Cyclic orbifolds of lattice vertex operator algebras having group-like fusions
Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like fusion if and only if g acts trivially on the discriminant group D ( L ) = L ∗ / L (or equivalently ( 1 - g ) L ∗ < L ). We also determine thei...
Saved in:
Published in | Letters in mathematical physics Vol. 110; no. 5; pp. 1081 - 1112 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0377-9017 1573-0530 |
DOI | 10.1007/s11005-019-01251-2 |
Cover
Abstract | Let
L
be an even (positive definite) lattice and
g
∈
O
(
L
)
. In this article, we prove that the orbifold vertex operator algebra
V
L
g
^
has group-like fusion if and only if
g
acts trivially on the discriminant group
D
(
L
)
=
L
∗
/
L
(or equivalently
(
1
-
g
)
L
∗
<
L
). We also determine their fusion rings and the corresponding quadratic space structures when
g
is fixed point free on
L
. By applying our method to some coinvariant sublattices of the Leech lattice
Λ
, we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra
V
Λ
g
g
^
. |
---|---|
AbstractList | Let L be an even (positive definite) lattice and g∈O(L). In this article, we prove that the orbifold vertex operator algebra VLg^ has group-like fusion if and only if g acts trivially on the discriminant group D(L)=L∗/L (or equivalently (1-g)L∗<L). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L. By applying our method to some coinvariant sublattices of the Leech lattice Λ, we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra VΛgg^. Let L be an even (positive definite) lattice and g ∈ O ( L ) . In this article, we prove that the orbifold vertex operator algebra V L g ^ has group-like fusion if and only if g acts trivially on the discriminant group D ( L ) = L ∗ / L (or equivalently ( 1 - g ) L ∗ < L ). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L . By applying our method to some coinvariant sublattices of the Leech lattice Λ , we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra V Λ g g ^ . |
Author | Lam, Ching Hung |
Author_xml | – sequence: 1 givenname: Ching Hung orcidid: 0000-0002-7583-1031 surname: Lam fullname: Lam, Ching Hung email: chlam@math.sinica.edu.tw organization: Institute of Mathematics, Academia Sinica |
BookMark | eNp9kEtPwzAQhC1UJNrCH-BkiXPAjziJj6jiJVVwgXPkOuvgEuJgOxX99xiChMShh9Vc5tvZnQWa9a4HhM4puaSElFeBJhEZoTINEzRjR2hORckzIjiZoTnhZZlJQssTtAhhSxLEBJmjx9Ved1Zj5zfWuK4J2BncqRitBrwDH-ETuwG8is5j1bWw8SrgV7WzfYtb78Yh6-wbYDMG6_pwio6N6gKc_eoSvdzePK_us_XT3cPqep1pXomYKUMKbWilJddFDhUw1VQ5bGgplZSmzIumKWShBHACTXLmzAhgkmopiQTgS3Qx7R28-xghxHrrRt-nyJrxqpB5SfIiudjk0t6F4MHUg7fvyu9rSurv3uqptzr1Vv_0luglqv5B2kYV03fRK9sdRvmEhpTTt-D_rjpAfQF49oTN |
CitedBy_id | crossref_primary_10_1007_s00220_021_04018_w crossref_primary_10_1016_j_aim_2023_109125 crossref_primary_10_2140_ant_2024_18_1891 crossref_primary_10_11650_tjm_210502 crossref_primary_10_1007_s11005_023_01652_4 crossref_primary_10_1007_s11856_023_2552_2 crossref_primary_10_11650_tjm_241103 crossref_primary_10_1112_jlms_12659 crossref_primary_10_1016_j_jpaa_2023_107454 crossref_primary_10_1017_fms_2023_86 crossref_primary_10_1007_s00023_025_01542_6 crossref_primary_10_1007_s00220_023_04722_9 crossref_primary_10_1007_s00220_022_04585_6 crossref_primary_10_1016_j_jalgebra_2024_08_027 |
Cites_doi | 10.1353/ajm.2015.0001 10.1016/j.jalgebra.2015.08.028 10.1090/proc/13881 10.1090/tran/7887 10.1007/s002200000242 10.1007/978-1-4757-6568-7 10.1090/tran/6749 10.1016/0022-4049(95)00079-8 10.1090/tran/6382 10.1007/BF02099044 10.1112/plms/pdr041 10.1016/j.jalgebra.2018.04.036 10.1007/BF01232032 10.1007/s00220-011-1212-2 10.1006/jabr.1993.1217 10.14492/hokmj/1381517491 10.1073/pnas.82.24.8295 10.1007/s00220-010-1114-8 10.1007/s00220-015-2484-8 10.1016/j.jalgebra.2014.01.028 10.1090/S0002-9947-2013-05863-1 10.1016/j.jpaa.2019.07.016 10.1007/s00220-004-1132-5 10.1007/978-1-4612-0353-7 10.1016/j.jalgebra.2015.07.013 10.1090/conm/248/03821 10.1007/s00220-014-2252-1 10.1007/978-3-662-03516-0 10.1016/j.jalgebra.2012.12.019 10.1016/0022-4049(95)00095-X 10.1007/s11005-016-0883-1 10.1215/S0012-7094-97-08609-9 10.1155/S1073792804140968 10.1016/j.aim.2017.09.032 10.1515/crelle-2017-0046 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Springer Nature B.V. 2019. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Springer Nature B.V. 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11005-019-01251-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1573-0530 |
EndPage | 1112 |
ExternalDocumentID | 10_1007_s11005_019_01251_2 |
GrantInformation_xml | – fundername: Academia Sinica grantid: AS-IA-107-M02 funderid: http://dx.doi.org/10.13039/501100001869 – fundername: Ministry of Science and Technology, Taiwan grantid: 104-2115-M-001-004-MY3 funderid: http://dx.doi.org/10.13039/501100004663 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR YQT Z45 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c385t-af06cf18c93c64e8e2ad84eb179a99f746dd696a5e30edcf142f5e291c9909ee3 |
IEDL.DBID | U2A |
ISSN | 0377-9017 |
IngestDate | Fri Jul 25 11:08:31 EDT 2025 Tue Jul 01 03:39:19 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Fri Feb 21 02:38:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Cyclic orbifold Group-like fusion Secondary 11H56 Primary 17B69 Vertex operator algebra Leech lattice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-af06cf18c93c64e8e2ad84eb179a99f746dd696a5e30edcf142f5e291c9909ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7583-1031 |
PQID | 2386947046 |
PQPubID | 2043605 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2386947046 crossref_primary_10_1007_s11005_019_01251_2 crossref_citationtrail_10_1007_s11005_019_01251_2 springer_journals_10_1007_s11005_019_01251_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Letters in mathematical physics |
PublicationTitleAbbrev | Lett Math Phys |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Lam, Lin (CR29) 2020; 224 Lam, Shimakura (CR36) 2018 CR37 Lam, Shimakura (CR35) 2019; 372 Dong (CR9) 1993; 161 Kawasetsu, Lam, Lin (CR26) 2018; 146 Dong, Mason (CR14) 1997; 86 Höhn, Scheithauer (CR25) 2014; 404 Harada, Lang (CR22) 1990; 19 Griess (CR20) 1998 Lam, Shimakura (CR31) 2015; 137 Griess, Lam (CR21) 2013; 379 Lam, Shimakura (CR34) 2017; 12 Lam, Shimakura (CR32) 2016; 342 Frenkel, Lepowsky, Meurman (CR19) 1988 Nikulin (CR42) 1979; 43 Dong, Mason (CR15) 2004; 2004 Dong, Lepowsky (CR11) 1993 Dong, Lepowsky (CR12) 1996; 110 Dong, Jiao, Xu (CR10) 2013; 365 Lam (CR28) 2011; 305 Lepowsky (CR38) 1985; 82 Bakalov, Kac (CR3) 2004 Borcherds (CR4) 1992; 109 CR6 CR5 CR7 Schellekens (CR44) 1993; 153 Conway, Sloane (CR8) 1999 Li (CR39) 1996; 109 Dong, Li, Mason (CR13) 2000; 214 Abe, Dong, Li (CR1) 2005; 253 CR46 CR23 CR45 Höhn, Mason (CR24) 2016; 448 Dong, Wang (CR18) 2010; 299 Lin (CR40) 2017; 369 Abe, Lam, Yamada (CR2) 2018; 510 Dong, Nagatomo, Jing, Misra (CR16) 1999 Krauel, Miyamoto (CR27) 2015; 444 Lam, Shimakura (CR30) 2012; 104 Miyamoto (CR41) 2015; 335 Sagaki, Shimakura (CR43) 2016; 368 Dong, Ren, Xu (CR17) 2017; 321 Lam, Shimakura (CR33) 2016; 106 J Lepowsky (1251_CR38) 1985; 82 B Bakalov (1251_CR3) 2004 M Krauel (1251_CR27) 2015; 444 M Miyamoto (1251_CR41) 2015; 335 1251_CR5 1251_CR23 1251_CR45 1251_CR6 1251_CR46 1251_CR7 C Dong (1251_CR15) 2004; 2004 C Dong (1251_CR17) 2017; 321 CH Lam (1251_CR36) 2018 RL Griess Jr (1251_CR21) 2013; 379 C Dong (1251_CR10) 2013; 365 CH Lam (1251_CR35) 2019; 372 CH Lam (1251_CR28) 2011; 305 VV Nikulin (1251_CR42) 1979; 43 X Lin (1251_CR40) 2017; 369 I Frenkel (1251_CR19) 1988 K Harada (1251_CR22) 1990; 19 CH Lam (1251_CR32) 2016; 342 CH Lam (1251_CR31) 2015; 137 RL Griess Jr (1251_CR20) 1998 K Kawasetsu (1251_CR26) 2018; 146 D Sagaki (1251_CR43) 2016; 368 C Dong (1251_CR9) 1993; 161 C Dong (1251_CR13) 2000; 214 CH Lam (1251_CR33) 2016; 106 1251_CR37 C Dong (1251_CR18) 2010; 299 CH Lam (1251_CR34) 2017; 12 T Abe (1251_CR1) 2005; 253 G Höhn (1251_CR24) 2016; 448 RE Borcherds (1251_CR4) 1992; 109 H Li (1251_CR39) 1996; 109 C Dong (1251_CR16) 1999 JH Conway (1251_CR8) 1999 AN Schellekens (1251_CR44) 1993; 153 CH Lam (1251_CR29) 2020; 224 CH Lam (1251_CR30) 2012; 104 G Höhn (1251_CR25) 2014; 404 C Dong (1251_CR11) 1993 C Dong (1251_CR12) 1996; 110 T Abe (1251_CR2) 2018; 510 C Dong (1251_CR14) 1997; 86 |
References_xml | – ident: CR45 – volume: 137 start-page: 111 year: 2015 end-page: 137 ident: CR31 article-title: Classification of holomorphic framed vertex operator algebras of central charge 24 publication-title: Am. J. Math. doi: 10.1353/ajm.2015.0001 – volume: 448 start-page: 618 year: 2016 end-page: 637 ident: CR24 article-title: The 290 fixed-point sublattices of the Leech lattice publication-title: J. Algebra doi: 10.1016/j.jalgebra.2015.08.028 – volume: 146 start-page: 1937 issue: 5 year: 2018 end-page: 1950 ident: CR26 article-title: -orbifold construction associated with -isometry and uniqueness of holomorphic vertex operator algebras of central charge 24 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/13881 – volume: 372 start-page: 7001 issue: 10 year: 2019 end-page: 7024 ident: CR35 article-title: Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/7887 – volume: 214 start-page: 1 year: 2000 end-page: 56 ident: CR13 article-title: Modular-invariance of trace functions in orbifold theory and generalized Moonshine publication-title: Commun. Math. Phys. doi: 10.1007/s002200000242 – year: 1999 ident: CR8 publication-title: Sphere Packings, Lattices and Groups doi: 10.1007/978-1-4757-6568-7 – volume: 369 start-page: 3821 year: 2017 end-page: 3840 ident: CR40 article-title: Mirror extensions of rational vertex operator algebras publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6749 – ident: CR37 – volume: 109 start-page: 143 issue: 2 year: 1996 end-page: 195 ident: CR39 article-title: Local systems of vertex operators, vertex superalgebras and modules publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00079-8 – ident: CR6 – year: 1988 ident: CR19 publication-title: Vertex Operator Algebras and the Monster – volume: 368 start-page: 1621 issue: 3 year: 2016 end-page: 1646 ident: CR43 article-title: Application of a -orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6382 – volume: 153 start-page: 159 year: 1993 end-page: 185 ident: CR44 article-title: Meromorphic conformal field theories publication-title: Commun. Math. Phys. doi: 10.1007/BF02099044 – volume: 104 start-page: 540 year: 2012 end-page: 576 ident: CR30 article-title: Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdr041 – volume: 510 start-page: 24 year: 2018 end-page: 51 ident: CR2 article-title: Extensions of tensor products of the lattice VOA publication-title: J. Algebra doi: 10.1016/j.jalgebra.2018.04.036 – volume: 109 start-page: 405 year: 1992 end-page: 444 ident: CR4 article-title: Monstrous moonshine and monstrous Lie superalgebras publication-title: Invent. Math. doi: 10.1007/BF01232032 – volume: 305 start-page: 153 year: 2011 end-page: 198 ident: CR28 article-title: On the constructions of holomorphic vertex operator algebras of central charge 24 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-011-1212-2 – ident: CR23 – volume: 161 start-page: 245 year: 1993 end-page: 265 ident: CR9 article-title: Vertex algebras associated with even lattices publication-title: J. Algebra doi: 10.1006/jabr.1993.1217 – volume: 19 start-page: 435 year: 1990 end-page: 446 ident: CR22 article-title: On some sublattices of the Leech lattice publication-title: Hokkaido Math. J. doi: 10.14492/hokmj/1381517491 – volume: 82 start-page: 8295 year: 1985 end-page: 8299 ident: CR38 article-title: Calculus of twisted vertex operators publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.82.24.8295 – start-page: 3 year: 2004 end-page: 26 ident: CR3 publication-title: Twisted Modules Over Lattice Vertex Algebras, Lie Theory and Its Applications in Physics V – volume: 299 start-page: 783 issue: 3 year: 2010 end-page: 792 ident: CR18 article-title: The structure of parafermion vertex operator algebras: general case publication-title: Commun. Math. Phys. doi: 10.1007/s00220-010-1114-8 – volume: 342 start-page: 803 year: 2016 end-page: 841 ident: CR32 article-title: Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms publication-title: Commun. Math. Phys. doi: 10.1007/s00220-015-2484-8 – ident: CR46 – volume: 404 start-page: 222 year: 2014 end-page: 239 ident: CR25 article-title: A generalized Kac–Moody algebra of rank 14 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.01.028 – year: 2018 ident: CR36 publication-title: On Orbifold Constructions Associated with the Leech Lattice Vertex Operator Algebra – volume: 365 start-page: 6441 year: 2013 end-page: 6469 ident: CR10 article-title: Quantum dimensions and quantum Galois theory publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2013-05863-1 – volume: 224 start-page: 1241 issue: 3 year: 2020 end-page: 1279 ident: CR29 article-title: A holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2019.07.016 – volume: 253 start-page: 171 issue: 1 year: 2005 end-page: 219 ident: CR1 article-title: Fusion rules for the vertex operator algebra and publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1132-5 – year: 1993 ident: CR11 publication-title: Generalized Vertex Algebras and Relative Vertex Operators doi: 10.1007/978-1-4612-0353-7 – volume: 444 start-page: 124 year: 2015 end-page: 142 ident: CR27 article-title: A modular invariance property of multivariable trace functions for regular vertex operator algebras publication-title: J. Algebra doi: 10.1016/j.jalgebra.2015.07.013 – volume: 12 start-page: 39 issue: 1 year: 2017 end-page: 70 ident: CR34 article-title: Construction of holomorphic vertex operator algebras of central charge 24 using the Leech lattice and level lattices publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) – start-page: 117 year: 1999 end-page: 133 ident: CR16 article-title: Automorphism groups and twisted modules for lattice vertex operator algebras publication-title: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998) doi: 10.1090/conm/248/03821 – volume: 335 start-page: 1279 year: 2015 end-page: 1286 ident: CR41 article-title: -cofiniteness of cyclic-orbifold models publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2252-1 – year: 1998 ident: CR20 publication-title: Twelve Sporadic Groups doi: 10.1007/978-3-662-03516-0 – volume: 379 start-page: 85 year: 2013 end-page: 112 ident: CR21 article-title: Moonshine paths for 3A and 6A nodes of the extended -diagram publication-title: J. Algebra doi: 10.1016/j.jalgebra.2012.12.019 – ident: CR5 – ident: CR7 – volume: 110 start-page: 259 year: 1996 end-page: 295 ident: CR12 article-title: The algebraic structure of relative twisted vertex operators publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00095-X – volume: 43 start-page: 111 year: 1979 end-page: 177 ident: CR42 article-title: Integral symmetric bilinear forms and some of their geometric applications publication-title: Izv. Akad. Nauk SSSR Ser. Mat. – volume: 106 start-page: 1575 year: 2016 end-page: 1585 ident: CR33 article-title: A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type publication-title: Lett. Math. Phys. doi: 10.1007/s11005-016-0883-1 – volume: 86 start-page: 305 year: 1997 end-page: 321 ident: CR14 article-title: On quantum Galois theory publication-title: Duke Math. J. doi: 10.1215/S0012-7094-97-08609-9 – volume: 2004 start-page: 2989 year: 2004 end-page: 3008 ident: CR15 article-title: Rational vertex operator algebras and the effective central charge publication-title: Int. Math. Res. Not. doi: 10.1155/S1073792804140968 – volume: 321 start-page: 1 year: 2017 end-page: 30 ident: CR17 article-title: On orbifold theory publication-title: Adv. Math. doi: 10.1016/j.aim.2017.09.032 – volume: 153 start-page: 159 year: 1993 ident: 1251_CR44 publication-title: Commun. Math. Phys. doi: 10.1007/BF02099044 – volume: 365 start-page: 6441 year: 2013 ident: 1251_CR10 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2013-05863-1 – ident: 1251_CR5 – volume: 510 start-page: 24 year: 2018 ident: 1251_CR2 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2018.04.036 – ident: 1251_CR7 – ident: 1251_CR45 doi: 10.1515/crelle-2017-0046 – volume: 372 start-page: 7001 issue: 10 year: 2019 ident: 1251_CR35 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/7887 – start-page: 117 volume-title: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998) year: 1999 ident: 1251_CR16 doi: 10.1090/conm/248/03821 – volume: 19 start-page: 435 year: 1990 ident: 1251_CR22 publication-title: Hokkaido Math. J. doi: 10.14492/hokmj/1381517491 – volume-title: Vertex Operator Algebras and the Monster year: 1988 ident: 1251_CR19 – ident: 1251_CR46 – volume: 335 start-page: 1279 year: 2015 ident: 1251_CR41 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2252-1 – volume: 321 start-page: 1 year: 2017 ident: 1251_CR17 publication-title: Adv. Math. doi: 10.1016/j.aim.2017.09.032 – volume-title: Twelve Sporadic Groups year: 1998 ident: 1251_CR20 doi: 10.1007/978-3-662-03516-0 – volume: 109 start-page: 143 issue: 2 year: 1996 ident: 1251_CR39 publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00079-8 – ident: 1251_CR23 – volume: 299 start-page: 783 issue: 3 year: 2010 ident: 1251_CR18 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-010-1114-8 – volume: 379 start-page: 85 year: 2013 ident: 1251_CR21 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2012.12.019 – volume: 82 start-page: 8295 year: 1985 ident: 1251_CR38 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.82.24.8295 – volume-title: On Orbifold Constructions Associated with the Leech Lattice Vertex Operator Algebra year: 2018 ident: 1251_CR36 – volume: 448 start-page: 618 year: 2016 ident: 1251_CR24 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2015.08.028 – volume: 137 start-page: 111 year: 2015 ident: 1251_CR31 publication-title: Am. J. Math. doi: 10.1353/ajm.2015.0001 – volume: 106 start-page: 1575 year: 2016 ident: 1251_CR33 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-016-0883-1 – volume: 368 start-page: 1621 issue: 3 year: 2016 ident: 1251_CR43 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6382 – ident: 1251_CR37 doi: 10.1090/tran/7887 – volume: 404 start-page: 222 year: 2014 ident: 1251_CR25 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2014.01.028 – ident: 1251_CR6 – volume: 104 start-page: 540 year: 2012 ident: 1251_CR30 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdr041 – volume: 444 start-page: 124 year: 2015 ident: 1251_CR27 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2015.07.013 – volume: 224 start-page: 1241 issue: 3 year: 2020 ident: 1251_CR29 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2019.07.016 – volume-title: Sphere Packings, Lattices and Groups year: 1999 ident: 1251_CR8 doi: 10.1007/978-1-4757-6568-7 – volume: 43 start-page: 111 year: 1979 ident: 1251_CR42 publication-title: Izv. Akad. Nauk SSSR Ser. Mat. – volume: 12 start-page: 39 issue: 1 year: 2017 ident: 1251_CR34 publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) – volume: 161 start-page: 245 year: 1993 ident: 1251_CR9 publication-title: J. Algebra doi: 10.1006/jabr.1993.1217 – volume: 86 start-page: 305 year: 1997 ident: 1251_CR14 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-97-08609-9 – volume: 109 start-page: 405 year: 1992 ident: 1251_CR4 publication-title: Invent. Math. doi: 10.1007/BF01232032 – volume-title: Generalized Vertex Algebras and Relative Vertex Operators year: 1993 ident: 1251_CR11 doi: 10.1007/978-1-4612-0353-7 – volume: 146 start-page: 1937 issue: 5 year: 2018 ident: 1251_CR26 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/13881 – volume: 214 start-page: 1 year: 2000 ident: 1251_CR13 publication-title: Commun. Math. Phys. doi: 10.1007/s002200000242 – volume: 110 start-page: 259 year: 1996 ident: 1251_CR12 publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00095-X – volume: 2004 start-page: 2989 year: 2004 ident: 1251_CR15 publication-title: Int. Math. Res. Not. doi: 10.1155/S1073792804140968 – volume: 342 start-page: 803 year: 2016 ident: 1251_CR32 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-015-2484-8 – volume: 253 start-page: 171 issue: 1 year: 2005 ident: 1251_CR1 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1132-5 – start-page: 3 volume-title: Twisted Modules Over Lattice Vertex Algebras, Lie Theory and Its Applications in Physics V year: 2004 ident: 1251_CR3 – volume: 305 start-page: 153 year: 2011 ident: 1251_CR28 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-011-1212-2 – volume: 369 start-page: 3821 year: 2017 ident: 1251_CR40 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6749 |
SSID | ssj0007250 |
Score | 2.3954577 |
Snippet | Let
L
be an even (positive definite) lattice and
g
∈
O
(
L
)
. In this article, we prove that the orbifold vertex operator algebra
V
L
g
^
has group-like... Let L be an even (positive definite) lattice and g∈O(L). In this article, we prove that the orbifold vertex operator algebra VLg^ has group-like fusion if and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1081 |
SubjectTerms | Algebra Complex Systems Geometry Group Theory and Generalizations Lattices (mathematics) Mathematical analysis Mathematical and Computational Physics Physics Physics and Astronomy Subgroups Theoretical |
Title | Cyclic orbifolds of lattice vertex operator algebras having group-like fusions |
URI | https://link.springer.com/article/10.1007/s11005-019-01251-2 https://www.proquest.com/docview/2386947046 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SIujBR1Ws1pKDNw1ss9lHjqW0FqU9WainJZuHFJdu6bag_95JutuiqOBxdyc5TDIz3-y8ELoFE05Tw1OipFKESdMhqYg9QpWiKogiqdyMpdE4HE7Y4zSYlkVhRZXtXoUknabeFbt1PJdoZvN7wCoTULz1AHx3K44T2t3q34i6uayeb4OTcOHKUpmf9_hqjnYY81tY1FmbwQk6KmEi7m7O9RTt6XkDHZeQEZcCWTTQ4WjbdhWe9l0-pyzO0Lj3IbOZxPkynZk8UwXODc7Eyqa6YTuCWb_jfKFdjB3bUR_gNBfYVuzPX7Gr9CDZ7E1js7Z_04pzNBn0n3tDUo5OINKPgxURxguB77HkvgyZjjUVKmaglyMuODcRC5UKeSgC7XtaASWjJtCUdyRYJ661f4Fq83yuLxH2hB8ymQbCiwQDPBBH8IIywY2Fjto0UafiYCLLvuJ2vEWW7DoiW64nwPXEcT2hTXS3XbPYdNX4k7pVHUxSSliRANQIOYvAvW-i--qwdp9_3-3qf-TX6IBaF9tdmxaqrZZrfQM4ZJW2Ub378PLUb7vr9wlIXtRV |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-MxqgHP1AjitqDN20yuu6jR0IkqMAJEm5L1w9DXBhhkOh_72vZIBo18bit7eG99r1f9z5-CN2BC6ep4SlRUinCpGmSVMQeoUpRFUSRVI5jqT8IuyP2PA7GZVFYUWW7VyFJZ6k3xW5NzyWa2fwe8MoEDO8OgIHY8haMaGttfyPqeFk93wYnYcOVpTI_r_HVHW0w5rewqPM2nWN0WMJE3Frp9QRt6WkNHZWQEZcHsqihg_667So87bp8TlmcokH7Q2YTifN5OjF5pgqcG5yJhU11w5aCWb_jfKZdjB1bqg-4NBfYVuxPX7Gr9CDZ5E1js7R_04ozNOo8DttdUlInEOnHwYII44Ug91hyX4ZMx5oKFTOwyxEXnJuIhUqFPBSB9j2tYCSjJtCUNyV4J661f462p_lUXyDsCT9kMg2EFwkGeCCO4AVlghsLHbWpo2YlwUSWfcUtvUWWbDoiW6knIPXEST2hdXS_njNbddX4c3SjUkxSnrAiAcWHnEVwva-jh0pZm8-_r3b5v-G3aK877PeS3tPg5QrtU3vddluogbYX86W-BkyySG_cFvwExPbVtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCAQDb0ShgAc2sEgc5-ERFSqeFQOV2CLHD1QRJVUTJPj3nN20BQRIjEnOHu7Od59zL4SOwYXTzPCMKKkUYdL4JBOJR6hSVIVxLJWbsXTfi6767OYpfPpUxe-y3SchyXFNg-3SVNRnQ2XOZoVvvueSzmyuD3hoAkZ4AcyxbzW9T8-ntjimbkarF9hAJShfUzbz8x5fXdMMb34LkTrP011Hqw1kxOdjGW-gOV1sorUGPuLmcFabaOV-2oIVnhZdbqestlCv8y7zgcTlKBuYMlcVLg3ORW3T3rAdx6zfcDnULt6O7dgPuEBX2FbvF8_YVX2QfPCisXm1f9aqbdTvXj52rkgzRoHIIAlrIowXgQwSyQMZMZ1oKlTCwEbHXHBuYhYpFfFIhDrwtAJKRk2oKfcleCqudbCD5ouy0LsIeyKImMxC4cWCATZIYnhBmeDGwkhtWsifcDCVTY9xO-oiT2fdkS3XU-B66rie0hY6ma4Zjjts_EndnggmbU5blQLsiDiL4arfQqcTYc0-_77b3v_Ij9DSw0U3vbvu3e6jZWpv3k6D2mi-Hr3qA4AndXboNPADXirZ8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+orbifolds+of+lattice+vertex+operator+algebras+having+group-like+fusions&rft.jtitle=Letters+in+mathematical+physics&rft.au=Lam%2C+Ching+Hung&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0377-9017&rft.eissn=1573-0530&rft.volume=110&rft.issue=5&rft.spage=1081&rft.epage=1112&rft_id=info:doi/10.1007%2Fs11005-019-01251-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-9017&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-9017&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-9017&client=summon |