The Weyl Law for the phase transition spectrum and density of limit interfaces
We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Son...
Saved in:
Published in | Geometric and functional analysis Vol. 29; no. 2; pp. 382 - 410 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of
separating
limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g.
H
n
(
M
,
Z
2
)
=
0
, for
4
≤
n
+
1
≤
7
. These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach. |
---|---|
AbstractList | We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. Hn(M,Z2)=0, for 4≤n+1≤7. These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach. We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. H n ( M , Z 2 ) = 0 , for 4 ≤ n + 1 ≤ 7 . These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach. |
Author | Gaspar, Pedro Guaraco, Marco A. M. |
Author_xml | – sequence: 1 givenname: Pedro surname: Gaspar fullname: Gaspar, Pedro organization: Department of Mathematics, The University of Chicago – sequence: 2 givenname: Marco A. M. surname: Guaraco fullname: Guaraco, Marco A. M. email: guaraco@math.uchicago.edu organization: Department of Mathematics, The University of Chicago |
BookMark | eNp9kE9LwzAYh4NMcJt-AU8Bz9WkSdr0KMN_MPQy0VtI27cuo0tqkiH79mZWEDzsEBJ-PE-S9zdDE-ssIHRJyTUlpLwJhBBWZYSmRbisMnqCppTnJJNVSSbpTGiRcc7ez9AshE3CheBiip5Xa8BvsO_xUn_hznkcUzCsdQAcvbbBROMsDgM00e-2WNsWt3CI99h1uDdbE7GxEXynGwjn6LTTfYCL332OXu_vVovHbPny8LS4XWYNkyJmtSxy2UqWlxS0rmvgWjSS6RTSlrCuFJy0JdBK8pbzOnG6Em3Hi6asQHJgc3Q13jt497mDENXG7bxNT6o8p6UQueBFouRINd6F4KFTjYn6MFAazfSKEnVoT43tqdSe-mlP0aTm_9TBm632--MSG6WQYPsB_u9XR6xvS62Dxg |
CitedBy_id | crossref_primary_10_1007_s00526_022_02261_0 crossref_primary_10_1007_s00526_024_02740_6 crossref_primary_10_1016_j_aim_2024_109640 crossref_primary_10_1007_s00526_021_02106_2 crossref_primary_10_1007_s12220_023_01511_7 crossref_primary_10_1007_s00039_022_00610_x crossref_primary_10_1007_s00526_021_02136_w crossref_primary_10_1007_s40324_023_00345_1 crossref_primary_10_1007_s00222_019_00904_2 crossref_primary_10_2140_gt_2022_26_2713 crossref_primary_10_1016_j_aim_2020_107527 crossref_primary_10_1007_s10240_023_00141_7 crossref_primary_10_1002_cpa_22144 crossref_primary_10_1007_s11537_019_1839_x crossref_primary_10_1007_s42543_021_00042_w crossref_primary_10_1007_s00220_023_04679_9 crossref_primary_10_1093_imrn_rnz128 crossref_primary_10_1016_j_jfa_2024_110526 crossref_primary_10_1007_s12220_021_00856_1 |
Cites_doi | 10.1007/s000390300002 10.4310/CAG.2005.v13.n2.a7 10.1007/BF00253122 10.1090/S0894-0347-00-00345-3 10.4310/jdg/1497405627 10.1007/PL00013453 10.4310/CJM.2016.v4.n4.a2 10.1007/s00039-009-0710-2 10.4310/jdg/1513998031 10.1353/ajm.2017.0029 10.1016/0022-1236(77)90015-5 10.1007/s00526-018-1379-x 10.1007/s00222-017-0716-6 10.4310/jdg/1497405628 10.1007/BF00251230 10.4310/CDM.2009.v2009.n1.a3 10.4310/jdg/1090426999 10.1051/jphyscol:1977709 10.1007/s00039-007-0628-5 10.1017/S0308210500025026 10.1007/s102310100020 10.1512/iumj.1991.40.40008 10.1007/s00039-009-0021-7 10.4007/annals.2014.179.3.2 10.1142/9789812792822_0005 10.1007/BFb0081739 10.1080/03605302.2018.1517790 10.1090/conm/570/11306 10.4007/annals.2018.187.3.7 10.4007/annals.2018.187.3.8 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00039-019-00489-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 410 |
ExternalDocumentID | 10_1007_s00039_019_00489_1 |
GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 2P1 2VQ 5QI 5VS 692 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKPE AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM BDATZ CAG CITATION COF FINBP FSGXE IHE KOW KQ8 LO0 N2Q NDZJH OK1 R4E REI RNI RZK S1Z S26 S28 SCLPG T16 UZXMN VFIZW VH1 ZWQNP ABRTQ |
ID | FETCH-LOGICAL-c385t-b8628d83271eaabbe4a5c83a28d1d03f7540d7e1984d44b327a95df46c79e84e3 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:05:17 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Fri Feb 21 02:33:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-b8628d83271eaabbe4a5c83a28d1d03f7540d7e1984d44b327a95df46c79e84e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2217552546 |
PQPubID | 2044207 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2217552546 crossref_citationtrail_10_1007_s00039_019_00489_1 crossref_primary_10_1007_s00039_019_00489_1 springer_journals_10_1007_s00039_019_00489_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Tonegawa, Wickramasekera (CR33) 2012; 668 Ambrosio, Cabré (CR1) 2000; 13 CR19 CR18 Gromov (CR9) 2003; 13 CR16 CR38 CR14 CR36 CR35 Pacard, Ritoré (CR27) 2003; 64 CR10 Marques, Neves (CR20) 2016; 4 Vannella (CR34) 2002; 180 CR30 Marques, Neves (CR21) 2017; 209 Gaspar, Guaraco (CR6) 2018; 57 Sternberg (CR31) 1988; 101 Savin (CR28) 2009; 2009 Fadell, Rabinowitz (CR4) 1977; 26 Ghoussoub (CR7) 1991; 417 Hutchinson, Tonegawa (CR15) 2000; 10 Tonegawa (CR32) 2005; 13 CR3 CR5 CR8 White (CR37) 2017; 139 Mazet, Rosenberg (CR23) 2017; 106 Sharp (CR29) 2017; 106 CR26 CR25 CR22 Guth (CR13) 2009; 18 Guth (CR12) 2007; 17 Guaraco (CR11) 2018; 108 Kohn, Sternberg (CR17) 1989; 111 Modica (CR24) 1987; 98 Cahn, Allen (CR2) 1977; 38 FC Marques (489_CR21) 2017; 209 JE Hutchinson (489_CR15) 2000; 10 489_CR22 Y Tonegawa (489_CR32) 2005; 13 L Mazet (489_CR23) 2017; 106 Y Tonegawa (489_CR33) 2012; 668 ER Fadell (489_CR4) 1977; 26 489_CR25 489_CR26 FC Marques (489_CR20) 2016; 4 P Gaspar (489_CR6) 2018; 57 P Sternberg (489_CR31) 1988; 101 489_CR18 489_CR19 B White (489_CR37) 2017; 139 MAM Guaraco (489_CR11) 2018; 108 L Guth (489_CR12) 2007; 17 O Savin (489_CR28) 2009; 2009 489_CR10 L Guth (489_CR13) 2009; 18 RV Kohn (489_CR17) 1989; 111 489_CR35 489_CR14 B Sharp (489_CR29) 2017; 106 G Vannella (489_CR34) 2002; 180 489_CR36 M Gromov (489_CR9) 2003; 13 489_CR16 489_CR38 L Modica (489_CR24) 1987; 98 J Cahn (489_CR2) 1977; 38 489_CR30 L Ambrosio (489_CR1) 2000; 13 489_CR3 N Ghoussoub (489_CR7) 1991; 417 489_CR8 F Pacard (489_CR27) 2003; 64 489_CR5 |
References_xml | – volume: 13 start-page: 178 year: 2003 end-page: 215 ident: CR9 article-title: Isoperimetry of waists and concentration of maps publication-title: Geom. Funct. Anal. doi: 10.1007/s000390300002 – ident: CR22 – volume: 668 start-page: 191 year: 2012 end-page: 210 ident: CR33 article-title: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory publication-title: J. Reine Angew. Math. – ident: CR18 – volume: 13 start-page: 439 year: 2005 end-page: 459 ident: CR32 article-title: On stable critical points for a singular perturbation problem publication-title: Commun. Anal. Geom. doi: 10.4310/CAG.2005.v13.n2.a7 – volume: 101 start-page: 209 year: 1988 end-page: 260 ident: CR31 article-title: The effect of a singular perturbation on nonconvex variational problems publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253122 – ident: CR14 – volume: 13 start-page: 725 year: 2000 end-page: 739 ident: CR1 article-title: Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-00-00345-3 – ident: CR16 – ident: CR30 – ident: CR10 – volume: 106 start-page: 283 year: 2017 end-page: 316 ident: CR23 article-title: Minimal hypersurfaces of least area publication-title: J. Differ. Geom. doi: 10.4310/jdg/1497405627 – ident: CR35 – ident: CR8 – ident: CR25 – volume: 10 start-page: 49 year: 2000 end-page: 84 ident: CR15 article-title: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/PL00013453 – volume: 4 start-page: 463 year: 2016 end-page: 511 ident: CR20 article-title: Morse index and multiplicity of min-max minimal hypersurfaces publication-title: Camb. J. Math. doi: 10.4310/CJM.2016.v4.n4.a2 – volume: 18 start-page: 1917 year: 2009 end-page: 1987 ident: CR13 article-title: Minimax problems related to cup powers and Steenrod squares publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-009-0710-2 – ident: CR19 – volume: 108 start-page: 91 year: 2018 end-page: 133 ident: CR11 article-title: Min-max for phase transitions and the existence of embedded minimal hypersurfaces publication-title: J. Differ. Geom. doi: 10.4310/jdg/1513998031 – volume: 139 start-page: 1149 year: 2017 end-page: 1155 ident: CR37 article-title: On the bumpy metrics theorem for minimal submanifolds publication-title: Am. J. Math. doi: 10.1353/ajm.2017.0029 – volume: 26 start-page: 48 year: 1977 end-page: 67 ident: CR4 article-title: Bifurcation for odd potential operators and an alternative topological index publication-title: Journal of Functional Analysis doi: 10.1016/0022-1236(77)90015-5 – volume: 57 start-page: 101 year: 2018 ident: CR6 article-title: The Allen-Cahn equation on closed manifolds publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-018-1379-x – ident: CR3 – ident: CR38 – volume: 209 start-page: 577 year: 2017 end-page: 616 ident: CR21 article-title: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature publication-title: Invent. Math. doi: 10.1007/s00222-017-0716-6 – volume: 106 start-page: 317 year: 2017 end-page: 339 ident: CR29 article-title: Compactness of minimal hypersurfaces with bounded index publication-title: J. Differ. Geom. doi: 10.4310/jdg/1497405628 – volume: 417 start-page: 27 year: 1991 end-page: 76 ident: CR7 article-title: Location, multiplicity and Morse indices of min-max critical points publication-title: J. Reine Angew. Math. – volume: 98 start-page: 123 year: 1987 end-page: 142 ident: CR24 article-title: The gradient theory of phase transitions and the minimal interface criterion publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251230 – volume: 2009 start-page: 59 year: 2009 end-page: 114 ident: CR28 article-title: Phase transitions, minimal surfaces and a conjecture of de Giorgi publication-title: Curr. Dev. Math. doi: 10.4310/CDM.2009.v2009.n1.a3 – ident: CR36 – volume: 64 start-page: 359 year: 2003 end-page: 423 ident: CR27 article-title: From constant mean curvature hypersurfaces to the gradient theory of phase transitions publication-title: J. Differ. Geom. doi: 10.4310/jdg/1090426999 – ident: CR5 – volume: 38 start-page: C7 year: 1977 end-page: 51 ident: CR2 article-title: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics publication-title: Le Journal de Physique Colloques doi: 10.1051/jphyscol:1977709 – volume: 17 start-page: 1139 year: 2007 end-page: 1179 ident: CR12 article-title: The width-volume inequality publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-007-0628-5 – ident: CR26 – volume: 111 start-page: 69 year: 1989 end-page: 84 ident: CR17 article-title: Local minimisers and singular perturbations publication-title: P. R. Soc. Edinb. A. doi: 10.1017/S0308210500025026 – volume: 180 start-page: 429 year: 2002 end-page: 440 ident: CR34 article-title: Existence and multiplicity of solutions for a nonlinear Neumann problem publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s102310100020 – volume: 111 start-page: 69 year: 1989 ident: 489_CR17 publication-title: P. R. Soc. Edinb. A. doi: 10.1017/S0308210500025026 – ident: 489_CR35 – volume: 38 start-page: C7 year: 1977 ident: 489_CR2 publication-title: Le Journal de Physique Colloques doi: 10.1051/jphyscol:1977709 – volume: 668 start-page: 191 year: 2012 ident: 489_CR33 publication-title: J. Reine Angew. Math. – ident: 489_CR36 doi: 10.1512/iumj.1991.40.40008 – volume: 10 start-page: 49 year: 2000 ident: 489_CR15 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/PL00013453 – volume: 4 start-page: 463 year: 2016 ident: 489_CR20 publication-title: Camb. J. Math. doi: 10.4310/CJM.2016.v4.n4.a2 – volume: 108 start-page: 91 year: 2018 ident: 489_CR11 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1513998031 – volume: 101 start-page: 209 year: 1988 ident: 489_CR31 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253122 – volume: 13 start-page: 725 year: 2000 ident: 489_CR1 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-00-00345-3 – ident: 489_CR3 – volume: 180 start-page: 429 year: 2002 ident: 489_CR34 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s102310100020 – volume: 18 start-page: 1917 year: 2009 ident: 489_CR13 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-009-0710-2 – ident: 489_CR5 – ident: 489_CR10 doi: 10.1007/s00039-009-0021-7 – volume: 17 start-page: 1139 year: 2007 ident: 489_CR12 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-007-0628-5 – ident: 489_CR25 – volume: 26 start-page: 48 year: 1977 ident: 489_CR4 publication-title: Journal of Functional Analysis doi: 10.1016/0022-1236(77)90015-5 – volume: 57 start-page: 101 year: 2018 ident: 489_CR6 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-018-1379-x – ident: 489_CR38 doi: 10.4007/annals.2014.179.3.2 – volume: 13 start-page: 178 year: 2003 ident: 489_CR9 publication-title: Geom. Funct. Anal. doi: 10.1007/s000390300002 – volume: 106 start-page: 283 year: 2017 ident: 489_CR23 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1497405627 – ident: 489_CR30 doi: 10.1142/9789812792822_0005 – volume: 13 start-page: 439 year: 2005 ident: 489_CR32 publication-title: Commun. Anal. Geom. doi: 10.4310/CAG.2005.v13.n2.a7 – volume: 106 start-page: 317 year: 2017 ident: 489_CR29 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1497405628 – volume: 209 start-page: 577 year: 2017 ident: 489_CR21 publication-title: Invent. Math. doi: 10.1007/s00222-017-0716-6 – volume: 2009 start-page: 59 year: 2009 ident: 489_CR28 publication-title: Curr. Dev. Math. doi: 10.4310/CDM.2009.v2009.n1.a3 – volume: 64 start-page: 359 year: 2003 ident: 489_CR27 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1090426999 – volume: 417 start-page: 27 year: 1991 ident: 489_CR7 publication-title: J. Reine Angew. Math. – ident: 489_CR8 doi: 10.1007/BFb0081739 – ident: 489_CR14 doi: 10.1080/03605302.2018.1517790 – ident: 489_CR22 – ident: 489_CR26 doi: 10.1090/conm/570/11306 – volume: 139 start-page: 1149 year: 2017 ident: 489_CR37 publication-title: Am. J. Math. doi: 10.1353/ajm.2017.0029 – ident: 489_CR19 – ident: 489_CR18 doi: 10.4007/annals.2018.187.3.7 – ident: 489_CR16 doi: 10.4007/annals.2018.187.3.8 – volume: 98 start-page: 123 year: 1987 ident: 489_CR24 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251230 |
SSID | ssj0005545 |
Score | 2.4244506 |
Snippet | We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 382 |
SubjectTerms | Analysis Density Hyperspaces Mathematics Mathematics and Statistics Phase transitions |
Title | The Weyl Law for the phase transition spectrum and density of limit interfaces |
URI | https://link.springer.com/article/10.1007/s00039-019-00489-1 https://www.proquest.com/docview/2217552546 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MXPTgB2pEkfTgTZsw1u7jCAYkKpwk4mnp1-IBB2Ezhv_e19KNaNTEw9Jk7Xp4H3vvl773K0JXTAZKKClJSKkmVPOIiI4Ed-8IFYCHcB2Y3uHxJBhN6f2MzVxTWF5Wu5dHkvZPXTW72T5SgL7wgNnFBDBPnRnsDlY87fa2hR3MXk1sYCmh1J-5Vpmf9_gajrY55rdjURtthodo36WJuLfR6xHa0VkDHbiUETuHzBtob1zRrubHaAJKx896PceP_ANDOophEi9fIVLhwgQlW5-FbXfl6v0N80xhZSrYizVepHhump2wIZBYpaZS6wRNh4On2xFxFyYQ6UesIALgSaTAR0NPcy6EppzJyOfw0lMdPw0hPVOh9uKIKkoFrOMxUykNZBjriGr_FNWyRabPEKYslKEhSwwCTUXKhZdGgAS50qnwtZJN5JVyS6RjEzeXWsyTigfZyjoBWSdW1onXRNfVN8sNl8afq1ulOhLnV3nSBQTFmOHwb6KbUkXb6d93O__f8gu027VWYkp0WqgGStGXkH0Uoo3qvWG_PzHj3cvDoG2N7xMZXtLh |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYCBjwKiUMADG0RqGjtxxgpRFWg7taKb5a-IoaRVG4T67zm7TioQIDFkiR0Pd77cnfzeM0I3VMVaaqWChBATECNYIFsKwr0ldQwRIkxsucODYdwbk6cJnXhS2LJEu5dHku5PXZHdHI8UWl94YNulAfQ821AMMAvkGrc7G2AHdVcT27Y0ICSaeKrMz2t8TUebGvPbsajLNt1DtO_LRNxZ-_UIbZm8jg58yYh9QC7raG9Qya4uj9EQnI5fzGqK--IDQzmKYRDPXyFT4cImJYfPwo5duXh_wyLXWFsEe7HCswxPLdkJWwGJRWaRWido3H0Y3fcCf2FCoCJGi0BCe8I0xGgSGiGkNERQxSIBL0PdirIEyjOdmDBlRBMiYZ5Iqc5IrJLUMGKiU1TLZ7k5Q5jQRCVWLDGODZGZkGHGoBMU2mQyMlo1UFjajSuvJm4vtZjySgfZ2ZqDrbmzNQ8b6Lb6Zr7W0vhzdrN0B_dxteRt6KAotRr-DXRXumgz_Ptq5_-bfo12eqNBn_cfh88XaLftdoyF6zRRDRxkLqESKeSV23if-BTSxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwefKBGFHUP3nQDpbt9HIlKUIF4kMit2Wc8YCFQY_j3zi5tUaMmHnrpbvcwj85Mdr5vELpgMlBCSUlCSjWhmkdENCW4e1OoADyE68Bih_uDoDuk9yM2-oTid93uxZXkEtNgWZrSrDFVplEC3xymFMpgeMAEYwL1zzr8jj1r18NWe9XkwdyYYluiEkr9UQ6b-fmMr6FplW9-uyJ1kaezi7bzlBG3lzreQ2s6raKdPH3EuXPOq2irX1KwzvfRAAwAP-vFGPf4O4bUFMMinr5A1MKZDVCuVws7pOXs7RXzVGFlu9mzBZ4YPLbAJ2zJJGbGdm0doGHn9um6S_LhCUT6EcuIgFIlUuCvoac5F0JTzmTkc3jpqaZvQkjVVKi9OKKKUgH7eMyUoYEMYx1R7R-iSjpJ9RHClIUytMSJQaCpMFx4JoKqkCtthK-VrCGvkFsic2ZxO-BinJScyE7WCcg6cbJOvBq6LL-ZLnk1_txdL9SR5D42T1pQTTFm-fxr6KpQ0Wr599OO_7f9HG083nSS3t3g4QRttpzB2M6dOqqAfvQpJCWZOHN29wFmH9cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Weyl+Law+for+the+phase+transition+spectrum+and+density+of+limit+interfaces&rft.jtitle=Geometric+and+functional+analysis&rft.au=Gaspar%2C+Pedro&rft.au=Guaraco%2C+Marco+A+M&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=29&rft.issue=2&rft.spage=382&rft.epage=410&rft_id=info:doi/10.1007%2Fs00039-019-00489-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |