Solution processable high-performance infrared organic photodetector by iodine doping
Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes i...
Saved in:
Published in | RSC advances Vol. 6; no. 51; pp. 45166 - 45171 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I
2
), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity (
D
*) of ∼1.6 × 10
12
cm Hz
1/2
W
−1
, a good specific responsivity (
R
) of ∼80 A W
−1
and a large EQE (external quantum efficiency) of 120% are achieved under illumination (
λ
= 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device.
A high-performance IR OPV detector has been fabricated, 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film thus result in the ∼11 000-fold increase in responsivity for the detector. |
---|---|
AbstractList | Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I₂), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity (D*) of ∼1.6 × 10¹² cm Hz¹/² W⁻¹, a good specific responsivity (R) of ∼80 A W⁻¹ and a large EQE (external quantum efficiency) of 120% are achieved under illumination (λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I sub(2)), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a similar to 11 000-fold increase in responsivity for the detector. A high detectivity (D*) of similar to 1.6 10 super(12) cm Hz super(1/2) W super(-1), a good specific responsivity (R) of similar to 80 A W super(-1) and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( lambda = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I 2 ), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity ( D *) of ∼1.6 × 10 12 cm Hz 1/2 W −1 , a good specific responsivity ( R ) of ∼80 A W −1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. A high-performance IR OPV detector has been fabricated, 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film thus result in the ∼11 000-fold increase in responsivity for the detector. Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I 2 ), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity ( D *) of ∼1.6 × 10 12 cm Hz 1/2 W −1 , a good specific responsivity ( R ) of ∼80 A W −1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. |
Author | Tian, Pin Li, Yanhui Yang, Chunzhang Ji, Rongbin Kong, Jincheng Zhao, Jun Xiang, Jinzhong Tang, Libin Sun, Zhenhua Ping Lau, Shu Lai, Sin Ki |
AuthorAffiliation | School of Materials Science and Engineering The Hong Kong Polytechnic University College of Optoelectronic Engineering Department of Applied Physics Shenzhen University Yunnan University Kunming Institute of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Kunming Institute of Physics – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Shenzhen University – sequence: 0 name: The Hong Kong Polytechnic University – sequence: 0 name: College of Optoelectronic Engineering – sequence: 0 name: Yunnan University – sequence: 0 name: Department of Applied Physics |
Author_xml | – sequence: 1 givenname: Pin surname: Tian fullname: Tian, Pin – sequence: 2 givenname: Libin surname: Tang fullname: Tang, Libin – sequence: 3 givenname: Jinzhong surname: Xiang fullname: Xiang, Jinzhong – sequence: 4 givenname: Zhenhua surname: Sun fullname: Sun, Zhenhua – sequence: 5 givenname: Rongbin surname: Ji fullname: Ji, Rongbin – sequence: 6 givenname: Sin Ki surname: Lai fullname: Lai, Sin Ki – sequence: 7 givenname: Shu surname: Ping Lau fullname: Ping Lau, Shu – sequence: 8 givenname: Jincheng surname: Kong fullname: Kong, Jincheng – sequence: 9 givenname: Jun surname: Zhao fullname: Zhao, Jun – sequence: 10 givenname: Chunzhang surname: Yang fullname: Yang, Chunzhang – sequence: 11 givenname: Yanhui surname: Li fullname: Li, Yanhui |
BookMark | eNqFkc1Lw0AQxRepYNVevAs5ihDdzSSb5FiKX1AQ1J7DfkzalXQ37m4P_e9NraiI4FxmDr_3GN47JiPrLBJyxugVo1BfK-4FzcoS1AEZZzTnaUZ5PfpxH5FJCK90GF6wjLMxWTy7bhONs0nvncIQhOwwWZnlKu3Rt86vhVWYGNt64VEnzi-FNSrpVy46jRFVdD6R28Q4bSwm2vXGLk_JYSu6gJPPfUIWtzcvs_t0_nj3MJvOUwVVEVOpJC9rUKWSEoSuAaDSrKZ1LoXmuoA8KylAqYXkWDORa1QcsAWVt1IKCifkYu87PP-2wRCbtQkKu05YdJvQZFkBQMu84P-irGKcVgUt6gG93KPKuxA8tk3vzVr4bcNos0u6mfGn6UfSswGmv2BlotglGr0w3d-S873EB_Vl_V0evAN6Jo2E |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_3c01990 crossref_primary_10_1021_acsphotonics_1c01690 crossref_primary_10_1364_OL_385280 crossref_primary_10_1109_JSEN_2023_3306312 crossref_primary_10_1039_D0TC05549B crossref_primary_10_1021_acs_chemmater_9b02530 crossref_primary_10_3390_en16124741 crossref_primary_10_1007_s10854_022_08440_1 crossref_primary_10_1002_adfm_202202954 crossref_primary_10_1039_D4TC04381B crossref_primary_10_1557_adv_2019_281 crossref_primary_10_1007_s10854_022_09148_y crossref_primary_10_1021_acsami_6b16788 crossref_primary_10_1039_C6TC03325C crossref_primary_10_1002_gch2_201800077 crossref_primary_10_1039_C9CP03873F crossref_primary_10_1557_adv_2019_324 crossref_primary_10_1039_C9TC02751C crossref_primary_10_3934_matersci_2021050 crossref_primary_10_3934_matersci_2018_3_479 crossref_primary_10_1039_C7TC05042A |
Cites_doi | 10.1021/nn900297m 10.1021/jp9082163 10.1063/1.111260 10.1021/ja211381e 10.1039/C5RA02358K 10.1021/nl070477+ 10.1016/j.solmat.2013.09.034 10.1038/nature07719 10.1039/C4RA11305E 10.1126/science.1176706 10.1021/nl8013007 10.1103/PhysRevB.72.085205 10.1002/adfm.200900167 10.1021/ja2013104 10.1021/ja904251p 10.1021/jp711827g 10.1016/j.solmat.2008.10.004 10.1002/adma.200901383 10.1016/j.orgel.2014.06.006 10.1021/ja8021686 10.1021/am501034g 10.1021/ja907098f 10.1038/srep09439 10.1038/nnano.2008.83 10.1016/j.solmat.2010.08.023 10.1039/C5TC03144C 10.1016/j.jssc.2006.01.075 10.1021/nl072838r 10.1002/adma.200304592 10.1016/j.carbon.2007.02.034 10.1039/b823001c 10.1016/j.orgel.2014.07.008 10.1016/0038-1101(65)90116-4 10.1016/0038-1098(82)90347-7 10.1063/1.3488017 10.1002/adma.200801306 10.1021/jp040650f 10.1021/ja908293n 10.1021/ol051950y 10.1021/nl8034256 10.1021/nl0717715 10.1038/nphoton.2009.72 10.1002/adma.201100792 10.1063/1.3675573 10.1073/pnas.0502848102 10.1021/ma902477h 10.1126/science.1102896 10.1016/j.orgel.2008.01.007 10.1021/nl901637u 10.1002/adma.200602670 10.1016/0368-2048(79)85040-9 10.1016/j.orgel.2014.06.035 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1039/c6ra02773c |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 45171 |
ExternalDocumentID | 10_1039_C6RA02773C c6ra02773c |
GroupedDBID | -JG 0-7 0R~ 53G AAEMU AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABASK ABEMK ABGFH ABPDG ABXOH ACGFS ADMRA AEFDR AENEX AESAV AETIL AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- R7C R7G RAOCF RCNCU RPMJG RRC RSCEA RVUXY SLH AAYXX ABIQK ABJNI ADBBV AFPKN AFRZK AKMSF BCNDV CITATION J3G J3H OK1 PGMZT RPM YAE ZCN 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-bcb6793c7cbb3ad93338d19094bad6d534270337dab6e91a4dec63ef3c4fbba03 |
ISSN | 2046-2069 |
IngestDate | Fri Jul 11 08:01:31 EDT 2025 Fri Jul 11 00:46:59 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 02:39:22 EDT 2025 Tue Dec 17 20:59:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-bcb6793c7cbb3ad93338d19094bad6d534270337dab6e91a4dec63ef3c4fbba03 |
Notes | 10.1039/c6ra02773c Electronic supplementary information (ESI) available: The ellipsometric spectra of the doped and undoped P3HT:PCBM films. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816085059 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1816085059 rsc_primary_c6ra02773c crossref_primary_10_1039_C6RA02773C proquest_miscellaneous_2253307456 crossref_citationtrail_10_1039_C6RA02773C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | RSC advances |
PublicationYear | 2016 |
References | Yu (C6RA02773C-(cit7)/*[position()=1]) 1994; 64 Stankovich (C6RA02773C-(cit45)/*[position()=1]) 2007; 45 Gilje (C6RA02773C-(cit41)/*[position()=1]) 2007; 7 Wang (C6RA02773C-(cit54)/*[position()=1]) 2014; 15 Gollu (C6RA02773C-(cit20)/*[position()=1]) 2014; 15 Shin (C6RA02773C-(cit29)/*[position()=1]) 2009; 19 Koster (C6RA02773C-(cit47)/*[position()=1]) 2005; 72 Zhao (C6RA02773C-(cit50)/*[position()=1]) 2015; 5 Yao (C6RA02773C-(cit4)/*[position()=1]) 2007; 19 Matt (C6RA02773C-(cit5)/*[position()=1]) 2010; 22 Ramuz (C6RA02773C-(cit8)/*[position()=1]) 2008; 9 Berger (C6RA02773C-(cit37)/*[position()=1]) 2004; 108 Arnold (C6RA02773C-(cit10)/*[position()=1]) 2009; 9 Crowell (C6RA02773C-(cit48)/*[position()=1]) 1965; 8 Li (C6RA02773C-(cit27)/*[position()=1]) 2014; 4 Rauch (C6RA02773C-(cit1)/*[position()=1]) 2009; 3 Zhang (C6RA02773C-(cit15)/*[position()=1]) 2015; 5 Zhao (C6RA02773C-(cit13)/*[position()=1]) 2016; 4 Mkhoyan (C6RA02773C-(cit40)/*[position()=1]) 2009; 9 Novoselov (C6RA02773C-(cit35)/*[position()=1]) 2005; 102 Wang (C6RA02773C-(cit43)/*[position()=1]) 2009; 131 Tsoi (C6RA02773C-(cit24)/*[position()=1]) 2011; 133 Kim (C6RA02773C-(cit38)/*[position()=1]) 2009; 457 Tongay (C6RA02773C-(cit52)/*[position()=1]) 2012; 2 Eda (C6RA02773C-(cit34)/*[position()=1]) 2008; 3 Watcharotone (C6RA02773C-(cit31)/*[position()=1]) 2007; 7 Meskers (C6RA02773C-(cit6)/*[position()=1]) 2003; 15 Veerender (C6RA02773C-(cit23)/*[position()=1]) 2014; 120 Li (C6RA02773C-(cit18)/*[position()=1]) 2006; 179 Fan (C6RA02773C-(cit44)/*[position()=1]) 2008; 20 Chen (C6RA02773C-(cit14)/*[position()=1]) 2010; 97 Yin (C6RA02773C-(cit16)/*[position()=1]) 2012; 134 Boukhvalov (C6RA02773C-(cit39)/*[position()=1]) 2008; 130 Cunninghan (C6RA02773C-(cit49)/*[position()=1]) 2008; 112 Singh (C6RA02773C-(cit28)/*[position()=1]) 2010; 94 Natsume (C6RA02773C-(cit51)/*[position()=1]) 1982; 44 Novoselov (C6RA02773C-(cit36)/*[position()=1]) 2004; 306 Oh (C6RA02773C-(cit26)/*[position()=1]) 2014; 6 Dang (C6RA02773C-(cit12)/*[position()=1]) 2011; 23 Krebs (C6RA02773C-(cit2)/*[position()=1]) 2009; 19 Hoste (C6RA02773C-(cit46)/*[position()=1]) 1979; 17 Reyes-Reyes (C6RA02773C-(cit11)/*[position()=1]) 2005; 7 Zeng (C6RA02773C-(cit17)/*[position()=1]) 2010; 132 Chuang (C6RA02773C-(cit22)/*[position()=1]) 2012; 100 Wang (C6RA02773C-(cit33)/*[position()=1]) 2009; 3 Kubis (C6RA02773C-(cit21)/*[position()=1]) 2014; 15 Robinson (C6RA02773C-(cit32)/*[position()=1]) 2008; 8 Li (C6RA02773C-(cit42)/*[position()=1]) 2009; 131 Lv (C6RA02773C-(cit53)/*[position()=1]) 2015 Krebs (C6RA02773C-(cit3)/*[position()=1]) 2009; 93 Ballantyne (C6RA02773C-(cit25)/*[position()=1]) 2010; 43 Wang (C6RA02773C-(cit30)/*[position()=1]) 2008; 8 Gong (C6RA02773C-(cit9)/*[position()=1]) 2009; 325 de Villers (C6RA02773C-(cit19)/*[position()=1]) 2009; 113 |
References_xml | – volume: 3 start-page: 1745 year: 2009 ident: C6RA02773C-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900297m – volume: 113 start-page: 18978 year: 2009 ident: C6RA02773C-(cit19)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp9082163 – volume: 64 start-page: 3422 year: 1994 ident: C6RA02773C-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.111260 – volume: 134 start-page: 4857 year: 2012 ident: C6RA02773C-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211381e – volume: 5 start-page: 29222 year: 2015 ident: C6RA02773C-(cit50)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA02358K – start-page: 2449631 year: 2015 ident: C6RA02773C-(cit53)/*[position()=1] publication-title: IEEE Photonics Technol. Lett. – volume: 7 start-page: 1888 year: 2007 ident: C6RA02773C-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl070477+ – volume: 120 start-page: 526 year: 2014 ident: C6RA02773C-(cit23)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.09.034 – volume: 457 start-page: 706 year: 2009 ident: C6RA02773C-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature07719 – volume: 4 start-page: 53999 year: 2014 ident: C6RA02773C-(cit27)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA11305E – volume: 325 start-page: 1665 year: 2009 ident: C6RA02773C-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1176706 – volume: 8 start-page: 3137 year: 2008 ident: C6RA02773C-(cit32)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl8013007 – volume: 72 start-page: 085205 year: 2005 ident: C6RA02773C-(cit47)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.72.085205 – volume: 19 start-page: 1987 year: 2009 ident: C6RA02773C-(cit29)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900167 – volume: 133 start-page: 9834 year: 2011 ident: C6RA02773C-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2013104 – volume: 131 start-page: 9910 year: 2009 ident: C6RA02773C-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904251p – volume: 112 start-page: 7928 year: 2008 ident: C6RA02773C-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp711827g – volume: 93 start-page: 394 year: 2009 ident: C6RA02773C-(cit3)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.10.004 – volume: 22 start-page: 647 year: 2010 ident: C6RA02773C-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200901383 – volume: 15 start-page: 2256 year: 2014 ident: C6RA02773C-(cit21)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.06.006 – volume: 130 start-page: 10697 year: 2008 ident: C6RA02773C-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8021686 – volume: 6 start-page: 7759 year: 2014 ident: C6RA02773C-(cit26)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501034g – volume: 131 start-page: 15939 year: 2009 ident: C6RA02773C-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907098f – volume: 5 start-page: 9439 year: 2015 ident: C6RA02773C-(cit15)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep09439 – volume: 2 start-page: 011002 year: 2012 ident: C6RA02773C-(cit52)/*[position()=1] publication-title: Phys. Rev. X – volume: 3 start-page: 270 year: 2008 ident: C6RA02773C-(cit34)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.83 – volume: 94 start-page: 2386 year: 2010 ident: C6RA02773C-(cit28)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.08.023 – volume: 4 start-page: 815 year: 2016 ident: C6RA02773C-(cit13)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03144C – volume: 179 start-page: 1415 year: 2006 ident: C6RA02773C-(cit18)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1016/j.jssc.2006.01.075 – volume: 8 start-page: 323 year: 2008 ident: C6RA02773C-(cit30)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl072838r – volume: 15 start-page: 613 year: 2003 ident: C6RA02773C-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200304592 – volume: 45 start-page: 1558 year: 2007 ident: C6RA02773C-(cit45)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 19 start-page: 5442 year: 2009 ident: C6RA02773C-(cit2)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b823001c – volume: 15 start-page: 2367 year: 2014 ident: C6RA02773C-(cit54)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.07.008 – volume: 8 start-page: 395 year: 1965 ident: C6RA02773C-(cit48)/*[position()=1] publication-title: Solid-State Electron. doi: 10.1016/0038-1101(65)90116-4 – volume: 44 start-page: 1105 year: 1982 ident: C6RA02773C-(cit51)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(82)90347-7 – volume: 97 start-page: 103301 year: 2010 ident: C6RA02773C-(cit14)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3488017 – volume: 20 start-page: 4490 year: 2008 ident: C6RA02773C-(cit44)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200801306 – volume: 108 start-page: 19912 year: 2004 ident: C6RA02773C-(cit37)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp040650f – volume: 132 start-page: 2561 year: 2010 ident: C6RA02773C-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908293n – volume: 7 start-page: 5749 year: 2005 ident: C6RA02773C-(cit11)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol051950y – volume: 9 start-page: 1058 year: 2009 ident: C6RA02773C-(cit40)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl8034256 – volume: 7 start-page: 3394 year: 2007 ident: C6RA02773C-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0717715 – volume: 3 start-page: 332 year: 2009 ident: C6RA02773C-(cit1)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.72 – volume: 23 start-page: 3597 year: 2011 ident: C6RA02773C-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100792 – volume: 100 start-page: 013309 year: 2012 ident: C6RA02773C-(cit22)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3675573 – volume: 102 start-page: 10451 year: 2005 ident: C6RA02773C-(cit35)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502848102 – volume: 43 start-page: 1169 year: 2010 ident: C6RA02773C-(cit25)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma902477h – volume: 306 start-page: 666 year: 2004 ident: C6RA02773C-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 – volume: 9 start-page: 369 year: 2008 ident: C6RA02773C-(cit8)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2008.01.007 – volume: 9 start-page: 3354 year: 2009 ident: C6RA02773C-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl901637u – volume: 19 start-page: 3979 year: 2007 ident: C6RA02773C-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602670 – volume: 17 start-page: 191 year: 1979 ident: C6RA02773C-(cit46)/*[position()=1] publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(79)85040-9 – volume: 15 start-page: 2518 year: 2014 ident: C6RA02773C-(cit20)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.06.035 |
SSID | ssj0000651261 |
Score | 2.2521465 |
Snippet | Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45166 |
SubjectTerms | absorption ambient temperature Devices Doping Infrared Iodine lighting near-infrared spectroscopy Optoelectronic devices Photodetectors photons polymers Receiving Searching wavelengths |
Title | Solution processable high-performance infrared organic photodetector by iodine doping |
URI | https://www.proquest.com/docview/1816085059 https://www.proquest.com/docview/2253307456 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYOMAF8TVRNiYjuKAp0MSJWx-naGiaGEKjlSoukb-qRpqSqqQHdtjfvuevOINNAi5p6jiJ5J_z_HvP7wOh9zybpJLxIpGcalBQTA5IUK0TlacTKTSQDqsonn-lp_P8bFEsQg13H13SiY_y6s64kv9BFdoAVxMl-w_I9g-FBjgHfOEICMPxrzAONq2jtXP3t2FQJgFxsh7EA8CbNtbN3FVwkkfrVdu1SnfWYG_4Z90qQzaVDZ4a0tWL72XwEui596x2NtNvdfTh9UbnL7WIjYvat57VzdWq9Q-2-0_2_h8r3ay2fGh2SIdmB23FUwaaNaDhCq0EWUoHU8YnknWC0dQDpoNVFv670it_iPAxMRlQJd1ws71MZFyoevfBeHEHPYTfzJSuOL-OxjXgVSmohiEdLWGf4i23CUjUKnY2oeSLpRazp-iJ1wnwsQP4GXqgm-foURlK8b1A8wA0HgCNfwcaB6CxBxrfAhqLX9gBjR3QL9H888msPE18PYxEkmnRJUIKCuJUwkckCFeMEDJVQOhYLriiqiB5BvKbTBQXVLOU50pLSvSSyHwpBB-TPbTbtI1-hfBUqiynY6kI6MNpLtiSZWoi0qWiUyq5GKEPYZAq6ZPFm5oll5V1WiCsKunFsR3QcoTe9X3XLkXKnb3ehrGuYPTMthRvdLv9WQHHpCZxYsHu7wOrDoHVCNj-CO0BUP2LIq6v77uwjx7HCXyAdrvNVr8BJtmJQztrbgCih3mJ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+processable+high-performance+infrared+organic+photodetector+by+iodine+doping&rft.jtitle=RSC+advances&rft.au=Tian%2C+Pin&rft.au=Tang%2C+Libin&rft.au=Xiang%2C+Jinzhong&rft.au=Sun%2C+Zhenhua&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=51&rft.spage=45166&rft.epage=45171&rft_id=info:doi/10.1039%2Fc6ra02773c&rft.externalDocID=c6ra02773c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |