Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions

Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100  is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recircul...

Full description

Saved in:
Bibliographic Details
Published inCombustion theory and modelling Vol. 26; no. 3; pp. 541 - 559
Main Authors Wang, Jiayi, Mastorakos, Epaminondas
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 16.04.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1364-7830
1741-3559
DOI10.1080/13647830.2022.2034976

Cover

Loading…
Abstract Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100  is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100  droplets at low temperatures, but two-stage ignition is not observed.
AbstractList Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100  is simulated using air at 4 atm and 700–1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100  droplets at low temperatures, but two-stage ignition is not observed.
Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100  is simulated using air at 4 atm and 700-1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100  droplets at low temperatures, but two-stage ignition is not observed.
Author Wang, Jiayi
Mastorakos, Epaminondas
Author_xml – sequence: 1
  givenname: Jiayi
  orcidid: 0000-0003-2938-7918
  surname: Wang
  fullname: Wang, Jiayi
  email: jw2050@cam.ac.uk
  organization: University of Cambridge
– sequence: 2
  givenname: Epaminondas
  orcidid: 0000-0001-8245-5188
  surname: Mastorakos
  fullname: Mastorakos, Epaminondas
  organization: University of Cambridge
BookMark eNqFkM1LBCEchiUK2rb-hEDoPKXjOM7QpWXpCxa61Fl-fkwZs7qpQ_Tf57Z16VAX9fA8ry_vEdr3wVuETik5p6QjF5S1jegYOa9JXZeDNb1o99CMioZWjPN-v7wLU22hQ3SU0ishpBZ1M0NuMeXgnr3LLngcBuxSGCFbg331YjcZvMUmhs1oc8LOY3ARgzf4JWSsw1pN6UvcxGAmXRDIeO10DHmKyhVXB2--stMxOhhgTPbk-56jp5vrx-VdtXq4vV8uVpVmHc8VKNY3phEEgGlOWtGA6alQauiMAlFTxVinhRK8NkwNpAWq7dAzTrimIBibo7Ndbun0NtmU5WuYoi9fyroVPe8pI12hLndU6ZpStIPULsO2aI7gRkmJ3G4rf7aV223l97bF5r_sTXRriB__elc7z_khxDW8hzgameFjDHGI4LVLkv0d8QmMWpQ3
CitedBy_id crossref_primary_10_1049_rpg2_12777
crossref_primary_10_1016_j_proci_2024_105639
crossref_primary_10_1177_17568277231159173
crossref_primary_10_1016_j_combustflame_2024_113626
Cites_doi 10.1016/j.pecs.2004.02.003
10.1016/S0082-0784(00)80554-8
10.1115/GT2009-60257
10.1016/j.enconman.2012.01.011
10.1016/j.combustflame.2015.03.003
10.1016/S0196-8904(96)00152-5
10.1201/9781420086058
10.2514/6.2016-4698
10.1016/j.combustflame.2004.01.011
10.1115/97-GT-074
10.1134/S1990793110060187
10.1016/j.combustflame.2017.01.026
10.1016/S0082-0784(00)80301-X
10.1115/GT2015-42642
10.1016/S0010-2180(02)00492-3
10.1016/j.combustflame.2020.11.023
10.1115/GT2016-57719
10.1016/j.proci.2014.06.035
10.1016/S0082-0784(96)80387-0
10.1007/s10494-016-9710-0
10.1016/S0021-9991(05)80013-0
10.1016/S0082-0784(89)80054-2
10.1016/S1359-4311(02)00132-1
10.1016/j.apenergy.2017.03.095
10.1016/0010-2180(90)90122-8
10.1016/j.combustflame.2016.05.013
10.3844/ajassp.2015.463.478
10.1016/j.combustflame.2005.12.013
10.1016/j.energy.2018.01.051
10.1016/0010-2180(75)90131-5
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1080/13647830.2022.2034976
DatabaseName Taylor & Francis Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-3559
EndPage 559
ExternalDocumentID 10_1080_13647830_2022_2034976
2034976
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
J9A
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
RNS
RO9
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UCJ
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
8FD
FR3
H8D
L7M
TASJS
ID FETCH-LOGICAL-c385t-ab394d470aa3c50674ad917bbf8dba721b338c7b752d3bf06a1cef93505c1a733
IEDL.DBID 0YH
ISSN 1364-7830
IngestDate Fri Jul 25 02:33:07 EDT 2025
Tue Jul 01 01:27:46 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
Wed Dec 25 09:06:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-ab394d470aa3c50674ad917bbf8dba721b338c7b752d3bf06a1cef93505c1a733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8245-5188
0000-0003-2938-7918
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2034976
PQID 2679591308
PQPubID 2045308
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_13647830_2022_2034976
crossref_primary_10_1080_13647830_2022_2034976
informaworld_taylorfrancis_310_1080_13647830_2022_2034976
proquest_journals_2679591308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-16
PublicationDateYYYYMMDD 2022-04-16
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-16
  day: 16
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Combustion theory and modelling
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
cr-split#-CIT0024.1
cr-split#-CIT0024.2
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
Bolszo C. (CIT0015) 2005; 8
CIT0018
Hamilton S. (CIT0002) 2003
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0011
  doi: 10.1016/j.pecs.2004.02.003
– ident: CIT0036
  doi: 10.1016/S0082-0784(00)80554-8
– ident: CIT0004
  doi: 10.1115/GT2009-60257
– ident: CIT0007
  doi: 10.1016/j.enconman.2012.01.011
– ident: #cr-split#-CIT0024.1
– ident: CIT0020
  doi: 10.1016/j.combustflame.2015.03.003
– ident: CIT0010
  doi: 10.1016/S0196-8904(96)00152-5
– ident: CIT0008
  doi: 10.1201/9781420086058
– ident: CIT0014
  doi: 10.2514/6.2016-4698
– ident: CIT0029
  doi: 10.1016/j.combustflame.2004.01.011
– ident: CIT0009
  doi: 10.1115/97-GT-074
– ident: CIT0022
  doi: 10.1134/S1990793110060187
– ident: CIT0016
  doi: 10.1016/j.combustflame.2017.01.026
– ident: CIT0018
  doi: 10.1016/S0082-0784(00)80301-X
– ident: CIT0013
  doi: 10.1115/GT2015-42642
– ident: CIT0025
– ident: CIT0023
  doi: 10.1016/S0010-2180(02)00492-3
– ident: CIT0033
  doi: 10.1016/j.combustflame.2020.11.023
– ident: CIT0001
  doi: 10.1115/GT2016-57719
– ident: CIT0021
  doi: 10.1016/j.proci.2014.06.035
– ident: CIT0017
  doi: 10.1016/S0082-0784(96)80387-0
– ident: CIT0028
  doi: 10.1007/s10494-016-9710-0
– ident: #cr-split#-CIT0024.2
– ident: CIT0027
  doi: 10.1016/S0021-9991(05)80013-0
– ident: CIT0030
  doi: 10.1016/S0082-0784(89)80054-2
– volume-title: The handbook of microturbine generators
  year: 2003
  ident: CIT0002
– ident: CIT0026
  doi: 10.1016/S1359-4311(02)00132-1
– ident: CIT0003
– ident: CIT0006
  doi: 10.1016/j.apenergy.2017.03.095
– ident: CIT0031
  doi: 10.1016/0010-2180(90)90122-8
– ident: CIT0034
  doi: 10.1016/j.combustflame.2016.05.013
– ident: CIT0032
– ident: CIT0012
  doi: 10.3844/ajassp.2015.463.478
– ident: CIT0019
  doi: 10.1016/j.combustflame.2005.12.013
– ident: CIT0005
  doi: 10.1016/j.energy.2018.01.051
– ident: CIT0035
  doi: 10.1016/0010-2180(75)90131-5
– volume: 8
  start-page: 13
  year: 2005
  ident: CIT0015
  publication-title: The UCI Undergraduate Res. J.
SSID ssj0002724
Score 2.3121135
Snippet Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20-100  is simulated using air at 4 atm and 700-1200 K, which includes the...
Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100  is simulated using air at 4 atm and 700–1200 K, which includes the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 541
SubjectTerms Autoignition
Combustion chambers
Combustion products
Delay time
Dilution
Droplets
Fuels
Heptanes
hot products
Ignition
Low temperature
low-temperature chemistry
microturbine
Mixtures
single droplet
Spontaneous combustion
Title Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions
URI https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2034976
https://www.proquest.com/docview/2679591308
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-LnoQn_gmB6_Rtkmb9rj4YBH05OLjUvJkC9ou2_r_neljUUT24LGhE-jMJPNNM_mGkAulw5BrnjAfOMuEizzTqZEsM5EMUmezUOMF54fHZDwR9y_xUE1Y92WVmEP7jiii3atxcStdDxVxVyFynqc8gOwuwrtUXEBMXSXrEQBFdOzgdbzYjGGs62ubCIYywyWev6b5EZ5-kJf-2qzbCHS3TbZ66EhHna13yIord8nmN0LBPVKMPpuqaAuCqpJWnhbgWoAmLS3Z1M3gkx21c6wZb2palFQVcwpqoNOqoaADja29QHDW0cDWVDX0Ayv2IC5BBu3gHTzhRk_dJ5O726frMeubKTDD07hhSvNMWCEDpbiJIUYJBYaQWvvUagV5oIZk1Ugt48hy7YNEhcb5jANCMqGSnB-QtbIq3SGhRkVKSWWFz4xIYkCYEYAoaVPluQi8PyJi0GFueqZxbHjxnoc9Iemg-hxVn_eqPyKXC7FZR7WxTCD7bqC8af9x-K4hSc6XyJ4O1sz7VVvnUYKd1yGqp8f_mPqEbOAjHjmFySlZa-af7gyQS6PPW988J-uj8c3b8xeXzuVT
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-UwDI5YDgMHBMOM2MmBa5g2SZv2iBDosZ5AYk5RVlFpaJ_eK_8fuwt6aIQ4cG4dKbbjJbE_E3JibJoKK3IWk-CZDDwyWzjFSsdVUgRfphYbnO_u88mjvH7KnhZ6YbCsEnPo2ANFdLYaDzdeRo8lcX9SBD0vRALpHcdmKiHBqS6T1awoOZZ1JX8n79aYq2GwbS4Z0oxdPJ8t88E_fUAv_c9ady7ocpNsDLEjPeuFvUWWQv2TrC8gCm6T6uy1baquIqipaRNpBboF4aSnNXsOU9hzoH6GRePtnFY1NdWMAh_oc9NSYILF2V5AOO1xYOfUtPQFS_bAMUEKHeAffOJGVf1FHi8vHs4nbJimwJwospYZK0rppUqMES4DJyUNSEJZGwtvDSSCFrJVp6zKuBc2JrlJXYilgBDJpUYJ8Zus1E0ddgh1hhujjJexdDLPIMTkEEUpX5goZBLjLpEjD7UboMZx4sU_nQ6IpCPrNbJeD6zfJafvZNMea-MrgnJRQLrtLjliP5FEiy9oD0Zp6uHYzjXPcfQ6uPVi7xtLH5Mfk4e7W317dX-zT9bwE74_pfkBWWlnr-EQwpjWHnV6-gbKoOcd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SIgeKspDpQXqA1dDYjtxckQtqwVaxAEkOFl-ikiQrHbD_-9MHgiEEAfOyVjKzNgzE3_zDSGHxqapsCJnMQmeycAjs4VTrHRcJUXwZWqxwfnfZT69kee32YgmXAywSqyhY08U0Z3VuLlnPo6IuOMUOc8LkUB1x7GXSkiIqctkNStKjvVXcjd9Poy5Guba5pKhzNjE894yr8LTK_LSN4d1F4EmG-TrkDrSk97W38hSqDfJlxeEglukOnlqm6oDBDU1bSKtwLUgm_S0ZvdhBp8cqJ8jZrxd0KqmpppTUAO9b1oKOrA42gsEZz0N7IKalj4iYg_iElTQAd7BG2701G1yMzm9_j1lwzAF5kSRtcxYUUovVWKMcBnEKGnAEMraWHhroA60UKw6ZVXGvbAxyU3qQiwFZEguNUqIHbJSN3X4Tqgz3BhlvIylk3kGGSaHJEr5wkQhkxh3iRx1qN3ANI4DLx50OhCSjqrXqHo9qH6XHD2LzXqqjY8EypcG0m33jyP2A0m0-EB2b7SmHnbtQvMcJ69DVC9-fGLpX2Tt6s9E_z27vPhJ1vEJ3j6l-R5ZaedPYR-SmNYedG76H2eE5kY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoignition+of+isolated+n+-heptane+droplets+in+air+and+hot+combustion+products+at+microturbine+conditions&rft.jtitle=Combustion+theory+and+modelling&rft.au=Wang%2C+Jiayi&rft.au=Mastorakos%2C+Epaminondas&rft.date=2022-04-16&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=26&rft.issue=3&rft.spage=541&rft.epage=559&rft_id=info:doi/10.1080%2F13647830.2022.2034976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13647830_2022_2034976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon