Efficient Sampling and Structure Learning of Bayesian Networks
Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vas...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 31; no. 3; pp. 639 - 650 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
03.07.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2021.2020127 |
Cover
Loading…
Abstract | Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks.
Supplementary materials
for this article are available online. Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks. Supplementary materials for this article are available online. |
Author | Moffa, Giusi Kuipers, Jack Suter, Polina |
Author_xml | – sequence: 1 givenname: Jack surname: Kuipers fullname: Kuipers, Jack organization: D-BSSE, ETH Zurich – sequence: 2 givenname: Polina surname: Suter fullname: Suter, Polina organization: D-BSSE, ETH Zurich – sequence: 3 givenname: Giusi orcidid: 0000-0002-2739-0454 surname: Moffa fullname: Moffa, Giusi organization: Department of Mathematics and Computer Science, University of Basel |
BookMark | eNqFkE1LAzEQhoNUsK3-BGHB89ZJ9htB1FI_oOiheg6z2URSt0lNskj_vbu0XjzoZTKE530HngkZGWskIecUZhRKuKSQ0zIHmDFgdBhAWXFExjRLipgVNBv1e8_EA3RCJt6vAYDmVTEm1wultNDShGiFm22rzXuEpolWwXUidE5GS4nODN9WRXe4k16jiZ5l-LLuw5-SY4Wtl2eHd0re7hev88d4-fLwNL9dxiIpsxDXKklq2mRQibLOgFUoU9lUFHNWUdpQgVDVeVmzKmnyrMYkzQWTMoUMWVEKlUzJxb536-xnJ33ga9s505_krGAplKxv6qmrPSWc9d5JxYUOGLQ1waFuOQU-COM_wvggjB-E9ensV3rr9Abd7t_czT6njbJug72YtuEBd611yqER2vPk74pvZfyChQ |
CitedBy_id | crossref_primary_10_1093_biomet_asad052 crossref_primary_10_1007_s10115_024_02111_9 crossref_primary_10_3390_math12010018 crossref_primary_10_1109_TIM_2024_3522374 crossref_primary_10_3390_math11153344 crossref_primary_10_1093_schbul_sbae041 crossref_primary_10_1093_bib_bbac219 crossref_primary_10_1080_10618600_2023_2252023 crossref_primary_10_1016_j_cie_2024_110716 crossref_primary_10_1016_j_seps_2024_102030 crossref_primary_10_1016_j_ijar_2023_108975 crossref_primary_10_1017_S003329172300185X crossref_primary_10_1007_s10462_022_10351_w crossref_primary_10_1016_j_ijar_2023_108954 crossref_primary_10_1016_j_ijar_2024_109205 crossref_primary_10_1016_j_cja_2024_03_038 crossref_primary_10_1080_19439962_2023_2289403 crossref_primary_10_1214_25_BA1521 crossref_primary_10_1134_S1995080224605423 crossref_primary_10_1371_journal_pcbi_1009767 crossref_primary_10_1007_s10489_023_04999_2 crossref_primary_10_1016_j_neucom_2025_129502 crossref_primary_10_1007_s10489_024_05268_6 crossref_primary_10_1515_jci_2021_0025 crossref_primary_10_2140_astat_2023_14_109 crossref_primary_10_1007_s10461_024_04310_5 crossref_primary_10_1038_s44320_024_00074_1 crossref_primary_10_1016_j_dim_2025_100097 crossref_primary_10_1177_1471082X241266738 |
Cites_doi | 10.1097/EDE.0b013e318127181b 10.1007/s11222-013-9428-y 10.1016/B978-1-55860-377-6.50079-7 10.1214/aos/1035844981 10.1023/A:1020249912095 10.1214/17-AOS1654 10.1162/153244303321897717 10.1023/A:1020202028934 10.1017/S0033291718000879 10.1093/schbul/sbx013 10.1126/science.1094068 10.1038/s41467-018-06867-x 10.1007/978-94-007-6094-3_13 10.1089/106652700750050961 10.1214/aos/1031833662 10.1080/01621459.2015.1133426 10.1214/14-AOS1217 10.2307/1403615 10.1214/12-AOS1080 10.1097/01.ede.0000222409.00878.37 10.1214/09-AOS685 10.1017/S0269964817000432 10.1007/s10994-006-6889-7 10.1093/biomet/82.4.669 10.1017/S0033291721002920 10.1613/jair.5203 10.1007/s10994-008-5057-7 10.1002/sta4.183 10.1097/00001648-199901000-00008 10.1017/CBO9780511803161 10.1016/B978-1-55860-203-8.50010-3 10.18637/jss.v047.i11 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION JQ2 |
DOI | 10.1080/10618600.2021.2020127 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 650 |
ExternalDocumentID | 10_1080_10618600_2021_2020127 2020127 |
Genre | Research Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 0YH 30N 4.4 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IGS IOF IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AMPGV AMVHM CITATION JQ2 TASJS |
ID | FETCH-LOGICAL-c385t-bf33b1d509c8b5029ae4ed91a62911d1ca09b68b293d65ba346c2ee405a278cf3 |
IEDL.DBID | 0YH |
ISSN | 1061-8600 |
IngestDate | Wed Aug 13 08:16:37 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Tue Jul 01 02:05:30 EDT 2025 Wed Dec 25 09:05:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-bf33b1d509c8b5029ae4ed91a62911d1ca09b68b293d65ba346c2ee405a278cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2739-0454 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.2020127 |
PQID | 2724082629 |
PQPubID | 29738 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1080_10618600_2021_2020127 crossref_primary_10_1080_10618600_2021_2020127 proquest_journals_2724082629 informaworld_taylorfrancis_310_1080_10618600_2021_2020127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-03 |
PublicationDateYYYYMMDD | 2022-07-03 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0035 CIT0038 CIT0037 Colombo D. (CIT0005) 2014; 15 Eaton D. (CIT0009) 2007 CIT0039 CIT0041 CIT0040 CIT0043 CIT0001 Dawid A. P. (CIT0008) 2010; 6 Goudie R. J. B. (CIT0017) 2016; 17 Silander T. (CIT0046) 2006 CIT0002 CIT0049 CIT0004 CIT0007 Teyssier M. (CIT0048) 2005 Friedman N. (CIT0014) 1999 CIT0050 CIT0051 CIT0010 Meek C. (CIT0036) 1995 CIT0012 CIT0011 Robinson R. W. (CIT0045) 1973 CIT0013 CIT0016 CIT0015 Spirtes P. (CIT0047) 2000 Verma T. S. (CIT0052) 1990 Chickering D. M. (CIT0003) 2002; 2 CIT0018 CIT0019 Cussens J. (CIT0006) 2011 CIT0021 CIT0023 Robinson R. W. (CIT0044) 1970 Koller D. (CIT0028) 2009 Heckerman D. (CIT0022) 2006 He R. (CIT0020) 2016; 17 CIT0024 Koivisto M. (CIT0027) 2004; 5 CIT0026 CIT0029 Kalisch M. (CIT0025) 2007; 8 R Core Team (CIT0042) 2017 |
References_xml | – volume: 6 start-page: 59 year: 2010 ident: CIT0008 publication-title: Journal of Machine Learning Research Workshop and Conference Proceedings – start-page: 101 volume-title: Twenty-Third Conference on Uncertainty in Artificial Intelligence year: 2007 ident: CIT0009 – volume: 15 start-page: 3741 year: 2014 ident: CIT0005 publication-title: Journal of Machine Learning Research – ident: CIT0051 doi: 10.1097/EDE.0b013e318127181b – ident: CIT0029 doi: 10.1007/s11222-013-9428-y – ident: CIT0021 doi: 10.1016/B978-1-55860-377-6.50079-7 – start-page: 1 year: 2006 ident: CIT0022 publication-title: Innovations in Machine Learning – start-page: 239 volume-title: New Directions in the Theory of Graphs year: 1973 ident: CIT0045 – ident: CIT0015 doi: 10.1214/aos/1035844981 – start-page: 153 volume-title: Twenty-seventh Conference on Uncertainty in Artificial Intelligence year: 2011 ident: CIT0006 – ident: CIT0012 doi: 10.1023/A:1020249912095 – ident: CIT0039 doi: 10.1214/17-AOS1654 – ident: CIT0004 doi: 10.1162/153244303321897717 – ident: CIT0016 doi: 10.1023/A:1020202028934 – ident: CIT0032 doi: 10.1017/S0033291718000879 – ident: CIT0037 doi: 10.1093/schbul/sbx013 – ident: CIT0011 doi: 10.1126/science.1094068 – volume: 2 start-page: 445 year: 2002 ident: CIT0003 publication-title: Journal of Machine Learning Research – volume: 8 start-page: 613 year: 2007 ident: CIT0025 publication-title: Journal of Machine Learning Research – ident: CIT0033 doi: 10.1038/s41467-018-06867-x – ident: CIT0010 doi: 10.1007/978-94-007-6094-3_13 – ident: CIT0013 doi: 10.1089/106652700750050961 – volume: 5 start-page: 549 year: 2004 ident: CIT0027 publication-title: Journal of Machine Learning Research – ident: CIT0001 doi: 10.1214/aos/1031833662 – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: CIT0042 – start-page: 584 volume-title: Twenty-first Conference on Uncertainty in Artificial Intelligence year: 2005 ident: CIT0048 – ident: CIT0030 doi: 10.1080/01621459.2015.1133426 – start-page: 391 volume-title: Second Chapel Hill Conference on Combinatorial Mathematics and its Applications year: 1970 ident: CIT0044 – volume: 17 start-page: 1032 year: 2016 ident: CIT0017 publication-title: Journal of Machine Learning Research – ident: CIT0031 doi: 10.1214/14-AOS1217 – ident: CIT0035 doi: 10.2307/1403615 – ident: CIT0050 doi: 10.1214/12-AOS1080 – ident: CIT0023 doi: 10.1097/01.ede.0000222409.00878.37 – volume-title: Causation, Prediction, and Search year: 2000 ident: CIT0047 – ident: CIT0034 doi: 10.1214/09-AOS685 – ident: CIT0024 doi: 10.1017/S0269964817000432 – ident: CIT0049 doi: 10.1007/s10994-006-6889-7 – ident: CIT0040 doi: 10.1093/biomet/82.4.669 – start-page: 220 volume-title: Sixth Conference on Uncertainty in Artificial Intelligence year: 1990 ident: CIT0052 – ident: CIT0038 doi: 10.1017/S0033291721002920 – ident: CIT0007 doi: 10.1613/jair.5203 – ident: CIT0019 doi: 10.1007/s10994-008-5057-7 – ident: CIT0043 doi: 10.1002/sta4.183 – volume-title: Probabilistic Graphical Models year: 2009 ident: CIT0028 – ident: CIT0018 doi: 10.1097/00001648-199901000-00008 – volume: 17 start-page: 3483 year: 2016 ident: CIT0020 publication-title: Journal of Machine Learning Research – ident: CIT0041 doi: 10.1017/CBO9780511803161 – start-page: 206 volume-title: Fifteenth Conference on Uncertainty in Artificial Intelligence year: 1999 ident: CIT0014 – start-page: 403 volume-title: Eleventh Conference on Uncertainty in Artificial Intelligence year: 1995 ident: CIT0036 – ident: CIT0002 doi: 10.1016/B978-1-55860-203-8.50010-3 – ident: CIT0026 doi: 10.18637/jss.v047.i11 – start-page: 445 volume-title: Twenty-second Conference on Uncertainty in Artificial Intelligence year: 2006 ident: CIT0046 |
SSID | ssj0001697 |
Score | 2.5306635 |
Snippet | Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 639 |
SubjectTerms | Algorithms Bayesian analysis Bayesian Networks Iterative methods Machine learning MCMC on graphs Networks Structure Learning |
Title | Efficient Sampling and Structure Learning of Bayesian Networks |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.2020127 https://www.proquest.com/docview/2724082629 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagLGVAUEAUCvLAGohfeSxIgFpVSO1SKsFk2Y7dBaWIlIF_zzlxKiqEOrBkO0u-s---c-6-Q-hakIJpCH2RIyqFBCW2keapiAznWjnCXFL3wkymyXjOn15EW01YhbJKn0O7hiii9tX-citdtRVxtz6LySBQQ3ZHfYpH_e_TXbRHASj6gx2_jtfOmIT5KiASeZm2ieevZTbC0wZ56S9nXUeg0SE6CNAR3ze2PkI7tuyh_cmad7Xqoa7Hjg318jG6G9b0EBBV8Ez5wvFygWHPeFZTxn5-WBzIVRd46fCD-rK-oRJPm8Lw6gTNR8Pnx3EUxiVEhmViFWnHmCYFIACTaRHTXFlui5yohIJHK4hRca6TTEOALxKhFeOJodYCYlM0zYxjp6hTLkt7hrAfS-Y0UYXiBc9ToqkTIjMWoDh1mqZ9xFstSRO4xP1IizdJAuVoq1zplSuDcvvoZi323pBpbBPIf5pArupXDNeMHJFsi-ygtZcM97KScET8hG3QyPk_lr5AXeq7IPwrLxugDpjNXgI2Wemr-vTBl8XTb50E1e0 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwMxDI6gDJQBQQFRKJCB9eDyuseCBKjVAW2XtlKZouQu6YKuiJaBf098j4oKoQ78AEc6--LPduzPCF0LkjHtoM-zRIUuQfGNp3kovJRzrSxhNihmYQbDIJnw56mY_piFgbZKyKFtSRRR-Gq43FCMrlvibiGNiRxSu_SOQo5H4f10G-2IKKbQ1uW_JitvTKoFK07EA5l6iuevY9bwaY299Je3LiCod4D2q9gR35fGPkRbJm-hvcGKeHXRQk0IHkvu5SN01y34IRys4JGCzvF8ht1H41HBGfv5YXDFrjrDc4sf1JeBiUo8LDvDF8do0uuOHxOv2pfgpSwSS09bxjTJXAiQRlr4NFaGmywmKqDOpWUkVX6sg0g7hM8CoRXjQUqNcSGbomGUWnaCGvk8N6cIw14yq4nKFM94HBJNrRBRalwsTq2mYRvxWksyrcjEYafFmyQV52itXAnKlZVy2-hmJfZesmlsEoh_mkAuizKGLXeOSLZBtlPbS1YXcyFpCJxu1Gnk7B9HX6HdZDzoy_7T8OUcNSmMREDJl3VQw5nQXLhAZakviz_xGzMw2IY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aQepBtCpWq-bgdXXz2sdF8NFSHy1CLegpJNmkF9kWtx789ya72WIR6cEfMIGd2Z3vm-zMNwCcM5QRaaEvMEjEtkAJdSBpzAJFqRQGEROVszCDYdQf04dXVncTFr6t0tXQphKKKHO1-7hnmak74i5dFZNYoLbVHXYlHna_T9fBBktS7Oqv8K2_SMbI71exJoGzqYd4_jpmCZ6WxEt_JesSgXo7YNtTR3hdxXoXrOm8BbYGC93VogWajjtW0st74KpbykNYVIEj4RrH8wm0zwxHpWTs54eGXlx1AqcG3ogv7QYq4bBqDC_2wbjXfbntB35dQqBIwuaBNIRIlFkGoBLJQpwKTXWWIhFhm9EypESYyiiRFuCziElBaKSw1paxCRwnypAD0MinuT4E0K0lMxKJTNCMpjGS2DCWKG2pODYSx21Aay9x5bXE3UqLd4685GjtXO6cy71z2-BiYTarxDRWGaQ_Q8Dn5S2GqVaOcLLCtlPHi_vvsuA4dpJu2Hrk6B9Hn4HN57sef7ofPh6DJnYDEe7Cl3RAw0ZQn1iaMpen5Yv4De3U168 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Sampling+and+Structure+Learning+of+Bayesian+Networks&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Kuipers%2C+Jack&rft.au=Suter%2C+Polina&rft.au=Moffa%2C+Giusi&rft.date=2022-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=31&rft.issue=3&rft.spage=639&rft.epage=650&rft_id=info:doi/10.1080%2F10618600.2021.2020127&rft.externalDBID=0YH&rft.externalDocID=2020127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |