Cyclic orbifolds of lattice vertex operator algebras having group-like fusions

Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like fusion if and only if g acts trivially on the discriminant group D ( L ) = L ∗ / L (or equivalently ( 1 - g ) L ∗ < L ). We also determine thei...

Full description

Saved in:
Bibliographic Details
Published inLetters in mathematical physics Vol. 110; no. 5; pp. 1081 - 1112
Main Author Lam, Ching Hung
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0377-9017
1573-0530
DOI10.1007/s11005-019-01251-2

Cover

Abstract Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like fusion if and only if g acts trivially on the discriminant group D ( L ) = L ∗ / L (or equivalently ( 1 - g ) L ∗ < L ). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L . By applying our method to some coinvariant sublattices of the Leech lattice Λ , we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra V Λ g g ^ .
AbstractList Let L be an even (positive definite) lattice and g∈O(L). In this article, we prove that the orbifold vertex operator algebra VLg^ has group-like fusion if and only if g acts trivially on the discriminant group D(L)=L∗/L (or equivalently (1-g)L∗<L). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L. By applying our method to some coinvariant sublattices of the Leech lattice Λ, we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra VΛgg^.
Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like fusion if and only if g acts trivially on the discriminant group D ( L ) = L ∗ / L (or equivalently ( 1 - g ) L ∗ < L ). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L . By applying our method to some coinvariant sublattices of the Leech lattice Λ , we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra V Λ g g ^ .
Author Lam, Ching Hung
Author_xml – sequence: 1
  givenname: Ching Hung
  orcidid: 0000-0002-7583-1031
  surname: Lam
  fullname: Lam, Ching Hung
  email: chlam@math.sinica.edu.tw
  organization: Institute of Mathematics, Academia Sinica
BookMark eNp9kEtPwzAQhC1UJNrCH-BkiXPAjziJj6jiJVVwgXPkOuvgEuJgOxX99xiChMShh9Vc5tvZnQWa9a4HhM4puaSElFeBJhEZoTINEzRjR2hORckzIjiZoTnhZZlJQssTtAhhSxLEBJmjx9Ved1Zj5zfWuK4J2BncqRitBrwDH-ETuwG8is5j1bWw8SrgV7WzfYtb78Yh6-wbYDMG6_pwio6N6gKc_eoSvdzePK_us_XT3cPqep1pXomYKUMKbWilJddFDhUw1VQ5bGgplZSmzIumKWShBHACTXLmzAhgkmopiQTgS3Qx7R28-xghxHrrRt-nyJrxqpB5SfIiudjk0t6F4MHUg7fvyu9rSurv3uqptzr1Vv_0luglqv5B2kYV03fRK9sdRvmEhpTTt-D_rjpAfQF49oTN
CitedBy_id crossref_primary_10_1007_s00220_021_04018_w
crossref_primary_10_1016_j_aim_2023_109125
crossref_primary_10_2140_ant_2024_18_1891
crossref_primary_10_11650_tjm_210502
crossref_primary_10_1007_s11005_023_01652_4
crossref_primary_10_1007_s11856_023_2552_2
crossref_primary_10_11650_tjm_241103
crossref_primary_10_1112_jlms_12659
crossref_primary_10_1016_j_jpaa_2023_107454
crossref_primary_10_1017_fms_2023_86
crossref_primary_10_1007_s00023_025_01542_6
crossref_primary_10_1007_s00220_023_04722_9
crossref_primary_10_1007_s00220_022_04585_6
crossref_primary_10_1016_j_jalgebra_2024_08_027
Cites_doi 10.1353/ajm.2015.0001
10.1016/j.jalgebra.2015.08.028
10.1090/proc/13881
10.1090/tran/7887
10.1007/s002200000242
10.1007/978-1-4757-6568-7
10.1090/tran/6749
10.1016/0022-4049(95)00079-8
10.1090/tran/6382
10.1007/BF02099044
10.1112/plms/pdr041
10.1016/j.jalgebra.2018.04.036
10.1007/BF01232032
10.1007/s00220-011-1212-2
10.1006/jabr.1993.1217
10.14492/hokmj/1381517491
10.1073/pnas.82.24.8295
10.1007/s00220-010-1114-8
10.1007/s00220-015-2484-8
10.1016/j.jalgebra.2014.01.028
10.1090/S0002-9947-2013-05863-1
10.1016/j.jpaa.2019.07.016
10.1007/s00220-004-1132-5
10.1007/978-1-4612-0353-7
10.1016/j.jalgebra.2015.07.013
10.1090/conm/248/03821
10.1007/s00220-014-2252-1
10.1007/978-3-662-03516-0
10.1016/j.jalgebra.2012.12.019
10.1016/0022-4049(95)00095-X
10.1007/s11005-016-0883-1
10.1215/S0012-7094-97-08609-9
10.1155/S1073792804140968
10.1016/j.aim.2017.09.032
10.1515/crelle-2017-0046
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Springer Nature B.V. 2019.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Springer Nature B.V. 2019.
DBID AAYXX
CITATION
DOI 10.1007/s11005-019-01251-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1573-0530
EndPage 1112
ExternalDocumentID 10_1007_s11005_019_01251_2
GrantInformation_xml – fundername: Academia Sinica
  grantid: AS-IA-107-M02
  funderid: http://dx.doi.org/10.13039/501100001869
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 104-2115-M-001-004-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c385t-af06cf18c93c64e8e2ad84eb179a99f746dd696a5e30edcf142f5e291c9909ee3
IEDL.DBID U2A
ISSN 0377-9017
IngestDate Fri Jul 25 11:08:31 EDT 2025
Tue Jul 01 03:39:19 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Fri Feb 21 02:38:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cyclic orbifold
Group-like fusion
Secondary 11H56
Primary 17B69
Vertex operator algebra
Leech lattice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-af06cf18c93c64e8e2ad84eb179a99f746dd696a5e30edcf142f5e291c9909ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7583-1031
PQID 2386947046
PQPubID 2043605
PageCount 32
ParticipantIDs proquest_journals_2386947046
crossref_primary_10_1007_s11005_019_01251_2
crossref_citationtrail_10_1007_s11005_019_01251_2
springer_journals_10_1007_s11005_019_01251_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Letters in mathematical physics
PublicationTitleAbbrev Lett Math Phys
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Lam, Lin (CR29) 2020; 224
Lam, Shimakura (CR36) 2018
CR37
Lam, Shimakura (CR35) 2019; 372
Dong (CR9) 1993; 161
Kawasetsu, Lam, Lin (CR26) 2018; 146
Dong, Mason (CR14) 1997; 86
Höhn, Scheithauer (CR25) 2014; 404
Harada, Lang (CR22) 1990; 19
Griess (CR20) 1998
Lam, Shimakura (CR31) 2015; 137
Griess, Lam (CR21) 2013; 379
Lam, Shimakura (CR34) 2017; 12
Lam, Shimakura (CR32) 2016; 342
Frenkel, Lepowsky, Meurman (CR19) 1988
Nikulin (CR42) 1979; 43
Dong, Mason (CR15) 2004; 2004
Dong, Lepowsky (CR11) 1993
Dong, Lepowsky (CR12) 1996; 110
Dong, Jiao, Xu (CR10) 2013; 365
Lam (CR28) 2011; 305
Lepowsky (CR38) 1985; 82
Bakalov, Kac (CR3) 2004
Borcherds (CR4) 1992; 109
CR6
CR5
CR7
Schellekens (CR44) 1993; 153
Conway, Sloane (CR8) 1999
Li (CR39) 1996; 109
Dong, Li, Mason (CR13) 2000; 214
Abe, Dong, Li (CR1) 2005; 253
CR46
CR23
CR45
Höhn, Mason (CR24) 2016; 448
Dong, Wang (CR18) 2010; 299
Lin (CR40) 2017; 369
Abe, Lam, Yamada (CR2) 2018; 510
Dong, Nagatomo, Jing, Misra (CR16) 1999
Krauel, Miyamoto (CR27) 2015; 444
Lam, Shimakura (CR30) 2012; 104
Miyamoto (CR41) 2015; 335
Sagaki, Shimakura (CR43) 2016; 368
Dong, Ren, Xu (CR17) 2017; 321
Lam, Shimakura (CR33) 2016; 106
J Lepowsky (1251_CR38) 1985; 82
B Bakalov (1251_CR3) 2004
M Krauel (1251_CR27) 2015; 444
M Miyamoto (1251_CR41) 2015; 335
1251_CR5
1251_CR23
1251_CR45
1251_CR6
1251_CR46
1251_CR7
C Dong (1251_CR15) 2004; 2004
C Dong (1251_CR17) 2017; 321
CH Lam (1251_CR36) 2018
RL Griess Jr (1251_CR21) 2013; 379
C Dong (1251_CR10) 2013; 365
CH Lam (1251_CR35) 2019; 372
CH Lam (1251_CR28) 2011; 305
VV Nikulin (1251_CR42) 1979; 43
X Lin (1251_CR40) 2017; 369
I Frenkel (1251_CR19) 1988
K Harada (1251_CR22) 1990; 19
CH Lam (1251_CR32) 2016; 342
CH Lam (1251_CR31) 2015; 137
RL Griess Jr (1251_CR20) 1998
K Kawasetsu (1251_CR26) 2018; 146
D Sagaki (1251_CR43) 2016; 368
C Dong (1251_CR9) 1993; 161
C Dong (1251_CR13) 2000; 214
CH Lam (1251_CR33) 2016; 106
1251_CR37
C Dong (1251_CR18) 2010; 299
CH Lam (1251_CR34) 2017; 12
T Abe (1251_CR1) 2005; 253
G Höhn (1251_CR24) 2016; 448
RE Borcherds (1251_CR4) 1992; 109
H Li (1251_CR39) 1996; 109
C Dong (1251_CR16) 1999
JH Conway (1251_CR8) 1999
AN Schellekens (1251_CR44) 1993; 153
CH Lam (1251_CR29) 2020; 224
CH Lam (1251_CR30) 2012; 104
G Höhn (1251_CR25) 2014; 404
C Dong (1251_CR11) 1993
C Dong (1251_CR12) 1996; 110
T Abe (1251_CR2) 2018; 510
C Dong (1251_CR14) 1997; 86
References_xml – ident: CR45
– volume: 137
  start-page: 111
  year: 2015
  end-page: 137
  ident: CR31
  article-title: Classification of holomorphic framed vertex operator algebras of central charge 24
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2015.0001
– volume: 448
  start-page: 618
  year: 2016
  end-page: 637
  ident: CR24
  article-title: The 290 fixed-point sublattices of the Leech lattice
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2015.08.028
– volume: 146
  start-page: 1937
  issue: 5
  year: 2018
  end-page: 1950
  ident: CR26
  article-title: -orbifold construction associated with -isometry and uniqueness of holomorphic vertex operator algebras of central charge 24
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13881
– volume: 372
  start-page: 7001
  issue: 10
  year: 2019
  end-page: 7024
  ident: CR35
  article-title: Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7887
– volume: 214
  start-page: 1
  year: 2000
  end-page: 56
  ident: CR13
  article-title: Modular-invariance of trace functions in orbifold theory and generalized Moonshine
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200000242
– year: 1999
  ident: CR8
  publication-title: Sphere Packings, Lattices and Groups
  doi: 10.1007/978-1-4757-6568-7
– volume: 369
  start-page: 3821
  year: 2017
  end-page: 3840
  ident: CR40
  article-title: Mirror extensions of rational vertex operator algebras
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6749
– ident: CR37
– volume: 109
  start-page: 143
  issue: 2
  year: 1996
  end-page: 195
  ident: CR39
  article-title: Local systems of vertex operators, vertex superalgebras and modules
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00079-8
– ident: CR6
– year: 1988
  ident: CR19
  publication-title: Vertex Operator Algebras and the Monster
– volume: 368
  start-page: 1621
  issue: 3
  year: 2016
  end-page: 1646
  ident: CR43
  article-title: Application of a -orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6382
– volume: 153
  start-page: 159
  year: 1993
  end-page: 185
  ident: CR44
  article-title: Meromorphic conformal field theories
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02099044
– volume: 104
  start-page: 540
  year: 2012
  end-page: 576
  ident: CR30
  article-title: Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdr041
– volume: 510
  start-page: 24
  year: 2018
  end-page: 51
  ident: CR2
  article-title: Extensions of tensor products of the lattice VOA
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2018.04.036
– volume: 109
  start-page: 405
  year: 1992
  end-page: 444
  ident: CR4
  article-title: Monstrous moonshine and monstrous Lie superalgebras
  publication-title: Invent. Math.
  doi: 10.1007/BF01232032
– volume: 305
  start-page: 153
  year: 2011
  end-page: 198
  ident: CR28
  article-title: On the constructions of holomorphic vertex operator algebras of central charge 24
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-011-1212-2
– ident: CR23
– volume: 161
  start-page: 245
  year: 1993
  end-page: 265
  ident: CR9
  article-title: Vertex algebras associated with even lattices
  publication-title: J. Algebra
  doi: 10.1006/jabr.1993.1217
– volume: 19
  start-page: 435
  year: 1990
  end-page: 446
  ident: CR22
  article-title: On some sublattices of the Leech lattice
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1381517491
– volume: 82
  start-page: 8295
  year: 1985
  end-page: 8299
  ident: CR38
  article-title: Calculus of twisted vertex operators
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.24.8295
– start-page: 3
  year: 2004
  end-page: 26
  ident: CR3
  publication-title: Twisted Modules Over Lattice Vertex Algebras, Lie Theory and Its Applications in Physics V
– volume: 299
  start-page: 783
  issue: 3
  year: 2010
  end-page: 792
  ident: CR18
  article-title: The structure of parafermion vertex operator algebras: general case
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-010-1114-8
– volume: 342
  start-page: 803
  year: 2016
  end-page: 841
  ident: CR32
  article-title: Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-015-2484-8
– ident: CR46
– volume: 404
  start-page: 222
  year: 2014
  end-page: 239
  ident: CR25
  article-title: A generalized Kac–Moody algebra of rank 14
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.01.028
– year: 2018
  ident: CR36
  publication-title: On Orbifold Constructions Associated with the Leech Lattice Vertex Operator Algebra
– volume: 365
  start-page: 6441
  year: 2013
  end-page: 6469
  ident: CR10
  article-title: Quantum dimensions and quantum Galois theory
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2013-05863-1
– volume: 224
  start-page: 1241
  issue: 3
  year: 2020
  end-page: 1279
  ident: CR29
  article-title: A holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2019.07.016
– volume: 253
  start-page: 171
  issue: 1
  year: 2005
  end-page: 219
  ident: CR1
  article-title: Fusion rules for the vertex operator algebra and
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1132-5
– year: 1993
  ident: CR11
  publication-title: Generalized Vertex Algebras and Relative Vertex Operators
  doi: 10.1007/978-1-4612-0353-7
– volume: 444
  start-page: 124
  year: 2015
  end-page: 142
  ident: CR27
  article-title: A modular invariance property of multivariable trace functions for regular vertex operator algebras
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2015.07.013
– volume: 12
  start-page: 39
  issue: 1
  year: 2017
  end-page: 70
  ident: CR34
  article-title: Construction of holomorphic vertex operator algebras of central charge 24 using the Leech lattice and level lattices
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
– start-page: 117
  year: 1999
  end-page: 133
  ident: CR16
  article-title: Automorphism groups and twisted modules for lattice vertex operator algebras
  publication-title: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998)
  doi: 10.1090/conm/248/03821
– volume: 335
  start-page: 1279
  year: 2015
  end-page: 1286
  ident: CR41
  article-title: -cofiniteness of cyclic-orbifold models
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2252-1
– year: 1998
  ident: CR20
  publication-title: Twelve Sporadic Groups
  doi: 10.1007/978-3-662-03516-0
– volume: 379
  start-page: 85
  year: 2013
  end-page: 112
  ident: CR21
  article-title: Moonshine paths for 3A and 6A nodes of the extended -diagram
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2012.12.019
– ident: CR5
– ident: CR7
– volume: 110
  start-page: 259
  year: 1996
  end-page: 295
  ident: CR12
  article-title: The algebraic structure of relative twisted vertex operators
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00095-X
– volume: 43
  start-page: 111
  year: 1979
  end-page: 177
  ident: CR42
  article-title: Integral symmetric bilinear forms and some of their geometric applications
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– volume: 106
  start-page: 1575
  year: 2016
  end-page: 1585
  ident: CR33
  article-title: A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-016-0883-1
– volume: 86
  start-page: 305
  year: 1997
  end-page: 321
  ident: CR14
  article-title: On quantum Galois theory
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-97-08609-9
– volume: 2004
  start-page: 2989
  year: 2004
  end-page: 3008
  ident: CR15
  article-title: Rational vertex operator algebras and the effective central charge
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792804140968
– volume: 321
  start-page: 1
  year: 2017
  end-page: 30
  ident: CR17
  article-title: On orbifold theory
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2017.09.032
– volume: 153
  start-page: 159
  year: 1993
  ident: 1251_CR44
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02099044
– volume: 365
  start-page: 6441
  year: 2013
  ident: 1251_CR10
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2013-05863-1
– ident: 1251_CR5
– volume: 510
  start-page: 24
  year: 2018
  ident: 1251_CR2
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2018.04.036
– ident: 1251_CR7
– ident: 1251_CR45
  doi: 10.1515/crelle-2017-0046
– volume: 372
  start-page: 7001
  issue: 10
  year: 2019
  ident: 1251_CR35
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7887
– start-page: 117
  volume-title: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998)
  year: 1999
  ident: 1251_CR16
  doi: 10.1090/conm/248/03821
– volume: 19
  start-page: 435
  year: 1990
  ident: 1251_CR22
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1381517491
– volume-title: Vertex Operator Algebras and the Monster
  year: 1988
  ident: 1251_CR19
– ident: 1251_CR46
– volume: 335
  start-page: 1279
  year: 2015
  ident: 1251_CR41
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2252-1
– volume: 321
  start-page: 1
  year: 2017
  ident: 1251_CR17
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2017.09.032
– volume-title: Twelve Sporadic Groups
  year: 1998
  ident: 1251_CR20
  doi: 10.1007/978-3-662-03516-0
– volume: 109
  start-page: 143
  issue: 2
  year: 1996
  ident: 1251_CR39
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00079-8
– ident: 1251_CR23
– volume: 299
  start-page: 783
  issue: 3
  year: 2010
  ident: 1251_CR18
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-010-1114-8
– volume: 379
  start-page: 85
  year: 2013
  ident: 1251_CR21
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2012.12.019
– volume: 82
  start-page: 8295
  year: 1985
  ident: 1251_CR38
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.24.8295
– volume-title: On Orbifold Constructions Associated with the Leech Lattice Vertex Operator Algebra
  year: 2018
  ident: 1251_CR36
– volume: 448
  start-page: 618
  year: 2016
  ident: 1251_CR24
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2015.08.028
– volume: 137
  start-page: 111
  year: 2015
  ident: 1251_CR31
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2015.0001
– volume: 106
  start-page: 1575
  year: 2016
  ident: 1251_CR33
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-016-0883-1
– volume: 368
  start-page: 1621
  issue: 3
  year: 2016
  ident: 1251_CR43
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6382
– ident: 1251_CR37
  doi: 10.1090/tran/7887
– volume: 404
  start-page: 222
  year: 2014
  ident: 1251_CR25
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2014.01.028
– ident: 1251_CR6
– volume: 104
  start-page: 540
  year: 2012
  ident: 1251_CR30
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdr041
– volume: 444
  start-page: 124
  year: 2015
  ident: 1251_CR27
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2015.07.013
– volume: 224
  start-page: 1241
  issue: 3
  year: 2020
  ident: 1251_CR29
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2019.07.016
– volume-title: Sphere Packings, Lattices and Groups
  year: 1999
  ident: 1251_CR8
  doi: 10.1007/978-1-4757-6568-7
– volume: 43
  start-page: 111
  year: 1979
  ident: 1251_CR42
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– volume: 12
  start-page: 39
  issue: 1
  year: 2017
  ident: 1251_CR34
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
– volume: 161
  start-page: 245
  year: 1993
  ident: 1251_CR9
  publication-title: J. Algebra
  doi: 10.1006/jabr.1993.1217
– volume: 86
  start-page: 305
  year: 1997
  ident: 1251_CR14
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-97-08609-9
– volume: 109
  start-page: 405
  year: 1992
  ident: 1251_CR4
  publication-title: Invent. Math.
  doi: 10.1007/BF01232032
– volume-title: Generalized Vertex Algebras and Relative Vertex Operators
  year: 1993
  ident: 1251_CR11
  doi: 10.1007/978-1-4612-0353-7
– volume: 146
  start-page: 1937
  issue: 5
  year: 2018
  ident: 1251_CR26
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13881
– volume: 214
  start-page: 1
  year: 2000
  ident: 1251_CR13
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200000242
– volume: 110
  start-page: 259
  year: 1996
  ident: 1251_CR12
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00095-X
– volume: 2004
  start-page: 2989
  year: 2004
  ident: 1251_CR15
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792804140968
– volume: 342
  start-page: 803
  year: 2016
  ident: 1251_CR32
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-015-2484-8
– volume: 253
  start-page: 171
  issue: 1
  year: 2005
  ident: 1251_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1132-5
– start-page: 3
  volume-title: Twisted Modules Over Lattice Vertex Algebras, Lie Theory and Its Applications in Physics V
  year: 2004
  ident: 1251_CR3
– volume: 305
  start-page: 153
  year: 2011
  ident: 1251_CR28
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-011-1212-2
– volume: 369
  start-page: 3821
  year: 2017
  ident: 1251_CR40
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6749
SSID ssj0007250
Score 2.3954577
Snippet Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like...
Let L be an even (positive definite) lattice and g∈O(L). In this article, we prove that the orbifold vertex operator algebra VLg^ has group-like fusion if and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1081
SubjectTerms Algebra
Complex Systems
Geometry
Group Theory and Generalizations
Lattices (mathematics)
Mathematical analysis
Mathematical and Computational Physics
Physics
Physics and Astronomy
Subgroups
Theoretical
Title Cyclic orbifolds of lattice vertex operator algebras having group-like fusions
URI https://link.springer.com/article/10.1007/s11005-019-01251-2
https://www.proquest.com/docview/2386947046
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SIujBR1Ws1pKDNw1ss9lHjqW0FqU9WainJZuHFJdu6bag_95JutuiqOBxdyc5TDIz3-y8ELoFE05Tw1OipFKESdMhqYg9QpWiKogiqdyMpdE4HE7Y4zSYlkVhRZXtXoUknabeFbt1PJdoZvN7wCoTULz1AHx3K44T2t3q34i6uayeb4OTcOHKUpmf9_hqjnYY81tY1FmbwQk6KmEi7m7O9RTt6XkDHZeQEZcCWTTQ4WjbdhWe9l0-pyzO0Lj3IbOZxPkynZk8UwXODc7Eyqa6YTuCWb_jfKFdjB3bUR_gNBfYVuzPX7Gr9CDZ7E1js7Z_04pzNBn0n3tDUo5OINKPgxURxguB77HkvgyZjjUVKmaglyMuODcRC5UKeSgC7XtaASWjJtCUdyRYJ661f4Fq83yuLxH2hB8ymQbCiwQDPBBH8IIywY2Fjto0UafiYCLLvuJ2vEWW7DoiW64nwPXEcT2hTXS3XbPYdNX4k7pVHUxSSliRANQIOYvAvW-i--qwdp9_3-3qf-TX6IBaF9tdmxaqrZZrfQM4ZJW2Ub378PLUb7vr9wlIXtRV
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-MxqgHP1AjitqDN20yuu6jR0IkqMAJEm5L1w9DXBhhkOh_72vZIBo18bit7eG99r1f9z5-CN2BC6ep4SlRUinCpGmSVMQeoUpRFUSRVI5jqT8IuyP2PA7GZVFYUWW7VyFJZ6k3xW5NzyWa2fwe8MoEDO8OgIHY8haMaGttfyPqeFk93wYnYcOVpTI_r_HVHW0w5rewqPM2nWN0WMJE3Frp9QRt6WkNHZWQEZcHsqihg_667So87bp8TlmcokH7Q2YTifN5OjF5pgqcG5yJhU11w5aCWb_jfKZdjB1bqg-4NBfYVuxPX7Gr9CDZ5E1js7R_04ozNOo8DttdUlInEOnHwYII44Ug91hyX4ZMx5oKFTOwyxEXnJuIhUqFPBSB9j2tYCSjJtCUNyV4J661f462p_lUXyDsCT9kMg2EFwkGeCCO4AVlghsLHbWpo2YlwUSWfcUtvUWWbDoiW6knIPXEST2hdXS_njNbddX4c3SjUkxSnrAiAcWHnEVwva-jh0pZm8-_r3b5v-G3aK877PeS3tPg5QrtU3vddluogbYX86W-BkyySG_cFvwExPbVtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCAQDb0ShgAc2sEgc5-ERFSqeFQOV2CLHD1QRJVUTJPj3nN20BQRIjEnOHu7Od59zL4SOwYXTzPCMKKkUYdL4JBOJR6hSVIVxLJWbsXTfi6767OYpfPpUxe-y3SchyXFNg-3SVNRnQ2XOZoVvvueSzmyuD3hoAkZ4AcyxbzW9T8-ntjimbkarF9hAJShfUzbz8x5fXdMMb34LkTrP011Hqw1kxOdjGW-gOV1sorUGPuLmcFabaOV-2oIVnhZdbqestlCv8y7zgcTlKBuYMlcVLg3ORW3T3rAdx6zfcDnULt6O7dgPuEBX2FbvF8_YVX2QfPCisXm1f9aqbdTvXj52rkgzRoHIIAlrIowXgQwSyQMZMZ1oKlTCwEbHXHBuYhYpFfFIhDrwtAJKRk2oKfcleCqudbCD5ouy0LsIeyKImMxC4cWCATZIYnhBmeDGwkhtWsifcDCVTY9xO-oiT2fdkS3XU-B66rie0hY6ma4Zjjts_EndnggmbU5blQLsiDiL4arfQqcTYc0-_77b3v_Ij9DSw0U3vbvu3e6jZWpv3k6D2mi-Hr3qA4AndXboNPADXirZ8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+orbifolds+of+lattice+vertex+operator+algebras+having+group-like+fusions&rft.jtitle=Letters+in+mathematical+physics&rft.au=Lam%2C+Ching+Hung&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0377-9017&rft.eissn=1573-0530&rft.volume=110&rft.issue=5&rft.spage=1081&rft.epage=1112&rft_id=info:doi/10.1007%2Fs11005-019-01251-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-9017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-9017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-9017&client=summon