Solution processable high-performance infrared organic photodetector by iodine doping

Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes i...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 6; no. 51; pp. 45166 - 45171
Main Authors Tian, Pin, Tang, Libin, Xiang, Jinzhong, Sun, Zhenhua, Ji, Rongbin, Lai, Sin Ki, Ping Lau, Shu, Kong, Jincheng, Zhao, Jun, Yang, Chunzhang, Li, Yanhui
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I 2 ), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity ( D *) of ∼1.6 × 10 12 cm Hz 1/2 W −1 , a good specific responsivity ( R ) of ∼80 A W −1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. A high-performance IR OPV detector has been fabricated, 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film thus result in the ∼11 000-fold increase in responsivity for the detector.
AbstractList Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I₂), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity (D*) of ∼1.6 × 10¹² cm Hz¹/² W⁻¹, a good specific responsivity (R) of ∼80 A W⁻¹ and a large EQE (external quantum efficiency) of 120% are achieved under illumination (λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device.
Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I sub(2)), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a similar to 11 000-fold increase in responsivity for the detector. A high detectivity (D*) of similar to 1.6 10 super(12) cm Hz super(1/2) W super(-1), a good specific responsivity (R) of similar to 80 A W super(-1) and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( lambda = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device.
Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I 2 ), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity ( D *) of ∼1.6 × 10 12 cm Hz 1/2 W −1 , a good specific responsivity ( R ) of ∼80 A W −1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device. A high-performance IR OPV detector has been fabricated, 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film thus result in the ∼11 000-fold increase in responsivity for the detector.
Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I 2 ), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11 000-fold increase in responsivity for the detector. A high detectivity ( D *) of ∼1.6 × 10 12 cm Hz 1/2 W −1 , a good specific responsivity ( R ) of ∼80 A W −1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination ( λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device.
Author Tian, Pin
Li, Yanhui
Yang, Chunzhang
Ji, Rongbin
Kong, Jincheng
Zhao, Jun
Xiang, Jinzhong
Tang, Libin
Sun, Zhenhua
Ping Lau, Shu
Lai, Sin Ki
AuthorAffiliation School of Materials Science and Engineering
The Hong Kong Polytechnic University
College of Optoelectronic Engineering
Department of Applied Physics
Shenzhen University
Yunnan University
Kunming Institute of Physics
AuthorAffiliation_xml – sequence: 0
  name: Kunming Institute of Physics
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Shenzhen University
– sequence: 0
  name: The Hong Kong Polytechnic University
– sequence: 0
  name: College of Optoelectronic Engineering
– sequence: 0
  name: Yunnan University
– sequence: 0
  name: Department of Applied Physics
Author_xml – sequence: 1
  givenname: Pin
  surname: Tian
  fullname: Tian, Pin
– sequence: 2
  givenname: Libin
  surname: Tang
  fullname: Tang, Libin
– sequence: 3
  givenname: Jinzhong
  surname: Xiang
  fullname: Xiang, Jinzhong
– sequence: 4
  givenname: Zhenhua
  surname: Sun
  fullname: Sun, Zhenhua
– sequence: 5
  givenname: Rongbin
  surname: Ji
  fullname: Ji, Rongbin
– sequence: 6
  givenname: Sin Ki
  surname: Lai
  fullname: Lai, Sin Ki
– sequence: 7
  givenname: Shu
  surname: Ping Lau
  fullname: Ping Lau, Shu
– sequence: 8
  givenname: Jincheng
  surname: Kong
  fullname: Kong, Jincheng
– sequence: 9
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
– sequence: 10
  givenname: Chunzhang
  surname: Yang
  fullname: Yang, Chunzhang
– sequence: 11
  givenname: Yanhui
  surname: Li
  fullname: Li, Yanhui
BookMark eNqFkc1Lw0AQxRepYNVevAs5ihDdzSSb5FiKX1AQ1J7DfkzalXQ37m4P_e9NraiI4FxmDr_3GN47JiPrLBJyxugVo1BfK-4FzcoS1AEZZzTnaUZ5PfpxH5FJCK90GF6wjLMxWTy7bhONs0nvncIQhOwwWZnlKu3Rt86vhVWYGNt64VEnzi-FNSrpVy46jRFVdD6R28Q4bSwm2vXGLk_JYSu6gJPPfUIWtzcvs_t0_nj3MJvOUwVVEVOpJC9rUKWSEoSuAaDSrKZ1LoXmuoA8KylAqYXkWDORa1QcsAWVt1IKCifkYu87PP-2wRCbtQkKu05YdJvQZFkBQMu84P-irGKcVgUt6gG93KPKuxA8tk3vzVr4bcNos0u6mfGn6UfSswGmv2BlotglGr0w3d-S873EB_Vl_V0evAN6Jo2E
CitedBy_id crossref_primary_10_1021_acs_chemmater_3c01990
crossref_primary_10_1021_acsphotonics_1c01690
crossref_primary_10_1364_OL_385280
crossref_primary_10_1109_JSEN_2023_3306312
crossref_primary_10_1039_D0TC05549B
crossref_primary_10_1021_acs_chemmater_9b02530
crossref_primary_10_3390_en16124741
crossref_primary_10_1007_s10854_022_08440_1
crossref_primary_10_1002_adfm_202202954
crossref_primary_10_1039_D4TC04381B
crossref_primary_10_1557_adv_2019_281
crossref_primary_10_1007_s10854_022_09148_y
crossref_primary_10_1021_acsami_6b16788
crossref_primary_10_1039_C6TC03325C
crossref_primary_10_1002_gch2_201800077
crossref_primary_10_1039_C9CP03873F
crossref_primary_10_1557_adv_2019_324
crossref_primary_10_1039_C9TC02751C
crossref_primary_10_3934_matersci_2021050
crossref_primary_10_3934_matersci_2018_3_479
crossref_primary_10_1039_C7TC05042A
Cites_doi 10.1021/nn900297m
10.1021/jp9082163
10.1063/1.111260
10.1021/ja211381e
10.1039/C5RA02358K
10.1021/nl070477+
10.1016/j.solmat.2013.09.034
10.1038/nature07719
10.1039/C4RA11305E
10.1126/science.1176706
10.1021/nl8013007
10.1103/PhysRevB.72.085205
10.1002/adfm.200900167
10.1021/ja2013104
10.1021/ja904251p
10.1021/jp711827g
10.1016/j.solmat.2008.10.004
10.1002/adma.200901383
10.1016/j.orgel.2014.06.006
10.1021/ja8021686
10.1021/am501034g
10.1021/ja907098f
10.1038/srep09439
10.1038/nnano.2008.83
10.1016/j.solmat.2010.08.023
10.1039/C5TC03144C
10.1016/j.jssc.2006.01.075
10.1021/nl072838r
10.1002/adma.200304592
10.1016/j.carbon.2007.02.034
10.1039/b823001c
10.1016/j.orgel.2014.07.008
10.1016/0038-1101(65)90116-4
10.1016/0038-1098(82)90347-7
10.1063/1.3488017
10.1002/adma.200801306
10.1021/jp040650f
10.1021/ja908293n
10.1021/ol051950y
10.1021/nl8034256
10.1021/nl0717715
10.1038/nphoton.2009.72
10.1002/adma.201100792
10.1063/1.3675573
10.1073/pnas.0502848102
10.1021/ma902477h
10.1126/science.1102896
10.1016/j.orgel.2008.01.007
10.1021/nl901637u
10.1002/adma.200602670
10.1016/0368-2048(79)85040-9
10.1016/j.orgel.2014.06.035
ContentType Journal Article
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1039/c6ra02773c
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 45171
ExternalDocumentID 10_1039_C6RA02773C
c6ra02773c
GroupedDBID -JG
0-7
0R~
53G
AAEMU
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABASK
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADMRA
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
R7C
R7G
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
AAYXX
ABIQK
ABJNI
ADBBV
AFPKN
AFRZK
AKMSF
BCNDV
CITATION
J3G
J3H
OK1
PGMZT
RPM
YAE
ZCN
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c385t-bcb6793c7cbb3ad93338d19094bad6d534270337dab6e91a4dec63ef3c4fbba03
ISSN 2046-2069
IngestDate Fri Jul 11 08:01:31 EDT 2025
Fri Jul 11 00:46:59 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 02:39:22 EDT 2025
Tue Dec 17 20:59:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-bcb6793c7cbb3ad93338d19094bad6d534270337dab6e91a4dec63ef3c4fbba03
Notes 10.1039/c6ra02773c
Electronic supplementary information (ESI) available: The ellipsometric spectra of the doped and undoped P3HT:PCBM films. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816085059
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1816085059
rsc_primary_c6ra02773c
crossref_primary_10_1039_C6RA02773C
proquest_miscellaneous_2253307456
crossref_citationtrail_10_1039_C6RA02773C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2016
References Yu (C6RA02773C-(cit7)/*[position()=1]) 1994; 64
Stankovich (C6RA02773C-(cit45)/*[position()=1]) 2007; 45
Gilje (C6RA02773C-(cit41)/*[position()=1]) 2007; 7
Wang (C6RA02773C-(cit54)/*[position()=1]) 2014; 15
Gollu (C6RA02773C-(cit20)/*[position()=1]) 2014; 15
Shin (C6RA02773C-(cit29)/*[position()=1]) 2009; 19
Koster (C6RA02773C-(cit47)/*[position()=1]) 2005; 72
Zhao (C6RA02773C-(cit50)/*[position()=1]) 2015; 5
Yao (C6RA02773C-(cit4)/*[position()=1]) 2007; 19
Matt (C6RA02773C-(cit5)/*[position()=1]) 2010; 22
Ramuz (C6RA02773C-(cit8)/*[position()=1]) 2008; 9
Berger (C6RA02773C-(cit37)/*[position()=1]) 2004; 108
Arnold (C6RA02773C-(cit10)/*[position()=1]) 2009; 9
Crowell (C6RA02773C-(cit48)/*[position()=1]) 1965; 8
Li (C6RA02773C-(cit27)/*[position()=1]) 2014; 4
Rauch (C6RA02773C-(cit1)/*[position()=1]) 2009; 3
Zhang (C6RA02773C-(cit15)/*[position()=1]) 2015; 5
Zhao (C6RA02773C-(cit13)/*[position()=1]) 2016; 4
Mkhoyan (C6RA02773C-(cit40)/*[position()=1]) 2009; 9
Novoselov (C6RA02773C-(cit35)/*[position()=1]) 2005; 102
Wang (C6RA02773C-(cit43)/*[position()=1]) 2009; 131
Tsoi (C6RA02773C-(cit24)/*[position()=1]) 2011; 133
Kim (C6RA02773C-(cit38)/*[position()=1]) 2009; 457
Tongay (C6RA02773C-(cit52)/*[position()=1]) 2012; 2
Eda (C6RA02773C-(cit34)/*[position()=1]) 2008; 3
Watcharotone (C6RA02773C-(cit31)/*[position()=1]) 2007; 7
Meskers (C6RA02773C-(cit6)/*[position()=1]) 2003; 15
Veerender (C6RA02773C-(cit23)/*[position()=1]) 2014; 120
Li (C6RA02773C-(cit18)/*[position()=1]) 2006; 179
Fan (C6RA02773C-(cit44)/*[position()=1]) 2008; 20
Chen (C6RA02773C-(cit14)/*[position()=1]) 2010; 97
Yin (C6RA02773C-(cit16)/*[position()=1]) 2012; 134
Boukhvalov (C6RA02773C-(cit39)/*[position()=1]) 2008; 130
Cunninghan (C6RA02773C-(cit49)/*[position()=1]) 2008; 112
Singh (C6RA02773C-(cit28)/*[position()=1]) 2010; 94
Natsume (C6RA02773C-(cit51)/*[position()=1]) 1982; 44
Novoselov (C6RA02773C-(cit36)/*[position()=1]) 2004; 306
Oh (C6RA02773C-(cit26)/*[position()=1]) 2014; 6
Dang (C6RA02773C-(cit12)/*[position()=1]) 2011; 23
Krebs (C6RA02773C-(cit2)/*[position()=1]) 2009; 19
Hoste (C6RA02773C-(cit46)/*[position()=1]) 1979; 17
Reyes-Reyes (C6RA02773C-(cit11)/*[position()=1]) 2005; 7
Zeng (C6RA02773C-(cit17)/*[position()=1]) 2010; 132
Chuang (C6RA02773C-(cit22)/*[position()=1]) 2012; 100
Wang (C6RA02773C-(cit33)/*[position()=1]) 2009; 3
Kubis (C6RA02773C-(cit21)/*[position()=1]) 2014; 15
Robinson (C6RA02773C-(cit32)/*[position()=1]) 2008; 8
Li (C6RA02773C-(cit42)/*[position()=1]) 2009; 131
Lv (C6RA02773C-(cit53)/*[position()=1]) 2015
Krebs (C6RA02773C-(cit3)/*[position()=1]) 2009; 93
Ballantyne (C6RA02773C-(cit25)/*[position()=1]) 2010; 43
Wang (C6RA02773C-(cit30)/*[position()=1]) 2008; 8
Gong (C6RA02773C-(cit9)/*[position()=1]) 2009; 325
de Villers (C6RA02773C-(cit19)/*[position()=1]) 2009; 113
References_xml – volume: 3
  start-page: 1745
  year: 2009
  ident: C6RA02773C-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900297m
– volume: 113
  start-page: 18978
  year: 2009
  ident: C6RA02773C-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9082163
– volume: 64
  start-page: 3422
  year: 1994
  ident: C6RA02773C-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111260
– volume: 134
  start-page: 4857
  year: 2012
  ident: C6RA02773C-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211381e
– volume: 5
  start-page: 29222
  year: 2015
  ident: C6RA02773C-(cit50)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02358K
– start-page: 2449631
  year: 2015
  ident: C6RA02773C-(cit53)/*[position()=1]
  publication-title: IEEE Photonics Technol. Lett.
– volume: 7
  start-page: 1888
  year: 2007
  ident: C6RA02773C-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl070477+
– volume: 120
  start-page: 526
  year: 2014
  ident: C6RA02773C-(cit23)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.09.034
– volume: 457
  start-page: 706
  year: 2009
  ident: C6RA02773C-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 4
  start-page: 53999
  year: 2014
  ident: C6RA02773C-(cit27)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11305E
– volume: 325
  start-page: 1665
  year: 2009
  ident: C6RA02773C-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1176706
– volume: 8
  start-page: 3137
  year: 2008
  ident: C6RA02773C-(cit32)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8013007
– volume: 72
  start-page: 085205
  year: 2005
  ident: C6RA02773C-(cit47)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.72.085205
– volume: 19
  start-page: 1987
  year: 2009
  ident: C6RA02773C-(cit29)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900167
– volume: 133
  start-page: 9834
  year: 2011
  ident: C6RA02773C-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2013104
– volume: 131
  start-page: 9910
  year: 2009
  ident: C6RA02773C-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904251p
– volume: 112
  start-page: 7928
  year: 2008
  ident: C6RA02773C-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711827g
– volume: 93
  start-page: 394
  year: 2009
  ident: C6RA02773C-(cit3)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.10.004
– volume: 22
  start-page: 647
  year: 2010
  ident: C6RA02773C-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901383
– volume: 15
  start-page: 2256
  year: 2014
  ident: C6RA02773C-(cit21)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2014.06.006
– volume: 130
  start-page: 10697
  year: 2008
  ident: C6RA02773C-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8021686
– volume: 6
  start-page: 7759
  year: 2014
  ident: C6RA02773C-(cit26)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501034g
– volume: 131
  start-page: 15939
  year: 2009
  ident: C6RA02773C-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907098f
– volume: 5
  start-page: 9439
  year: 2015
  ident: C6RA02773C-(cit15)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep09439
– volume: 2
  start-page: 011002
  year: 2012
  ident: C6RA02773C-(cit52)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 3
  start-page: 270
  year: 2008
  ident: C6RA02773C-(cit34)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.83
– volume: 94
  start-page: 2386
  year: 2010
  ident: C6RA02773C-(cit28)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.08.023
– volume: 4
  start-page: 815
  year: 2016
  ident: C6RA02773C-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03144C
– volume: 179
  start-page: 1415
  year: 2006
  ident: C6RA02773C-(cit18)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1016/j.jssc.2006.01.075
– volume: 8
  start-page: 323
  year: 2008
  ident: C6RA02773C-(cit30)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl072838r
– volume: 15
  start-page: 613
  year: 2003
  ident: C6RA02773C-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304592
– volume: 45
  start-page: 1558
  year: 2007
  ident: C6RA02773C-(cit45)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 19
  start-page: 5442
  year: 2009
  ident: C6RA02773C-(cit2)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b823001c
– volume: 15
  start-page: 2367
  year: 2014
  ident: C6RA02773C-(cit54)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2014.07.008
– volume: 8
  start-page: 395
  year: 1965
  ident: C6RA02773C-(cit48)/*[position()=1]
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(65)90116-4
– volume: 44
  start-page: 1105
  year: 1982
  ident: C6RA02773C-(cit51)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(82)90347-7
– volume: 97
  start-page: 103301
  year: 2010
  ident: C6RA02773C-(cit14)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3488017
– volume: 20
  start-page: 4490
  year: 2008
  ident: C6RA02773C-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801306
– volume: 108
  start-page: 19912
  year: 2004
  ident: C6RA02773C-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040650f
– volume: 132
  start-page: 2561
  year: 2010
  ident: C6RA02773C-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908293n
– volume: 7
  start-page: 5749
  year: 2005
  ident: C6RA02773C-(cit11)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol051950y
– volume: 9
  start-page: 1058
  year: 2009
  ident: C6RA02773C-(cit40)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8034256
– volume: 7
  start-page: 3394
  year: 2007
  ident: C6RA02773C-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0717715
– volume: 3
  start-page: 332
  year: 2009
  ident: C6RA02773C-(cit1)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.72
– volume: 23
  start-page: 3597
  year: 2011
  ident: C6RA02773C-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100792
– volume: 100
  start-page: 013309
  year: 2012
  ident: C6RA02773C-(cit22)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3675573
– volume: 102
  start-page: 10451
  year: 2005
  ident: C6RA02773C-(cit35)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502848102
– volume: 43
  start-page: 1169
  year: 2010
  ident: C6RA02773C-(cit25)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma902477h
– volume: 306
  start-page: 666
  year: 2004
  ident: C6RA02773C-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 9
  start-page: 369
  year: 2008
  ident: C6RA02773C-(cit8)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2008.01.007
– volume: 9
  start-page: 3354
  year: 2009
  ident: C6RA02773C-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl901637u
– volume: 19
  start-page: 3979
  year: 2007
  ident: C6RA02773C-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602670
– volume: 17
  start-page: 191
  year: 1979
  ident: C6RA02773C-(cit46)/*[position()=1]
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(79)85040-9
– volume: 15
  start-page: 2518
  year: 2014
  ident: C6RA02773C-(cit20)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2014.06.035
SSID ssj0000651261
Score 2.2521465
Snippet Solution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45166
SubjectTerms absorption
ambient temperature
Devices
Doping
Infrared
Iodine
lighting
near-infrared spectroscopy
Optoelectronic devices
Photodetectors
photons
polymers
Receiving
Searching
wavelengths
Title Solution processable high-performance infrared organic photodetector by iodine doping
URI https://www.proquest.com/docview/1816085059
https://www.proquest.com/docview/2253307456
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYOMAF8TVRNiYjuKAp0MSJWx-naGiaGEKjlSoukb-qRpqSqqQHdtjfvuevOINNAi5p6jiJ5J_z_HvP7wOh9zybpJLxIpGcalBQTA5IUK0TlacTKTSQDqsonn-lp_P8bFEsQg13H13SiY_y6s64kv9BFdoAVxMl-w_I9g-FBjgHfOEICMPxrzAONq2jtXP3t2FQJgFxsh7EA8CbNtbN3FVwkkfrVdu1SnfWYG_4Z90qQzaVDZ4a0tWL72XwEui596x2NtNvdfTh9UbnL7WIjYvat57VzdWq9Q-2-0_2_h8r3ay2fGh2SIdmB23FUwaaNaDhCq0EWUoHU8YnknWC0dQDpoNVFv670it_iPAxMRlQJd1ws71MZFyoevfBeHEHPYTfzJSuOL-OxjXgVSmohiEdLWGf4i23CUjUKnY2oeSLpRazp-iJ1wnwsQP4GXqgm-foURlK8b1A8wA0HgCNfwcaB6CxBxrfAhqLX9gBjR3QL9H888msPE18PYxEkmnRJUIKCuJUwkckCFeMEDJVQOhYLriiqiB5BvKbTBQXVLOU50pLSvSSyHwpBB-TPbTbtI1-hfBUqiynY6kI6MNpLtiSZWoi0qWiUyq5GKEPYZAq6ZPFm5oll5V1WiCsKunFsR3QcoTe9X3XLkXKnb3ehrGuYPTMthRvdLv9WQHHpCZxYsHu7wOrDoHVCNj-CO0BUP2LIq6v77uwjx7HCXyAdrvNVr8BJtmJQztrbgCih3mJ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+processable+high-performance+infrared+organic+photodetector+by+iodine+doping&rft.jtitle=RSC+advances&rft.au=Tian%2C+Pin&rft.au=Tang%2C+Libin&rft.au=Xiang%2C+Jinzhong&rft.au=Sun%2C+Zhenhua&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=51&rft.spage=45166&rft.epage=45171&rft_id=info:doi/10.1039%2Fc6ra02773c&rft.externalDocID=c6ra02773c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon