWRulrcrgS47Wvk-3z8iQrMarbqgw55ZMrSeA6eGAT_-o_QX7EHzFb1kB8XNrXmF5m6hXpfU_QGo-qqF |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Nuclease+Active+Site+of+the+Escherichia+coli+RecBCD+Enzyme+Catalyzes+Single-stranded+DNA+Degradation+in+Both+Directions&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Wang%2C+J&rft.au=Chen%2C+R&rft.au=Julin%2C+DA&rft.date=2000-01-07&rft.issn=0021-9258&rft.volume=275&rft.issue=1&rft.spage=507&rft.epage=513&rft_id=info:doi/10.1074%2Fjbc.275.1.507&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |