Emotion recognition based on the sample entropy of EEG
A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish...
Saved in:
Published in | Bio-medical materials and engineering Vol. 24; no. 1; pp. 1185 - 1192 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0959-2989 1878-3619 1878-3619 |
DOI | 10.3233/BME-130919 |
Cover
Loading…
Abstract | A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability. |
---|---|
AbstractList | A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability.A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability. A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the support vector machine (SVM)-weight classifier for training, after which it was applied to two emotion recognition tasks. One is to distinguish positive and negative emotion with high arousal and the other genitive emotion with different arousal status. Results showed that channels related to emotions were mostly located on the prefrontal region, i.e., F3, CP5, FP2, FZ, and FC2. And they were applied to form the input vectors of SVM-weight classifier. The accuracies of the present algorithm for the two tasks were 80.43% and 79.11%, respectively indicated by the leave-one-person-out validation procedure, demonstrating that the present algorithm had a reasonable generalization capability. |
Author | Cao, Rui Li, Li Jie, Xiang |
Author_xml | – sequence: 1 givenname: Xiang surname: Jie fullname: Jie, Xiang organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China – sequence: 2 givenname: Rui surname: Cao fullname: Cao, Rui organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China – sequence: 3 givenname: Li surname: Li fullname: Li, Li organization: The International WIC Institute, Beijing University of Technology, Beijing 100022, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24212012$$D View this record in MEDLINE/PubMed |
BookMark | eNptkDtPwzAUhS1URB-w8ANQNhBSwPbNc4QqFKQiFpgtO7kuqZI42MnQf09K2gV1umf4zpHuNyeTxjRIyDWjD8ABHp_fM58BTVl6RmYsiRMfIpZOyIymYerzNEmnZO7cllIaRAAXZMoDzjhlfEairDZdaRrPYm42TfmXlXRYeEPovtFzsm4r9LDprGl3ntFelq0uybmWlcOrw12Qr5fsc_nqrz9Wb8untZ9DEna-1DLhmGiMVBoUSHMVckZlzpEVVAaholyholoDRAULQLMgBMVUAJyDjAEW5G7cba356dF1oi5djlUlGzS9EwNPWRzGyR69OaC9qrEQrS1raXfi-OsA0BHIrXHOohZ52cn9w52VZSUYFXudYtApRp1D5f5f5bh6Er4dYSc3KLamt82g5hT5C34Zfuo |
CitedBy_id | crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_1007_s00521_015_2149_8 crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_3390_s19235218 crossref_primary_10_1016_j_aei_2022_101548 crossref_primary_10_1007_s00521_021_05694_4 crossref_primary_10_1016_j_inffus_2021_07_007 crossref_primary_10_1177_2096595819896200 crossref_primary_10_1016_j_bica_2018_01_001 crossref_primary_10_1051_itmconf_20171107006 crossref_primary_10_1016_j_mehy_2019_03_025 crossref_primary_10_1109_TCDS_2022_3174209 crossref_primary_10_1016_j_eswa_2022_118025 crossref_primary_10_1016_j_jneumeth_2021_109320 crossref_primary_10_3390_e24121735 crossref_primary_10_1016_j_compbiomed_2021_104696 crossref_primary_10_1109_TII_2022_3170422 crossref_primary_10_3389_fpsyg_2022_919695 crossref_primary_10_1016_j_buildenv_2021_108711 crossref_primary_10_1007_s00521_024_09521_4 crossref_primary_10_3389_fnhum_2022_936393 crossref_primary_10_1016_j_neulet_2016_09_037 crossref_primary_10_1108_AEAT_08_2016_0130 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1142_S0219519420500256 crossref_primary_10_1016_j_bspc_2021_103290 crossref_primary_10_1016_j_fuel_2021_120997 crossref_primary_10_3233_BME_151554 crossref_primary_10_1088_1742_6596_1487_1_012002 crossref_primary_10_1142_S0219622019500238 crossref_primary_10_3390_s18030841 crossref_primary_10_1155_2021_6625141 crossref_primary_10_1155_2017_8317357 crossref_primary_10_1007_s11760_024_03360_5 crossref_primary_10_1109_TCDS_2021_3074811 crossref_primary_10_3934_mbe_2023116 crossref_primary_10_1016_j_bspc_2022_103547 crossref_primary_10_1007_s11571_024_10130_z crossref_primary_10_3390_app7121239 crossref_primary_10_1016_j_eswa_2022_116634 crossref_primary_10_1109_ACCESS_2024_3430934 crossref_primary_10_1109_ACCESS_2024_3375393 crossref_primary_10_1109_TBME_2015_2478406 crossref_primary_10_1109_TAFFC_2018_2890636 crossref_primary_10_3390_s23031255 crossref_primary_10_3389_fpsyt_2021_837149 crossref_primary_10_3390_app14178071 crossref_primary_10_3390_s19092212 crossref_primary_10_1007_s10489_022_04366_7 crossref_primary_10_1109_TAFFC_2019_2937768 crossref_primary_10_3390_brainsci14040344 crossref_primary_10_1109_ACCESS_2024_3429195 crossref_primary_10_1007_s11760_021_01927_0 crossref_primary_10_26599_BSA_2019_9050005 crossref_primary_10_1186_s12993_018_0149_4 crossref_primary_10_1016_j_compbiomed_2022_105327 crossref_primary_10_1016_j_bspc_2022_103485 crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_3390_s23156890 crossref_primary_10_3390_math12081180 crossref_primary_10_3389_fnins_2023_1288580 crossref_primary_10_1109_TCBB_2020_3018137 crossref_primary_10_1007_s43538_023_00201_w crossref_primary_10_3389_fnhum_2022_1051463 crossref_primary_10_1109_ACCESS_2020_2978930 crossref_primary_10_1109_TAFFC_2017_2714671 crossref_primary_10_1007_s40846_015_0044_5 crossref_primary_10_1016_j_procs_2020_06_100 crossref_primary_10_1186_s12916_024_03481_1 crossref_primary_10_3389_fnbot_2022_834952 crossref_primary_10_1109_TAFFC_2021_3137857 crossref_primary_10_3390_s21155135 crossref_primary_10_3390_brainsci9110326 crossref_primary_10_3390_e26040299 crossref_primary_10_3233_JIFS_223456 crossref_primary_10_1016_j_bspc_2022_104060 crossref_primary_10_48084_etasr_5073 crossref_primary_10_3389_fnins_2023_1172103 crossref_primary_10_3390_electronics11040651 crossref_primary_10_1016_j_bspc_2023_104835 crossref_primary_10_1016_j_bspc_2022_103489 crossref_primary_10_1016_j_buildenv_2024_111754 crossref_primary_10_1088_1741_2552_ac6294 crossref_primary_10_1049_iet_its_2016_0127 crossref_primary_10_1016_j_asoc_2024_111338 crossref_primary_10_1007_s10489_021_03070_2 crossref_primary_10_1142_S179354582050025X |
ContentType | Journal Article |
Copyright | IOS Press and the authors |
Copyright_xml | – notice: IOS Press and the authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.3233/BME-130919 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Music |
EISSN | 1878-3619 |
EndPage | 1192 |
ExternalDocumentID | 24212012 10_3233_BME_130919 10.3233_BME-130919 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1B1 23N 36B 4.4 53G 5GY AAFNC AAGLT AAQXI ABDBF ABJNI ABJZC ABUBZ ABUJY ACGFS ACIWK ACPQW ACPRK ACUHS ADZMO AEJQA AENEX AFRAH AFRHK AFYTF AHDMH AJNRN ALMA_UNASSIGNED_HOLDINGS APPIZ ARTOV CAG COF DU5 EAD EAP EBD EBS EJD EMB EMK EMOBN EPL EST ESX F5P H13 HZ~ I-F IHE IL9 IOS J8X M41 MET MIO MK~ ML~ MV1 NGNOM NQ- O9- P2P Q1R ROL RPZ SAUOL SCNPE SFC SV3 TUS AAEJI AAPII AAYXX ADEBD AJGYC ALIRC CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c385t-afa82e8fe6b94de0cb5210ac2e1d0a45b02beb0ff336d143f1453b1b43223a733 |
ISSN | 0959-2989 1878-3619 |
IngestDate | Tue Aug 05 11:27:26 EDT 2025 Thu Apr 03 07:03:54 EDT 2025 Tue Aug 05 12:09:35 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jun 17 22:27:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | brain computer interface Emotion recognition SVM EEG sample entropy |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-afa82e8fe6b94de0cb5210ac2e1d0a45b02beb0ff336d143f1453b1b43223a733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24212012 |
PQID | 1450175783 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1450175783 pubmed_primary_24212012 crossref_citationtrail_10_3233_BME_130919 crossref_primary_10_3233_BME_130919 sage_journals_10_3233_BME_130919 |
PublicationCentury | 2000 |
PublicationDate | 20140100 2014-01-00 2014-00-00 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 1 year: 2014 text: 20140100 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Netherlands |
PublicationTitle | Bio-medical materials and engineering |
PublicationTitleAlternate | Biomed Mater Eng |
PublicationYear | 2014 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
SSID | ssj0004633 |
Score | 2.4078197 |
Snippet | A sample entropy (SampEn)-based emotion recognition approach was presented. The SampEn results of notable EEG channels screened by K-S test were fed to the... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1185 |
SubjectTerms | Algorithms Arousal Brain-Computer Interfaces Databases, Factual Electroencephalography Emotions Entropy Humans Music Reproducibility of Results Signal Processing, Computer-Assisted Support Vector Machine |
Title | Emotion recognition based on the sample entropy of EEG |
URI | https://journals.sagepub.com/doi/full/10.3233/BME-130919 https://www.ncbi.nlm.nih.gov/pubmed/24212012 https://www.proquest.com/docview/1450175783 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH9sDYz1ULbsK-s6NLbLCGplS3acY9M5K4PsMFrIzUi2BIE1Dkty6V-_p484Nstg3cUI2ZbM-8lP71sAn1Q2GivJNFWxllRkcUSzSDJqUDiJjKhwx7EJzrPv6fWt-DZP5vuz-Vx2yUadl_cH80r-B1XsQ1xtluwDkG0GxQ5sI754RYTx-k8Y5_4MnmETBYRtuy1VwQUwXEtb_HdoLbj1yvnS8_xrx4-7qOld8NWg7Oo_2jkU9L5QYRNl430Zc1xRTd-VdLbWH9tFE9rj860XbXuCz-A81577ZTZWIg08LLBHn-LcWQae16Fqkhxiwjy2RuLpZJZT3CDHfrQWGqs7B4fzRbMQQ90teb279Rh6MUr_yG97l5Mvk2kr4ZVzX2vWTnaxn8rWdg4vdwWNP7SHTuSeEyZunsFJ0ALIpYf0OTzSyz4ct2pD9uHJLEQ99KHnDuN-AWnAm7TwJg5vgg3Em3i8ScCb1IYg3i_hdprfXF3TcO4FLXmWbKg0Mot1ZnSqxqLSrFQoYzFZxjqqmBSJYrHSihnDeVqhvGsikXAVKYHMmcsR56_gaFkv9RsgAvVFbYxRSZUKV61QMsUUHyGJ0qQ0A_i8I1JRhqLw9mySnwUqh5a2BdK28LQdwMfm2ZUvhXLwqQ87WhfIqaz7SS51vV2jkpkg-8cdgg_gtQehGWcH2gCIRaUIP9n6wARv__ryKTy1C9obyN7B0ebXVp-hyLhR78MC-g2i12V2 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+based+on+the+sample+entropy+of+EEG&rft.jtitle=Bio-medical+materials+and+engineering&rft.au=Jie%2C+Xiang&rft.au=Cao%2C+Rui&rft.au=Li%2C+Li&rft.date=2014&rft.eissn=1878-3619&rft.volume=24&rft.issue=1&rft.spage=1185&rft_id=info:doi/10.3233%2FBME-130919&rft_id=info%3Apmid%2F24212012&rft.externalDocID=24212012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-2989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-2989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-2989&client=summon |