Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions
Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100 is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recircul...
Saved in:
Published in | Combustion theory and modelling Vol. 26; no. 3; pp. 541 - 559 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
16.04.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1364-7830 1741-3559 |
DOI | 10.1080/13647830.2022.2034976 |
Cover
Loading…
Abstract | Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100
is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100
droplets at low temperatures, but two-stage ignition is not observed. |
---|---|
AbstractList | Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100 is simulated using air at 4 atm and 700–1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100 droplets at low temperatures, but two-stage ignition is not observed. Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100 is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100 droplets at low temperatures, but two-stage ignition is not observed. |
Author | Wang, Jiayi Mastorakos, Epaminondas |
Author_xml | – sequence: 1 givenname: Jiayi orcidid: 0000-0003-2938-7918 surname: Wang fullname: Wang, Jiayi email: jw2050@cam.ac.uk organization: University of Cambridge – sequence: 2 givenname: Epaminondas orcidid: 0000-0001-8245-5188 surname: Mastorakos fullname: Mastorakos, Epaminondas organization: University of Cambridge |
BookMark | eNqFkM1LBCEchiUK2rb-hEDoPKXjOM7QpWXpCxa61Fl-fkwZs7qpQ_Tf57Z16VAX9fA8ry_vEdr3wVuETik5p6QjF5S1jegYOa9JXZeDNb1o99CMioZWjPN-v7wLU22hQ3SU0ishpBZ1M0NuMeXgnr3LLngcBuxSGCFbg331YjcZvMUmhs1oc8LOY3ARgzf4JWSsw1pN6UvcxGAmXRDIeO10DHmKyhVXB2--stMxOhhgTPbk-56jp5vrx-VdtXq4vV8uVpVmHc8VKNY3phEEgGlOWtGA6alQauiMAlFTxVinhRK8NkwNpAWq7dAzTrimIBibo7Ndbun0NtmU5WuYoi9fyroVPe8pI12hLndU6ZpStIPULsO2aI7gRkmJ3G4rf7aV223l97bF5r_sTXRriB__elc7z_khxDW8hzgameFjDHGI4LVLkv0d8QmMWpQ3 |
CitedBy_id | crossref_primary_10_1049_rpg2_12777 crossref_primary_10_1016_j_proci_2024_105639 crossref_primary_10_1177_17568277231159173 crossref_primary_10_1016_j_combustflame_2024_113626 |
Cites_doi | 10.1016/j.pecs.2004.02.003 10.1016/S0082-0784(00)80554-8 10.1115/GT2009-60257 10.1016/j.enconman.2012.01.011 10.1016/j.combustflame.2015.03.003 10.1016/S0196-8904(96)00152-5 10.1201/9781420086058 10.2514/6.2016-4698 10.1016/j.combustflame.2004.01.011 10.1115/97-GT-074 10.1134/S1990793110060187 10.1016/j.combustflame.2017.01.026 10.1016/S0082-0784(00)80301-X 10.1115/GT2015-42642 10.1016/S0010-2180(02)00492-3 10.1016/j.combustflame.2020.11.023 10.1115/GT2016-57719 10.1016/j.proci.2014.06.035 10.1016/S0082-0784(96)80387-0 10.1007/s10494-016-9710-0 10.1016/S0021-9991(05)80013-0 10.1016/S0082-0784(89)80054-2 10.1016/S1359-4311(02)00132-1 10.1016/j.apenergy.2017.03.095 10.1016/0010-2180(90)90122-8 10.1016/j.combustflame.2016.05.013 10.3844/ajassp.2015.463.478 10.1016/j.combustflame.2005.12.013 10.1016/j.energy.2018.01.051 10.1016/0010-2180(75)90131-5 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1080/13647830.2022.2034976 |
DatabaseName | Taylor & Francis Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-3559 |
EndPage | 559 |
ExternalDocumentID | 10_1080_13647830_2022_2034976 2034976 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P J9A KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH RNS RO9 ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UCJ UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 7TB 8FD FR3 H8D L7M TASJS |
ID | FETCH-LOGICAL-c385t-ab394d470aa3c50674ad917bbf8dba721b338c7b752d3bf06a1cef93505c1a733 |
IEDL.DBID | 0YH |
ISSN | 1364-7830 |
IngestDate | Fri Jul 25 02:33:07 EDT 2025 Tue Jul 01 01:27:46 EDT 2025 Thu Apr 24 22:52:51 EDT 2025 Wed Dec 25 09:06:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-ab394d470aa3c50674ad917bbf8dba721b338c7b752d3bf06a1cef93505c1a733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8245-5188 0000-0003-2938-7918 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2034976 |
PQID | 2679591308 |
PQPubID | 2045308 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1080_13647830_2022_2034976 crossref_primary_10_1080_13647830_2022_2034976 informaworld_taylorfrancis_310_1080_13647830_2022_2034976 proquest_journals_2679591308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-16 |
PublicationDateYYYYMMDD | 2022-04-16 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Combustion theory and modelling |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 cr-split#-CIT0024.1 cr-split#-CIT0024.2 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 Bolszo C. (CIT0015) 2005; 8 CIT0018 Hamilton S. (CIT0002) 2003 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0011 doi: 10.1016/j.pecs.2004.02.003 – ident: CIT0036 doi: 10.1016/S0082-0784(00)80554-8 – ident: CIT0004 doi: 10.1115/GT2009-60257 – ident: CIT0007 doi: 10.1016/j.enconman.2012.01.011 – ident: #cr-split#-CIT0024.1 – ident: CIT0020 doi: 10.1016/j.combustflame.2015.03.003 – ident: CIT0010 doi: 10.1016/S0196-8904(96)00152-5 – ident: CIT0008 doi: 10.1201/9781420086058 – ident: CIT0014 doi: 10.2514/6.2016-4698 – ident: CIT0029 doi: 10.1016/j.combustflame.2004.01.011 – ident: CIT0009 doi: 10.1115/97-GT-074 – ident: CIT0022 doi: 10.1134/S1990793110060187 – ident: CIT0016 doi: 10.1016/j.combustflame.2017.01.026 – ident: CIT0018 doi: 10.1016/S0082-0784(00)80301-X – ident: CIT0013 doi: 10.1115/GT2015-42642 – ident: CIT0025 – ident: CIT0023 doi: 10.1016/S0010-2180(02)00492-3 – ident: CIT0033 doi: 10.1016/j.combustflame.2020.11.023 – ident: CIT0001 doi: 10.1115/GT2016-57719 – ident: CIT0021 doi: 10.1016/j.proci.2014.06.035 – ident: CIT0017 doi: 10.1016/S0082-0784(96)80387-0 – ident: CIT0028 doi: 10.1007/s10494-016-9710-0 – ident: #cr-split#-CIT0024.2 – ident: CIT0027 doi: 10.1016/S0021-9991(05)80013-0 – ident: CIT0030 doi: 10.1016/S0082-0784(89)80054-2 – volume-title: The handbook of microturbine generators year: 2003 ident: CIT0002 – ident: CIT0026 doi: 10.1016/S1359-4311(02)00132-1 – ident: CIT0003 – ident: CIT0006 doi: 10.1016/j.apenergy.2017.03.095 – ident: CIT0031 doi: 10.1016/0010-2180(90)90122-8 – ident: CIT0034 doi: 10.1016/j.combustflame.2016.05.013 – ident: CIT0032 – ident: CIT0012 doi: 10.3844/ajassp.2015.463.478 – ident: CIT0019 doi: 10.1016/j.combustflame.2005.12.013 – ident: CIT0005 doi: 10.1016/j.energy.2018.01.051 – ident: CIT0035 doi: 10.1016/0010-2180(75)90131-5 – volume: 8 start-page: 13 year: 2005 ident: CIT0015 publication-title: The UCI Undergraduate Res. J. |
SSID | ssj0002724 |
Score | 2.3121135 |
Snippet | Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100
is simulated using air at 4 atm and 700-1200 K, which includes the... Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100 is simulated using air at 4 atm and 700–1200 K, which includes the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 541 |
SubjectTerms | Autoignition Combustion chambers Combustion products Delay time Dilution Droplets Fuels Heptanes hot products Ignition Low temperature low-temperature chemistry microturbine Mixtures single droplet Spontaneous combustion |
Title | Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions |
URI | https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2034976 https://www.proquest.com/docview/2679591308 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-LnoQn_gmB6_Rtkmb9rj4YBH05OLjUvJkC9ou2_r_neljUUT24LGhE-jMJPNNM_mGkAulw5BrnjAfOMuEizzTqZEsM5EMUmezUOMF54fHZDwR9y_xUE1Y92WVmEP7jiii3atxcStdDxVxVyFynqc8gOwuwrtUXEBMXSXrEQBFdOzgdbzYjGGs62ubCIYywyWev6b5EZ5-kJf-2qzbCHS3TbZ66EhHna13yIord8nmN0LBPVKMPpuqaAuCqpJWnhbgWoAmLS3Z1M3gkx21c6wZb2palFQVcwpqoNOqoaADja29QHDW0cDWVDX0Ayv2IC5BBu3gHTzhRk_dJ5O726frMeubKTDD07hhSvNMWCEDpbiJIUYJBYaQWvvUagV5oIZk1Ugt48hy7YNEhcb5jANCMqGSnB-QtbIq3SGhRkVKSWWFz4xIYkCYEYAoaVPluQi8PyJi0GFueqZxbHjxnoc9Iemg-hxVn_eqPyKXC7FZR7WxTCD7bqC8af9x-K4hSc6XyJ4O1sz7VVvnUYKd1yGqp8f_mPqEbOAjHjmFySlZa-af7gyQS6PPW988J-uj8c3b8xeXzuVT |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-UwDI5YDgMHBMOM2MmBa5g2SZv2iBDosZ5AYk5RVlFpaJ_eK_8fuwt6aIQ4cG4dKbbjJbE_E3JibJoKK3IWk-CZDDwyWzjFSsdVUgRfphYbnO_u88mjvH7KnhZ6YbCsEnPo2ANFdLYaDzdeRo8lcX9SBD0vRALpHcdmKiHBqS6T1awoOZZ1JX8n79aYq2GwbS4Z0oxdPJ8t88E_fUAv_c9ady7ocpNsDLEjPeuFvUWWQv2TrC8gCm6T6uy1baquIqipaRNpBboF4aSnNXsOU9hzoH6GRePtnFY1NdWMAh_oc9NSYILF2V5AOO1xYOfUtPQFS_bAMUEKHeAffOJGVf1FHi8vHs4nbJimwJwospYZK0rppUqMES4DJyUNSEJZGwtvDSSCFrJVp6zKuBc2JrlJXYilgBDJpUYJ8Zus1E0ddgh1hhujjJexdDLPIMTkEEUpX5goZBLjLpEjD7UboMZx4sU_nQ6IpCPrNbJeD6zfJafvZNMea-MrgnJRQLrtLjliP5FEiy9oD0Zp6uHYzjXPcfQ6uPVi7xtLH5Mfk4e7W317dX-zT9bwE74_pfkBWWlnr-EQwpjWHnV6-gbKoOcd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SIgeKspDpQXqA1dDYjtxckQtqwVaxAEkOFl-ikiQrHbD_-9MHgiEEAfOyVjKzNgzE3_zDSGHxqapsCJnMQmeycAjs4VTrHRcJUXwZWqxwfnfZT69kee32YgmXAywSqyhY08U0Z3VuLlnPo6IuOMUOc8LkUB1x7GXSkiIqctkNStKjvVXcjd9Poy5Guba5pKhzNjE894yr8LTK_LSN4d1F4EmG-TrkDrSk97W38hSqDfJlxeEglukOnlqm6oDBDU1bSKtwLUgm_S0ZvdhBp8cqJ8jZrxd0KqmpppTUAO9b1oKOrA42gsEZz0N7IKalj4iYg_iElTQAd7BG2701G1yMzm9_j1lwzAF5kSRtcxYUUovVWKMcBnEKGnAEMraWHhroA60UKw6ZVXGvbAxyU3qQiwFZEguNUqIHbJSN3X4Tqgz3BhlvIylk3kGGSaHJEr5wkQhkxh3iRx1qN3ANI4DLx50OhCSjqrXqHo9qH6XHD2LzXqqjY8EypcG0m33jyP2A0m0-EB2b7SmHnbtQvMcJ69DVC9-fGLpX2Tt6s9E_z27vPhJ1vEJ3j6l-R5ZaedPYR-SmNYedG76H2eE5kY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoignition+of+isolated+n+-heptane+droplets+in+air+and+hot+combustion+products+at+microturbine+conditions&rft.jtitle=Combustion+theory+and+modelling&rft.au=Wang%2C+Jiayi&rft.au=Mastorakos%2C+Epaminondas&rft.date=2022-04-16&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=26&rft.issue=3&rft.spage=541&rft.epage=559&rft_id=info:doi/10.1080%2F13647830.2022.2034976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2022_2034976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon |