The Weyl Law for the phase transition spectrum and density of limit interfaces

We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Son...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 29; no. 2; pp. 382 - 410
Main Authors Gaspar, Pedro, Guaraco, Marco A. M.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. H n ( M , Z 2 ) = 0 , for 4 ≤ n + 1 ≤ 7 . These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach.
AbstractList We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. Hn(M,Z2)=0, for 4≤n+1≤7. These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach.
We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. H n ( M , Z 2 ) = 0 , for 4 ≤ n + 1 ≤ 7 . These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach.
Author Gaspar, Pedro
Guaraco, Marco A. M.
Author_xml – sequence: 1
  givenname: Pedro
  surname: Gaspar
  fullname: Gaspar, Pedro
  organization: Department of Mathematics, The University of Chicago
– sequence: 2
  givenname: Marco A. M.
  surname: Guaraco
  fullname: Guaraco, Marco A. M.
  email: guaraco@math.uchicago.edu
  organization: Department of Mathematics, The University of Chicago
BookMark eNp9kE9LwzAYh4NMcJt-AU8Bz9WkSdr0KMN_MPQy0VtI27cuo0tqkiH79mZWEDzsEBJ-PE-S9zdDE-ssIHRJyTUlpLwJhBBWZYSmRbisMnqCppTnJJNVSSbpTGiRcc7ez9AshE3CheBiip5Xa8BvsO_xUn_hznkcUzCsdQAcvbbBROMsDgM00e-2WNsWt3CI99h1uDdbE7GxEXynGwjn6LTTfYCL332OXu_vVovHbPny8LS4XWYNkyJmtSxy2UqWlxS0rmvgWjSS6RTSlrCuFJy0JdBK8pbzOnG6Em3Hi6asQHJgc3Q13jt497mDENXG7bxNT6o8p6UQueBFouRINd6F4KFTjYn6MFAazfSKEnVoT43tqdSe-mlP0aTm_9TBm632--MSG6WQYPsB_u9XR6xvS62Dxg
CitedBy_id crossref_primary_10_1007_s00526_022_02261_0
crossref_primary_10_1007_s00526_024_02740_6
crossref_primary_10_1016_j_aim_2024_109640
crossref_primary_10_1007_s00526_021_02106_2
crossref_primary_10_1007_s12220_023_01511_7
crossref_primary_10_1007_s00039_022_00610_x
crossref_primary_10_1007_s00526_021_02136_w
crossref_primary_10_1007_s40324_023_00345_1
crossref_primary_10_1007_s00222_019_00904_2
crossref_primary_10_2140_gt_2022_26_2713
crossref_primary_10_1016_j_aim_2020_107527
crossref_primary_10_1007_s10240_023_00141_7
crossref_primary_10_1002_cpa_22144
crossref_primary_10_1007_s11537_019_1839_x
crossref_primary_10_1007_s42543_021_00042_w
crossref_primary_10_1007_s00220_023_04679_9
crossref_primary_10_1093_imrn_rnz128
crossref_primary_10_1016_j_jfa_2024_110526
crossref_primary_10_1007_s12220_021_00856_1
Cites_doi 10.1007/s000390300002
10.4310/CAG.2005.v13.n2.a7
10.1007/BF00253122
10.1090/S0894-0347-00-00345-3
10.4310/jdg/1497405627
10.1007/PL00013453
10.4310/CJM.2016.v4.n4.a2
10.1007/s00039-009-0710-2
10.4310/jdg/1513998031
10.1353/ajm.2017.0029
10.1016/0022-1236(77)90015-5
10.1007/s00526-018-1379-x
10.1007/s00222-017-0716-6
10.4310/jdg/1497405628
10.1007/BF00251230
10.4310/CDM.2009.v2009.n1.a3
10.4310/jdg/1090426999
10.1051/jphyscol:1977709
10.1007/s00039-007-0628-5
10.1017/S0308210500025026
10.1007/s102310100020
10.1512/iumj.1991.40.40008
10.1007/s00039-009-0021-7
10.4007/annals.2014.179.3.2
10.1142/9789812792822_0005
10.1007/BFb0081739
10.1080/03605302.2018.1517790
10.1090/conm/570/11306
10.4007/annals.2018.187.3.7
10.4007/annals.2018.187.3.8
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s00039-019-00489-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 410
ExternalDocumentID 10_1007_s00039_019_00489_1
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
5VS
692
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
ADKPE
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
BDATZ
CAG
CITATION
COF
FINBP
FSGXE
IHE
KOW
KQ8
LO0
N2Q
NDZJH
OK1
R4E
REI
RNI
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
VH1
ZWQNP
ABRTQ
ID FETCH-LOGICAL-c385t-b8628d83271eaabbe4a5c83a28d1d03f7540d7e1984d44b327a95df46c79e84e3
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:05:17 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Fri Feb 21 02:33:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-b8628d83271eaabbe4a5c83a28d1d03f7540d7e1984d44b327a95df46c79e84e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2217552546
PQPubID 2044207
PageCount 29
ParticipantIDs proquest_journals_2217552546
crossref_citationtrail_10_1007_s00039_019_00489_1
crossref_primary_10_1007_s00039_019_00489_1
springer_journals_10_1007_s00039_019_00489_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Tonegawa, Wickramasekera (CR33) 2012; 668
Ambrosio, Cabré (CR1) 2000; 13
CR19
CR18
Gromov (CR9) 2003; 13
CR16
CR38
CR14
CR36
CR35
Pacard, Ritoré (CR27) 2003; 64
CR10
Marques, Neves (CR20) 2016; 4
Vannella (CR34) 2002; 180
CR30
Marques, Neves (CR21) 2017; 209
Gaspar, Guaraco (CR6) 2018; 57
Sternberg (CR31) 1988; 101
Savin (CR28) 2009; 2009
Fadell, Rabinowitz (CR4) 1977; 26
Ghoussoub (CR7) 1991; 417
Hutchinson, Tonegawa (CR15) 2000; 10
Tonegawa (CR32) 2005; 13
CR3
CR5
CR8
White (CR37) 2017; 139
Mazet, Rosenberg (CR23) 2017; 106
Sharp (CR29) 2017; 106
CR26
CR25
CR22
Guth (CR13) 2009; 18
Guth (CR12) 2007; 17
Guaraco (CR11) 2018; 108
Kohn, Sternberg (CR17) 1989; 111
Modica (CR24) 1987; 98
Cahn, Allen (CR2) 1977; 38
FC Marques (489_CR21) 2017; 209
JE Hutchinson (489_CR15) 2000; 10
489_CR22
Y Tonegawa (489_CR32) 2005; 13
L Mazet (489_CR23) 2017; 106
Y Tonegawa (489_CR33) 2012; 668
ER Fadell (489_CR4) 1977; 26
489_CR25
489_CR26
FC Marques (489_CR20) 2016; 4
P Gaspar (489_CR6) 2018; 57
P Sternberg (489_CR31) 1988; 101
489_CR18
489_CR19
B White (489_CR37) 2017; 139
MAM Guaraco (489_CR11) 2018; 108
L Guth (489_CR12) 2007; 17
O Savin (489_CR28) 2009; 2009
489_CR10
L Guth (489_CR13) 2009; 18
RV Kohn (489_CR17) 1989; 111
489_CR35
489_CR14
B Sharp (489_CR29) 2017; 106
G Vannella (489_CR34) 2002; 180
489_CR36
M Gromov (489_CR9) 2003; 13
489_CR16
489_CR38
L Modica (489_CR24) 1987; 98
J Cahn (489_CR2) 1977; 38
489_CR30
L Ambrosio (489_CR1) 2000; 13
489_CR3
N Ghoussoub (489_CR7) 1991; 417
489_CR8
F Pacard (489_CR27) 2003; 64
489_CR5
References_xml – volume: 13
  start-page: 178
  year: 2003
  end-page: 215
  ident: CR9
  article-title: Isoperimetry of waists and concentration of maps
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390300002
– ident: CR22
– volume: 668
  start-page: 191
  year: 2012
  end-page: 210
  ident: CR33
  article-title: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory
  publication-title: J. Reine Angew. Math.
– ident: CR18
– volume: 13
  start-page: 439
  year: 2005
  end-page: 459
  ident: CR32
  article-title: On stable critical points for a singular perturbation problem
  publication-title: Commun. Anal. Geom.
  doi: 10.4310/CAG.2005.v13.n2.a7
– volume: 101
  start-page: 209
  year: 1988
  end-page: 260
  ident: CR31
  article-title: The effect of a singular perturbation on nonconvex variational problems
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253122
– ident: CR14
– volume: 13
  start-page: 725
  year: 2000
  end-page: 739
  ident: CR1
  article-title: Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-00-00345-3
– ident: CR16
– ident: CR30
– ident: CR10
– volume: 106
  start-page: 283
  year: 2017
  end-page: 316
  ident: CR23
  article-title: Minimal hypersurfaces of least area
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1497405627
– ident: CR35
– ident: CR8
– ident: CR25
– volume: 10
  start-page: 49
  year: 2000
  end-page: 84
  ident: CR15
  article-title: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/PL00013453
– volume: 4
  start-page: 463
  year: 2016
  end-page: 511
  ident: CR20
  article-title: Morse index and multiplicity of min-max minimal hypersurfaces
  publication-title: Camb. J. Math.
  doi: 10.4310/CJM.2016.v4.n4.a2
– volume: 18
  start-page: 1917
  year: 2009
  end-page: 1987
  ident: CR13
  article-title: Minimax problems related to cup powers and Steenrod squares
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-009-0710-2
– ident: CR19
– volume: 108
  start-page: 91
  year: 2018
  end-page: 133
  ident: CR11
  article-title: Min-max for phase transitions and the existence of embedded minimal hypersurfaces
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1513998031
– volume: 139
  start-page: 1149
  year: 2017
  end-page: 1155
  ident: CR37
  article-title: On the bumpy metrics theorem for minimal submanifolds
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2017.0029
– volume: 26
  start-page: 48
  year: 1977
  end-page: 67
  ident: CR4
  article-title: Bifurcation for odd potential operators and an alternative topological index
  publication-title: Journal of Functional Analysis
  doi: 10.1016/0022-1236(77)90015-5
– volume: 57
  start-page: 101
  year: 2018
  ident: CR6
  article-title: The Allen-Cahn equation on closed manifolds
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-018-1379-x
– ident: CR3
– ident: CR38
– volume: 209
  start-page: 577
  year: 2017
  end-page: 616
  ident: CR21
  article-title: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature
  publication-title: Invent. Math.
  doi: 10.1007/s00222-017-0716-6
– volume: 106
  start-page: 317
  year: 2017
  end-page: 339
  ident: CR29
  article-title: Compactness of minimal hypersurfaces with bounded index
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1497405628
– volume: 417
  start-page: 27
  year: 1991
  end-page: 76
  ident: CR7
  article-title: Location, multiplicity and Morse indices of min-max critical points
  publication-title: J. Reine Angew. Math.
– volume: 98
  start-page: 123
  year: 1987
  end-page: 142
  ident: CR24
  article-title: The gradient theory of phase transitions and the minimal interface criterion
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251230
– volume: 2009
  start-page: 59
  year: 2009
  end-page: 114
  ident: CR28
  article-title: Phase transitions, minimal surfaces and a conjecture of de Giorgi
  publication-title: Curr. Dev. Math.
  doi: 10.4310/CDM.2009.v2009.n1.a3
– ident: CR36
– volume: 64
  start-page: 359
  year: 2003
  end-page: 423
  ident: CR27
  article-title: From constant mean curvature hypersurfaces to the gradient theory of phase transitions
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090426999
– ident: CR5
– volume: 38
  start-page: C7
  year: 1977
  end-page: 51
  ident: CR2
  article-title: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics
  publication-title: Le Journal de Physique Colloques
  doi: 10.1051/jphyscol:1977709
– volume: 17
  start-page: 1139
  year: 2007
  end-page: 1179
  ident: CR12
  article-title: The width-volume inequality
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-007-0628-5
– ident: CR26
– volume: 111
  start-page: 69
  year: 1989
  end-page: 84
  ident: CR17
  article-title: Local minimisers and singular perturbations
  publication-title: P. R. Soc. Edinb. A.
  doi: 10.1017/S0308210500025026
– volume: 180
  start-page: 429
  year: 2002
  end-page: 440
  ident: CR34
  article-title: Existence and multiplicity of solutions for a nonlinear Neumann problem
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s102310100020
– volume: 111
  start-page: 69
  year: 1989
  ident: 489_CR17
  publication-title: P. R. Soc. Edinb. A.
  doi: 10.1017/S0308210500025026
– ident: 489_CR35
– volume: 38
  start-page: C7
  year: 1977
  ident: 489_CR2
  publication-title: Le Journal de Physique Colloques
  doi: 10.1051/jphyscol:1977709
– volume: 668
  start-page: 191
  year: 2012
  ident: 489_CR33
  publication-title: J. Reine Angew. Math.
– ident: 489_CR36
  doi: 10.1512/iumj.1991.40.40008
– volume: 10
  start-page: 49
  year: 2000
  ident: 489_CR15
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/PL00013453
– volume: 4
  start-page: 463
  year: 2016
  ident: 489_CR20
  publication-title: Camb. J. Math.
  doi: 10.4310/CJM.2016.v4.n4.a2
– volume: 108
  start-page: 91
  year: 2018
  ident: 489_CR11
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1513998031
– volume: 101
  start-page: 209
  year: 1988
  ident: 489_CR31
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253122
– volume: 13
  start-page: 725
  year: 2000
  ident: 489_CR1
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-00-00345-3
– ident: 489_CR3
– volume: 180
  start-page: 429
  year: 2002
  ident: 489_CR34
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s102310100020
– volume: 18
  start-page: 1917
  year: 2009
  ident: 489_CR13
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-009-0710-2
– ident: 489_CR5
– ident: 489_CR10
  doi: 10.1007/s00039-009-0021-7
– volume: 17
  start-page: 1139
  year: 2007
  ident: 489_CR12
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-007-0628-5
– ident: 489_CR25
– volume: 26
  start-page: 48
  year: 1977
  ident: 489_CR4
  publication-title: Journal of Functional Analysis
  doi: 10.1016/0022-1236(77)90015-5
– volume: 57
  start-page: 101
  year: 2018
  ident: 489_CR6
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-018-1379-x
– ident: 489_CR38
  doi: 10.4007/annals.2014.179.3.2
– volume: 13
  start-page: 178
  year: 2003
  ident: 489_CR9
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390300002
– volume: 106
  start-page: 283
  year: 2017
  ident: 489_CR23
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1497405627
– ident: 489_CR30
  doi: 10.1142/9789812792822_0005
– volume: 13
  start-page: 439
  year: 2005
  ident: 489_CR32
  publication-title: Commun. Anal. Geom.
  doi: 10.4310/CAG.2005.v13.n2.a7
– volume: 106
  start-page: 317
  year: 2017
  ident: 489_CR29
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1497405628
– volume: 209
  start-page: 577
  year: 2017
  ident: 489_CR21
  publication-title: Invent. Math.
  doi: 10.1007/s00222-017-0716-6
– volume: 2009
  start-page: 59
  year: 2009
  ident: 489_CR28
  publication-title: Curr. Dev. Math.
  doi: 10.4310/CDM.2009.v2009.n1.a3
– volume: 64
  start-page: 359
  year: 2003
  ident: 489_CR27
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090426999
– volume: 417
  start-page: 27
  year: 1991
  ident: 489_CR7
  publication-title: J. Reine Angew. Math.
– ident: 489_CR8
  doi: 10.1007/BFb0081739
– ident: 489_CR14
  doi: 10.1080/03605302.2018.1517790
– ident: 489_CR22
– ident: 489_CR26
  doi: 10.1090/conm/570/11306
– volume: 139
  start-page: 1149
  year: 2017
  ident: 489_CR37
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2017.0029
– ident: 489_CR19
– ident: 489_CR18
  doi: 10.4007/annals.2018.187.3.7
– ident: 489_CR16
  doi: 10.4007/annals.2018.187.3.8
– volume: 98
  start-page: 123
  year: 1987
  ident: 489_CR24
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251230
SSID ssj0005545
Score 2.4244506
Snippet We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Analysis
Density
Hyperspaces
Mathematics
Mathematics and Statistics
Phase transitions
Title The Weyl Law for the phase transition spectrum and density of limit interfaces
URI https://link.springer.com/article/10.1007/s00039-019-00489-1
https://www.proquest.com/docview/2217552546
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MXPTgB2pEkfTgTZsw1u7jCAYkKpwk4mnp1-IBB2Ezhv_e19KNaNTEw9Jk7Xp4H3vvl773K0JXTAZKKClJSKkmVPOIiI4Ed-8IFYCHcB2Y3uHxJBhN6f2MzVxTWF5Wu5dHkvZPXTW72T5SgL7wgNnFBDBPnRnsDlY87fa2hR3MXk1sYCmh1J-5Vpmf9_gajrY55rdjURtthodo36WJuLfR6xHa0VkDHbiUETuHzBtob1zRrubHaAJKx896PceP_ANDOophEi9fIVLhwgQlW5-FbXfl6v0N80xhZSrYizVepHhump2wIZBYpaZS6wRNh4On2xFxFyYQ6UesIALgSaTAR0NPcy6EppzJyOfw0lMdPw0hPVOh9uKIKkoFrOMxUykNZBjriGr_FNWyRabPEKYslKEhSwwCTUXKhZdGgAS50qnwtZJN5JVyS6RjEzeXWsyTigfZyjoBWSdW1onXRNfVN8sNl8afq1ulOhLnV3nSBQTFmOHwb6KbUkXb6d93O__f8gu027VWYkp0WqgGStGXkH0Uoo3qvWG_PzHj3cvDoG2N7xMZXtLh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYCBjwKiUMADG0RqGjtxxgpRFWg7taKb5a-IoaRVG4T67zm7TioQIDFkiR0Pd77cnfzeM0I3VMVaaqWChBATECNYIFsKwr0ldQwRIkxsucODYdwbk6cJnXhS2LJEu5dHku5PXZHdHI8UWl94YNulAfQ821AMMAvkGrc7G2AHdVcT27Y0ICSaeKrMz2t8TUebGvPbsajLNt1DtO_LRNxZ-_UIbZm8jg58yYh9QC7raG9Qya4uj9EQnI5fzGqK--IDQzmKYRDPXyFT4cImJYfPwo5duXh_wyLXWFsEe7HCswxPLdkJWwGJRWaRWido3H0Y3fcCf2FCoCJGi0BCe8I0xGgSGiGkNERQxSIBL0PdirIEyjOdmDBlRBMiYZ5Iqc5IrJLUMGKiU1TLZ7k5Q5jQRCVWLDGODZGZkGHGoBMU2mQyMlo1UFjajSuvJm4vtZjySgfZ2ZqDrbmzNQ8b6Lb6Zr7W0vhzdrN0B_dxteRt6KAotRr-DXRXumgz_Ptq5_-bfo12eqNBn_cfh88XaLftdoyF6zRRDRxkLqESKeSV23if-BTSxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwefKBGFHUP3nQDpbt9HIlKUIF4kMit2Wc8YCFQY_j3zi5tUaMmHnrpbvcwj85Mdr5vELpgMlBCSUlCSjWhmkdENCW4e1OoADyE68Bih_uDoDuk9yM2-oTid93uxZXkEtNgWZrSrDFVplEC3xymFMpgeMAEYwL1zzr8jj1r18NWe9XkwdyYYluiEkr9UQ6b-fmMr6FplW9-uyJ1kaezi7bzlBG3lzreQ2s6raKdPH3EuXPOq2irX1KwzvfRAAwAP-vFGPf4O4bUFMMinr5A1MKZDVCuVws7pOXs7RXzVGFlu9mzBZ4YPLbAJ2zJJGbGdm0doGHn9um6S_LhCUT6EcuIgFIlUuCvoac5F0JTzmTkc3jpqaZvQkjVVKi9OKKKUgH7eMyUoYEMYx1R7R-iSjpJ9RHClIUytMSJQaCpMFx4JoKqkCtthK-VrCGvkFsic2ZxO-BinJScyE7WCcg6cbJOvBq6LL-ZLnk1_txdL9SR5D42T1pQTTFm-fxr6KpQ0Wr599OO_7f9HG083nSS3t3g4QRttpzB2M6dOqqAfvQpJCWZOHN29wFmH9cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Weyl+Law+for+the+phase+transition+spectrum+and+density+of+limit+interfaces&rft.jtitle=Geometric+and+functional+analysis&rft.au=Gaspar%2C+Pedro&rft.au=Guaraco%2C+Marco+A+M&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=29&rft.issue=2&rft.spage=382&rft.epage=410&rft_id=info:doi/10.1007%2Fs00039-019-00489-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon