Overview of residual stress in MEMS structures: Its origin, measurement, and control
Micro-electro-mechanical system (MEMS) technology has radically changed the scale, performance, and cost of a wide variety of sensors and actuators by taking advantage of batch fabrication. The multidisciplinary nature of MEMS employs knowledge of diverse technical areas to realize improved and nove...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 32; no. 6; pp. 6705 - 6741 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Micro-electro-mechanical system (MEMS) technology has radically changed the scale, performance, and cost of a wide variety of sensors and actuators by taking advantage of batch fabrication. The multidisciplinary nature of MEMS employs knowledge of diverse technical areas to realize improved and novel transducer systems. This also brings various associated challenges that are otherwise being ignored in a simple macro-dimensional system. MEMS devices typically comprise several deposited thick and thin films as well as bonded of dissimilar materials (like silicon, metal, glass, etc.). Residual stress is one of the most common outcomes during this integration/stacking of distinctly different materials for the fabrication of novel MEMS structures. The residual stress may significantly affect the performance and reliability of the fabricated devices. Thus, the evaluation and regulation of residual stress are one of the crucial aspects to assess the functioning of modern-day MEMS devices. This paper reviewed the origins of residual stress in MEMS fabrication processes. Different techniques involved in testing and characterization of the residual stresses are reviewed. Few important case studies are discussed to highlight the effect of residual stress (generated during various fabrication processes) on characteristics of different MEMS structures. The brief overview of the possible route to minimize the residual stresses is also presented. |
---|---|
AbstractList | Micro-electro-mechanical system (MEMS) technology has radically changed the scale, performance, and cost of a wide variety of sensors and actuators by taking advantage of batch fabrication. The multidisciplinary nature of MEMS employs knowledge of diverse technical areas to realize improved and novel transducer systems. This also brings various associated challenges that are otherwise being ignored in a simple macro-dimensional system. MEMS devices typically comprise several deposited thick and thin films as well as bonded of dissimilar materials (like silicon, metal, glass, etc.). Residual stress is one of the most common outcomes during this integration/stacking of distinctly different materials for the fabrication of novel MEMS structures. The residual stress may significantly affect the performance and reliability of the fabricated devices. Thus, the evaluation and regulation of residual stress are one of the crucial aspects to assess the functioning of modern-day MEMS devices. This paper reviewed the origins of residual stress in MEMS fabrication processes. Different techniques involved in testing and characterization of the residual stresses are reviewed. Few important case studies are discussed to highlight the effect of residual stress (generated during various fabrication processes) on characteristics of different MEMS structures. The brief overview of the possible route to minimize the residual stresses is also presented. |
Author | Pandey, Akhilesh Dutta, Shankar |
Author_xml | – sequence: 1 givenname: Shankar orcidid: 0000-0001-7627-8437 surname: Dutta fullname: Dutta, Shankar email: shankardutta77@gmail.com organization: Solid State Physics Laboratory, DRDO – sequence: 2 givenname: Akhilesh surname: Pandey fullname: Pandey, Akhilesh organization: Solid State Physics Laboratory, DRDO |
BookMark | eNp9kEFLAzEQhYNUsK3-AU8Br40m2WQ38SalasHSgxW8hWw2W1LabE2yFf-9W1cQPPQ0M4_53gxvBAa-8RaAa4JvCcbFXSRYcIYwJQhzhjkSZ2BIeJEhJuj7AAyx5AVinNILMIpxgzHOWSaGYLU82HBw9hM2NQw2uqrVWxhT10boPFzMFq_HsTWp7bR7OE8RNsGtnZ_AndWxU3fWpwnUvoKm8Sk020twXutttFe_dQzeHmer6TN6WT7Npw8vyGSCJ1SWQhScFJyyWhJSMSOl1jmTJDM1rvOK1gUjRuq8NiWn0ghqM0IrwktpDLPZGNz0vvvQfLQ2JrVp2uC7k4pyzLEQovMaA9FvmdDEGGytjEs6ueOv2m0VweqYoeozVF2G6idDJTqU_kP3we10-DoNZT0Uu2W_tuHvqxPUN_0Vhe4 |
CitedBy_id | crossref_primary_10_1016_j_sna_2022_114067 crossref_primary_10_1016_j_mssp_2022_106776 crossref_primary_10_1016_j_sna_2024_115938 crossref_primary_10_1088_1361_6439_acb3d8 crossref_primary_10_1109_OJUFFC_2024_3413603 crossref_primary_10_3390_mi15070879 crossref_primary_10_1016_j_surfcoat_2022_128169 crossref_primary_10_2109_jcersj2_22154 crossref_primary_10_3390_s22249978 crossref_primary_10_1088_1361_6439_ad9932 crossref_primary_10_1088_1361_665X_ad9445 crossref_primary_10_3390_s25061877 crossref_primary_10_1063_5_0200353 crossref_primary_10_1109_JMEMS_2023_3322223 crossref_primary_10_3390_mi14010190 crossref_primary_10_1016_j_mne_2024_100244 crossref_primary_10_3390_mi15101177 crossref_primary_10_1016_j_tws_2024_112528 crossref_primary_10_3390_ma16103645 crossref_primary_10_1088_1361_6439_acd3fb crossref_primary_10_1016_j_engfailanal_2022_106937 crossref_primary_10_1109_LSENS_2023_3315221 crossref_primary_10_1002_adpr_202300213 crossref_primary_10_3390_s22166253 crossref_primary_10_1016_j_ijsolstr_2024_113176 crossref_primary_10_1007_s10853_024_10329_9 crossref_primary_10_1109_JMEMS_2024_3416320 crossref_primary_10_1109_JSEN_2023_3283511 crossref_primary_10_3390_ma16145093 crossref_primary_10_3390_app14114792 crossref_primary_10_1016_j_est_2023_108966 |
Cites_doi | 10.1116/1.584158 10.1016/S1359-6454(03)00440-3 10.1016/j.cap.2016.04.008 10.1109/JMEMS.2011.2127451 10.1016/S1359-6454(99)00248-7 10.1016/j.sna.2011.05.029 10.1016/j.mssp.2016.05.004 10.1016/j.tsf.2006.03.033 10.1016/j.actamat.2007.02.003 10.1016/j.msea.2017.11.071 10.1007/s00339-015-9168-2 10.5185/amlett.2018.6973 10.1016/j.sna.2011.09.022 10.1007/978-0-387-47318-5 10.1016/j.ijsolstr.2013.06.022 10.1109/JMEMS.2016.2574958 10.1016/j.actamat.2004.02.047 10.1109/JMEMS.2002.800936 10.1016/j.scriptamat.2008.11.014 10.1111/j.1551-2916.2008.02421.x 10.1063/1.4710530 10.1016/j.mssp.2018.04.015 10.1103/PhysRevB.68.241312 10.1116/1.4896761 10.1016/j.tsf.2018.09.016 10.1016/j.matlet.2013.02.110 10.1063/1.3673330 10.1109/JMEMS.2002.807466 10.1007/s00542-019-04334-1 10.1016/j.mee.2015.07.004 10.7567/JJAP.57.040101 10.1179/026708301101510087 10.1016/j.sna.2009.10.005 10.1007/s11664-017-5924-8 10.1016/j.msea.2005.10.034 10.1557/jmr.2014.189 10.1007/0-387-25786-1_33 10.1088/0960-1317/12/6/324 10.1016/j.mejo.2014.05.009 10.1016/j.tsf.2014.09.042 10.1109/JMEMS.2012.2212422 10.1016/S0079-6425(01)00009-3 10.1080/10408439208244586 10.1088/0960-1317/19/11/115021 10.1016/j.surfcoat.2012.07.002 10.1038/s41598-018-22219-7 10.1021/nl5047939 10.1063/1.4816568 10.1016/j.matlet.2015.11.005 10.1088/1361-6463/ab94e4 10.1016/j.sna.2017.07.007 10.1016/j.apsusc.2010.02.020 10.1039/C3EE42454E 10.1109/JMEMS.2009.2020374 10.1038/121501c0 10.1088/0960-1317/23/4/045009 10.1007/978-1-4615-2209-6 10.1063/1.4945223 10.3390/coatings8110402 10.1063/1.333771 10.1201/9781315364926 10.1016/j.npe.2019.07.002 10.1021/a10000155 10.1007/s00542-019-04561-6 10.1007/s00542-011-1360-5 10.1063/1.1470227 10.1063/1.4748052 10.1016/0924-4247(93)80128-4 10.1109/5.704259 10.1143/JJAP.49.056702 10.1016/j.matlet.2015.06.032 10.1109/84.767116 10.1016/j.tsf.2011.04.220 10.1116/1.5011790 10.1016/j.apsusc.2006.09.028 10.1103/PhysRev.92.1145 10.1016/j.sna.2003.09.010 10.1088/0960-1317/25/5/055007 10.1063/1.3573669 10.1007/s00542-017-3314-z 10.1016/j.sna.2009.01.026 10.1016/j.jmmm.2004.10.094 10.1016/j.chempr.2017.12.006 10.1557/JMR.1999.0468 10.1063/1.5063860 10.1016/j.sna.2004.02.019 10.1109/JMEMS.2005.844746 10.1063/1.2738946 10.1179/026708301101509980 10.1063/1.4976328 10.1515/ehs-2016-0028 10.1016/0272-8842(95)00086-0 10.1016/S0013-4686(97)00146-1 10.1002/0470093633 10.1016/j.sna.2006.05.026 10.1016/j.mee.2011.02.075 10.1063/1.4991880 10.1149/1.2086278 10.1109/84.585788 10.1007/BF02410522 10.1016/j.stam.2007.08.008 10.1177/2516598420930988 10.1063/1.4828874 10.1016/j.infrared.2020.103241 10.1016/j.tsf.2018.11.016 10.1016/S0924-4247(03)00271-1 10.1109/PROC.1982.12331 10.1088/2053-1591/3/10/106202 10.1049/mnl.2017.0610 10.1016/j.matchemphys.2018.08.013 10.1016/S0040-6090(03)00462-0 10.1061/(ASCE)0893-1321(2003)16:2(46) 10.1016/j.surfcoat.2015.08.059 10.1016/j.mseb.2016.01.011 10.1007/978-3-319-03002-9_121 10.1088/0960-1317/2/2/004 10.1109/JSEN.2009.2014412 10.1063/1.4902448 10.1016/j.mejo.2006.07.006 10.1016/j.sna.2008.03.023 10.1016/j.matlet.2016.01.144 10.1016/j.actamat.2014.05.060 10.1063/1.98460 10.1186/s40486-017-0057-7 10.1109/16.2534 10.1186/2213-9621-1-1 10.1016/0040-6090(90)90277-K 10.1049/mnl.2014.0214 10.3182/20060912-3-DE-2911.00007 10.1016/j.vibspec.2011.08.003 10.1016/j.tsf.2008.07.014 10.1116/1.4824697 10.1063/1.3660280 10.1088/1361-6439/aa7588 10.1007/s00542-018-4195-5 10.1149/1.2086277 10.1126/science.1962192 10.1016/j.matchemphys.2018.05.073 10.1557/JMR.1992.1564 10.1149/2.0161709jss 10.1063/1.4759123 10.1016/j.matchemphys.2012.07.026 10.1007/s00542-018-3899-x 10.1016/j.mseb.2015.03.013 10.1016/j.tsf.2015.01.014 10.1063/5.0020085 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-021-05405-8 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 6741 |
ExternalDocumentID | 10_1007_s10854_021_05405_8 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-bb887517524f911d4c99aa64913cf0f6d2f741c9a6fcb529c82e312d15b9cc4e3 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:19:32 EDT 2025 Tue Jul 01 02:35:00 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Fri Feb 21 02:49:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-bb887517524f911d4c99aa64913cf0f6d2f741c9a6fcb529c82e312d15b9cc4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7627-8437 |
PQID | 2505088891 |
PQPubID | 326250 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2505088891 crossref_citationtrail_10_1007_s10854_021_05405_8 crossref_primary_10_1007_s10854_021_05405_8 springer_journals_10_1007_s10854_021_05405_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DuttaSSaxenaGJindalKPalRGuptaVChatterjeeRComparison of residual stress in deep boron diffused silicon (100), (110) and (111) wafersMat. Lett.201310044461:CAS:528:DC%2BC3sXnsFSrtr4%3D10.1016/j.matlet.2013.02.110 TopalliKErdilECiviOADemirSKocSAkinTTunable dual-frequency RF MEMS rectangular slot ring antennaSensors and Actuators A20091563733801:CAS:528:DC%2BD1MXhsVyqt7%2FI10.1016/j.sna.2009.10.005 HallJDAppersonNECrozierBTXuCRichardsRFBahrDFRichardsCDA facility for characterizing the dynamic mechanical behavior of thin membranes for microelectromechanical systemsRev. Sci. Instrum.20027320671:CAS:528:DC%2BD38Xjt1Wktr4%3D10.1063/1.1470227 AllenMGMehreganyMHoweRTSenturiaSDMicrofabricated structures for the in-situ measurement of residual stress, Young’s Modulus and ultimate strain of thin-filmsAppl. Phys. Lett.1987512412431:CAS:528:DyaL2sXltVensL0%3D10.1063/1.98460 BaumertEKPierronONFatigue degradation properties of LIGA Ni films using kilohertz micro-resonatorsIEEE MEMS20132216251:CAS:528:DC%2BC3sXkt1Gltrs%3D10.1109/JMEMS.2012.2212422 RomigADDuggerMTMcWhorterPJMaterials issues in microelectromechanical devices: science, engineering, manufacturability and reliabilityActa Mater.200351583758661:CAS:528:DC%2BD3sXotlyhs70%3D10.1016/S1359-6454(03)00440-3 Fischer-CrippsACNanoindentation, SpringerCh.200233658 De LosSantosHJIntroduction to Micro-electro-mechanical (MEMS) Microwave Systems2004Boston, LondonArtech House BhattacharyaSDattaABergJMGangopadhyaySStudies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strengthIEEE MEMS2005145905971:CAS:528:DC%2BD2MXmt1Cmt7s%3D10.1109/JMEMS.2005.844746 ChoyKLChemical vapour deposition of coatingsProg. Mat. Sci.200348571701:CAS:528:DC%2BD38XoslChsL4%3D10.1016/S0079-6425(01)00009-3 OliverWCPharrGMAn improved technique for determining hardness and elstic modulus using load and displacement sensing indentation experimentsJ. Mat. Res.1992715641:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564 ChopraKLThin Film Phenomena1969New YorkMcGrow-Hill OlssonRHWojciechowskiKEBakerMSTuckMRFlemingJGPost-CMOS-compatible aluminum nitride resonant MEMS accelerometersIEEE MEMS2009186716781:CAS:528:DC%2BD1MXotFOgurw%3D10.1109/JMEMS.2009.2020374 SharmaSKumarADuttaSKaurDOptically triggered multilevel resistive switching characteristics of Cu/MoS2/AlN/ITO bilayer memory structureAppl. Phys. Lett.20201171921011:CAS:528:DC%2BB3cXitlWnurbP10.1063/5.0020085 HuangSZhangXGradient residual stress induced elastic deformation of multilayer MEMS structuresSens. Act. A20071341771851:CAS:528:DC%2BD2sXitlyjs7s%3D10.1016/j.sna.2006.05.026 PandeyADuttaSPrakashRDalalSRamanRKapoorAKKaurDGrowth and evolution of residual stress of AlN films on silicon (100) waferMat. Sci. Semicond. Proc.20165216231:CAS:528:DC%2BC28Xosl2lsrY%3D10.1016/j.mssp.2016.05.004 MallickDPaulKMaityTRoySMagnetic performances and switching behavior of Co-rich CoPtP micro-magnets for applications in magnetic MEMSJ. Appl. Phys.201912502390210.1063/1.50638601:CAS:528:DC%2BC1MXlsFOktQ%3D%3D R.P. Feynman, “There’s Plenty of Room at the Bottom”, presented at the American Physical Society Meeting in Pasadena, CA, December 26, 1959. ElwenspoekMJansenHSilicon Micromachining1998UKCambridge University Press KoutsokerasLEAbadiasGIntrinsic stress in ZrN thin films: evaluation of grain boundary contribution from in situ wafer curvature and ex-situ x-ray diffraction techniquesJ. Appl. Phys.201211109350910.1063/1.47105301:CAS:528:DC%2BC38XmsFClu78%3D CholletFLiuHA (not so) short introduction to MEMS2018FranceFemto ST Institute SeidelHCsepregiLHeubergerABaumgartelHAnisotropic Etching of Crystalline Silicon in Alkaline Solutions: I Orientation Dependence and Behavior of Passivation LayersJ. Electrochem. Soc.199013736121:CAS:528:DyaK3MXhsFGgsQ%3D%3D10.1149/1.2086277 DuttaSPandeyAThakurOPPalRChatterjeeREstimation of residual stress in Pb(Zr0.52Ti0.48)O3/ BiFeO3 multilayers deposited on siliconJ. Appl. Phys.201311417410310.1063/1.48288741:CAS:528:DC%2BC3sXhslWmsLvL WithersPJBhadeshiaHKDHResidual stress Part 1 – Measurement techniquesMater. Sci. Technol.2001173553651:CAS:528:DC%2BD3MXjtF2it78%3D10.1179/026708301101509980 OkadaKPlasma-enhanced chemical vapor deposition of nano-crystalline diamondSci. Tech. Adv. Mat.200786246341:CAS:528:DC%2BD2sXhsVWjs7bJ10.1016/j.stam.2007.08.008 MaZSZhouYCLongSGLuCResidual stress effect on hardness and yield strength of Ni thin filmSurf. Coat. Technol.20122073053091:CAS:528:DC%2BC38XhtVOls7%2FK10.1016/j.surfcoat.2012.07.002 KovacsGTMalufNIPetersenKEBulk micromachining of siliconIEEE Proc199886153613511:CAS:528:DyaK1cXltF2ku78%3D10.1109/5.704259 LindroosVTilliMLehtoAMotookaTHandbook of Silicon Based MEMS Materials and Technologies2010Science Pub, NorwichWilliam Andrew Appl SharmaUKumarMSharmaRSahaTJainKKDuttaSSharmaEKFabrication process induced changes in scattering parameters of meander type RFMEMS shunt switchMicrosys. Technol.201723556155701:CAS:528:DC%2BC2sXjtlenu70%3D10.1007/s00542-017-3314-z BhanRKShavetaMdImranRPalSDYadavIDevelopment of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applicationsSensors Transducers201620318 CalahorraYShtempluckOKotchetkovVYaishYEYoung’s modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beamsNano Lett.201515294529501:CAS:528:DC%2BC2MXlslGrsrg%3D10.1021/nl5047939 SharmaUDuttaSStudy of scattering parameters of RFMEMS shunt switch with high-K dielectricsJ. Mat. Sci.: Mater. Electron.201425554655511:CAS:528:DC%2BC2cXhs1yls7fM QuiñonezBVallejoWGordilloGStructural, optical and electrochemical properties of TiO2 thin films grown by APCVD methodAppl. Surf. Sci.20102564065407110.1016/j.apsusc.2010.02.0201:CAS:528:DC%2BC3cXksV2mtbw%3D XuLHJiangDDZhengXJEffect of grain orientation in x-ray diffraction pattern on residual stress in polycrystalline ferroelectric thin filmJ. Appl. Phys.201211204352110.1063/1.47480521:CAS:528:DC%2BC38Xht1yntL7O OsterbergPMSenturiaSDM-Test: A test chip for MEMS material property measurement using electrostatically actuated test structuresIEEE MEMS1997610711810.1109/84.585788 BhattacharyaSGaoYKorampallyVOthmanMTGrantSAGangopadhyayKGangopadhyaySMechanics of plasma exposed spin-on-glass (SOG) and polydimethyl siloxane (PDMS) surfaces and their impact on bond strengthAppl. Surf. Sci.2007253422042251:CAS:528:DC%2BD2sXhsFKnt7o%3D10.1016/j.apsusc.2006.09.028 HughesDSKellyJLSecond order elastic deformation in solidsPhys. Rev.1953921145114910.1103/PhysRev.92.1145 OhringMMaterials Science of Thin Films-Deposition & Structure2006CambridgeAcademy Press BaptistaASilvaFPorteiroJMíguezJPintoGSputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend DemandsCoatings2018840210.3390/coatings81104021:CAS:528:DC%2BC1MXotF2htg%3D%3D Van DrieenhuizenBPComparison of techniques for measuring both compressive and tensile stress in thin filmsSens. Act. A199337–3875616510.1016/0924-4247(93)80128-4 GhodssiRLinPMEMS Materials and Processes Handbook2011New YorkSpringer10.1007/978-0-387-47318-5 IliescuCAvramMChenBPopescuADumitrescuVPoenarDPSterianAVrtacnikDAmonSSterianPResidual stress in thin films PECVD depositions: a reviewJ. Optoelectron. Adv. Mater.2011133873941:CAS:528:DC%2BC3MXht1Srt7rP Narasimha RaoAVSwarnalathaVAshokASinghSSPalPEffect of NH2OH on etching characteristics of Si 100 in KOH solutionECS J. Solid State Sci. Technol.20176P60910.1149/2.0161709jss1:CAS:528:DC%2BC2sXhsFOjt7zM SwarnalathaVNarasimha RaoAVAshokASinghSSPalPModified TMAH based etchant for improved etching characteristics on Si 100 waferJ. Micromech. Microengg.20172708500310.1088/1361-6439/aa75881:CAS:528:DC%2BC1cXntVSmu7k%3D DuttaSGuptaNYadavIPalRJainKKBhattacharyaDKChatterjeeRFabrication of comb structure with vertical sidewalls in Si (110) substrate by wet etching in boiling KOH solutionMicrosyst. Technol.201925309130961:CAS:528:DC%2BC1cXitVKlur7J10.1007/s00542-018-4195-5 ReicheltKJiangXThe preparation of thin films by physical vapour deposition methodsThin Solid Films19901919112610.1016/0040-6090(90)90277-K ZhangTFuLControllable Chemical Vapor Deposition Growth of Two-Dimensional HeterostructuresChem.201846716891:CAS:528:DC%2BC1cXns1WisL8%3D10.1016/j.chempr.2017.12.006 El-KarehBFundamentals of Semiconductor Processing Technology1995AmsterdamKluwer Academy Pub10.1007/978-1-4615-2209-6 DuttaSPandeyAJindalKThakurOPGuptaVChatterjeeROptical properties of Pb(Zr0.52Ti0.48)O3/ BiFeO3 multilayers with ZnO buffer layerAppl. Phys. A201512053581:CAS:528:DC%2BC2MXnt1ensL4%3D10.1007/s00339-015-9168-2 DuttaSPandeyASaxenaGRamanRDhaulAPalRChatterjeeRCharacterization deep boron diffused p++ silicon layer, J. Mat. Sci.: MaterElectron.201223156915741:CAS:528:DC%2BC38XhtVSltL7L GuisbiersGWauteletMBuchaillotLComparison of intrinsic residual stress models in metallic thin filmsScripta Mater.2009604194221:CAS:528:DC%2BD1MXmvVCktw%3D%3D10.1016/j.scriptamat.2008.11.014 PalPGosalvezMASatoKSilicon micromachining based on surfactant-added tetra-methyl ammonium hydroxide: etching mechanism and advanced applicationJap. J. Appl. Phys.20104905670210.1143/JJAP.49.0567021:CAS:528:DC%2BC3cXns1eqs74%3D ChenXYanJKarlssonAMA. M.,On the determination of residual stress and mechanical properties by indentationMat. Sci. Engg. A200641613914910.1016/j.msea.2005.10.0341:CAS:528:DC%2BD28XksFel DuttaSPalRChatterjeeREffect of residual stress in Pb (Zr0.52Ti0.48)O3–BiFeO3 multilayer cantilever structureAdv. Mat. Lett.2018931691741:CAS:528:DC%2BC1MXhtlOisbrP10.5185/amlett.2018.6973 MulvaneySPKeatingCDRaman SpectroscopyAnal. Chem.200072121451581:CAS:528:DC%2BD3cXjtVWhs7Y%3D10.1021/a10000155 PlummerJDDealMGriffinPBSilicon VLSI Technology–Fundamentals2000Practice and ModellingPrentice Hall Publication, New Jersey SharmaABansalDKaurMKumarPKumarDSharmaRRangraKJFabrication and Analysis of MEMS Test Structures for Residual Stress MeasurementSensors Transducers2011131221301:CAS:528:DC%2BC38XhtVyitL4%3D PawarSSinghKSharmaSPa E Boyd (5405_CR13) 2011; 172 A Gupta (5405_CR75) 2016; 207 R Dasgupta (5405_CR59) 2014; 29 A Baptista (5405_CR112) 2018; 8 RK Bhan (5405_CR104) 2016; 203 S Dutta (5405_CR78) 2015; 120 U Helmersson (5405_CR113) 2006; 513 N Gupta (5405_CR37) 2019; 25 M Elwenspoek (5405_CR85) 1998 D Niarchos (5405_CR69) 2003; 109 A Iliescu (5405_CR46) 2011; 13 E Mastropaolo (5405_CR156) 2013; 31 A Moridi (5405_CR169) 2013; 50 HZ Yu (5405_CR172) 2014; 77 CS Pan (5405_CR166) 1999; 8 S Dutta (5405_CR79) 2013 S Bhattacharya (5405_CR83) 2007; 253 A Ihring (5405_CR96) 2011; 88 SP Mulvaney (5405_CR140) 2000; 72 U Sharma (5405_CR47) 2017; 23 B Tang (5405_CR89) 2014; 9 S Bhattacharya (5405_CR82) 2005; 14 C Iliescu (5405_CR173) 2011; 13 S Kunj (5405_CR154) 2016; 16 WC Tang (5405_CR3) 1989; 21–23 MJ Madau (5405_CR4) 2002 S Dutta (5405_CR38) 2013; 100 H Guckel (5405_CR162) 1988; 35 KS Chen (5405_CR158) 2006 H Seidel (5405_CR15) 1990; 137 PJ Withers (5405_CR29) 2001; 17 WD Nix (5405_CR123) 1999; 14 S Chen (5405_CR160) 2002; 11 V Swarnalatha (5405_CR91) 2017; 27 5405_CR168 KS Chen (5405_CR135) 2003; 434 S Dutta (5405_CR17) 2019; 25 S Dutta (5405_CR34) 2016; 1724 LE Koutsokeras (5405_CR125) 2012; 111 I Kanno (5405_CR62) 2018; 57 NT Nguyen (5405_CR18) 2002 F Schneider (5405_CR84) 2009; 151 KD Wise (5405_CR103) 1991; 254 VK Varadan (5405_CR8) 2006 V Pogue (5405_CR153) 2017; 121 GN Sharma (5405_CR74) 2016; 3 P Pal (5405_CR86) 2017 T Beechem (5405_CR141) 2007; 78 S Chen (5405_CR24) 2002; 11 LH Xu (5405_CR131) 2012; 112 S Dutta (5405_CR76) 2012; 112 IW Boyd (5405_CR114) 1996; 22 ZS Ma (5405_CR55) 2012; 207 M Schneider (5405_CR122) 2014; 105 S Dutta (5405_CR26) 2011; 17 S Guan (5405_CR71) 2005; 292 KL Chopra (5405_CR171) 1969 B El-Kareh (5405_CR10) 1995 M Saukoski (5405_CR94) 2008; 147 S Dutta (5405_CR36) 2016; 170 S Dutta (5405_CR21) 2018; 24 CR Bowen (5405_CR64) 2014; 7 A Kumar (5405_CR73) 2020; 53 A Pandey (5405_CR121) 2018; 47 A Somà (5405_CR45) 2015; 25 S Yoon (5405_CR99) 2015; 142 P Muralt (5405_CR61) 2008; 91 P Sievilä (5405_CR31) 2013; 114 S Dutta (5405_CR53) 2014; 25 AK Basu (5405_CR80) 2020 H Peng (5405_CR60) 2018; 712 S Park (5405_CR102) 2006; 39 X Chen (5405_CR147) 2006; 416 G Guisbiers (5405_CR49) 2009; 60 RS Das (5405_CR142) 2011; 57 L Zhu (5405_CR148) 2012; 136 G Abadias (5405_CR157) 2018; 36 KE Petersen (5405_CR5) 1982; 70 RM Pocratsky (5405_CR25) 2014 H Windischmann (5405_CR170) 1992; 17 M Kagiasa (5405_CR110) 2019; 92 AC Fischer-Cripps (5405_CR152) 2002; 3 JS Mitchell (5405_CR167) 2003; 16 VT Srikar (5405_CR44) 2003; 12 S Dutta (5405_CR77) 2015; 198 A Pandey (5405_CR130) 2018; 666 DP Adams (5405_CR58) 2015; 576 RH Olsson (5405_CR67) 2009; 18 HG Yu (5405_CR66) 2003; 107 V Swarnalatha (5405_CR90) 2018; 13 AV Narasimha Rao (5405_CR92) 2017; 6 TL Chou (5405_CR128) 2011; 519 M Bao (5405_CR126) 2005 N Gupta (5405_CR106) 2019; 30 DS Hughes (5405_CR145) 1953; 92 H Guckel (5405_CR163) 1992; 2 K Ohno (5405_CR56) 2012; 111 CV Raman (5405_CR139) 1928; 121 F Chollet (5405_CR7) 2018 AL Gesing (5405_CR68) 2018; 8 TM Kaub (5405_CR174) 2017; 122 T Zhang (5405_CR116) 2018; 4 A Pandey (5405_CR132) 2016; 52 S Sharma (5405_CR155) 2020; 117 WC Oliver (5405_CR151) 1992; 7 CC Hindrichsen (5405_CR65) 2009; 9 N Jackson (5405_CR70) 2016; 25 W Liu (5405_CR136) 2011; 109 AD Romig (5405_CR12) 2003; 51 JD Plummer (5405_CR11) 2000 Y Fu (5405_CR52) 2004; 112 MF Ashby (5405_CR43) 1999 MG Allen (5405_CR32) 1987; 51 K Topalli (5405_CR98) 2009; 156 MdS Mahmood (5405_CR100) 2017; 263 S Dutta (5405_CR120) 2013; 114 J Sharma (5405_CR42) 2009; 19 5405_CR1 KL Choy (5405_CR115) 2003; 48 BP Van Drieenhuizen (5405_CR165) 1993; 37–38 S Kumar (5405_CR23) 2013; 1 RB Thompson (5405_CR146) 1984 U Sharma (5405_CR54) 2014; 25 V Lindroos (5405_CR9) 2010 K Subhadeep (5405_CR50) 2006; 37 LT Romankiw (5405_CR107) 1997; 42 S Nakashima (5405_CR144) 1984; 56 A Sharma (5405_CR164) 2011; 13 S Piscanec (5405_CR143) 2003; 68 VT Srikar (5405_CR161) 2003; 43 RC Tung (5405_CR41) 2013; 23 M Guerain (5405_CR57) 2011; 110 S Dutta (5405_CR133) 2012; 23 GN Sharma (5405_CR149) 2018; 216 R Ghodssi (5405_CR22) 2011 X Zheng (5405_CR119) 2004; 52 RT Howe (5405_CR2) 1988; 6 H Seidel (5405_CR16) 1990; 137 HJ De LosSantos (5405_CR6) 2004 Z Liu (5405_CR97) 2020; 105 S Pawar (5405_CR129) 2018; 219 T Beechem (5405_CR19) 2007; 78 JD Hall (5405_CR20) 2002; 73 B Quiñonez (5405_CR117) 2010; 256 KS Chen (5405_CR40) 2002; 12 Y Parmar (5405_CR51) 2020; 26 G Guisbiers (5405_CR124) 2007; 55 S Priya (5405_CR63) 2017; 4 I Yadav (5405_CR81) 2015; 158 M Ohring (5405_CR14) 2006 EK Baumert (5405_CR108) 2013; 22 TY Zhang (5405_CR150) 1999; 47 GT Kovacs (5405_CR87) 1998; 86 AV Narasimha Rao (5405_CR93) 2017; 5 PM Osterberg (5405_CR159) 1997; 6 A Garraud (5405_CR95) 2011; 170 S Ghosh (5405_CR109) 2019; 669 R Anzalone (5405_CR39) 2011; 20 A Chakraborty (5405_CR48) 2014; 45 K Reichelt (5405_CR111) 1990; 191 Y Calahorra (5405_CR28) 2015; 15 GCAM Janssen (5405_CR127) 2009; 517 HJ Wang (5405_CR138) 2015; 584 S Huang (5405_CR33) 2007; 134 PJ Withers (5405_CR30) 2001; 17 S Dutta (5405_CR134) 2016; 164 AN Wang (5405_CR137) 2015; 280 S Dutta (5405_CR105) 2014; 25 S Dutta (5405_CR35) 2018; 9 K Okada (5405_CR118) 2007; 8 S Dutta (5405_CR27) 2014; 25 D Mallick (5405_CR72) 2019; 125 P Pal (5405_CR88) 2010; 49 Y Ma (5405_CR101) 2019; 2 |
References_xml | – reference: PandeyADuttaSPrakashRRamanRKapoorAKKaurDGrowth and comparison of residual stress of AlN films on silicon (100), (110) and (111) substratesJ. Electron. Mater.201847140514131:CAS:528:DC%2BC2sXhvVCjtrzJ10.1007/s11664-017-5924-8 – reference: DuttaSImranMdPalRJainKKChatterjeeREffect of residual stress on RF MEMS switchMicrosyst. Technol.2011171739174510.1007/s00542-011-1360-5 – reference: PawarSSinghKSharmaSPandeyADuttaSKaurDGrowth assessment and scrutinize dielectric reliability of c-axis oriented insulating AlN thin films in MIM structures for microelectronics applicationsMat. Chem. Phys.201821974811:CAS:528:DC%2BC1cXhsV2ks7zI10.1016/j.matchemphys.2018.08.013 – reference: BaptistaASilvaFPorteiroJMíguezJPintoGSputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend DemandsCoatings2018840210.3390/coatings81104021:CAS:528:DC%2BC1MXotF2htg%3D%3D – reference: BhanRKShavetaMdImranRPalSDYadavIDevelopment of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applicationsSensors Transducers201620318 – reference: PlummerJDDealMGriffinPBSilicon VLSI Technology–Fundamentals2000Practice and ModellingPrentice Hall Publication, New Jersey – reference: JacksonNPedrosaFJBolleroAMathewsonAOlszewskiOZIntegration of Thick-Film Permanent Magnets for MEMS ApplicationsIEEE MEMS2016257167241:CAS:528:DC%2BC1cXkslKgsrY%3D10.1109/JMEMS.2016.2574958 – reference: SubhadeepKBagoliniAMargesinBZenMStress and resistivity analysis of electrodeposited gold films for MEMS applicationMicroelectronics2006371329133410.1016/j.mejo.2006.07.0061:CAS:528:DC%2BD28XhtF2jsLfO – reference: CholletFLiuHA (not so) short introduction to MEMS2018FranceFemto ST Institute – reference: DuttaSPalRChatterjeeREffect of residual stress in Pb (Zr0.52Ti0.48)O3–BiFeO3 multilayer cantilever structureAdv. Mat. Lett.2018931691741:CAS:528:DC%2BC1MXhtlOisbrP10.5185/amlett.2018.6973 – reference: RamanCVKrishnanKSA New Type of Secondary RadiationNature19281215015021:CAS:528:DyaB1cXhs1Ciug%3D%3D10.1038/121501c0 – reference: PiscanecSCantoroMFerrariACZapienJALifshitzYLeeSTHofmannSRobertsonJRaman spectroscopy of silicon nanowiresPhys. Rev. B20036824131210.1103/PhysRevB.68.2413121:CAS:528:DC%2BD2cXmvVagtQ%3D%3D – reference: LindroosVTilliMLehtoAMotookaTHandbook of Silicon Based MEMS Materials and Technologies2010Science Pub, NorwichWilliam Andrew Appl – reference: ChoyKLChemical vapour deposition of coatingsProg. Mat. Sci.200348571701:CAS:528:DC%2BD38XoslChsL4%3D10.1016/S0079-6425(01)00009-3 – reference: KovacsGTMalufNIPetersenKEBulk micromachining of siliconIEEE Proc199886153613511:CAS:528:DyaK1cXltF2ku78%3D10.1109/5.704259 – reference: SchneiderFDraheimJKambergerRWallrabeUProcess and material properties of polydimethylsiloxane (PDMS) for Optical MEMSSens. Act. A200915195991:CAS:528:DC%2BD1MXkslGiur4%3D10.1016/j.sna.2009.01.026 – reference: DuttaSChatterjeeRElectrical properties of Pb(Zr0.52Ti0.48)O3–BiFeO3 multilayers on non-platinized silicon substrateMat. Sci. Engg. B201519874791:CAS:528:DC%2BC2MXntFGrt7c%3D10.1016/j.mseb.2015.03.013 – reference: PandeyADuttaSPrakashRDalalSRamanRKapoorAKKaurDGrowth and evolution of residual stress of AlN films on silicon (100) waferMat. Sci. Semicond. Proc.20165216231:CAS:528:DC%2BC28Xosl2lsrY%3D10.1016/j.mssp.2016.05.004 – reference: SeidelHCsepregiLHeubergerABaumgartelHAnisotropic Etching of Crystalline Silicon in Alkaline Solutions: I Orientation Dependence and Behavior of Passivation LayersJ. Electrochem. Soc.199013736121:CAS:528:DyaK3MXhsFGgsQ%3D%3D10.1149/1.2086277 – reference: DuttaSPandeyAYadavIThakurOPLaishramRPalRChatterjeeRImproved electrical properties of PbZrTiO3/BiFeO3 multilayers with ZnO buffer layerJ. Appl. Phys.201211208410110.1063/1.47591231:CAS:528:DC%2BC38XhsFamu7nP – reference: MaYLiuWLiuCResearch on the process of fabricating a multi-layer metal micro-structure based on UV-LIGA overlay technologyNanotech. Precision Engg.20192838810.1016/j.npe.2019.07.002 – reference: XuLHJiangDDZhengXJEffect of grain orientation in x-ray diffraction pattern on residual stress in polycrystalline ferroelectric thin filmJ. Appl. Phys.201211204352110.1063/1.47480521:CAS:528:DC%2BC38Xht1yntL7O – reference: WangHJDengHAChiangSYSuYFChiangKNDevelopment of a process modelling for residual stress assessment of multilayer thin film structureThin Solid Films20155841461531:CAS:528:DC%2BC2MXht1Ohtr8%3D10.1016/j.tsf.2015.01.014 – reference: SeidelHCsepregiLHeubergerABaumgartelHAnisotropic Etching of Crystalline Silicon in Alkaline Solutions: II Influence of DopantsJ. Electrochem. Soc.199013736261:CAS:528:DyaK3MXhsFGgtg%3D%3D10.1149/1.2086278 – reference: BeechemTGrahamSKearneySPPhinneyLMSerranoJRSimultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopyRev. Sci. Instrum.20077806130110.1063/1.27389461:CAS:528:DC%2BD2sXnslGjsr0%3D – reference: IhringAKesslerEDillnerUHaenschkeFSchinkelUMeyerHGSurface-micromachined thermoelectric infrared focal-plane array with high detectivity for room temperature operationMicroelectron. Eng.201188226722711:CAS:528:DC%2BC3MXos1ajtLY%3D10.1016/j.mee.2011.02.075 – reference: ZhengXLiJZhouYX-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser depositionActa Mater.200452331333221:CAS:528:DC%2BD2cXksFGqtrY%3D10.1016/j.actamat.2004.02.047 – reference: HoweRTSurface micromachining for microsensors and microactuatorsJ. Vacuum Sci. Tech. B19886180910.1116/1.584158 – reference: ChenSBaughnTVYaoZJGoldsmithCLA new in situ residual stress measurement method for a MEMS thin fixed-fixed beam structureIEEE MEMS20021130931610.1109/JMEMS.2002.800936 – reference: NakashimaSInoueYMitsuishiAThe evaluation of the crystallinity of laser annealed polycrystalline silicon-on-silicon structures by Raman-microprobe polarization measurementsJ. Appl. Phys.19845629891:CAS:528:DyaL2MXhsVentg%3D%3D10.1063/1.333771 – reference: FuYDuHHuangWZhangSHuMTiNi-based thin films in MEMS applications: a reviewSens. Act. A20041123954081:CAS:528:DC%2BD2cXjs1Kjsr4%3D10.1016/j.sna.2004.02.019 – reference: SchneiderMBittnerASchmidUThickness dependence of Young's modulus and residual stress of sputtered aluminium nitride thin filmsAppl. Phys. Lett.201410520191210.1063/1.49024481:CAS:528:DC%2BC2cXhvFKksb3P – reference: DuttaSPandeyAJindalKThakurOPGuptaVChatterjeeROptical properties of Pb(Zr0.52Ti0.48)O3/ BiFeO3 multilayers with ZnO buffer layerAppl. Phys. A201512053581:CAS:528:DC%2BC2MXnt1ensL4%3D10.1007/s00339-015-9168-2 – reference: GuisbiersGWauteletMBuchaillotLComparison of intrinsic residual stress models in metallic thin filmsScripta Mater.2009604194221:CAS:528:DC%2BD1MXmvVCktw%3D%3D10.1016/j.scriptamat.2008.11.014 – reference: NiarchosDMagnetic MEMS: key issues and some applicationsSens. Act. A20031091661731:CAS:528:DC%2BD3sXptlyns78%3D10.1016/j.sna.2003.09.010 – reference: ChenKSLeondesCTTechniques in Residual Stress Measurement for MEMS and Their ApplicationsMEMS/NEMS2006Boston, MASpringer1252132810.1007/0-387-25786-1_33 – reference: ZhangTFuLControllable Chemical Vapor Deposition Growth of Two-Dimensional HeterostructuresChem.201846716891:CAS:528:DC%2BC1cXns1WisL8%3D10.1016/j.chempr.2017.12.006 – reference: PandeyAKaushikJDuttaSKapoorAKKaurDElectrical and structural characteristics of sputtered c-oriented AlN thin films on Si (100) and Si (110) substratesThin Solid Films20186661431491:CAS:528:DC%2BC1cXhvVSqs7vE10.1016/j.tsf.2018.09.016 – reference: ZhuLXuBWangHWangCEffect of residual stress on the nanoindentation response of (100) copper single crystalMat. Chem. Phys.20121365615651:CAS:528:DC%2BC38XhtFKiurfI10.1016/j.matchemphys.2012.07.026 – reference: SharmaUDuttaSStudy of scattering parameters of RFMEMS shunt switch with high-K dielectricsJ. Mat. Sci.: Mater. Electron.201425554655511:CAS:528:DC%2BC2cXhs1yls7fM – reference: RomankiwLTA path: from electroplating through lithographic masks in electronics to LIGA in MEMSElectrochim. Acta1997422985300510.1016/S0013-4686(97)00146-1 – reference: DuttaSPandeyASinghMPalREstimation of boron diffusion induced residual stress in silicon by wafer curvature techniqueMat. Lett.20161643163191:CAS:528:DC%2BC2MXhvVaqsLjO10.1016/j.matlet.2015.11.005 – reference: DasRSAgrawalYKRaman spectroscopy: Recent advancements, techniques and applicationsVib. Spectrosc.2011571631761:CAS:528:DC%2BC3MXhtlais7jM10.1016/j.vibspec.2011.08.003 – reference: SharmaABansalDKaurMKumarPKumarDSharmaRRangraKJFabrication and Analysis of MEMS Test Structures for Residual Stress MeasurementSensors Transducers2011131221301:CAS:528:DC%2BC38XhtVyitL4%3D – reference: LiuZLiangZTangWXuXDesign and fabrication of low-deformation micro-bolometers for THz detectorsInfrared Phys. Tech.20201051032411:CAS:528:DC%2BB3cXjvFWitb4%3D10.1016/j.infrared.2020.103241 – reference: DuttaSKumarMKumarSImranMdYadavIKumarAKumarPPalRLapping assisted dissolved wafer process of silicon for MEMS structuresJ. Mater Sci: Mater. Electron.201425198419901:CAS:528:DC%2BC2cXjsVWltr4%3D – reference: LiuWLiuHOuGPanWResidual stress-dependent electric conductivity of sputtered co-doped CeO2 thin-film electrolyteJ. Appl. Phys.201110908432110.1063/1.35736691:CAS:528:DC%2BC3MXkvFGgtLo%3D – reference: DuttaSImranMPandeyASahaTYadavIPalRJainKKChatterjeeREstimation of bending of micromachined gold cantilever due to residual stressJ. Mat. Sci.: Mater Electron.2014253823891:CAS:528:DC%2BC3sXhvVGgtr%2FK – reference: WithersPJBhadeshiaHKDHResidual stress Part 2 – Nature and originsMater. Sci. Technol.2001173663751:CAS:528:DC%2BD3MXjtF2it7w%3D10.1179/026708301101510087 – reference: PriyaSSongHCZhouYVargheseRChopraAKimSGKannoIWuLHaDSRyuJPolcawichRGA review on piezoelectric energy harvesting: materials, methods, and circuitsEnergy Harvesting and Systems2017433910.1515/ehs-2016-0028 – reference: PengHWangGWangSChenJMac-LarenIWenYKey criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloysMat. Sci. Engg. A201871237491:CAS:528:DC%2BC2sXhvVynsr7M10.1016/j.msea.2017.11.071 – reference: KannoIPiezoelectric MEMS: Ferroelectric thin films for MEMS applicationsJpn. J. Appl. Phys.20185704010110.7567/JJAP.57.040101 – reference: AllenMGMehreganyMHoweRTSenturiaSDMicrofabricated structures for the in-situ measurement of residual stress, Young’s Modulus and ultimate strain of thin-filmsAppl. Phys. Lett.1987512412431:CAS:528:DyaL2sXltVensL0%3D10.1063/1.98460 – reference: BaoMAnalysis and Design Principles of MEMS Devices2005AmsterdamElsevier publication – reference: GuanSNelsonBJElectrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuatorsJ. Mag. Mag. Mat.200529249581:CAS:528:DC%2BD2MXjtF2lsrY%3D10.1016/j.jmmm.2004.10.094 – reference: ParkSKooKKimGSChoiHMJungMJBangSMSongSYChoDDA MEMS-based micro-biopsy actuator for capsular endoscope using LIGA processIFAC Proceedings Volumes20063916202410.3182/20060912-3-DE-2911.00007 – reference: DuttaSPandeyASinghMPalRDeep boron diffusion induced surface damage in siliconMater. Lett.201617076791:CAS:528:DC%2BC28Xit1amtbo%3D10.1016/j.matlet.2016.01.144 – reference: HelmerssonULattemannMBohlmarkJEhiasarianAPGudmundssonJTIonized physical vapor deposition (IPVD): A review of technology and applicationsThin Solid Films20065131241:CAS:528:DC%2BD28Xmt1Wru7o%3D10.1016/j.tsf.2006.03.033 – reference: SharmaUKumarMSharmaRSahaTJainKKDuttaSSharmaEKFabrication process induced changes in scattering parameters of meander type RFMEMS shunt switchMicrosys. Technol.201723556155701:CAS:528:DC%2BC2sXjtlenu70%3D10.1007/s00542-017-3314-z – reference: KumarAPawarSPandeyADuttaSKaurDAnisotropic magnetoelectric functionality of ferromagnetic shape memory alloy heterostructures for MEMS magnetic sensorsJ. Phys. D: Appl. Phys.2020533953021:CAS:528:DC%2BB3cXhslyqurjO10.1088/1361-6463/ab94e4 – reference: PalPGosalvezMASatoKSilicon micromachining based on surfactant-added tetra-methyl ammonium hydroxide: etching mechanism and advanced applicationJap. J. Appl. Phys.20104905670210.1143/JJAP.49.0567021:CAS:528:DC%2BC3cXns1eqs74%3D – reference: WindischmannHIntrinsic stress in sputter-deposited thin filmsCrit. Rev. Solid State Mater. Sci.19921754759610.1080/10408439208244586 – reference: GhodssiRLinPMEMS Materials and Processes Handbook2011New YorkSpringer10.1007/978-0-387-47318-5 – reference: OsterbergPMSenturiaSDM-Test: A test chip for MEMS material property measurement using electrostatically actuated test structuresIEEE MEMS1997610711810.1109/84.585788 – reference: GuckelHBurnsDRutiglianoCLovellEChoiBDiagnostic microstructures for the measurement of intrinsic strain in thin filmsJ. Micromech. Microeng.199228610.1088/0960-1317/2/2/004 – reference: AshbyMFMaterials Selection in Mechanical Design1999U.K.Oxford Butterworth-Heinemann – reference: MahmoodMdSButlerZCButlerDPDesign, fabrication and characterization of flexible MEMS accelerometer using multi-Level UV-LIGASens. Act. A20172635305411:CAS:528:DC%2BC2sXht1CksbrK10.1016/j.sna.2017.07.007 – reference: KunjSSreenivasKResidual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substratesCurr. Appl. Phys.20161674875610.1016/j.cap.2016.04.008 – reference: MitchellJSZormanCAKicherTRoySMehreganyMExamination of Bulge Test for Determining Residual Stress, Young’s Modulus, and Poisson’s Ratio of 3C-SiC Thin FilmsJ. Aerosp. Eng.200316465410.1061/(ASCE)0893-1321(2003)16:2(46) – reference: S.P. Timoshenko, D.H. Young, W. Weaver, (1990) Vibration problems in Engineering, 5th Ed., Ch. 5. 360–510. – reference: ElwenspoekMJansenHSilicon Micromachining1998UKCambridge University Press – reference: GuerainMGoudeauPPoussardJLGStress release phenomena in chromia scales formed on NiCr-30 alloys: Influence of metallurgical parametersJ. Appl. Phys.201111009351610.1063/1.36602801:CAS:528:DC%2BC3MXhsVGmu77I – reference: KagiasaMWangaZGuzenkoVADavidCStampanoniMJefimovKFabrication of Au gratings by seedless electroplating for X-ray grating interferometryMat. Sci. Semicond. Process.201992737910.1016/j.mssp.2018.04.0151:CAS:528:DC%2BC1cXot1Oqsro%3D – reference: NixWDClemensBMCrystallite coalescence: A mechanism for intrinsic tensile stresses in thin filmsJ. Mater. Res.199914346734731:CAS:528:DyaK1MXlsVyksbg%3D10.1557/JMR.1999.0468 – reference: ThompsonRBSmithJFLeeSSNon-destructive evaluation, application to materials processing1984Metals Park, OHAmerican Society for Metals137145 – reference: ChenKSZhangXLinSYIntrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cyclingThin Solid Films20034341902021:CAS:528:DC%2BD3sXkt1ynt7w%3D10.1016/S0040-6090(03)00462-0 – reference: IliescuCAvramMChenBPopescuADumitrescuVPoenarDPSterianAVrtacnikDAmonSSterianPResidual stress in thin films PECVD depositions: a reviewJ. Optoelectron. Adv. Mater.2011133873941:CAS:528:DC%2BC3MXht1Srt7rP – reference: GuckelHBurnsDWVisserCCGTilmansHACDerooDFine-grained polysilicon films with build-in tensile strainIEEE Trans. Electron. Dev.1988358008011:CAS:528:DyaL1cXkvFOltLg%3D10.1109/16.2534 – reference: YadavIDuttaSKatiyarASinghMSharmaRJainKKEvolution of residual stress in benzo-cyclo-butene films with temperatureMat. Lett.20151583433461:CAS:528:DC%2BC2MXhsVCjt7jP10.1016/j.matlet.2015.06.032 – reference: BhattacharyaSGaoYKorampallyVOthmanMTGrantSAGangopadhyayKGangopadhyaySMechanics of plasma exposed spin-on-glass (SOG) and polydimethyl siloxane (PDMS) surfaces and their impact on bond strengthAppl. Surf. Sci.2007253422042251:CAS:528:DC%2BD2sXhsFKnt7o%3D10.1016/j.apsusc.2006.09.028 – reference: Van DrieenhuizenBPComparison of techniques for measuring both compressive and tensile stress in thin filmsSens. Act. A199337–3875616510.1016/0924-4247(93)80128-4 – reference: AdamsDPReactive multilayers fabricated by vapor deposition: A critical reviewThin Solid Films2015576981281:CAS:528:DC%2BC2cXhsleksLfP10.1016/j.tsf.2014.09.042 – reference: WithersPJBhadeshiaHKDHResidual stress Part 1 – Measurement techniquesMater. Sci. Technol.2001173553651:CAS:528:DC%2BD3MXjtF2it78%3D10.1179/026708301101509980 – reference: GuptaNPandeyAVanjariSRKDuttaSInfluence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structureMicrosyst. Technol.201925395939671:CAS:528:DC%2BC1MXns1CltLw%3D10.1007/s00542-019-04334-1 – reference: SharmaGNDuttaSPandeyASinghSKChatterjeeRInfluence of nickel doping on structural, morphological and mechanical properties of BiFeO3 thin filmsMat. Chem. Phys.201821647501:CAS:528:DC%2BC1cXhtVOisbzE10.1016/j.matchemphys.2018.05.073 – reference: MadauMJFundamental of Micro-fabrication–The Science of Miniaturization2002New YorkCRC Press10.1201/9781482274004 – reference: SomàASaleemMMModeling and experimental verification of thermally induced residual stress in RF-MEMSJ. Micromech. Microeng.20152505500710.1088/0960-1317/25/5/0550071:CAS:528:DC%2BC2MXosFShsLk%3D – reference: DuttaSSaxenaPPanchalAPalRJainKKBhattacharyaDKEffect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structureMicrosyst Tech20182448551:CAS:528:DC%2BC1cXnsFSlsrg%3D10.1007/s00542-018-3899-x – reference: MaZSZhouYCLongSGLuCResidual stress effect on hardness and yield strength of Ni thin filmSurf. Coat. Technol.20122073053091:CAS:528:DC%2BC38XhtVOls7%2FK10.1016/j.surfcoat.2012.07.002 – reference: PalPSatoKSilicon Wet Bulk Micromachining for MEMS2017SingaporePan Stanford Publishing10.1201/9781315364926 – reference: El-KarehBFundamentals of Semiconductor Processing Technology1995AmsterdamKluwer Academy Pub10.1007/978-1-4615-2209-6 – reference: ChenXYanJKarlssonAMA. M.,On the determination of residual stress and mechanical properties by indentationMat. Sci. Engg. A200641613914910.1016/j.msea.2005.10.0341:CAS:528:DC%2BD28XksFel – reference: AbadiasGChasonEKeckesJSebastianiMThompsonGBBarthelEDollGLMurrayCEStoesselCHMartinuLReview Article: Stress in thin films and coatings: Current status, challenges, and prospectsJ. Vac. Sci. Technol. A20183602080110.1116/1.50117901:CAS:528:DC%2BC1cXjvVCkuro%3D – reference: SharmaSKumarADuttaSKaurDOptically triggered multilevel resistive switching characteristics of Cu/MoS2/AlN/ITO bilayer memory structureAppl. Phys. Lett.20201171921011:CAS:528:DC%2BB3cXitlWnurbP10.1063/5.0020085 – reference: HallJDAppersonNECrozierBTXuCRichardsRFBahrDFRichardsCDA facility for characterizing the dynamic mechanical behavior of thin membranes for microelectromechanical systemsRev. Sci. Instrum.20027320671:CAS:528:DC%2BD38Xjt1Wktr4%3D10.1063/1.1470227 – reference: SharmaJDasGuptaAEffect of stress on the pull-in voltage of membranes for MEMS applicationJ. Micromech. Microeng.20091911502110.1088/0960-1317/19/11/1150211:CAS:528:DC%2BD1MXhtl2qt7zM – reference: BeechemTGrahamSKearneySPPhinneyLMSerranoJRSimultaneous mapping of temperature and stress in micro-devices using micro-Raman spectroscopyRev. Sci. Instrum.20077806130110.1063/1.27389461:CAS:528:DC%2BD2sXnslGjsr0%3D – reference: AnzaloneRD’ArrigoGCamardaMLockeCSaddowSELa ViaFAdvanced residual stress analysis and FEM simulation on hetero-epitaxial 3C–SiC for MEMS applicationIEEE MEMS2011207457521:CAS:528:DC%2BC3MXptVSqu7g%3D10.1109/JMEMS.2011.2127451 – reference: YuHZThompsonCVEffects of oblique-angle deposition on intrinsic stress evolution during polycrystalline film growthActa Mater.2014772842941:CAS:528:DC%2BC2cXhtFymtrvM10.1016/j.actamat.2014.05.060 – reference: HuangSZhangXGradient residual stress induced elastic deformation of multilayer MEMS structuresSens. Act. A20071341771851:CAS:528:DC%2BD2sXitlyjs7s%3D10.1016/j.sna.2006.05.026 – reference: GarraudAGianiACombettePCharlotBRichardMA dual axis CMOS micromachined convective thermal accelerometerSensors and Actuators A201117044501:CAS:528:DC%2BC3MXhtV2gsr3I10.1016/j.sna.2011.05.029 – reference: YoonSParkURhimJYangSSTactical grade MEMS vibrating ring gyroscope with high shock reliabilityMicroelectron. Eng.201514222291:CAS:528:DC%2BC2MXht1GlsbvL10.1016/j.mee.2015.07.004 – reference: JanssenGCAMAbdallabMMF.van-Keulenc, B.R. Pujada, B. van-Venrooye,Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafersThin Solid Films2009517185818671:CAS:528:DC%2BD1MXktlaksQ%3D%3D10.1016/j.tsf.2008.07.014 – reference: ChopraKLThin Film Phenomena1969New YorkMcGrow-Hill – reference: Narasimha RaoAVSwarnalathaVPalPEtching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMSMicro Nano Systems Lett.201752310.1186/s40486-017-0057-7 – reference: DuttaSShavetaMdImranRPalRKBDiffusion induced residual stress in comb-type micro-accelerometer structureJ Mater Sci: Mater Electron201425382838321:CAS:528:DC%2BC2cXhtVWlsrfP – reference: GuptaNDuttaSPanchalAYadavIKumarSParmarYVanjariSRKJainKKBhattacharyaDKDesign and fabrication of SOI technology-based MEMS differential capacitive accelerometer structure, J. Mat. Sci.: MaterElectron.20193015705157141:CAS:528:DC%2BC1MXhsFWltL3P – reference: GuptaADuttaSTandonRPMagnetic and magneto-optical characteristics of spin coated Co0.6Zn0.4Fe1.7Mn0.3O4 thin films on Pt (111) coated Si substrateMat. Sci. Engg. B2016207161:CAS:528:DC%2BC28XitFClsbo%3D10.1016/j.mseb.2016.01.011 – reference: BoydIWThin film growth by pulsed laser depositionCer. Int.1996224294341:CAS:528:DyaK28Xls1CksbY%3D10.1016/0272-8842(95)00086-0 – reference: ChakrabortyAGuptaBSarkarBKDesign, fabrication and characterization of miniature RFMEMS switched capacitor-based phase shifterMicroelectronics2014451093110210.1016/j.mejo.2014.05.009 – reference: SaukoskiMAaltonenLSaloTHalonenKAIInterface and control electronics for a bulk micromachined capacitive gyroscopeSensors and Actuators A20081471831931:CAS:528:DC%2BD1cXptVSqsr0%3D10.1016/j.sna.2008.03.023 – reference: DuttaSYadavIKumarPPalRFabrication of High-density silicon microprobe arrayPhysics of Semiconductor Devices201310.1007/978-3-319-03002-9_121 – reference: BasuAKBasakABhattacharyaSGeometry and thickness dependant anomalous mechanical behavior of fabricated SU-8 thin film micro-cantileversJ. Micromanufacturing202010.1177/2516598420930988 – reference: TopalliKErdilECiviOADemirSKocSAkinTTunable dual-frequency RF MEMS rectangular slot ring antennaSensors and Actuators A20091563733801:CAS:528:DC%2BD1MXhsVyqt7%2FI10.1016/j.sna.2009.10.005 – reference: SrikarVTMarkSSpearing Materials Selection in Micromechanical Design: An Application of the Ashby ApproachIEEE MEMS2003123101:CAS:528:DC%2BD3sXisF2gtbo%3D10.1109/JMEMS.2002.807466 – reference: MallickDPaulKMaityTRoySMagnetic performances and switching behavior of Co-rich CoPtP micro-magnets for applications in magnetic MEMSJ. Appl. Phys.201912502390210.1063/1.50638601:CAS:528:DC%2BC1MXlsFOktQ%3D%3D – reference: BhattacharyaSDattaABergJMGangopadhyaySStudies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strengthIEEE MEMS2005145905971:CAS:528:DC%2BD2MXmt1Cmt7s%3D10.1109/JMEMS.2005.844746 – reference: GhoshSElectroless copper deposition: A critical reviewThin Solid Films20196696416581:CAS:528:DC%2BC1cXisVOiurfN10.1016/j.tsf.2018.11.016 – reference: OliverWCPharrGMAn improved technique for determining hardness and elstic modulus using load and displacement sensing indentation experimentsJ. Mat. Res.1992715641:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564 – reference: MastropaoloELatifRGradyECheungRControl of stress in tantalum thin films for the fabrication of 3D MEMS structuresJ. Vac. Sci. Tech. B20133106FD0210.1116/1.48246971:CAS:528:DC%2BC3sXhvVGht77O – reference: BoydENockVWeilandDLiXUttamchandaniDDirect comparison of stylus and resonant methods for determining Young’s modulus of single and multilayer MEMS cantileversSensors and Actuators A20111724404461:CAS:528:DC%2BC3MXhsFKrsLbO10.1016/j.sna.2011.09.022 – reference: KaubTMThompsonGBTi segregation in regulating the stress and microstructure evolution in W-Ti nanocrystalline filmsJ. Appl. Phys.201712208530110.1063/1.49918801:CAS:528:DC%2BC2sXhtlOktLnP – reference: KumarSAlamTHaqueAThermo-mechanical coupling and size effects in micro and nano resonatorsMicro. Nano Sys. Lett.201311910.1186/2213-9621-1-1 – reference: BaumertEKPierronONFatigue degradation properties of LIGA Ni films using kilohertz micro-resonatorsIEEE MEMS20132216251:CAS:528:DC%2BC3sXkt1Gltrs%3D10.1109/JMEMS.2012.2212422 – reference: SharmaGNDuttaSSinghSKChatterjeeREffect of Ni substitution on the optical properties of BiFeO3 thin filmsMat. Res. Exp.2016310620210.1088/2053-1591/3/10/1062021:CAS:528:DC%2BC2sXhs1ejsrc%3D – reference: TangBSatoKZhangDChengYFast Si(100) etching with a smooth surface near the boiling temperature in surfactant-modified tetramethylammonium hydroxide solutionsMicro Nano Lett.2014958258410.1049/mnl.2014.0214 – reference: QuiñonezBVallejoWGordilloGStructural, optical and electrochemical properties of TiO2 thin films grown by APCVD methodAppl. Surf. Sci.20102564065407110.1016/j.apsusc.2010.02.0201:CAS:528:DC%2BC3cXksV2mtbw%3D – reference: DuttaSSaxenaGJindalKPalRGuptaVChatterjeeRComparison of residual stress in deep boron diffused silicon (100), (110) and (111) wafersMat. Lett.201310044461:CAS:528:DC%2BC3sXnsFSrtr4%3D10.1016/j.matlet.2013.02.110 – reference: MuraltPRecent Progress in Materials Issues for Piezoelectric MEMSJ. Am. Ceram. Soc.200891138513961:CAS:528:DC%2BD1cXmtFeis7s%3D10.1111/j.1551-2916.2008.02421.x – reference: OhnoKUchiyamaHKozukaHUnderstanding of the development of in-plane residual stress in sol-gel-derived metal oxide thin filmsJ. Appl. Phys.201211101490110.1063/1.36733301:CAS:528:DC%2BC38XhtFOisg%3D%3D – reference: OkadaKPlasma-enhanced chemical vapor deposition of nano-crystalline diamondSci. Tech. Adv. Mat.200786246341:CAS:528:DC%2BD2sXhsVWjs7bJ10.1016/j.stam.2007.08.008 – reference: DuttaSPandeyAThakurOPPalRChatterjeeREstimation of residual stress in Pb(Zr0.52Ti0.48)O3/ BiFeO3 multilayers deposited on siliconJ. Appl. Phys.201311417410310.1063/1.48288741:CAS:528:DC%2BC3sXhslWmsLvL – reference: MulvaneySPKeatingCDRaman SpectroscopyAnal. Chem.200072121451581:CAS:528:DC%2BD3cXjtVWhs7Y%3D10.1021/a10000155 – reference: KoutsokerasLEAbadiasGIntrinsic stress in ZrN thin films: evaluation of grain boundary contribution from in situ wafer curvature and ex-situ x-ray diffraction techniquesJ. Appl. Phys.201211109350910.1063/1.47105301:CAS:528:DC%2BC38XmsFClu78%3D – reference: TungRCGargAKovacsAPeroulisDRamanAEstimating residual stress, curvature and boundary compliance of doubly clamped MEMS from their vibration responseJ. Micromech. Microeng.20132304500910.1088/0960-1317/23/4/045009 – reference: De LosSantosHJIntroduction to Micro-electro-mechanical (MEMS) Microwave Systems2004Boston, LondonArtech House – reference: OhringMMaterials Science of Thin Films-Deposition & Structure2006CambridgeAcademy Press – reference: PocratskyRMde BoerMPDetermination of thin film coefficient of thermal expansion and residual strain from free-standing fixed–fixed beams2014VacJ Sci. Tech10.1116/1.4896761 – reference: Narasimha RaoAVSwarnalathaVAshokASinghSSPalPEffect of NH2OH on etching characteristics of Si 100 in KOH solutionECS J. Solid State Sci. Technol.20176P60910.1149/2.0161709jss1:CAS:528:DC%2BC2sXhsFOjt7zM – reference: DuttaSPanchalAKumarMPalRBhanRKEffect of residual stress on modal patterns of MEMS vibratory gyroscopeAIP Conf. Proc.20161724102010310.1063/1.4945223 – reference: BowenCRKimHAWeaverPMDunnSPiezoelectric and ferroelectric materials and structures for energy harvesting applicationsEnergy Environ. Sci.2014725441:CAS:528:DC%2BC3sXhvFKhtrzM10.1039/C3EE42454E – reference: WiseKDNajafiKMicrofabrication techniques for integrated sensors and microsystemsScience19912545036133513421:STN:280:DyaK38%2Fntl2jsg%3D%3D10.1126/science.1962192 – reference: GuisbiersGVan OverscheldeOWauteletMNanoparticulate origin of intrinsic residual stress in thin filmsActa Mater.200755354135461:CAS:528:DC%2BD2sXkvFansbo%3D10.1016/j.actamat.2007.02.003 – reference: ZhangTYChenLQFuRMeasurements of residual stress in thin films deposited o silicon wafers by indentation fractureActa. Mater.199947386938781:CAS:528:DyaK1MXmvVaqs7Y%3D10.1016/S1359-6454(99)00248-7 – reference: OlssonRHWojciechowskiKEBakerMSTuckMRFlemingJGPost-CMOS-compatible aluminum nitride resonant MEMS accelerometersIEEE MEMS2009186716781:CAS:528:DC%2BD1MXotFOgurw%3D10.1109/JMEMS.2009.2020374 – reference: TangWCNuyenTCHHoweRTLaterally driven polysilicon resonant microstructuresSens. Act. A198921–23253210.1016/0250-6874(89)87098-2 – reference: SwarnalathaVNarasimha RaoAVPalPEffective improvement in the etching characteristics of Si {110} in Low concentration TMAH solutionMicro Nano Lett.201813108510891:CAS:528:DC%2BC1MXhs1OlurrM10.1049/mnl.2017.0610 – reference: WangANHuangJHHsiaoHWYuGPChenHResidual stress measurement on TiN thin films by combing nano–indentation and average X-ray strain (AXS) methodSurf. Coat. Technol.201528043491:CAS:528:DC%2BC2MXhsVyjt77M10.1016/j.surfcoat.2015.08.059 – reference: HughesDSKellyJLSecond order elastic deformation in solidsPhys. Rev.1953921145114910.1103/PhysRev.92.1145 – reference: HindrichsenCCAlmindNSBrodersenSHHansenOThomsenEVAnalytical model of a PZT thick-film triaxial accelerometer for optimum designIEEE Sensors2009941942910.1109/JSEN.2009.2014412 – reference: PanCSHsuWA Microstructure for in situ Determination of Residual StrainIEEE MEMS1999820020710.1109/84.767116 – reference: DuttaSGuptaNYadavIPalRJainKKBhattacharyaDKChatterjeeRFabrication of comb structure with vertical sidewalls in Si (110) substrate by wet etching in boiling KOH solutionMicrosyst. Technol.201925309130961:CAS:528:DC%2BC1cXitVKlur7J10.1007/s00542-018-4195-5 – reference: ReicheltKJiangXThe preparation of thin films by physical vapour deposition methodsThin Solid Films19901919112610.1016/0040-6090(90)90277-K – reference: RomigADDuggerMTMcWhorterPJMaterials issues in microelectromechanical devices: science, engineering, manufacturability and reliabilityActa Mater.200351583758661:CAS:528:DC%2BD3sXotlyhs70%3D10.1016/S1359-6454(03)00440-3 – reference: ChenKSOuKSModification of curvature-based thin-film residual stress measurement for MEMS applicationsJ. Micromech. Microengg.20021291792410.1088/0960-1317/12/6/324 – reference: SrikarVTSpearingSMA critical review of microscale mechanical testing methods used in the design of microelectromechanical systemsExp. Mech.20034323824710.1007/BF02410522 – reference: NguyenNTWereleySTFundametals and Applications of Microfluidics2002MassachusettsArtech House – reference: ChenSBaughnTVYaoZJGoldsmithCLA new in situ residual stress measurement method for a MEMS thin fixed–fixed beam structureIEEE MEMS20021130931610.1109/JMEMS.2002.800936 – reference: ChouTLYangSYChiangKNOverview and applicability of residual stress estimation of film-substrate structureThin Solid Films201151978831:CAS:528:DC%2BC3MXhtV2hu7jN10.1016/j.tsf.2011.04.220 – reference: SwarnalathaVNarasimha RaoAVAshokASinghSSPalPModified TMAH based etchant for improved etching characteristics on Si 100 waferJ. Micromech. Microengg.20172708500310.1088/1361-6439/aa75881:CAS:528:DC%2BC1cXntVSmu7k%3D – reference: SieviläPMäkinenJTilliMTittonenIDopant-induced stress in micro-fabricated silicon devicesJ. Appl. Phys.201311404351210.1063/1.48165681:CAS:528:DC%2BC3sXhtFOnt77E – reference: PetersenKESilicon as a mechanical materialProc. IEEE1982704204571:CAS:528:DyaL3sXptl2jsQ%3D%3D10.1109/PROC.1982.12331 – reference: YuHGZouLDengKWolfRTadigadapaSMcKinstrySTLead-zirconate-titanate MEMS accelerometer using interdigitated electrodesSens Act A200310726351:CAS:528:DC%2BD3sXmvVOqurs%3D10.1016/S0924-4247(03)00271-1 – reference: R.P. Feynman, “There’s Plenty of Room at the Bottom”, presented at the American Physical Society Meeting in Pasadena, CA, December 26, 1959. – reference: DuttaSPandeyASaxenaGRamanRDhaulAPalRChatterjeeRCharacterization deep boron diffused p++ silicon layer, J. Mat. Sci.: MaterElectron.201223156915741:CAS:528:DC%2BC38XhtVSltL7L – reference: IliescuAAvramMChenBPopescuADumitrescuVPoenarDPSterianAVrtacnikDAmonSSterianPResidual stress in thin films PECVD depositions: a reviewJ. Optoelectronics & Adv. Mater.2011133873941:CAS:528:DC%2BC3MXht1Srt7rP – reference: PogueVMelkoteSNRounsavilleBDanylukSThe effect of residual stress on photoluminescence in multi-crystalline silicon wafersJ. Appl. Phys.201712108570110.1063/1.49763281:CAS:528:DC%2BC2sXjtlylsrY%3D – reference: ParmarYGuptaNGondVLambaSSVanjariSRKDuttaSJainKKBhattacharyaDKCharacterization of SOI technology-based MEMS differential capacitive accelerometer and its estimation of resolution by near vertical tilt angle measurementsMicrosys. Technol.2020267017061:CAS:528:DC%2BC1MXhsVGhtLjI10.1007/s00542-019-04561-6 – reference: VaradanVKVinoyKJGopalakrishnanSSmart Material Systems and MEMS: Design and Development Methodologies2006New JerseyWiley10.1002/0470093633 – reference: CalahorraYShtempluckOKotchetkovVYaishYEYoung’s modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beamsNano Lett.201515294529501:CAS:528:DC%2BC2MXlslGrsrg%3D10.1021/nl5047939 – reference: GesingALAlvesFDPPaulSCordioliJAOn the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devicesScientific Reports2018839201:STN:280:DC%2BC1Mrnt1Krtw%3D%3D10.1038/s41598-018-22219-7 – reference: Fischer-CrippsACNanoindentation, SpringerCh.200233658 – reference: MoridiARuanHZhangLCLiuMResidual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocationsInt. J. Solids Struc.2013503562356910.1016/j.ijsolstr.2013.06.022 – reference: DasguptaRA look into Cu-based shape memory alloys: Present scenario and future prospectsJ. Mater. Res.201429168116981:CAS:528:DC%2BC2cXhsFarsrzN10.1557/jmr.2014.189 – volume: 6 start-page: 1809 year: 1988 ident: 5405_CR2 publication-title: J. Vacuum Sci. Tech. B doi: 10.1116/1.584158 – volume: 51 start-page: 5837 year: 2003 ident: 5405_CR12 publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00440-3 – volume: 16 start-page: 748 year: 2016 ident: 5405_CR154 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2016.04.008 – volume: 20 start-page: 745 year: 2011 ident: 5405_CR39 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2011.2127451 – volume-title: Fundametals and Applications of Microfluidics year: 2002 ident: 5405_CR18 – volume: 47 start-page: 3869 year: 1999 ident: 5405_CR150 publication-title: Acta. Mater. doi: 10.1016/S1359-6454(99)00248-7 – volume: 170 start-page: 44 year: 2011 ident: 5405_CR95 publication-title: Sensors and Actuators A doi: 10.1016/j.sna.2011.05.029 – volume: 52 start-page: 16 year: 2016 ident: 5405_CR132 publication-title: Mat. Sci. Semicond. Proc. doi: 10.1016/j.mssp.2016.05.004 – volume: 513 start-page: 1 year: 2006 ident: 5405_CR113 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.03.033 – volume: 55 start-page: 3541 year: 2007 ident: 5405_CR124 publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.02.003 – volume: 25 start-page: 5546 year: 2014 ident: 5405_CR54 publication-title: J. Mat. Sci.: Mater. Electron. – volume: 712 start-page: 37 year: 2018 ident: 5405_CR60 publication-title: Mat. Sci. Engg. A doi: 10.1016/j.msea.2017.11.071 – volume: 120 start-page: 53 year: 2015 ident: 5405_CR78 publication-title: Appl. Phys. A doi: 10.1007/s00339-015-9168-2 – volume-title: Materials Science of Thin Films-Deposition & Structure year: 2006 ident: 5405_CR14 – volume: 9 start-page: 169 issue: 3 year: 2018 ident: 5405_CR35 publication-title: Adv. Mat. Lett. doi: 10.5185/amlett.2018.6973 – volume: 172 start-page: 440 year: 2011 ident: 5405_CR13 publication-title: Sensors and Actuators A doi: 10.1016/j.sna.2011.09.022 – volume-title: MEMS Materials and Processes Handbook year: 2011 ident: 5405_CR22 doi: 10.1007/978-0-387-47318-5 – volume: 50 start-page: 3562 year: 2013 ident: 5405_CR169 publication-title: Int. J. Solids Struc. doi: 10.1016/j.ijsolstr.2013.06.022 – volume: 25 start-page: 716 year: 2016 ident: 5405_CR70 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2016.2574958 – volume: 52 start-page: 3313 year: 2004 ident: 5405_CR119 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.02.047 – volume: 11 start-page: 309 year: 2002 ident: 5405_CR24 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2002.800936 – volume: 25 start-page: 3828 year: 2014 ident: 5405_CR27 publication-title: J Mater Sci: Mater Electron – volume: 11 start-page: 309 year: 2002 ident: 5405_CR160 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2002.800936 – volume: 60 start-page: 419 year: 2009 ident: 5405_CR49 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2008.11.014 – volume: 91 start-page: 1385 year: 2008 ident: 5405_CR61 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02421.x – volume: 111 start-page: 093509 year: 2012 ident: 5405_CR125 publication-title: J. Appl. Phys. doi: 10.1063/1.4710530 – volume: 92 start-page: 73 year: 2019 ident: 5405_CR110 publication-title: Mat. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.04.015 – volume: 68 start-page: 241312 year: 2003 ident: 5405_CR143 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.241312 – volume: 3 start-page: 36 year: 2002 ident: 5405_CR152 publication-title: Ch. – volume-title: Determination of thin film coefficient of thermal expansion and residual strain from free-standing fixed–fixed beams year: 2014 ident: 5405_CR25 doi: 10.1116/1.4896761 – volume: 666 start-page: 143 year: 2018 ident: 5405_CR130 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.09.016 – volume: 100 start-page: 44 year: 2013 ident: 5405_CR38 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2013.02.110 – volume: 111 start-page: 014901 year: 2012 ident: 5405_CR56 publication-title: J. Appl. Phys. doi: 10.1063/1.3673330 – volume: 12 start-page: 3 year: 2003 ident: 5405_CR44 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2002.807466 – volume: 25 start-page: 3959 year: 2019 ident: 5405_CR37 publication-title: Microsyst. Technol. doi: 10.1007/s00542-019-04334-1 – volume: 203 start-page: 1 year: 2016 ident: 5405_CR104 publication-title: Sensors Transducers – volume-title: Introduction to Micro-electro-mechanical (MEMS) Microwave Systems year: 2004 ident: 5405_CR6 – volume: 142 start-page: 22 year: 2015 ident: 5405_CR99 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.07.004 – volume: 57 start-page: 040101 year: 2018 ident: 5405_CR62 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.040101 – volume: 17 start-page: 366 year: 2001 ident: 5405_CR30 publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101510087 – volume: 156 start-page: 373 year: 2009 ident: 5405_CR98 publication-title: Sensors and Actuators A doi: 10.1016/j.sna.2009.10.005 – volume: 47 start-page: 1405 year: 2018 ident: 5405_CR121 publication-title: J. Electron. Mater. doi: 10.1007/s11664-017-5924-8 – volume-title: Handbook of Silicon Based MEMS Materials and Technologies year: 2010 ident: 5405_CR9 – volume: 23 start-page: 1569 year: 2012 ident: 5405_CR133 publication-title: Electron. – volume: 416 start-page: 139 year: 2006 ident: 5405_CR147 publication-title: Mat. Sci. Engg. A doi: 10.1016/j.msea.2005.10.034 – volume-title: Thin Film Phenomena year: 1969 ident: 5405_CR171 – volume: 29 start-page: 1681 year: 2014 ident: 5405_CR59 publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.189 – start-page: 1252 volume-title: MEMS/NEMS year: 2006 ident: 5405_CR158 doi: 10.1007/0-387-25786-1_33 – volume: 12 start-page: 917 year: 2002 ident: 5405_CR40 publication-title: J. Micromech. Microengg. doi: 10.1088/0960-1317/12/6/324 – volume-title: Analysis and Design Principles of MEMS Devices year: 2005 ident: 5405_CR126 – volume: 45 start-page: 1093 year: 2014 ident: 5405_CR48 publication-title: Microelectronics doi: 10.1016/j.mejo.2014.05.009 – volume: 576 start-page: 98 year: 2015 ident: 5405_CR58 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.09.042 – volume: 22 start-page: 16 year: 2013 ident: 5405_CR108 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2012.2212422 – volume: 48 start-page: 57 year: 2003 ident: 5405_CR115 publication-title: Prog. Mat. Sci. doi: 10.1016/S0079-6425(01)00009-3 – volume: 17 start-page: 547 year: 1992 ident: 5405_CR170 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408439208244586 – volume: 19 start-page: 115021 year: 2009 ident: 5405_CR42 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/11/115021 – volume: 207 start-page: 305 year: 2012 ident: 5405_CR55 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.07.002 – volume: 8 start-page: 3920 year: 2018 ident: 5405_CR68 publication-title: Scientific Reports doi: 10.1038/s41598-018-22219-7 – volume: 15 start-page: 2945 year: 2015 ident: 5405_CR28 publication-title: Nano Lett. doi: 10.1021/nl5047939 – volume: 114 start-page: 043512 year: 2013 ident: 5405_CR31 publication-title: J. Appl. Phys. doi: 10.1063/1.4816568 – volume: 164 start-page: 316 year: 2016 ident: 5405_CR134 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2015.11.005 – volume: 53 start-page: 395302 year: 2020 ident: 5405_CR73 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab94e4 – volume: 263 start-page: 530 year: 2017 ident: 5405_CR100 publication-title: Sens. Act. A doi: 10.1016/j.sna.2017.07.007 – volume: 256 start-page: 4065 year: 2010 ident: 5405_CR117 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.02.020 – volume: 7 start-page: 25 year: 2014 ident: 5405_CR64 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42454E – volume: 18 start-page: 671 year: 2009 ident: 5405_CR67 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2009.2020374 – volume: 121 start-page: 501 year: 1928 ident: 5405_CR139 publication-title: Nature doi: 10.1038/121501c0 – volume: 23 start-page: 045009 year: 2013 ident: 5405_CR41 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/23/4/045009 – volume-title: Materials Selection in Mechanical Design year: 1999 ident: 5405_CR43 – volume-title: Fundamentals of Semiconductor Processing Technology year: 1995 ident: 5405_CR10 doi: 10.1007/978-1-4615-2209-6 – volume: 1724 start-page: 020103 issue: 1 year: 2016 ident: 5405_CR34 publication-title: AIP Conf. Proc. doi: 10.1063/1.4945223 – volume: 8 start-page: 402 year: 2018 ident: 5405_CR112 publication-title: Coatings doi: 10.3390/coatings8110402 – volume: 56 start-page: 2989 year: 1984 ident: 5405_CR144 publication-title: J. Appl. Phys. doi: 10.1063/1.333771 – volume-title: Fundamental of Micro-fabrication–The Science of Miniaturization year: 2002 ident: 5405_CR4 – volume-title: Silicon Wet Bulk Micromachining for MEMS year: 2017 ident: 5405_CR86 doi: 10.1201/9781315364926 – volume: 2 start-page: 83 year: 2019 ident: 5405_CR101 publication-title: Nanotech. Precision Engg. doi: 10.1016/j.npe.2019.07.002 – volume: 72 start-page: 145 issue: 12 year: 2000 ident: 5405_CR140 publication-title: Anal. Chem. doi: 10.1021/a10000155 – volume: 26 start-page: 701 year: 2020 ident: 5405_CR51 publication-title: Microsys. Technol. doi: 10.1007/s00542-019-04561-6 – volume: 17 start-page: 1739 year: 2011 ident: 5405_CR26 publication-title: Microsyst. Technol. doi: 10.1007/s00542-011-1360-5 – volume: 73 start-page: 2067 year: 2002 ident: 5405_CR20 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1470227 – volume: 112 start-page: 043521 year: 2012 ident: 5405_CR131 publication-title: J. Appl. Phys. doi: 10.1063/1.4748052 – volume: 37–38 start-page: 756 year: 1993 ident: 5405_CR165 publication-title: Sens. Act. A doi: 10.1016/0924-4247(93)80128-4 – volume: 13 start-page: 387 year: 2011 ident: 5405_CR173 publication-title: J. Optoelectron. Adv. Mater. – volume: 30 start-page: 15705 year: 2019 ident: 5405_CR106 publication-title: Electron. – volume: 86 start-page: 1536 year: 1998 ident: 5405_CR87 publication-title: IEEE Proc doi: 10.1109/5.704259 – volume: 49 start-page: 056702 year: 2010 ident: 5405_CR88 publication-title: Jap. J. Appl. Phys. doi: 10.1143/JJAP.49.056702 – volume: 158 start-page: 343 year: 2015 ident: 5405_CR81 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2015.06.032 – volume: 8 start-page: 200 year: 1999 ident: 5405_CR166 publication-title: IEEE MEMS doi: 10.1109/84.767116 – volume: 519 start-page: 7883 year: 2011 ident: 5405_CR128 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.04.220 – volume: 36 start-page: 020801 year: 2018 ident: 5405_CR157 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5011790 – volume: 253 start-page: 4220 year: 2007 ident: 5405_CR83 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.09.028 – volume: 92 start-page: 1145 year: 1953 ident: 5405_CR145 publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1145 – volume: 109 start-page: 166 year: 2003 ident: 5405_CR69 publication-title: Sens. Act. A doi: 10.1016/j.sna.2003.09.010 – volume: 25 start-page: 055007 year: 2015 ident: 5405_CR45 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/5/055007 – volume: 109 start-page: 084321 year: 2011 ident: 5405_CR136 publication-title: J. Appl. Phys. doi: 10.1063/1.3573669 – volume: 23 start-page: 5561 year: 2017 ident: 5405_CR47 publication-title: Microsys. Technol. doi: 10.1007/s00542-017-3314-z – volume: 13 start-page: 21 issue: 12 year: 2011 ident: 5405_CR164 publication-title: Sensors Transducers – volume: 151 start-page: 95 year: 2009 ident: 5405_CR84 publication-title: Sens. Act. A doi: 10.1016/j.sna.2009.01.026 – volume: 292 start-page: 49 year: 2005 ident: 5405_CR71 publication-title: J. Mag. Mag. Mat. doi: 10.1016/j.jmmm.2004.10.094 – volume: 4 start-page: 671 year: 2018 ident: 5405_CR116 publication-title: Chem. doi: 10.1016/j.chempr.2017.12.006 – volume: 14 start-page: 3467 year: 1999 ident: 5405_CR123 publication-title: J. Mater. Res. doi: 10.1557/JMR.1999.0468 – volume-title: A (not so) short introduction to MEMS year: 2018 ident: 5405_CR7 – start-page: 137 volume-title: Non-destructive evaluation, application to materials processing year: 1984 ident: 5405_CR146 – volume: 125 start-page: 023902 year: 2019 ident: 5405_CR72 publication-title: J. Appl. Phys. doi: 10.1063/1.5063860 – volume: 112 start-page: 395 year: 2004 ident: 5405_CR52 publication-title: Sens. Act. A doi: 10.1016/j.sna.2004.02.019 – volume: 14 start-page: 590 year: 2005 ident: 5405_CR82 publication-title: IEEE MEMS doi: 10.1109/JMEMS.2005.844746 – volume: 78 start-page: 061301 year: 2007 ident: 5405_CR19 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2738946 – volume: 17 start-page: 355 year: 2001 ident: 5405_CR29 publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101509980 – volume: 13 start-page: 387 year: 2011 ident: 5405_CR46 publication-title: J. Optoelectronics & Adv. Mater. – volume: 121 start-page: 085701 year: 2017 ident: 5405_CR153 publication-title: J. Appl. Phys. doi: 10.1063/1.4976328 – volume: 4 start-page: 3 year: 2017 ident: 5405_CR63 publication-title: Energy Harvesting and Systems doi: 10.1515/ehs-2016-0028 – volume: 22 start-page: 429 year: 1996 ident: 5405_CR114 publication-title: Cer. Int. doi: 10.1016/0272-8842(95)00086-0 – volume: 42 start-page: 2985 year: 1997 ident: 5405_CR107 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(97)00146-1 – volume-title: Smart Material Systems and MEMS: Design and Development Methodologies year: 2006 ident: 5405_CR8 doi: 10.1002/0470093633 – volume: 134 start-page: 177 year: 2007 ident: 5405_CR33 publication-title: Sens. Act. A doi: 10.1016/j.sna.2006.05.026 – volume: 21–23 start-page: 25 year: 1989 ident: 5405_CR3 publication-title: Sens. Act. A – volume: 88 start-page: 2267 year: 2011 ident: 5405_CR96 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2011.02.075 – volume: 122 start-page: 085301 year: 2017 ident: 5405_CR174 publication-title: J. Appl. Phys. doi: 10.1063/1.4991880 – volume: 137 start-page: 3626 year: 1990 ident: 5405_CR16 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086278 – volume: 6 start-page: 107 year: 1997 ident: 5405_CR159 publication-title: IEEE MEMS doi: 10.1109/84.585788 – volume: 43 start-page: 238 year: 2003 ident: 5405_CR161 publication-title: Exp. Mech. doi: 10.1007/BF02410522 – volume: 8 start-page: 624 year: 2007 ident: 5405_CR118 publication-title: Sci. Tech. Adv. Mat. doi: 10.1016/j.stam.2007.08.008 – year: 2020 ident: 5405_CR80 publication-title: J. Micromanufacturing doi: 10.1177/2516598420930988 – volume: 114 start-page: 174103 year: 2013 ident: 5405_CR120 publication-title: J. Appl. Phys. doi: 10.1063/1.4828874 – volume: 105 start-page: 103241 year: 2020 ident: 5405_CR97 publication-title: Infrared Phys. Tech. doi: 10.1016/j.infrared.2020.103241 – volume: 669 start-page: 641 year: 2019 ident: 5405_CR109 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.11.016 – volume: 107 start-page: 26 year: 2003 ident: 5405_CR66 publication-title: Sens Act A doi: 10.1016/S0924-4247(03)00271-1 – volume-title: Silicon Micromachining year: 1998 ident: 5405_CR85 – volume: 70 start-page: 420 year: 1982 ident: 5405_CR5 publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12331 – volume: 3 start-page: 106202 year: 2016 ident: 5405_CR74 publication-title: Mat. Res. Exp. doi: 10.1088/2053-1591/3/10/106202 – volume: 13 start-page: 1085 year: 2018 ident: 5405_CR90 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2017.0610 – volume: 219 start-page: 74 year: 2018 ident: 5405_CR129 publication-title: Mat. Chem. Phys. doi: 10.1016/j.matchemphys.2018.08.013 – volume: 434 start-page: 190 year: 2003 ident: 5405_CR135 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(03)00462-0 – volume: 16 start-page: 46 year: 2003 ident: 5405_CR167 publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)0893-1321(2003)16:2(46) – volume: 280 start-page: 43 year: 2015 ident: 5405_CR137 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.08.059 – volume: 25 start-page: 1984 year: 2014 ident: 5405_CR105 publication-title: J. Mater Sci: Mater. Electron. – volume: 207 start-page: 1 year: 2016 ident: 5405_CR75 publication-title: Mat. Sci. Engg. B doi: 10.1016/j.mseb.2016.01.011 – volume: 78 start-page: 061301 year: 2007 ident: 5405_CR141 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2738946 – volume-title: Silicon VLSI Technology–Fundamentals year: 2000 ident: 5405_CR11 – year: 2013 ident: 5405_CR79 publication-title: Physics of Semiconductor Devices doi: 10.1007/978-3-319-03002-9_121 – volume: 2 start-page: 86 year: 1992 ident: 5405_CR163 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/2/2/004 – volume: 9 start-page: 419 year: 2009 ident: 5405_CR65 publication-title: IEEE Sensors doi: 10.1109/JSEN.2009.2014412 – volume: 105 start-page: 201912 year: 2014 ident: 5405_CR122 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4902448 – volume: 37 start-page: 1329 year: 2006 ident: 5405_CR50 publication-title: Microelectronics doi: 10.1016/j.mejo.2006.07.006 – volume: 147 start-page: 183 year: 2008 ident: 5405_CR94 publication-title: Sensors and Actuators A doi: 10.1016/j.sna.2008.03.023 – volume: 170 start-page: 76 year: 2016 ident: 5405_CR36 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.144 – volume: 77 start-page: 284 year: 2014 ident: 5405_CR172 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.060 – volume: 51 start-page: 241 year: 1987 ident: 5405_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.98460 – volume: 5 start-page: 23 year: 2017 ident: 5405_CR93 publication-title: Micro Nano Systems Lett. doi: 10.1186/s40486-017-0057-7 – volume: 35 start-page: 800 year: 1988 ident: 5405_CR162 publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/16.2534 – volume: 1 start-page: 1 year: 2013 ident: 5405_CR23 publication-title: Micro. Nano Sys. Lett. doi: 10.1186/2213-9621-1-1 – volume: 191 start-page: 91 year: 1990 ident: 5405_CR111 publication-title: Thin Solid Films doi: 10.1016/0040-6090(90)90277-K – volume: 25 start-page: 382 year: 2014 ident: 5405_CR53 publication-title: J. Mat. Sci.: Mater Electron. – volume: 9 start-page: 582 year: 2014 ident: 5405_CR89 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2014.0214 – volume: 39 start-page: 20 issue: 16 year: 2006 ident: 5405_CR102 publication-title: IFAC Proceedings Volumes doi: 10.3182/20060912-3-DE-2911.00007 – volume: 57 start-page: 163 year: 2011 ident: 5405_CR142 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2011.08.003 – volume: 517 start-page: 1858 year: 2009 ident: 5405_CR127 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.07.014 – volume: 31 start-page: 06FD02 year: 2013 ident: 5405_CR156 publication-title: J. Vac. Sci. Tech. B doi: 10.1116/1.4824697 – volume: 110 start-page: 093516 year: 2011 ident: 5405_CR57 publication-title: J. Appl. Phys. doi: 10.1063/1.3660280 – ident: 5405_CR1 – volume: 27 start-page: 085003 year: 2017 ident: 5405_CR91 publication-title: J. Micromech. Microengg. doi: 10.1088/1361-6439/aa7588 – volume: 25 start-page: 3091 year: 2019 ident: 5405_CR17 publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-4195-5 – ident: 5405_CR168 – volume: 137 start-page: 3612 year: 1990 ident: 5405_CR15 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086277 – volume: 254 start-page: 1335 issue: 5036 year: 1991 ident: 5405_CR103 publication-title: Science doi: 10.1126/science.1962192 – volume: 216 start-page: 47 year: 2018 ident: 5405_CR149 publication-title: Mat. Chem. Phys. doi: 10.1016/j.matchemphys.2018.05.073 – volume: 7 start-page: 1564 year: 1992 ident: 5405_CR151 publication-title: J. Mat. Res. doi: 10.1557/JMR.1992.1564 – volume: 6 start-page: P609 year: 2017 ident: 5405_CR92 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0161709jss – volume: 112 start-page: 084101 year: 2012 ident: 5405_CR76 publication-title: J. Appl. Phys. doi: 10.1063/1.4759123 – volume: 136 start-page: 561 year: 2012 ident: 5405_CR148 publication-title: Mat. Chem. Phys. doi: 10.1016/j.matchemphys.2012.07.026 – volume: 24 start-page: 4855 year: 2018 ident: 5405_CR21 publication-title: Microsyst Tech doi: 10.1007/s00542-018-3899-x – volume: 198 start-page: 74 year: 2015 ident: 5405_CR77 publication-title: Mat. Sci. Engg. B doi: 10.1016/j.mseb.2015.03.013 – volume: 584 start-page: 146 year: 2015 ident: 5405_CR138 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.01.014 – volume: 117 start-page: 192101 year: 2020 ident: 5405_CR155 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0020085 |
SSID | ssj0006438 |
Score | 2.483373 |
SecondaryResourceType | review_article |
Snippet | Micro-electro-mechanical system (MEMS) technology has radically changed the scale, performance, and cost of a wide variety of sensors and actuators by taking... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6705 |
SubjectTerms | Actuators Characterization and Evaluation of Materials Chemistry and Materials Science Dissimilar materials Dissimilar metals Materials Science Microelectromechanical systems Optical and Electronic Materials Reliability analysis Residual stress Review Thick films Thin films |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOhB_MTplBy8uUKbNl3ibcjGFKYHN9itpPkAQTthU_99X9J2naKC1zbN4X3-0rz3ewCXmBZiGksVKCvcCDM8sGIctIFMrJSpjoTx7Prj-3Q0Te5mbFY1hS3qavf6StJH6rVmN86SwJUUeJgR8E3YYu7sjlY8pf1V_MUcy0uGPcfoTWnVKvPzHl_TUYMxv12L-mwz3IPdCiaSfqnXfdgwxQHsrJEHHsLk4d35ufkgc0vw0Oy7qkjZ-0GeCjIejB9JSQ_7hs-uye1yQco5WF3y0vwa7BJZaFKVrB_BdDiY3IyCakZCoGLOlkGeY5RgiAFoYjFu6UQJgUJORBQrG9pUU4uYQQmZWpUzKhSnJo6ojlgulEpMfAytYl6YEyAIxpTRWrOeUOjWKo9CxUOZShPLMGe9NkS1qDJVEYi7ORbPWUN97MSboXgzL96Mt-Fq9c1rSZ_x5-pOrYGscqVF5jAahkIuojZ0a600r3_f7fR_y89gm3rDcPVlHWihfsw5Ao5lfuHt6xNDIsp0 priority: 102 providerName: Springer Nature |
Title | Overview of residual stress in MEMS structures: Its origin, measurement, and control |
URI | https://link.springer.com/article/10.1007/s10854-021-05405-8 https://www.proquest.com/docview/2505088891 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RSDMeXAjVWs6WMJFzTQxksDBEwapyrNQ0KCbmgD_j5Om62AxK5pk4Mdf3YS-zPAIbqFgAZCetJw28IMD6yIg8YToREiVj7XObt-_za-HITXw2joLtwmLq1yhok5UKuRtHfkx9ZVo0Uw7p-O3z3bNcq-rroWGstQRQhmePiqnnVv7x_mWIz-lhVse5bdm1JXNuOK51gUejZFIQ9bPPbbNZXx5p8n0tzz9NZhzYWMpFPoeAOWdLYJqz-IBLfg6e7T2rz-IiND8ACdV1iRog6EvGSk3-0_koIq9gPHTsjVdEKKnlhN8lZeEzaJyBRx6evbMOh1n84vPdcvwZMBi6ZemiJiRBgP0NAghqlQco4CD7kfSNMysaIG4wfJRWxkGlEuGdWBT5UfpVzKUAc7UMlGmd4FgoGZ1EqpqM0lmrhM_ZZkLRELHYhWGrVr4M9ElUhHJm57WrwmJQ2yFW-C4k1y8SasBkfzOeOCSmPh3_WZBhJnVpOk3AQ1aM60Un7-f7W9xavtwwrNN4LNLatDBfWhDzDYmKYNWGa9iwZUOxfPN92G2184OqCdbyfN0l4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFONKKxk2AjIYSA0gKFA0XiFhwvEhKkRS0gfopvZJyFABLcuGaxotneOJ55A7CJsMAok8pTVrgRZrhhxThoPRlYKSPtC5Ox63cuo9ZNcHYb3o7Ae9kL48oqy5iYBWrdU-4f-Y6DavQILvyD_pPnpka509VyhEZuFufm7RW3bIP99jHqd4vS5kn3qOUVUwU8xXg49JIE_SpE1KSBRU_XgRICPysQPlO2YSNNLaKsEjKyKgmpUJwa5lPth4lQKjAM1x2F8YAx4TyKN08_Iz-iO8-5_RyXOKVFk07RqsfDwHMFEVmS5PHvQFhltz8OZDOca87AdJGgksPcomZhxKRzMPWFtnAeulcvLsKYV9KzBLfrWT8XybtOyH1KOieda5IT0z7jtT3SHg5IPoGrTh6rn5J1IlNNimL5Bbj5FzkuwljaS80SEEwDldFah7tCYUBRid9QvCEjaZhsJOFuDfxSVLEqqMvdBI2HuCJdduKNUbxxJt6Y12D7851-Ttzx59OrpQbiwokHcWVyNaiXWqlu_77a8t-rbcBEq9u5iC_al-crMEkzo3BVbaswhroxa5jmDJP1zLYI3P23MX8AGiwKcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS-tAFD54K8j1QVzuxbrOgz7ZYDJZmhFEXFpatVXuVfAtTmYBQVOlVfGv-es8k0yMCvbN1yxDONt3JnPOdwA2EBZ86nPhCM3MCDPcsGIc1A4PNOeR9JjK2fV7_ahzGRxfhVcT8Fr2wpiyyjIm5oFaDoT5R75toBo9ImbetrZlEedH7b37B8dMkDInreU4jcJETtTLM27fhrvdI9T1JqXt1sVhx7ETBhzhx-HISVP0sRARlAYavV4GgjH8xIB5vtCujiTViLiC8UiLNKRMxFT5HpVemDIhAuXjur9gsom7IrcGkwet_vm_dxxArI8Lpj_DLE6pbdmxjXtxGDimPCJPmZz4MyxWue6X49kc9dqzMGPTVbJf2NccTKhsHqY_kBguwMXZk4k36pkMNMHNe97dRYoeFHKTkV6r958UNLWPeG2HdEdDUszjapC76hdlg_BMEls6_wcuf0SSf6GWDTK1CASTQqGklGGTCQwvIvVcEbs84srnbho26-CVokqEJTI38zRuk4qC2Yg3QfEmuXiTuA5b7-_cFzQeY59eKTWQWJceJpUB1qFRaqW6_f1qS-NXW4cpNOTktNs_WYbfNLcJU-K2AjVUjVrFnGeUrlnjInD90_b8Bhs2EAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+residual+stress+in+MEMS+structures%3A+Its+origin%2C+measurement%2C+and+control&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Dutta+Shankar&rft.au=Pandey+Akhilesh&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=6&rft.spage=6705&rft.epage=6741&rft_id=info:doi/10.1007%2Fs10854-021-05405-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |