Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores
Graph databases have gained widespread adoption in various industries and have been utilized in a range of applications, including financial risk assessment, commodity recommendation, and data lineage tracking. While the principles and design of these databases have been the subject of some investig...
Saved in:
Published in | Big Data Mining and Analytics Vol. 7; no. 1; pp. 156 - 170 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2096-0654 2097-406X |
DOI | 10.26599/BDMA.2023.9020015 |
Cover
Loading…
Abstract | Graph databases have gained widespread adoption in various industries and have been utilized in a range of applications, including financial risk assessment, commodity recommendation, and data lineage tracking. While the principles and design of these databases have been the subject of some investigation, there remains a lack of comprehensive examination of aspects such as storage layout, query language, and deployment. The present study focuses on the design and implementation of graph storage layout, with a particular emphasis on tree-structured key-value stores. We also examine different design choices in the graph storage layer and present our findings through the development of TuGraph, a highly efficient single-machine graph database that significantly outperforms well-known Graph DataBase Management System (GDBMS). Additionally, TuGraph demonstrates superior performance in the Linked Data Benchmark Council (LDBC) Social Network Benchmark (SNB) interactive benchmark. |
---|---|
AbstractList | Graph databases have gained widespread adoption in various industries and have been utilized in a range of applications, including financial risk assessment, commodity recommendation, and data lineage tracking. While the principles and design of these databases have been the subject of some investigation, there remains a lack of comprehensive examination of aspects such as storage layout, query language, and deployment. The present study focuses on the design and implementation of graph storage layout, with a particular emphasis on tree-structured key-value stores. We also examine different design choices in the graph storage layer and present our findings through the development of TuGraph, a highly efficient single-machine graph database that significantly outperforms well-known Graph DataBase Management System (GDBMS). Additionally, TuGraph demonstrates superior performance in the Linked Data Benchmark Council (LDBC) Social Network Benchmark (SNB) interactive benchmark. |
Author | Luo, Yingwei Zhu, Xiaowei Hong, Chuntao Wang, Zhiyong Qi, Shipeng Lin, Heng Chen, Wenguang |
Author_xml | – sequence: 1 givenname: Heng surname: Lin fullname: Lin, Heng organization: School of Computer Science, Peking University,Beijing,China,100871 – sequence: 2 givenname: Zhiyong surname: Wang fullname: Wang, Zhiyong organization: Ant Group,Beijing,China,100020 – sequence: 3 givenname: Shipeng surname: Qi fullname: Qi, Shipeng organization: Ant Group,Beijing,China,100020 – sequence: 4 givenname: Xiaowei surname: Zhu fullname: Zhu, Xiaowei organization: Ant Group,Beijing,China,100020 – sequence: 5 givenname: Chuntao surname: Hong fullname: Hong, Chuntao organization: Ant Group,Beijing,China,100020 – sequence: 6 givenname: Wenguang surname: Chen fullname: Chen, Wenguang organization: Ant Group,Beijing,China,100020 – sequence: 7 givenname: Yingwei surname: Luo fullname: Luo, Yingwei organization: School of Computer Science, Peking University,Beijing,China,100871 |
BookMark | eNp9UU1v1DAQtVCRKEv_ACdLnLOM7cR2jm2hH6IIpC6ImzWxx9us0nhxnEP_PeluxYEDl5nR6L03T_PespMxjcTYewFrqZu2_Xjx6ev5WoJU6xYkgGhesVMJralq0L9ODrOuQDf1G3Y2TTsAkLYxqoZTtrmY-yH045Yjv-m3D9V3yjHlRxw98euM-wd-X1LGLfE08k3a8xT5JhNV9yXPvsyZAv9CT9VPHGY6YGl6x15HHCY6e-kr9uPq8-byprr7dn17eX5XeWWbUnVeBSVM1KgQbCAjvLW10AJNK6Kl6L1VIA1Gb6MM1FgLHaiwmPcBwagVuz3qhoQ7t8_9I-Ynl7B3h0XKW4e59H4gpwm6oEMwEHTd1W1HXuiIqChKEzpctD4ctfY5_Z5pKm6X5jwu9p1aXmuVNktZMXlE-ZymKVP8e1WAO4ThnsNwz2G4lzAWkv2H5PuCpU9jydgP_6P-AXR8j_U |
CitedBy_id | crossref_primary_10_1016_j_sysarc_2025_103342 crossref_primary_10_1145_3698818 |
Cites_doi | 10.1145/3033273 10.1145/3318464.3386135 10.1145/3035918.3056445 10.1145/3357223.3362715 10.1504/IJHPCN.2019.103537 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.26599/BDMA.2023.9020015 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2097-406X |
EndPage | 170 |
ExternalDocumentID | oai_doaj_org_article_6e0bd6dd70d64b49bec16faa3ef27dba 10_26599_BDMA_2023_9020015 |
GroupedDBID | -SI -S~ 9D9 9DI AAXDM AAYXX ABAZT ABVLG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CAJEI CCPQU CITATION ESBDL GROUPED_DOAJ HCIFZ JAVBF K7- PHGZM PHGZT PIMPY Q-- U1G U5S 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-bc3d317f6a3a08de71c884161a791f8efcc83027afc8f2de5880b03d285cda073 |
IEDL.DBID | DOA |
ISSN | 2096-0654 |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Fri Jul 25 09:58:37 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Tue Jul 01 05:16:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-bc3d317f6a3a08de71c884161a791f8efcc83027afc8f2de5880b03d285cda073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/6e0bd6dd70d64b49bec16faa3ef27dba |
PQID | 3202836728 |
PQPubID | 7264805 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e0bd6dd70d64b49bec16faa3ef27dba proquest_journals_3202836728 crossref_primary_10_26599_BDMA_2023_9020015 crossref_citationtrail_10_26599_BDMA_2023_9020015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-3-00 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-3-00 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Big Data Mining and Analytics |
PublicationYear | 2024 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | (ref23) 2023 (ref6) 2023 (ref15) 2023 ref19 Zhu (ref24) 2019 (ref8) 2023 (ref12) 2023 (ref22) 2023 Deutsch (ref2) 2019 (ref4) 2013 (ref17) 2023 (ref14) 2023 ref26 (ref5) 2023 ref20 Bronson (ref25) (ref7) 2023 (ref10) 2022 (ref11) 2023 ref9 (ref16) 2023 (ref21) 2023 ref3 (ref1) 2023 (ref18) 2023 (ref13) 2023 |
References_xml | – volume-title: ArangoDB year: 2023 ident: ref13 – volume-title: Apache HBase year: 2023 ident: ref15 – volume-title: Alibaba cloud year: 2023 ident: ref6 – year: 2019 ident: ref2 article-title: Tiger Graph: A native MPP graph database publication-title: arXiv preprint – start-page: 49 volume-title: Proc. 2013 USENIX Conf. Annual Technical Conf. (USENIX ATC 13) ident: ref25 article-title: TAO: Facebooks distributed data store for the social graph – volume-title: Lucene year: 2023 ident: ref5 – year: 2019 ident: ref24 article-title: Live Graph: A transactional graph storage system with purely sequential adjacency list scans publication-title: arXiv preprint – volume-title: JanusGraph year: 2023 ident: ref11 – volume-title: Google Cloud Bigtable year: 2023 ident: ref16 – volume-title: Aws Neptune year: 2023 ident: ref21 – volume-title: Neo4j year: 2023 ident: ref1 – volume-title: Twitter follower network 2010 year: 2023 ident: ref8 – volume-title: Symas Corp, Memcache benchmark year: 2013 ident: ref4 – volume-title: Azure Cosmos DB documentation year: 2023 ident: ref23 – volume-title: Ldbc social network benchmark year: 2023 ident: ref7 – volume-title: Dgraph year: 2023 ident: ref12 – volume-title: OrientDB year: 2023 ident: ref18 – volume-title: Perf context and 10 stats context year: 2022 ident: ref10 – ident: ref9 doi: 10.1145/3033273 – ident: ref20 doi: 10.1145/3318464.3386135 – volume-title: Alibaba GDB year: 2023 ident: ref22 – volume-title: Apache Cassandra year: 2023 ident: ref14 – volume-title: Oracle Berkeley DB year: 2023 ident: ref17 – ident: ref19 doi: 10.1145/3035918.3056445 – ident: ref26 doi: 10.1145/3357223.3362715 – ident: ref3 doi: 10.1504/IJHPCN.2019.103537 |
SSID | ssj0002857340 |
Score | 2.269962 |
Snippet | Graph databases have gained widespread adoption in various industries and have been utilized in a range of applications, including financial risk assessment,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 156 |
SubjectTerms | Benchmarks Computer science Data base management systems Data models Data storage Design graph database graph storage high-performance Layouts Linked Data Online gambling Queries Query languages Relational data bases Resource Description Framework-RDF Risk assessment Social network analysis Social networks Transfer of funds Workloads |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRSoLTq8qh86K0yxEn8yAmxPNUKhGBB3Cw_xr2gzXYXDvx7xl7vIlSJW5RMLvPyzHhmPkJ-YhrrpOOCcYvm1irBmXbCsaCcdboKEvJU2sWlPL9tf9-L-1Jwm5W2yoVPzI469D7VyPcTzrdupKr1weQfS6hR6Xa1QGh8JKvogjUmX6vDk8ur62WVpdZCNXkqsq5St60U7Xxyppai6_aHxxeHewlAfK-rUnOReHM65SX-__nofPCcrpPPJWKkh3MRb5APMP5C1hZoDLQY5yYZDQvCNbU0dW-wq9eZAHqW9lLTG0yw0X_QfkxH_YT2kY6mAOwm75B9mkKgf-CZ3dmHJ8i0MPtKbk9PRkfnrGAmMN9o8cicbwKGBFHaxlY6gOJep5tFblXHo4bofdr4pWz0OtYBBNqvq5qAjPLBor1_IyvjfgzfCfUh6tZFER2EViJlpSMGL6AAuqazfED4glfGl4XiCdfiwWBikflrEn9N4q8p_B2QX8t_JvN1Gu9SD5MIlpRpFXZ-0U__mmJZRkLlggxBoWK1ru1QKbmM1jYQaxWcHZCdhQBNsc-ZedWmrfc_b5NP-NzOu852yAoKBHYxDHl0P4quvQBSGtlR priority: 102 providerName: ProQuest |
Title | Building a High-Performance Graph Storage on Top of Tree-Structured Key-Value Stores |
URI | https://www.proquest.com/docview/3202836728 https://doaj.org/article/6e0bd6dd70d64b49bec16faa3ef27dba |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LCwIBIhCqTywIUPcxI-MLVAQCISgIDbLj_OAUIt4DPx7zk54CQkW1uQcR5_vfHfJ-TtCtjGNddJxwbhFc6uU4Ew74VhQzjpdBAn5VNrZuTy-rk5uxe2XVl-pJqyhB26A25NQuCBDUDiuclWNc3IZrS0h9lVwOTRCn_clmbrLn4yEKvNpSLyJKbMUVXNipi9FXe8ND84Gu6lx-G5dpKIi8c0rZfL-H3tzdjijJbLYRop00LzhMpmByQoZD9s21tTSVKLBLj4L_-lRIp-mV5hF4yZBpxM6nj7QaaTjRwB2lYliXx4h0FN4ZTf2_gWyLDytkuvR4Xj_mLWNEZgvtXhmzpcB_X6UtrSFDqC41-n3Ibeq5lFD9D7ReikbvY79AAKN1BVlQFR8sGjUa2RuMp3AOqE-RF25KKKDUEmULHTECAUUQF3WlncIfwfG-JY1PDWvuDeYPWQwTQLTJDBNC2aH7HyMeWg4M36VHia8PyQT33W-gFpgWi0wf2lBh3TfV8u0RvhkUmt4XUrV1xv_MccmWcAHVk0BWpfM4bLBFkYkz65HZvXoqEfmh4fnF5e9rIpvuHDe6g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN2KhgA9wQm7jOH7kgFCXst3SboXUFPXm-sml2iy7rRB_it_I2Em2Qki99eqMc5inx56ZD6F3kMZaYSkn1IC5VZJToiy3xEtrrCq8CLkrbXYspqfV1zN-toH-DL0wqaxy8InZUfvWpTvynYTzrZiQpfq0-EkSalR6XR0gNDq1OAy_f0HKtvp4sAfyfV-Wky_N5ynpUQWIY4pfEuuYh6AZhWGmUD5I6lR6e6NG1jSqEJ1LM7GkiU7F0gcOGm4L5kvFnTdgEfDfO-huxVidLEpN9td3OkAiWe7BLItU2yt41fXplILX9c54b7a7neDKt-silTLxf2Jhhgz4LyLkMDd5hB7051O82ynUY7QR5k_QwwH7Afeu4Clqxj2eNjY41YqQb9cdCHg_TcHGJ5DOg7fC7Rw37QK3ETfLEMhJnlh7tQweAyfJd3NxFTJtWD1Dp7fCy-doc97OwwuEnY-qspFHG3wlgLJQEY5KQYZQs9rQEaIDr7Trx5cnFI0LDWlM5q9O_NWJv7rn7wh9WO9ZdMM7bqQeJxGsKdPg7bzQLn_o3o61CIX1wnsJalzZqgYToCIaw0IspbdmhLYGAereG6z0te6-vPnzW3Rv2syO9NHB8eErdB_Wq67ebQttgnDCazgAXdo3WeswOr9tNf8LTakVbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+a+High-Performance+Graph+Storage+on+Top+of+Tree-Structured+Key-Value+Stores&rft.jtitle=Big+Data+Mining+and+Analytics&rft.au=Heng+Lin&rft.au=Zhiyong+Wang&rft.au=Shipeng+Qi&rft.au=Xiaowei+Zhu&rft.date=2024-03-01&rft.pub=Tsinghua+University+Press&rft.issn=2096-0654&rft.volume=7&rft.issue=1&rft.spage=156&rft.epage=170&rft_id=info:doi/10.26599%2FBDMA.2023.9020015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6e0bd6dd70d64b49bec16faa3ef27dba |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-0654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-0654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-0654&client=summon |