Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO:Mn nanoparticles synthesized by wet chemical method

This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were sy...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 111; no. 3; pp. 033503 - 033503-7
Main Authors Ilyas, Usman, Rawat, R. S., Tan, T. L., Lee, P., Chen, R., Sun, H. D., Fengji, Li, Zhang, Sam
Format Journal Article
LanguageEnglish
Published American Institute of Physics 01.02.2012
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were synthesized by wet chemical method using zinc acetate dihydrate and manganese acetate tetrahydrate as precursors. A consistent increase in the lattice cell volume, estimated from x-ray diffraction spectra and the presence of Mn 2p 3/2 peak at ∼640.9eV, in x-ray photoelectron spectroscopic spectra, confirmed a successful incorporation of manganese in its Mn 2+ oxidation state in ZnO host matrix. Extended deep level emission spectra in Mn doped ZnO powders exhibited the signatures of oxygen interstitials and zinc vacancies except for the sample with 5 at. % Mn doping. The nanocrystalline powders with 2 and 5 at. % Mn doping concentration were ferromagnetic at room temperature while the 10 at. % Mn doped sample exhibited paramagnetic behavior. The maximum saturation magnetization of 0.05emu/g in the nanocrystalline powder with 5 at. % Mn doping having minimum defects validated the ferromagnetic signal to be due to strong p-d hybridization of Mn ions.
AbstractList This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were synthesized by wet chemical method using zinc acetate dihydrate and manganese acetate tetrahydrate as precursors. A consistent increase in the lattice cell volume, estimated from x-ray diffraction spectra and the presence of Mn 2p3/2 peak at ∼640.9 eV, in x-ray photoelectron spectroscopic spectra, confirmed a successful incorporation of manganese in its Mn2+ oxidation state in ZnO host matrix. Extended deep level emission spectra in Mn doped ZnO powders exhibited the signatures of oxygen interstitials and zinc vacancies except for the sample with 5 at. % Mn doping. The nanocrystalline powders with 2 and 5 at. % Mn doping concentration were ferromagnetic at room temperature while the 10 at. % Mn doped sample exhibited paramagnetic behavior. The maximum saturation magnetization of 0.05 emu/g in the nanocrystalline powder with 5 at. % Mn doping having minimum defects validated the ferromagnetic signal to be due to strong p-d hybridization of Mn ions.
This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were synthesized by wet chemical method using zinc acetate dihydrate and manganese acetate tetrahydrate as precursors. A consistent increase in the lattice cell volume, estimated from x-ray diffraction spectra and the presence of Mn 2p 3/2 peak at ∼640.9eV, in x-ray photoelectron spectroscopic spectra, confirmed a successful incorporation of manganese in its Mn 2+ oxidation state in ZnO host matrix. Extended deep level emission spectra in Mn doped ZnO powders exhibited the signatures of oxygen interstitials and zinc vacancies except for the sample with 5 at. % Mn doping. The nanocrystalline powders with 2 and 5 at. % Mn doping concentration were ferromagnetic at room temperature while the 10 at. % Mn doped sample exhibited paramagnetic behavior. The maximum saturation magnetization of 0.05emu/g in the nanocrystalline powder with 5 at. % Mn doping having minimum defects validated the ferromagnetic signal to be due to strong p-d hybridization of Mn ions.
Author Ilyas, Usman
Zhang, Sam
Sun, H. D.
Lee, P.
Tan, T. L.
Chen, R.
Fengji, Li
Rawat, R. S.
Author_xml – sequence: 1
  givenname: Usman
  surname: Ilyas
  fullname: Ilyas, Usman
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 2
  givenname: R.
  surname: Rawat
  middlename: S.
  fullname: Rawat, R. S.
  email: rajdeep.rawat@nie.edu.sg.
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 3
  givenname: T.
  surname: Tan
  middlename: L.
  fullname: Tan, T. L.
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 4
  givenname: P.
  surname: Lee
  fullname: Lee, P.
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 5
  givenname: R.
  surname: Chen
  fullname: Chen, R.
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 6
  givenname: H.
  surname: Sun
  middlename: D.
  fullname: Sun, H. D.
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 7
  givenname: Li
  surname: Fengji
  fullname: Fengji, Li
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
– sequence: 8
  givenname: Sam
  surname: Zhang
  fullname: Zhang, Sam
  organization: NSSE, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
BookMark eNp1kD1PwzAQQC1UJNrCwD_wypDWjtMkZkBCVfmQirrAwhI5l0tjlNqVbUTDyC8nqO2CYDrp9N6d9EZkYKxBQi45m3CWiimfiDSTPJYnZMhZLqNsNmMDMmQs5lEuM3lGRt6_McZ5LuSQfC1MowxgRbWptEMItEbn7EatDQYNdBtVFHfQQ2ukYN-3rTZramv6ZHqF2l23RkOdhoa-mtV1vzXK2K1yvdyip74zoUGvP_sXZUc_MFBocKNBtXSDobHVOTmtVevx4jDH5OVu8Tx_iJar-8f57TICkc9CpCAGHicyQSlKWXFAyKTIeZ2WiZIxCjVLy1yVPE1ZkmQ1ZonKSqZUJuscKhBjMt3fBWe9d1gXoIMK2prglG4LzoqfhAUvDgl74-qXsXV6o1z3J3uzZ_3x6v_wsXlxbF7UKL4B7J2K-w
CODEN JAPIAU
CitedBy_id crossref_primary_10_1007_s00339_013_7817_x
crossref_primary_10_1016_j_apsusc_2013_10_081
crossref_primary_10_1016_j_jallcom_2016_05_227
crossref_primary_10_1039_C3NR05608B
crossref_primary_10_1063_1_4813868
crossref_primary_10_1016_j_mseb_2023_116990
crossref_primary_10_1007_s10854_013_1576_5
crossref_primary_10_1007_s12034_022_02786_2
crossref_primary_10_1016_j_matchemphys_2018_10_065
crossref_primary_10_1016_j_jmmm_2013_05_040
crossref_primary_10_1016_j_jallcom_2022_166264
crossref_primary_10_4236_msa_2012_38077
crossref_primary_10_1007_s00339_020_03705_0
crossref_primary_10_1016_j_jlumin_2015_01_048
crossref_primary_10_1063_1_4929510
crossref_primary_10_2139_ssrn_4017481
crossref_primary_10_1016_j_mssp_2017_11_020
crossref_primary_10_1007_s00339_021_05233_x
crossref_primary_10_1016_j_snb_2025_137523
crossref_primary_10_1142_S201019451460341X
crossref_primary_10_1016_j_jmmm_2015_06_011
crossref_primary_10_1021_acs_jpcc_0c08407
crossref_primary_10_1039_C6RA06513A
crossref_primary_10_1039_C5CE02262B
crossref_primary_10_1007_s00339_021_05172_7
crossref_primary_10_1016_j_jallcom_2019_03_032
crossref_primary_10_1016_j_solidstatesciences_2021_106581
crossref_primary_10_1063_1_4867036
crossref_primary_10_1016_j_jallcom_2023_172047
crossref_primary_10_1016_j_apsusc_2016_06_138
crossref_primary_10_1016_j_matchemphys_2014_05_010
crossref_primary_10_1016_j_jmmm_2015_05_057
crossref_primary_10_1016_j_matchemphys_2019_04_076
crossref_primary_10_1016_j_jmmm_2017_04_087
crossref_primary_10_4028_www_scientific_net_AMM_446_447_137
crossref_primary_10_1063_1_4811091
crossref_primary_10_1016_j_optmat_2017_05_007
crossref_primary_10_1016_j_jaap_2014_02_020
crossref_primary_10_1142_S2010194514603421
crossref_primary_10_1007_s12043_013_0566_8
crossref_primary_10_1016_j_physe_2013_08_024
crossref_primary_10_7567_JJAP_54_06FJ08
crossref_primary_10_1142_S0218863524500231
Cites_doi 10.1063/1.1632547
10.1088/0957-4484/16/6/060
10.1016/j.jmmm.2005.08.025
10.1016/j.apsusc.2011.09.021
10.1063/1.3660284
10.1103/PhysRevB.74.235208
10.1016/j.jmmm.2011.03.031
10.1063/1.2769391
10.1126/science.1065389
10.1016/j.matlet.2005.04.028
10.1063/1.1537457
10.1016/j.jmmm.2010.09.042
10.1063/1.1384478
10.1080/00986440902896956
10.2174/1876395201001010001
10.1016/j.apsusc.2008.05.318
10.1016/S0038-1098(01)00464-1
10.1063/1.341700
10.1016/j.jmmm.2004.04.028
10.1063/1.1897827
10.1016/j.jmmm.2009.10.046
10.1038/nmat1310
10.1002/anie.v46:8
10.1016/j.matchemphys.2010.04.007
10.1016/j.tsf.2006.08.047
10.1038/nmat984
10.1063/1.3481800
10.1063/1.1348323
10.1007/s10854-005-3232-1
10.1016/S1369-7021(07)70078-0
10.1063/1.2198821
10.1063/1.3360189
10.1103/PhysRevB.71.045201
10.1126/science.281.5379.951
10.1063/1.1625788
10.1126/science.287.5455.1019
10.1016/S1001-0521(08)60051-0
10.1088/1742-6596/190/1/012100
ContentType Journal Article
Copyright 2012 American Institute of Physics
Copyright_xml – notice: 2012 American Institute of Physics
DBID AAYXX
CITATION
DOI 10.1063/1.3679129
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
EndPage 033503-7
ExternalDocumentID 10_1063_1_3679129
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
ID FETCH-LOGICAL-c385t-ac2c12494e93b9d1cec79381f6b4a92e3a56b8ab1660447fe74a7b0aa79f8cdc3
ISSN 0021-8979
IngestDate Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 03:48:21 EDT 2025
Fri Jun 21 00:18:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-ac2c12494e93b9d1cec79381f6b4a92e3a56b8ab1660447fe74a7b0aa79f8cdc3
OpenAccessLink https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.3679129/14901709/033503_1_online.pdf
ParticipantIDs crossref_citationtrail_10_1063_1_3679129
crossref_primary_10_1063_1_3679129
scitation_primary_10_1063_1_3679129Enhanced_indirect_fe
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of applied physics
PublicationYear 2012
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Tiwari, A.; Jin, C.; Kvit, A.; Kumar, D.; Muth, J.; Narayan, J. 2002; 121
Liu, C.; Yun, F.; Morkoc, H. 2005; 16
Saw, K.; Ibrahim, K.; Lim, Y.; Chai, M. 2007; 515
Ilyas, U.; Rawat, R.; Tan, T.; Lee, P.; Chen, R.; Sun, H.; Li, F.; Zhang, S. 2011; 110
Hakeem, A. 2010; 322
Chattopadhyay, S.; Neogi, S.; Sarkar, A.; Mukadam, M.; Yusuf, S. 2011; 323
Karamat, S.; Mahmood, S.; Lin, J.; Pan, Z.; Lee, P.; Tan, T.; Springham, S.; Ramanujan, R.; Rawat, R. 2008; 254
Davies, R.; Abernathy, C.; Pearton, S.; Norton, D.; Ivill, M.; Ren, F. 2009; 196
Furdyna, J. 1988; 64
Li, J.; Shen, D.; Zhang, J.; Zhao, D.; Li, B.; Lu, Y.; Liu, Y.; Fan, X. 2006; 302
Kumar, S.; Hedhili, M.; Alshareef, H.; Asiviswanathan, S. 2010; 97
Sharma, P.; Gupta, A.; Owens, F.; Inoue, A.; Rao, K. 2004; 282
Joseph, D.; Kumar, G.; Venkaterwaran, C. 2005; 59
Schmidt-Mende, L.; Macmanus-Driscoll, L. 2007; 10
Norton, D.; Pwarton, S.; Hebard, A.; Theodoropoulou, N.; Boatner, L.; Wilson, R. 2003; 82
Ueda, K.; Tabata, H.; Kawai, T. 2001; 79
Iusan, D.; Sanyal, B.; Eriksson, O. 2006; 74
Samy, A.; Gomaa, E.; Mostafa, N. 2010; 1
Ilyas, U.; Rawat, R.; Roshan, G.; Tan, T.; Lee, P.; Springham, S.; Zhang, S.; Li, F.; Chen, R.; Sun, H. 2011; 258
Ohno, H. 1998; 281
Chang, Y.; Wang, D.; Luo, X.; Xu, X.; Chen, X.; Li, L.; Chen, C.; Wang, R.; Xu, J.; Yu, D. 2002; 83
Hsieh, P.; Chen, Y.; Kao, K.; Wang, C. 2008; 90
Ren, L.; Won, Y. 2006; 25
Reddy, D.; Sharma, S.; Reedy, Y.; Gunasekhar, K.; Reddy, P. 2008; 10
Wolf, S.; Awschalom, D.; Buhrman, R.; Daughton, J.; Molnar, S.; Roukes, M.; Ctchelkanova, A.; Treger, D. 2001; 294
Pradhan, A.; Zhang, K.; Mohantry, S.; Dadson, J.; Hunter, D.; Zhang, J.; Sellmyer, D.; Roy, U.; Cui, Y.; Burger, A.; Mathews, S.; Joseph, B.; Sekhar, B.; Roul, B. 2005; 86
Sharma, P.; Gupta, A.; Rao, K.; Owens, F.; Sharma, R.; Ahuja, R.; Guillen, J.; Johansson, B.; Gehring, G. 2003; 2
El-Hilo, M.; Dakhel, A. 2011; 323
Jiang, Y.; Yan, W.; Sun, Z.; Liu, Q.; Pan, Z.; Yao, T.; Li, Y.; Qi, Z.; Zhang, G.; Xu, P.; Wu, Z.; Wei, S. 2009; 190
Coey, J.; Venkateshan, M.; Fitzgerald, C. 2005; 4
Yan, W.; Sun, Z.; Liu, Q.; Li, Z.; Pan, Z.; Wang, D.; Zhou, Y.; Zhang, X. 2007; 91
Taya, Y.; Lib, S.; Sun, C.; Chen, P. 2006; 88
Xiao, W.; Chen, Q.; Wu, Y.; Wu, T.; Dai, L. 2010; 123
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. 2000; 287
Lu, A.; Salabas, E.; Schuth, F. 2007; 46
Cong, C.; Liao, L.; Li, J.; Fan, L.; Zhang, K. 2005; 16
Anghel, J.; Thurber, A.; Tenne, D.; Hanna, C.; Punnoose, A. 2010; 107
Lawes, G.; Risbud, A.; Ramirez, A.; Seshadri, R. 2005; 71
Kim, S.; Moon, J.; Lee, B.; Song, O.; Je, J. 2004; 95
Fukumura, T.; Jin, Z.; Kawasaki, M.; Shono, T.; Hasegawa, T.; Koshihara, S.; Koinuma, H. 2001; 78
(2023070502052430900_c5) 2006; 25
(2023070502052430900_c8) 2004; 282
(2023070502052430900_c20) 2007; 91
(2023070502052430900_c25) 2011; 258
(2023070502052430900_c36) 2007; 46
(2023070502052430900_c17) 2011; 323
(2023070502052430900_c21) 2005; 16
(2023070502052430900_c40) 2009; 190
(2023070502052430900_c9) 2003; 2
(2023070502052430900_c38) 2005; 4
(2023070502052430900_c28) 2005; 59
(2023070502052430900_c15) 2001; 78
(2023070502052430900_c39) 2006; 74
(2023070502052430900_c14) 2004; 95
(2023070502052430900_c23) 2001; 79
(2023070502052430900_c31) 2005; 16
(2023070502052430900_c34) 2008; 90
(2023070502052430900_c24) 2010; 107
(2023070502052430900_c33) 2010; 97
(2023070502052430900_c13) 2005; 86
(2023070502052430900_c22) 2005; 71
(2023070502052430900_c11) 2002; 83
(2023070502052430900_c30) 2006; 88
(2023070502052430900_c35) 2010; 1
(2023070502052430900_c1) 2001; 294
(2023070502052430900_c12) 2003; 82
(2023070502052430900_c4) 2000; 287
(2023070502052430900_c6) 2008; 10
(2023070502052430900_c18) 2011; 323
(2023070502052430900_c10) 2008; 254
(2023070502052430900_c26) 2011; 110
(2023070502052430900_c27) 2007; 10
(2023070502052430900_c19) 2006; 302
(2023070502052430900_c3) 1988; 64
(2023070502052430900_c32) 2010; 123
(2023070502052430900_c2) 1998; 281
(2023070502052430900_c16) 2002; 121
(2023070502052430900_c7) 2010; 322
(2023070502052430900_c29) 2007; 515
(2023070502052430900_c37) 2009; 196
References_xml – volume: 95
  start-page: 454
  year: 2004
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1632547
– volume: 16
  start-page: 981
  year: 2005
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/6/060
– volume: 302
  start-page: 118
  year: 2006
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.08.025
– volume: 258
  start-page: 890
  year: 2011
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.09.021
– volume: 110
  start-page: 093522
  year: 2011
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3660284
– volume: 10
  start-page: 2607
  year: 2008
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 74
  start-page: 235208
  year: 2006
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.235208
– volume: 323
  start-page: 2202
  year: 2011
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.03.031
– volume: 91
  start-page: 062113
  year: 2007
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2769391
– volume: 294
  start-page: 1488
  year: 2001
  publication-title: Science
  doi: 10.1126/science.1065389
– volume: 59
  start-page: 2720
  year: 2005
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.04.028
– volume: 82
  start-page: 239
  year: 2003
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1537457
– volume: 323
  start-page: 363
  year: 2011
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.09.042
– volume: 79
  start-page: 988
  year: 2001
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1384478
– volume: 196
  start-page: 1030
  year: 2009
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986440902896956
– volume: 1
  start-page: 1
  year: 2010
  publication-title: Open Ceram. Sci. J.
  doi: 10.2174/1876395201001010001
– volume: 254
  start-page: 7285
  year: 2008
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.05.318
– volume: 121
  start-page: 371
  year: 2002
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(01)00464-1
– volume: 64
  start-page: R29
  year: 1988
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.341700
– volume: 282
  start-page: 115
  year: 2004
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.04.028
– volume: 86
  start-page: 152511
  year: 2005
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1897827
– volume: 322
  start-page: 709
  year: 2010
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.10.046
– volume: 4
  start-page: 173
  year: 2005
  publication-title: Nature Mater.
  doi: 10.1038/nmat1310
– volume: 46
  start-page: 1222
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.v46:8
– volume: 123
  start-page: 1
  year: 2010
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.04.007
– volume: 515
  start-page: 2879
  year: 2007
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.08.047
– volume: 2
  start-page: 673
  year: 2003
  publication-title: Nature Mater.
  doi: 10.1038/nmat984
– volume: 97
  start-page: 111909
  year: 2010
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481800
– volume: 78
  start-page: 958
  year: 2001
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1348323
– volume: 16
  start-page: 555
  year: 2005
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-005-3232-1
– volume: 10
  start-page: 40
  year: 2007
  publication-title: J. Mater. Today
  doi: 10.1016/S1369-7021(07)70078-0
– volume: 88
  start-page: 173118
  year: 2006
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2198821
– volume: 107
  start-page: 09E314
  year: 2010
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3360189
– volume: 71
  start-page: 45201
  year: 2005
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.045201
– volume: 281
  start-page: 951
  year: 1998
  publication-title: Science
  doi: 10.1126/science.281.5379.951
– volume: 83
  start-page: 4020
  year: 2002
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1625788
– volume: 287
  start-page: 1019
  year: 2000
  publication-title: Science
  doi: 10.1126/science.287.5455.1019
– volume: 25
  start-page: 51
  year: 2006
  publication-title: Rare Met.
  doi: 10.1016/S1001-0521(08)60051-0
– volume: 190
  start-page: 012100
  year: 2009
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/190/1/012100
– volume: 90
  start-page: 317
  year: 2008
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 83
  start-page: 4020
  year: 2002
  ident: 2023070502052430900_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1625788
– volume: 74
  start-page: 235208
  year: 2006
  ident: 2023070502052430900_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.235208
– volume: 10
  start-page: 2607
  year: 2008
  ident: 2023070502052430900_c6
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 196
  start-page: 1030
  year: 2009
  ident: 2023070502052430900_c37
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986440902896956
– volume: 79
  start-page: 988
  year: 2001
  ident: 2023070502052430900_c23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1384478
– volume: 78
  start-page: 958
  year: 2001
  ident: 2023070502052430900_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1348323
– volume: 46
  start-page: 1222
  year: 2007
  ident: 2023070502052430900_c36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.v46:8
– volume: 323
  start-page: 2202
  year: 2011
  ident: 2023070502052430900_c18
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.03.031
– volume: 86
  start-page: 152511
  year: 2005
  ident: 2023070502052430900_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1897827
– volume: 294
  start-page: 1488
  year: 2001
  ident: 2023070502052430900_c1
  publication-title: Science
  doi: 10.1126/science.1065389
– volume: 91
  start-page: 062113
  year: 2007
  ident: 2023070502052430900_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2769391
– volume: 90
  start-page: 317
  year: 2008
  ident: 2023070502052430900_c34
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 4
  start-page: 173
  year: 2005
  ident: 2023070502052430900_c38
  publication-title: Nature Mater.
  doi: 10.1038/nmat1310
– volume: 515
  start-page: 2879
  year: 2007
  ident: 2023070502052430900_c29
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.08.047
– volume: 88
  start-page: 173118
  year: 2006
  ident: 2023070502052430900_c30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2198821
– volume: 190
  start-page: 012100
  year: 2009
  ident: 2023070502052430900_c40
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/190/1/012100
– volume: 95
  start-page: 454
  year: 2004
  ident: 2023070502052430900_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1632547
– volume: 10
  start-page: 40
  year: 2007
  ident: 2023070502052430900_c27
  publication-title: J. Mater. Today
  doi: 10.1016/S1369-7021(07)70078-0
– volume: 322
  start-page: 709
  year: 2010
  ident: 2023070502052430900_c7
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.10.046
– volume: 282
  start-page: 115
  year: 2004
  ident: 2023070502052430900_c8
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.04.028
– volume: 16
  start-page: 981
  year: 2005
  ident: 2023070502052430900_c31
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/6/060
– volume: 281
  start-page: 951
  year: 1998
  ident: 2023070502052430900_c2
  publication-title: Science
  doi: 10.1126/science.281.5379.951
– volume: 123
  start-page: 1
  year: 2010
  ident: 2023070502052430900_c32
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.04.007
– volume: 254
  start-page: 7285
  year: 2008
  ident: 2023070502052430900_c10
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.05.318
– volume: 64
  start-page: R29
  year: 1988
  ident: 2023070502052430900_c3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.341700
– volume: 25
  start-page: 51
  year: 2006
  ident: 2023070502052430900_c5
  publication-title: Rare Met.
  doi: 10.1016/S1001-0521(08)60051-0
– volume: 82
  start-page: 239
  year: 2003
  ident: 2023070502052430900_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1537457
– volume: 323
  start-page: 363
  year: 2011
  ident: 2023070502052430900_c17
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.09.042
– volume: 107
  start-page: 09E314
  year: 2010
  ident: 2023070502052430900_c24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3360189
– volume: 1
  start-page: 1
  year: 2010
  ident: 2023070502052430900_c35
  publication-title: Open Ceram. Sci. J.
  doi: 10.2174/1876395201001010001
– volume: 110
  start-page: 093522
  year: 2011
  ident: 2023070502052430900_c26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3660284
– volume: 121
  start-page: 371
  year: 2002
  ident: 2023070502052430900_c16
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(01)00464-1
– volume: 16
  start-page: 555
  year: 2005
  ident: 2023070502052430900_c21
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-005-3232-1
– volume: 59
  start-page: 2720
  year: 2005
  ident: 2023070502052430900_c28
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.04.028
– volume: 71
  start-page: 45201
  year: 2005
  ident: 2023070502052430900_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.045201
– volume: 97
  start-page: 111909
  year: 2010
  ident: 2023070502052430900_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481800
– volume: 302
  start-page: 118
  year: 2006
  ident: 2023070502052430900_c19
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.08.025
– volume: 258
  start-page: 890
  year: 2011
  ident: 2023070502052430900_c25
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.09.021
– volume: 287
  start-page: 1019
  year: 2000
  ident: 2023070502052430900_c4
  publication-title: Science
  doi: 10.1126/science.287.5455.1019
– volume: 2
  start-page: 673
  year: 2003
  ident: 2023070502052430900_c9
  publication-title: Nature Mater.
  doi: 10.1038/nmat984
SSID ssj0011839
Score 2.233715
Snippet This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
StartPage 033503
Title Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO:Mn nanoparticles synthesized by wet chemical method
URI http://dx.doi.org/10.1063/1.3679129
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_XDdE9iE6Hmx8E8UEorU3Tr_g2dDJlV8e2C8OXkqapm9y1l7tetrtH_xb_UE9ukt4W7kD3UsohTUvOrye_JOcDobdxrnKIEAb_d5C4YVwKl_G0cEMqyyQSMOVGKhp5-C3eH4VfT6PTweBPx2tp1uSeuFkZV3IXrYIM9KqiZP9Ds22nIIB70C9cQcNw_Scd71Vn-gBfHTwr0-WUcjqtL_jPSsUmOhO3cOS1ju11RD2bjI2P83Dh31hfz6FrByzhmfOj-g5vBXnFK1hHG3c5ldAAGOLl-Y0mqleycYRNMaCLT9_Cbrlht3rnpCXuX8ZzHUE2urxY4vKIX_HFZHDkOcfecjNBV072nINWZvyGDr3uboVy--h7fthjqJ4rxGHnU2yMAXFTpsvMeFKbZj9lbhLpNLWt7TaW-ry7tl9YYp_SyKedeV0L3GTlvAFETW1heDROGDFbMP003L_45B5aD2AxAtZ0fffT8OC4Pa1SLFO7EumvthmsYvq-7bLHex4AvdGeFh0yc_IYPTJ6wrtazU_QQFabaKOTm3IT3TfD9RT9tjDDFma4BzMMMMMWZtjCDNclHlbwCNYwwwpmGGD2AaQ9kOEOyHA-xwAybEGGNcieodHnvZOP-64p3eEKmkaNy0UgVFnzUDKas4IIKWAiSEkZ5yFngaQ8ivOU5ySO_TBMSpmEPMl9zhNWpqIQdAutVXUlnyPMSckE8SVjOQkFlWkATbkM0oKlBSnFNnpnBzazo6rKq4yzhX9FTDOSGR1sozdt04lO5rKqUdJq5_ZWduQzO_JZKXfu_OQL9HD5s7xEa810Jl8B2W3y1wZrfwEEZ6-e
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+indirect+ferromagnetic+p-d+exchange+coupling+of+Mn+in+oxygen+rich+ZnO%3AMn+nanoparticles+synthesized+by+wet+chemical+method&rft.jtitle=Journal+of+applied+physics&rft.au=Ilyas%2C+Usman&rft.au=Rawat%2C+R.+S.&rft.au=Tan%2C+T.+L.&rft.au=Lee%2C+P.&rft.date=2012-02-01&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=111&rft.issue=3&rft.spage=033503&rft.epage=033503-7&rft_id=info:doi/10.1063%2F1.3679129&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon