Efficient Sampling and Structure Learning of Bayesian Networks

Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vas...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 31; no. 3; pp. 639 - 650
Main Authors Kuipers, Jack, Suter, Polina, Moffa, Giusi
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 03.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2021.2020127

Cover

Loading…
Abstract Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks. Supplementary materials for this article are available online.
AbstractList Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks. Supplementary materials for this article are available online.
Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focused on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here, we synthesize these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because it also offers the possibility to sample DAGs from their posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks. Supplementary materials for this article are available online.
Author Moffa, Giusi
Kuipers, Jack
Suter, Polina
Author_xml – sequence: 1
  givenname: Jack
  surname: Kuipers
  fullname: Kuipers, Jack
  organization: D-BSSE, ETH Zurich
– sequence: 2
  givenname: Polina
  surname: Suter
  fullname: Suter, Polina
  organization: D-BSSE, ETH Zurich
– sequence: 3
  givenname: Giusi
  orcidid: 0000-0002-2739-0454
  surname: Moffa
  fullname: Moffa, Giusi
  organization: Department of Mathematics and Computer Science, University of Basel
BookMark eNqFkE1LAzEQhoNUsK3-BGHB89ZJ9htB1FI_oOiheg6z2URSt0lNskj_vbu0XjzoZTKE530HngkZGWskIecUZhRKuKSQ0zIHmDFgdBhAWXFExjRLipgVNBv1e8_EA3RCJt6vAYDmVTEm1wultNDShGiFm22rzXuEpolWwXUidE5GS4nODN9WRXe4k16jiZ5l-LLuw5-SY4Wtl2eHd0re7hev88d4-fLwNL9dxiIpsxDXKklq2mRQibLOgFUoU9lUFHNWUdpQgVDVeVmzKmnyrMYkzQWTMoUMWVEKlUzJxb536-xnJ33ga9s505_krGAplKxv6qmrPSWc9d5JxYUOGLQ1waFuOQU-COM_wvggjB-E9ensV3rr9Abd7t_czT6njbJug72YtuEBd611yqER2vPk74pvZfyChQ
CitedBy_id crossref_primary_10_1093_biomet_asad052
crossref_primary_10_1007_s10115_024_02111_9
crossref_primary_10_3390_math12010018
crossref_primary_10_1109_TIM_2024_3522374
crossref_primary_10_3390_math11153344
crossref_primary_10_1093_schbul_sbae041
crossref_primary_10_1093_bib_bbac219
crossref_primary_10_1080_10618600_2023_2252023
crossref_primary_10_1016_j_cie_2024_110716
crossref_primary_10_1016_j_seps_2024_102030
crossref_primary_10_1016_j_ijar_2023_108975
crossref_primary_10_1017_S003329172300185X
crossref_primary_10_1007_s10462_022_10351_w
crossref_primary_10_1016_j_ijar_2023_108954
crossref_primary_10_1016_j_ijar_2024_109205
crossref_primary_10_1016_j_cja_2024_03_038
crossref_primary_10_1080_19439962_2023_2289403
crossref_primary_10_1214_25_BA1521
crossref_primary_10_1134_S1995080224605423
crossref_primary_10_1371_journal_pcbi_1009767
crossref_primary_10_1007_s10489_023_04999_2
crossref_primary_10_1016_j_neucom_2025_129502
crossref_primary_10_1007_s10489_024_05268_6
crossref_primary_10_1515_jci_2021_0025
crossref_primary_10_2140_astat_2023_14_109
crossref_primary_10_1007_s10461_024_04310_5
crossref_primary_10_1038_s44320_024_00074_1
crossref_primary_10_1016_j_dim_2025_100097
crossref_primary_10_1177_1471082X241266738
Cites_doi 10.1097/EDE.0b013e318127181b
10.1007/s11222-013-9428-y
10.1016/B978-1-55860-377-6.50079-7
10.1214/aos/1035844981
10.1023/A:1020249912095
10.1214/17-AOS1654
10.1162/153244303321897717
10.1023/A:1020202028934
10.1017/S0033291718000879
10.1093/schbul/sbx013
10.1126/science.1094068
10.1038/s41467-018-06867-x
10.1007/978-94-007-6094-3_13
10.1089/106652700750050961
10.1214/aos/1031833662
10.1080/01621459.2015.1133426
10.1214/14-AOS1217
10.2307/1403615
10.1214/12-AOS1080
10.1097/01.ede.0000222409.00878.37
10.1214/09-AOS685
10.1017/S0269964817000432
10.1007/s10994-006-6889-7
10.1093/biomet/82.4.669
10.1017/S0033291721002920
10.1613/jair.5203
10.1007/s10994-008-5057-7
10.1002/sta4.183
10.1097/00001648-199901000-00008
10.1017/CBO9780511803161
10.1016/B978-1-55860-203-8.50010-3
10.18637/jss.v047.i11
ContentType Journal Article
Copyright 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022
2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022
– notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2021.2020127
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 650
ExternalDocumentID 10_1080_10618600_2021_2020127
2020127
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
0YH
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AMPGV
AMVHM
CITATION
JQ2
TASJS
ID FETCH-LOGICAL-c385t-bf33b1d509c8b5029ae4ed91a62911d1ca09b68b293d65ba346c2ee405a278cf3
IEDL.DBID 0YH
ISSN 1061-8600
IngestDate Wed Aug 13 08:16:37 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Tue Jul 01 02:05:30 EDT 2025
Wed Dec 25 09:05:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-bf33b1d509c8b5029ae4ed91a62911d1ca09b68b293d65ba346c2ee405a278cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2739-0454
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.2020127
PQID 2724082629
PQPubID 29738
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_10618600_2021_2020127
crossref_primary_10_1080_10618600_2021_2020127
proquest_journals_2724082629
informaworld_taylorfrancis_310_1080_10618600_2021_2020127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-03
PublicationDateYYYYMMDD 2022-07-03
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0035
CIT0038
CIT0037
Colombo D. (CIT0005) 2014; 15
Eaton D. (CIT0009) 2007
CIT0039
CIT0041
CIT0040
CIT0043
CIT0001
Dawid A. P. (CIT0008) 2010; 6
Goudie R. J. B. (CIT0017) 2016; 17
Silander T. (CIT0046) 2006
CIT0002
CIT0049
CIT0004
CIT0007
Teyssier M. (CIT0048) 2005
Friedman N. (CIT0014) 1999
CIT0050
CIT0051
CIT0010
Meek C. (CIT0036) 1995
CIT0012
CIT0011
Robinson R. W. (CIT0045) 1973
CIT0013
CIT0016
CIT0015
Spirtes P. (CIT0047) 2000
Verma T. S. (CIT0052) 1990
Chickering D. M. (CIT0003) 2002; 2
CIT0018
CIT0019
Cussens J. (CIT0006) 2011
CIT0021
CIT0023
Robinson R. W. (CIT0044) 1970
Koller D. (CIT0028) 2009
Heckerman D. (CIT0022) 2006
He R. (CIT0020) 2016; 17
CIT0024
Koivisto M. (CIT0027) 2004; 5
CIT0026
CIT0029
Kalisch M. (CIT0025) 2007; 8
R Core Team (CIT0042) 2017
References_xml – volume: 6
  start-page: 59
  year: 2010
  ident: CIT0008
  publication-title: Journal of Machine Learning Research Workshop and Conference Proceedings
– start-page: 101
  volume-title: Twenty-Third Conference on Uncertainty in Artificial Intelligence
  year: 2007
  ident: CIT0009
– volume: 15
  start-page: 3741
  year: 2014
  ident: CIT0005
  publication-title: Journal of Machine Learning Research
– ident: CIT0051
  doi: 10.1097/EDE.0b013e318127181b
– ident: CIT0029
  doi: 10.1007/s11222-013-9428-y
– ident: CIT0021
  doi: 10.1016/B978-1-55860-377-6.50079-7
– start-page: 1
  year: 2006
  ident: CIT0022
  publication-title: Innovations in Machine Learning
– start-page: 239
  volume-title: New Directions in the Theory of Graphs
  year: 1973
  ident: CIT0045
– ident: CIT0015
  doi: 10.1214/aos/1035844981
– start-page: 153
  volume-title: Twenty-seventh Conference on Uncertainty in Artificial Intelligence
  year: 2011
  ident: CIT0006
– ident: CIT0012
  doi: 10.1023/A:1020249912095
– ident: CIT0039
  doi: 10.1214/17-AOS1654
– ident: CIT0004
  doi: 10.1162/153244303321897717
– ident: CIT0016
  doi: 10.1023/A:1020202028934
– ident: CIT0032
  doi: 10.1017/S0033291718000879
– ident: CIT0037
  doi: 10.1093/schbul/sbx013
– ident: CIT0011
  doi: 10.1126/science.1094068
– volume: 2
  start-page: 445
  year: 2002
  ident: CIT0003
  publication-title: Journal of Machine Learning Research
– volume: 8
  start-page: 613
  year: 2007
  ident: CIT0025
  publication-title: Journal of Machine Learning Research
– ident: CIT0033
  doi: 10.1038/s41467-018-06867-x
– ident: CIT0010
  doi: 10.1007/978-94-007-6094-3_13
– ident: CIT0013
  doi: 10.1089/106652700750050961
– volume: 5
  start-page: 549
  year: 2004
  ident: CIT0027
  publication-title: Journal of Machine Learning Research
– ident: CIT0001
  doi: 10.1214/aos/1031833662
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: CIT0042
– start-page: 584
  volume-title: Twenty-first Conference on Uncertainty in Artificial Intelligence
  year: 2005
  ident: CIT0048
– ident: CIT0030
  doi: 10.1080/01621459.2015.1133426
– start-page: 391
  volume-title: Second Chapel Hill Conference on Combinatorial Mathematics and its Applications
  year: 1970
  ident: CIT0044
– volume: 17
  start-page: 1032
  year: 2016
  ident: CIT0017
  publication-title: Journal of Machine Learning Research
– ident: CIT0031
  doi: 10.1214/14-AOS1217
– ident: CIT0035
  doi: 10.2307/1403615
– ident: CIT0050
  doi: 10.1214/12-AOS1080
– ident: CIT0023
  doi: 10.1097/01.ede.0000222409.00878.37
– volume-title: Causation, Prediction, and Search
  year: 2000
  ident: CIT0047
– ident: CIT0034
  doi: 10.1214/09-AOS685
– ident: CIT0024
  doi: 10.1017/S0269964817000432
– ident: CIT0049
  doi: 10.1007/s10994-006-6889-7
– ident: CIT0040
  doi: 10.1093/biomet/82.4.669
– start-page: 220
  volume-title: Sixth Conference on Uncertainty in Artificial Intelligence
  year: 1990
  ident: CIT0052
– ident: CIT0038
  doi: 10.1017/S0033291721002920
– ident: CIT0007
  doi: 10.1613/jair.5203
– ident: CIT0019
  doi: 10.1007/s10994-008-5057-7
– ident: CIT0043
  doi: 10.1002/sta4.183
– volume-title: Probabilistic Graphical Models
  year: 2009
  ident: CIT0028
– ident: CIT0018
  doi: 10.1097/00001648-199901000-00008
– volume: 17
  start-page: 3483
  year: 2016
  ident: CIT0020
  publication-title: Journal of Machine Learning Research
– ident: CIT0041
  doi: 10.1017/CBO9780511803161
– start-page: 206
  volume-title: Fifteenth Conference on Uncertainty in Artificial Intelligence
  year: 1999
  ident: CIT0014
– start-page: 403
  volume-title: Eleventh Conference on Uncertainty in Artificial Intelligence
  year: 1995
  ident: CIT0036
– ident: CIT0002
  doi: 10.1016/B978-1-55860-203-8.50010-3
– ident: CIT0026
  doi: 10.18637/jss.v047.i11
– start-page: 445
  volume-title: Twenty-second Conference on Uncertainty in Artificial Intelligence
  year: 2006
  ident: CIT0046
SSID ssj0001697
Score 2.5306635
Snippet Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high-dimensional data, and even to facilitate causal...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 639
SubjectTerms Algorithms
Bayesian analysis
Bayesian Networks
Iterative methods
Machine learning
MCMC on graphs
Networks
Structure Learning
Title Efficient Sampling and Structure Learning of Bayesian Networks
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.2020127
https://www.proquest.com/docview/2724082629
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagLGVAUEAUCvLAGohfeSxIgFpVSO1SKsFk2Y7dBaWIlIF_zzlxKiqEOrBkO0u-s---c-6-Q-hakIJpCH2RIyqFBCW2keapiAznWjnCXFL3wkymyXjOn15EW01YhbJKn0O7hiii9tX-citdtRVxtz6LySBQQ3ZHfYpH_e_TXbRHASj6gx2_jtfOmIT5KiASeZm2ieevZTbC0wZ56S9nXUeg0SE6CNAR3ze2PkI7tuyh_cmad7Xqoa7Hjg318jG6G9b0EBBV8Ez5wvFygWHPeFZTxn5-WBzIVRd46fCD-rK-oRJPm8Lw6gTNR8Pnx3EUxiVEhmViFWnHmCYFIACTaRHTXFlui5yohIJHK4hRca6TTEOALxKhFeOJodYCYlM0zYxjp6hTLkt7hrAfS-Y0UYXiBc9ToqkTIjMWoDh1mqZ9xFstSRO4xP1IizdJAuVoq1zplSuDcvvoZi323pBpbBPIf5pArupXDNeMHJFsi-ygtZcM97KScET8hG3QyPk_lr5AXeq7IPwrLxugDpjNXgI2Wemr-vTBl8XTb50E1e0
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwMxDI6gDJQBQQFRKJCB9eDyuseCBKjVAW2XtlKZouQu6YKuiJaBf098j4oKoQ78AEc6--LPduzPCF0LkjHtoM-zRIUuQfGNp3kovJRzrSxhNihmYQbDIJnw56mY_piFgbZKyKFtSRRR-Gq43FCMrlvibiGNiRxSu_SOQo5H4f10G-2IKKbQ1uW_JitvTKoFK07EA5l6iuevY9bwaY299Je3LiCod4D2q9gR35fGPkRbJm-hvcGKeHXRQk0IHkvu5SN01y34IRys4JGCzvF8ht1H41HBGfv5YXDFrjrDc4sf1JeBiUo8LDvDF8do0uuOHxOv2pfgpSwSS09bxjTJXAiQRlr4NFaGmywmKqDOpWUkVX6sg0g7hM8CoRXjQUqNcSGbomGUWnaCGvk8N6cIw14yq4nKFM94HBJNrRBRalwsTq2mYRvxWksyrcjEYafFmyQV52itXAnKlZVy2-hmJfZesmlsEoh_mkAuizKGLXeOSLZBtlPbS1YXcyFpCJxu1Gnk7B9HX6HdZDzoy_7T8OUcNSmMREDJl3VQw5nQXLhAZakviz_xGzMw2IY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aQepBtCpWq-bgdXXz2sdF8NFSHy1CLegpJNmkF9kWtx789ya72WIR6cEfMIGd2Z3vm-zMNwCcM5QRaaEvMEjEtkAJdSBpzAJFqRQGEROVszCDYdQf04dXVncTFr6t0tXQphKKKHO1-7hnmak74i5dFZNYoLbVHXYlHna_T9fBBktS7Oqv8K2_SMbI71exJoGzqYd4_jpmCZ6WxEt_JesSgXo7YNtTR3hdxXoXrOm8BbYGC93VogWajjtW0st74KpbykNYVIEj4RrH8wm0zwxHpWTs54eGXlx1AqcG3ogv7QYq4bBqDC_2wbjXfbntB35dQqBIwuaBNIRIlFkGoBLJQpwKTXWWIhFhm9EypESYyiiRFuCziElBaKSw1paxCRwnypAD0MinuT4E0K0lMxKJTNCMpjGS2DCWKG2pODYSx21Aay9x5bXE3UqLd4685GjtXO6cy71z2-BiYTarxDRWGaQ_Q8Dn5S2GqVaOcLLCtlPHi_vvsuA4dpJu2Hrk6B9Hn4HN57sef7ofPh6DJnYDEe7Cl3RAw0ZQn1iaMpen5Yv4De3U168
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Sampling+and+Structure+Learning+of+Bayesian+Networks&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Kuipers%2C+Jack&rft.au=Suter%2C+Polina&rft.au=Moffa%2C+Giusi&rft.date=2022-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=31&rft.issue=3&rft.spage=639&rft.epage=650&rft_id=info:doi/10.1080%2F10618600.2021.2020127&rft.externalDBID=0YH&rft.externalDocID=2020127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon