Emotion recognition based on the sample entropy of EEG

A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish...

Full description

Saved in:
Bibliographic Details
Published inBio-medical materials and engineering Vol. 24; no. 1; pp. 1185 - 1192
Main Authors Jie, Xiang, Cao, Rui, Li, Li
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2014
Subjects
Online AccessGet full text
ISSN0959-2989
1878-3619
1878-3619
DOI10.3233/BME-130919

Cover

Loading…
Abstract A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability.
AbstractList A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability.A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability.
A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability.
Author Cao, Rui
Li, Li
Jie, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Jie
  fullname: Jie, Xiang
  organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China
– sequence: 2
  givenname: Rui
  surname: Cao
  fullname: Cao, Rui
  organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China
– sequence: 3
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24212012$$D View this record in MEDLINE/PubMed
BookMark eNptkDtPwzAUhS1URB-w8ANQNhBSwPbNc4QqFKQiFpgtO7kuqZI42MnQf09K2gV1umf4zpHuNyeTxjRIyDWjD8ABHp_fM58BTVl6RmYsiRMfIpZOyIymYerzNEmnZO7cllIaRAAXZMoDzjhlfEairDZdaRrPYm42TfmXlXRYeEPovtFzsm4r9LDprGl3ntFelq0uybmWlcOrw12Qr5fsc_nqrz9Wb8untZ9DEna-1DLhmGiMVBoUSHMVckZlzpEVVAaholyholoDRAULQLMgBMVUAJyDjAEW5G7cba356dF1oi5djlUlGzS9EwNPWRzGyR69OaC9qrEQrS1raXfi-OsA0BHIrXHOohZ52cn9w52VZSUYFXudYtApRp1D5f5f5bh6Er4dYSc3KLamt82g5hT5C34Zfuo
CitedBy_id crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_1007_s00521_015_2149_8
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_3390_s19235218
crossref_primary_10_1016_j_aei_2022_101548
crossref_primary_10_1007_s00521_021_05694_4
crossref_primary_10_1016_j_inffus_2021_07_007
crossref_primary_10_1177_2096595819896200
crossref_primary_10_1016_j_bica_2018_01_001
crossref_primary_10_1051_itmconf_20171107006
crossref_primary_10_1016_j_mehy_2019_03_025
crossref_primary_10_1109_TCDS_2022_3174209
crossref_primary_10_1016_j_eswa_2022_118025
crossref_primary_10_1016_j_jneumeth_2021_109320
crossref_primary_10_3390_e24121735
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1109_TII_2022_3170422
crossref_primary_10_3389_fpsyg_2022_919695
crossref_primary_10_1016_j_buildenv_2021_108711
crossref_primary_10_1007_s00521_024_09521_4
crossref_primary_10_3389_fnhum_2022_936393
crossref_primary_10_1016_j_neulet_2016_09_037
crossref_primary_10_1108_AEAT_08_2016_0130
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1142_S0219519420500256
crossref_primary_10_1016_j_bspc_2021_103290
crossref_primary_10_1016_j_fuel_2021_120997
crossref_primary_10_3233_BME_151554
crossref_primary_10_1088_1742_6596_1487_1_012002
crossref_primary_10_1142_S0219622019500238
crossref_primary_10_3390_s18030841
crossref_primary_10_1155_2021_6625141
crossref_primary_10_1155_2017_8317357
crossref_primary_10_1007_s11760_024_03360_5
crossref_primary_10_1109_TCDS_2021_3074811
crossref_primary_10_3934_mbe_2023116
crossref_primary_10_1016_j_bspc_2022_103547
crossref_primary_10_1007_s11571_024_10130_z
crossref_primary_10_3390_app7121239
crossref_primary_10_1016_j_eswa_2022_116634
crossref_primary_10_1109_ACCESS_2024_3430934
crossref_primary_10_1109_ACCESS_2024_3375393
crossref_primary_10_1109_TBME_2015_2478406
crossref_primary_10_1109_TAFFC_2018_2890636
crossref_primary_10_3390_s23031255
crossref_primary_10_3389_fpsyt_2021_837149
crossref_primary_10_3390_app14178071
crossref_primary_10_3390_s19092212
crossref_primary_10_1007_s10489_022_04366_7
crossref_primary_10_1109_TAFFC_2019_2937768
crossref_primary_10_3390_brainsci14040344
crossref_primary_10_1109_ACCESS_2024_3429195
crossref_primary_10_1007_s11760_021_01927_0
crossref_primary_10_26599_BSA_2019_9050005
crossref_primary_10_1186_s12993_018_0149_4
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1016_j_bspc_2022_103485
crossref_primary_10_1088_1741_2552_ad8839
crossref_primary_10_3390_s23156890
crossref_primary_10_3390_math12081180
crossref_primary_10_3389_fnins_2023_1288580
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_1007_s43538_023_00201_w
crossref_primary_10_3389_fnhum_2022_1051463
crossref_primary_10_1109_ACCESS_2020_2978930
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_1007_s40846_015_0044_5
crossref_primary_10_1016_j_procs_2020_06_100
crossref_primary_10_1186_s12916_024_03481_1
crossref_primary_10_3389_fnbot_2022_834952
crossref_primary_10_1109_TAFFC_2021_3137857
crossref_primary_10_3390_s21155135
crossref_primary_10_3390_brainsci9110326
crossref_primary_10_3390_e26040299
crossref_primary_10_3233_JIFS_223456
crossref_primary_10_1016_j_bspc_2022_104060
crossref_primary_10_48084_etasr_5073
crossref_primary_10_3389_fnins_2023_1172103
crossref_primary_10_3390_electronics11040651
crossref_primary_10_1016_j_bspc_2023_104835
crossref_primary_10_1016_j_bspc_2022_103489
crossref_primary_10_1016_j_buildenv_2024_111754
crossref_primary_10_1088_1741_2552_ac6294
crossref_primary_10_1049_iet_its_2016_0127
crossref_primary_10_1016_j_asoc_2024_111338
crossref_primary_10_1007_s10489_021_03070_2
crossref_primary_10_1142_S179354582050025X
ContentType Journal Article
Copyright IOS Press and the authors
Copyright_xml – notice: IOS Press and the authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3233/BME-130919
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Music
EISSN 1878-3619
EndPage 1192
ExternalDocumentID 24212012
10_3233_BME_130919
10.3233_BME-130919
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1B1
23N
36B
4.4
53G
5GY
AAFNC
AAGLT
AAQXI
ABDBF
ABJNI
ABJZC
ABUBZ
ABUJY
ACGFS
ACIWK
ACPQW
ACPRK
ACUHS
ADZMO
AEJQA
AENEX
AFRAH
AFRHK
AFYTF
AHDMH
AJNRN
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARTOV
CAG
COF
DU5
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
H13
HZ~
I-F
IHE
IL9
IOS
J8X
M41
MET
MIO
MK~
ML~
MV1
NGNOM
NQ-
O9-
P2P
Q1R
ROL
RPZ
SAUOL
SCNPE
SFC
SV3
TUS
AAEJI
AAPII
AAYXX
ADEBD
AJGYC
ALIRC
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c385t-afa82e8fe6b94de0cb5210ac2e1d0a45b02beb0ff336d143f1453b1b43223a733
ISSN 0959-2989
1878-3619
IngestDate Tue Aug 05 11:27:26 EDT 2025
Thu Apr 03 07:03:54 EDT 2025
Tue Aug 05 12:09:35 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jun 17 22:27:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords brain computer interface
Emotion recognition
SVM
EEG
sample entropy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-afa82e8fe6b94de0cb5210ac2e1d0a45b02beb0ff336d143f1453b1b43223a733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24212012
PQID 1450175783
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1450175783
pubmed_primary_24212012
crossref_citationtrail_10_3233_BME_130919
crossref_primary_10_3233_BME_130919
sage_journals_10_3233_BME_130919
PublicationCentury 2000
PublicationDate 20140100
2014-01-00
2014-00-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140100
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Netherlands
PublicationTitle Bio-medical materials and engineering
PublicationTitleAlternate Biomed Mater Eng
PublicationYear 2014
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
SSID ssj0004633
Score 2.4078197
Snippet A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1185
SubjectTerms Algorithms
Arousal
Brain-Computer Interfaces
Databases, Factual
Electroencephalography
Emotions
Entropy
Humans
Music
Reproducibility of Results
Signal Processing, Computer-Assisted
Support Vector Machine
Title Emotion recognition based on the sample entropy of EEG
URI https://journals.sagepub.com/doi/full/10.3233/BME-130919
https://www.ncbi.nlm.nih.gov/pubmed/24212012
https://www.proquest.com/docview/1450175783
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH9sDYz1ULbsK-s6NLbLCGplS3acY9M5K4PsMFrIzUi2BIE1Dkty6V-_p484Nstg3cUI2ZbM-8lP71sAn1Q2GivJNFWxllRkcUSzSDJqUDiJjKhwx7EJzrPv6fWt-DZP5vuz-Vx2yUadl_cH80r-B1XsQ1xtluwDkG0GxQ5sI754RYTx-k8Y5_4MnmETBYRtuy1VwQUwXEtb_HdoLbj1yvnS8_xrx4-7qOld8NWg7Oo_2jkU9L5QYRNl430Zc1xRTd-VdLbWH9tFE9rj860XbXuCz-A81577ZTZWIg08LLBHn-LcWQae16Fqkhxiwjy2RuLpZJZT3CDHfrQWGqs7B4fzRbMQQ90teb279Rh6MUr_yG97l5Mvk2kr4ZVzX2vWTnaxn8rWdg4vdwWNP7SHTuSeEyZunsFJ0ALIpYf0OTzSyz4ct2pD9uHJLEQ99KHnDuN-AWnAm7TwJg5vgg3Em3i8ScCb1IYg3i_hdprfXF3TcO4FLXmWbKg0Mot1ZnSqxqLSrFQoYzFZxjqqmBSJYrHSihnDeVqhvGsikXAVKYHMmcsR56_gaFkv9RsgAvVFbYxRSZUKV61QMsUUHyGJ0qQ0A_i8I1JRhqLw9mySnwUqh5a2BdK28LQdwMfm2ZUvhXLwqQ87WhfIqaz7SS51vV2jkpkg-8cdgg_gtQehGWcH2gCIRaUIP9n6wARv__ryKTy1C9obyN7B0ebXVp-hyLhR78MC-g2i12V2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+based+on+the+sample+entropy+of+EEG&rft.jtitle=Bio-medical+materials+and+engineering&rft.au=Jie%2C+Xiang&rft.au=Cao%2C+Rui&rft.au=Li%2C+Li&rft.date=2014&rft.eissn=1878-3619&rft.volume=24&rft.issue=1&rft.spage=1185&rft_id=info:doi/10.3233%2FBME-130919&rft_id=info%3Apmid%2F24212012&rft.externalDocID=24212012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-2989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-2989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-2989&client=summon