Surface polishing of additively manufactured Ti6Al4V titanium alloy by using a nanosecond pulse laser

Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughn...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 127; no. 7-8; pp. 3463 - 3480
Main Authors Jaritngam, Pakin, Saetang, Viboon, Qi, Huan, Dumkum, Chaiya
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-023-11722-5

Cover

Loading…
Abstract Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study.
AbstractList Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study.
Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study.
Author Dumkum, Chaiya
Saetang, Viboon
Qi, Huan
Jaritngam, Pakin
Author_xml – sequence: 1
  givenname: Pakin
  surname: Jaritngam
  fullname: Jaritngam, Pakin
  organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi
– sequence: 2
  givenname: Viboon
  orcidid: 0000-0002-5922-8873
  surname: Saetang
  fullname: Saetang, Viboon
  email: viboon.tan@kmutt.ac.th
  organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi
– sequence: 3
  givenname: Huan
  surname: Qi
  fullname: Qi, Huan
  organization: Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology
– sequence: 4
  givenname: Chaiya
  surname: Dumkum
  fullname: Dumkum, Chaiya
  organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi
BookMark eNp9kMtKAzEUhoNUsK2-gKuA69FkzuQyy1K8QcGF1W1IM5maMk1qMiP07U2tILjo6nDg-87ln6CRD94idE3JLSVE3CVCqCAFKaGgVJRlwc7QmFYABRDKRmhMSi4LEFxeoElKm4xzyuUY2dchttpYvAudSx_Or3FosW4a17sv2-3xVvshA_0QbYOXjs-66h33rtfeDVusuy7s8WqPh3RQNfbah2RN8A3eDV2yuNPJxkt03urcXf3WKXp7uF_On4rFy-PzfLYoDEjWF7qua0ahAtmAraC0TBi-MpSuasJrkKZta7CtBc0FFZLUNfCVgEY3jAlgBqbo5jh3F8PnYFOvNmGIPq9UpYRKlowSmSl5pEwMKUXbKpP_6V3wfdSuU5SoQ6jqGKrKoaqfUBXLavlP3UW31XF_WoKjlDLs1zb-XXXC-gZdEIuU
CitedBy_id crossref_primary_10_1016_j_surfin_2024_105013
crossref_primary_10_1016_j_ijfatigue_2024_108348
crossref_primary_10_1016_j_jmatprotec_2024_118520
crossref_primary_10_3390_pr13020416
crossref_primary_10_3390_ma16175861
crossref_primary_10_3390_met14010058
crossref_primary_10_1007_s00170_024_14630_4
Cites_doi 10.1016/j.ijmachtools.2007.01.013
10.1016/j.addma.2019.101013
10.1016/j.procir.2018.05.088
10.1016/j.apsusc.2021.149887
10.1016/j.apsusc.2018.02.246
10.1016/j.phpro.2010.08.066
10.1063/1.2930808
10.1007/s00170-022-09664-5
10.1016/j.surfcoat.2019.125113
10.1016/j.jmapro.2012.09.004
10.1016/j.ijmachtools.2021.103745
10.1016/j.surfcoat.2019.125016
10.1016/j.cirp.2013.03.112
10.1016/j.jmatprotec.2019.05.022
10.1016/j.optlastec.2020.106102
10.1016/j.procir.2020.02.072
10.1016/j.ijmachtools.2015.05.002
10.1016/j.optlastec.2014.01.009
10.1007/s00170-014-6297-2
10.1007/s00170-021-06861-6
10.1533/9781845690144.18
10.1016/j.optlaseng.2017.02.005
10.1007/s11696-021-01976-2
10.1016/j.jmapro.2022.01.072
10.1016/j.matpr.2020.02.443
10.1016/j.ijlmm.2022.04.005
10.1016/j.procir.2020.02.104
10.1016/j.jmbbm.2010.12.001
10.1016/j.procir.2015.07.055
10.1007/s10845-021-01744-9
10.1016/j.procir.2018.08.111
10.1016/j.jmatprotec.2018.06.019
10.1016/j.procir.2015.06.102
10.1016/j.heliyon.2022.e12505
10.1016/j.surfcoat.2022.128179
10.1016/j.apsusc.2017.01.211
10.1016/j.optlaseng.2018.03.006
10.1016/j.actbio.2007.12.002
10.1016/j.optlastec.2018.05.025
10.1016/j.mser.2004.11.001
10.1016/j.optlastec.2021.106947
10.3390/met10020191
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00170-023-11722-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central (New) (NC LIVE)
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 3480
ExternalDocumentID 10_1007_s00170_023_11722_5
GrantInformation_xml – fundername: Thailand Science Research and Innovation
– fundername: Thailand Research Fund
  grantid: PHD/0200/2561
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0110300
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c385t-a999513438d3e432e57c6bc11b906938cff93efe3a6717809936b73dad55735c3
IEDL.DBID BENPR
ISSN 0268-3768
IngestDate Fri Jul 25 11:00:05 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 02:01:34 EDT 2025
Fri Feb 21 02:42:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Titanium alloy
Polishing
Additive manufacturing
Laser
Roughness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-a999513438d3e432e57c6bc11b906938cff93efe3a6717809936b73dad55735c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5922-8873
PQID 2834825108
PQPubID 2044010
PageCount 18
ParticipantIDs proquest_journals_2834825108
crossref_citationtrail_10_1007_s00170_023_11722_5
crossref_primary_10_1007_s00170_023_11722_5
springer_journals_10_1007_s00170_023_11722_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Li, Jin, Chang, Zuo (CR38) 2022
Basha, Bhuyan, Basha, Venkaiah, Sankar (CR14) 2020; 26
Chen, Tsai (CR7) 2018; 107
Mohamed, Abd Elmomen, El-Hadad (CR39) 2022; 76
Lamikiz, Sánchez, López de Lacalle, Arana (CR1) 2007; 47
Chen, Richter, Zhang, Ren, Pfefferkorn (CR3) 2020; 32
Pfefferkorn, Duffie, Li, Vadali, Ma (CR16) 2013; 62
Grenadyorov, Solovyev, Oskomov, Onischenko, Chernyavskiy, Zhulkov, Kaichev (CR31) 2020; 381
Zhou, Liao, Shen, Ding (CR22) 2019; 380
Yang, Patel, Jarosz, Özel (CR12) 2020; 87
De Giorgi, Furlan, Demir, Tallarita, Candiani, Previtali (CR25) 2016; 49
Cherry, Davies, Mehmood, Lavery, Brown, Sienz (CR2) 2015; 76
CR11
Ukar, Lamikiz, Lacalle, Martínez, Liebana, Tabernero (CR17) 2010; 5, Part B
Kibria, Doloi, Bhattacharyya (CR28) 2014; 60
Park, Liu, Yi, Choi, Jhang, Sohn (CR15) 2021; 166
Simoni, Huxol, Villmer (CR29) 2021; 32
Wang, Yung, Choy, Xiao, Cai (CR9) 2018; 443
Marimuthu, Triantaphyllou, Antar, Wimpenny, Morton, Beard (CR5) 2015; 95
Chen, Tsai, Liu, Horng (CR27) 2018; 107
Nesli, Yilmaz (CR26) 2021; 114
Jaritngam, Tangwarodomnukun, Qi, Dumkum (CR36) 2020; 126
Obeidi, Mussatto, Dogu, Sreenilayam, McCarthy, Ahad, Keaveney, Brabazon (CR4) 2022; 434
Mills (CR41) 2002
Yung, Xiao, Choy, Wang, Cai (CR20) 2018; 262
dos Santos, Jürgen Seifert, Pfleging (CR21) 2018; 74
Ma, Guan, Zhou (CR6) 2017; 93
Sen, Subasi, Ozaner, Orhangul (CR13) 2020; 87
Hafiz, Bordatchev, Tutunea-Fatan (CR24) 2012; 14
Liu, Chu, Ding (CR30) 2004; 47
Dias CorpaTardelli, Duarte Firmino, Ferreira, Cândido dos Reis (CR33) 2022; 8
Le Guehennec, Lopez-Heredia, Enkel, Weiss, Amouriq, Layrolle (CR35) 2008; 4
Bhaduri, Penchev, Batal, Dimov, Soo, Sten, Harrysson, Zhang, Dong (CR19) 2017; 405
Zhihao, Libin, Longfei, Yingchun (CR10) 2018; 71
Mondal, Das, Wazeer, Karmakar (CR34) 2022; 5
Bhaduri, Ghara, Penchev, Paul, Pruncu, Dimov, Morgan (CR8) 2021; 558
Giorleo, Ceretti, Giardini (CR40) 2015; 33
Zhou, Shen, Lin, Liao, Yu (CR42) 2022; 75
Janeček, Nový, Stráský, Harcuba, Wagner (CR32) 2011; 4
Dai, Li, Zhang, Zheng (CR23) 2019; 273
Bergström, Powell, Kaplan (CR37) 2008; 103
Xu, Zou, Wang, Kang (CR18) 2021; 139
L Chen (11722_CR3) 2020; 32
KC Mills (11722_CR41) 2002
E Ukar (11722_CR17) 2010; 5, Part B
LZ Mohamed (11722_CR39) 2022; 76
KC Yung (11722_CR20) 2018; 262
P Jaritngam (11722_CR36) 2020; 126
F Zhihao (11722_CR10) 2018; 71
SJ dos Santos (11722_CR21) 2018; 74
AS Grenadyorov (11722_CR31) 2020; 381
J Dias CorpaTardelli (11722_CR33) 2022; 8
L Yang (11722_CR12) 2020; 87
L Giorleo (11722_CR40) 2015; 33
C Sen (11722_CR13) 2020; 87
A Lamikiz (11722_CR1) 2007; 47
MA Obeidi (11722_CR4) 2022; 434
J Zhou (11722_CR22) 2019; 380
P Mondal (11722_CR34) 2022; 5
C De Giorgi (11722_CR25) 2016; 49
CP Ma (11722_CR6) 2017; 93
G Kibria (11722_CR28) 2014; 60
L Le Guehennec (11722_CR35) 2008; 4
F Simoni (11722_CR29) 2021; 32
11722_CR11
D Bergström (11722_CR37) 2008; 103
J Xu (11722_CR18) 2021; 139
Y-D Chen (11722_CR27) 2018; 107
D Bhaduri (11722_CR8) 2021; 558
C Chen (11722_CR7) 2018; 107
SM Basha (11722_CR14) 2020; 26
JA Cherry (11722_CR2) 2015; 76
S-H Park (11722_CR15) 2021; 166
J Zhou (11722_CR42) 2022; 75
AMK Hafiz (11722_CR24) 2012; 14
M Janeček (11722_CR32) 2011; 4
WJ Wang (11722_CR9) 2018; 443
J Li (11722_CR38) 2022
FE Pfefferkorn (11722_CR16) 2013; 62
S Nesli (11722_CR26) 2021; 114
S Marimuthu (11722_CR5) 2015; 95
W Dai (11722_CR23) 2019; 273
X Liu (11722_CR30) 2004; 47
D Bhaduri (11722_CR19) 2017; 405
References_xml – volume: 47
  start-page: 2040
  issue: 12
  year: 2007
  end-page: 2050
  ident: CR1
  article-title: Laser polishing of parts built up by selective laser sintering
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2007.01.013
– volume: 32
  start-page: 101013
  year: 2020
  ident: CR3
  article-title: Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2019.101013
– volume: 71
  start-page: 150
  year: 2018
  end-page: 154
  ident: CR10
  article-title: Laser polishing of additive manufactured superalloy
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.05.088
– volume: 558
  start-page: 149887
  year: 2021
  ident: CR8
  article-title: Pulsed laser polishing of selective laser melted aluminium alloy parts
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149887
– volume: 443
  start-page: 167
  year: 2018
  end-page: 175
  ident: CR9
  article-title: Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.02.246
– volume: 5, Part B
  start-page: 395
  year: 2010
  end-page: 403
  ident: CR17
  article-title: Thermal model with phase change for process parameter determination in laser surface processing
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2010.08.066
– volume: 103
  start-page: 103515
  issue: 10
  year: 2008
  ident: CR37
  article-title: The absorption of light by rough metal surfaces—a three-dimensional ray-tracing analysis
  publication-title: J Appl Phys
  doi: 10.1063/1.2930808
– year: 2022
  ident: CR38
  article-title: Finite element simulation and experimental study of single-laser track in laser polishing of Ti6Al4V
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-09664-5
– volume: 381
  start-page: 125113
  year: 2020
  ident: CR31
  article-title: Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125113
– volume: 14
  start-page: 425
  issue: 4
  year: 2012
  end-page: 434
  ident: CR24
  article-title: Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2012.09.004
– volume: 166
  start-page: 103745
  year: 2021
  ident: CR15
  article-title: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2021.103745
– volume: 380
  start-page: 125016
  year: 2019
  ident: CR22
  article-title: Surface and property characterization of laser polished Ti6Al4V
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125016
– volume: 62
  start-page: 203
  issue: 1
  year: 2013
  end-page: 206
  ident: CR16
  article-title: Improving surface finish in pulsed laser micro polishing using thermocapillary flow
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2013.03.112
– volume: 273
  start-page: 116241
  year: 2019
  ident: CR23
  article-title: Evaluation of fluences and surface characteristics in laser polishing SKD 11 tool steel
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2019.05.022
– volume: 126
  start-page: 106102
  year: 2020
  ident: CR36
  article-title: Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2020.106102
– volume: 87
  start-page: 31
  year: 2020
  end-page: 34
  ident: CR13
  article-title: The effect of milling parameters on surface properties of additively manufactured inconel 939
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.02.072
– volume: 95
  start-page: 97
  year: 2015
  end-page: 104
  ident: CR5
  article-title: Laser polishing of selective laser melted components
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2015.05.002
– volume: 60
  start-page: 90
  year: 2014
  end-page: 98
  ident: CR28
  article-title: Investigation into the effect of overlap factors and process parameters on surface roughness and machined depth during micro-turning process with Nd:YAG laser
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2014.01.009
– volume: 76
  start-page: 869
  issue: 5
  year: 2015
  end-page: 879
  ident: CR2
  article-title: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6297-2
– volume: 114
  start-page: 271
  issue: 1
  year: 2021
  end-page: 289
  ident: CR26
  article-title: Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-06861-6
– year: 2002
  ident: CR41
  article-title: Recommended values of thermophysical properties for selected commercial alloys
  publication-title: Woodhead Publ
  doi: 10.1533/9781845690144.18
– volume: 93
  start-page: 171
  year: 2017
  end-page: 177
  ident: CR6
  article-title: Laser polishing of additive manufactured Ti alloys
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.02.005
– volume: 76
  start-page: 1627
  issue: 3
  year: 2022
  end-page: 1638
  ident: CR39
  article-title: Influence of the oxidation behavior of Ti–6Al–4V alloy in dry air on the oxide layer microstructure
  publication-title: Chem Pap
  doi: 10.1007/s11696-021-01976-2
– volume: 75
  start-page: 1202
  year: 2022
  end-page: 1216
  ident: CR42
  article-title: Microstructural evolution during multiple scans in laser polishing of Ti6Al4V
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2022.01.072
– volume: 26
  start-page: 2047
  year: 2020
  end-page: 2054
  ident: CR14
  article-title: Laser polishing of 3D printed metallic components: a review on surface integrity
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2020.02.443
– volume: 5
  start-page: 384
  issue: 3
  year: 2022
  end-page: 396
  ident: CR34
  article-title: Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization
  publication-title: Int J Lightweight Mater Manuf
  doi: 10.1016/j.ijlmm.2022.04.005
– volume: 87
  start-page: 351
  year: 2020
  end-page: 354
  ident: CR12
  article-title: Surface integrity induced in machining additively fabricated nickel alloy Inconel 625
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.02.104
– volume: 4
  start-page: 417
  issue: 3
  year: 2011
  end-page: 422
  ident: CR32
  article-title: Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2010.12.001
– volume: 49
  start-page: 88
  year: 2016
  end-page: 93
  ident: CR25
  article-title: Laser micro-polishing of stainless steel for antibacterial surface applications
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.07.055
– volume: 32
  start-page: 1927
  issue: 7
  year: 2021
  end-page: 1938
  ident: CR29
  article-title: Improving surface quality in selective laser melting based tool making
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01744-9
– volume: 74
  start-page: 280
  year: 2018
  end-page: 284
  ident: CR21
  article-title: Laser surface modification and polishing of additive manufactured metallic parts
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.111
– ident: CR11
– volume: 262
  start-page: 53
  year: 2018
  end-page: 64
  ident: CR20
  article-title: Laser polishing of additive manufactured CoCr alloy components with complex surface geometry
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.06.019
– volume: 33
  start-page: 446
  year: 2015
  end-page: 451
  ident: CR40
  article-title: Ti surface laser polishing: effect of laser path and assist gas
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.06.102
– volume: 8
  start-page: e12505
  issue: 12
  year: 2022
  ident: CR33
  article-title: Influence of the roughness of dental implants obtained by additive manufacturing on osteoblastic adhesion and proliferation: a systematic review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12505
– volume: 434
  start-page: 128179
  year: 2022
  ident: CR4
  article-title: Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2022.128179
– volume: 405
  start-page: 29
  year: 2017
  end-page: 46
  ident: CR19
  article-title: Laser polishing of 3D printed mesoscale components
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.01.211
– volume: 107
  start-page: 54
  year: 2018
  end-page: 61
  ident: CR7
  article-title: Fundamental study of the bulge structure generated in laser polishing process
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.03.006
– volume: 4
  start-page: 535
  issue: 3
  year: 2008
  end-page: 543
  ident: CR35
  article-title: Osteoblastic cell behaviour on different titanium implant surfaces
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.12.002
– volume: 107
  start-page: 180
  year: 2018
  end-page: 185
  ident: CR27
  article-title: Picosecond laser pulse polishing of ASP23 steel
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.05.025
– volume: 47
  start-page: 49
  issue: 3
  year: 2004
  end-page: 121
  ident: CR30
  article-title: Surface modification of titanium, titanium alloys, and related materials for biomedical applications
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2004.11.001
– volume: 139
  start-page: 106947
  year: 2021
  ident: CR18
  article-title: Study on the mechanism of surface topography evolution in melting and transition regimes of laser polishing
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2021.106947
– volume: 5
  start-page: 384
  issue: 3
  year: 2022
  ident: 11722_CR34
  publication-title: Int J Lightweight Mater Manuf
  doi: 10.1016/j.ijlmm.2022.04.005
– volume: 49
  start-page: 88
  year: 2016
  ident: 11722_CR25
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.07.055
– volume: 262
  start-page: 53
  year: 2018
  ident: 11722_CR20
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.06.019
– volume: 114
  start-page: 271
  issue: 1
  year: 2021
  ident: 11722_CR26
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-06861-6
– volume: 47
  start-page: 2040
  issue: 12
  year: 2007
  ident: 11722_CR1
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2007.01.013
– volume: 434
  start-page: 128179
  year: 2022
  ident: 11722_CR4
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2022.128179
– volume: 93
  start-page: 171
  year: 2017
  ident: 11722_CR6
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.02.005
– volume: 71
  start-page: 150
  year: 2018
  ident: 11722_CR10
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.05.088
– volume: 87
  start-page: 351
  year: 2020
  ident: 11722_CR12
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.02.104
– volume: 4
  start-page: 417
  issue: 3
  year: 2011
  ident: 11722_CR32
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2010.12.001
– volume: 4
  start-page: 535
  issue: 3
  year: 2008
  ident: 11722_CR35
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.12.002
– volume: 558
  start-page: 149887
  year: 2021
  ident: 11722_CR8
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149887
– volume: 443
  start-page: 167
  year: 2018
  ident: 11722_CR9
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.02.246
– volume: 107
  start-page: 180
  year: 2018
  ident: 11722_CR27
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.05.025
– volume: 273
  start-page: 116241
  year: 2019
  ident: 11722_CR23
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2019.05.022
– volume: 32
  start-page: 101013
  year: 2020
  ident: 11722_CR3
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2019.101013
– volume: 8
  start-page: e12505
  issue: 12
  year: 2022
  ident: 11722_CR33
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12505
– volume: 381
  start-page: 125113
  year: 2020
  ident: 11722_CR31
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125113
– volume: 33
  start-page: 446
  year: 2015
  ident: 11722_CR40
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.06.102
– volume: 380
  start-page: 125016
  year: 2019
  ident: 11722_CR22
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.125016
– volume: 87
  start-page: 31
  year: 2020
  ident: 11722_CR13
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.02.072
– volume: 405
  start-page: 29
  year: 2017
  ident: 11722_CR19
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.01.211
– volume: 76
  start-page: 1627
  issue: 3
  year: 2022
  ident: 11722_CR39
  publication-title: Chem Pap
  doi: 10.1007/s11696-021-01976-2
– ident: 11722_CR11
  doi: 10.3390/met10020191
– volume: 32
  start-page: 1927
  issue: 7
  year: 2021
  ident: 11722_CR29
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01744-9
– volume: 139
  start-page: 106947
  year: 2021
  ident: 11722_CR18
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2021.106947
– volume: 76
  start-page: 869
  issue: 5
  year: 2015
  ident: 11722_CR2
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6297-2
– volume: 95
  start-page: 97
  year: 2015
  ident: 11722_CR5
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2015.05.002
– volume: 107
  start-page: 54
  year: 2018
  ident: 11722_CR7
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.03.006
– volume: 47
  start-page: 49
  issue: 3
  year: 2004
  ident: 11722_CR30
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2004.11.001
– volume: 103
  start-page: 103515
  issue: 10
  year: 2008
  ident: 11722_CR37
  publication-title: J Appl Phys
  doi: 10.1063/1.2930808
– volume: 5, Part B
  start-page: 395
  year: 2010
  ident: 11722_CR17
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2010.08.066
– volume: 74
  start-page: 280
  year: 2018
  ident: 11722_CR21
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.111
– volume: 60
  start-page: 90
  year: 2014
  ident: 11722_CR28
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2014.01.009
– volume: 166
  start-page: 103745
  year: 2021
  ident: 11722_CR15
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2021.103745
– year: 2022
  ident: 11722_CR38
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-09664-5
– year: 2002
  ident: 11722_CR41
  publication-title: Woodhead Publ
  doi: 10.1533/9781845690144.18
– volume: 75
  start-page: 1202
  year: 2022
  ident: 11722_CR42
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2022.01.072
– volume: 14
  start-page: 425
  issue: 4
  year: 2012
  ident: 11722_CR24
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2012.09.004
– volume: 62
  start-page: 203
  issue: 1
  year: 2013
  ident: 11722_CR16
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2013.03.112
– volume: 126
  start-page: 106102
  year: 2020
  ident: 11722_CR36
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2020.106102
– volume: 26
  start-page: 2047
  year: 2020
  ident: 11722_CR14
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2020.02.443
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.4350379
Snippet Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than...
Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3463
SubjectTerms Additive manufacturing
Argon
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Laser applications
Lasers
Mechanical Engineering
Media Management
Metal sheets
Metal surfaces
Morphology
Nanosecond pulses
Original Article
Polishing
Pulse repetition rate
Smoothing
Surface roughness
Three dimensional printing
Titanium alloys
Titanium base alloys
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ_eNNBkH9kci1iKoBdb6S3sUwptWtrm0H_v7DZpVVTwnE0Ck9n9vsnMN4PQrUld20qVRQqwL6KC2khp8GUB3IgYcBkZSv6fX3hvQJ-GbFiJwhZ1tXudkgwn9UbsFlq9RIAxUQyoCyHULtpjELv7Qr5B0qm9KM5SPwlz42VJ5sfPb72YUEbWua0q18DjIJiDYET47SYqac3P7_wKX1tO-i2NGtCpe4QOK1qJO2s_OEY7tjhBB5-aDZ4i-1rOndQW-7kM4ccTnjrs64n8iTde4YksSq9zKOfW4P6Id8b0DXsNWjEqJ9gn6FdYrbCvlH_HEheymC58OG3wrASAxcDD7fwMDbqP_YdeVA1ZiDQRbBlJYIgsJpQIQywliWWp5krHscraPCNCO5cR6yyRHCI_AYSScJUSIw1jKWGanKNGMS3sBcI8tVwmElBfGcqdVRkTqq2Zi4XhiSNNFNe2y3XVgdwPwhjnm97Jwd452DsP9s5ZE91t7pmt-2_8ubpVf5K82ouLHAgU9QLdtmii-_ozbS___rTL_y2_Qvt-Fv26OrCFGst5aa-BsSzVTXDQD1nq2yQ
  priority: 102
  providerName: Springer Nature
Title Surface polishing of additively manufactured Ti6Al4V titanium alloy by using a nanosecond pulse laser
URI https://link.springer.com/article/10.1007/s00170-023-11722-5
https://www.proquest.com/docview/2834825108
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLZocoEDYhWBNvKBG1hkxst4TlWCklZFRAgaVE4jr1WldBKSzCH_vs-OJylI7WkOnvHhzee3-C0fQh9t4QdO6ZJosH2ESeaINoBlCb4RtQAZFUv-v0_F-YxdXPGrdOG2TmWVrU6MitouTLgj_wJmkIU2y4E8Xf4lgTUqZFcThcYR6oIKlryDuqPx9MfPFlFZWQRWzD3i8jJQ0R8QTRmnuzxXyjuILDbPQWAiw9GTqc0mNtvFUTMEbBzJwOpDCPevKTv4p_-lVKOlmrxAz5OLiYc7TLxET1z9Cj27N3jwNXK_mpVXxuHA0RAvofDC41BbFLTffItvVd2Enodm5Sy-vBHDOfuNQz9afdPc4pCs32K9xaFq_horXKt6sQ6htcXLBowtBp_crd6g2WR8-fWcJMIFYqjkG6LAW-QZZVRa6hjNHS-M0CbLdDkQJZXG-5I676gSEAVKcC6p0AW1ynJeUG7oW9SpF7V7h7AonFC5Ag9AWya80yWXemC4z6QVuac9lLWyq0yaRh5IMebVfo5ylHcF8q6ivCveQ5_23yx3szgeffu4_SVVOpfr6oCiHvrc_qbD8sO7vX98tw_oaeCh31UGHqPOZtW4E_BWNrqPjuTkrI-6w8loNA3Psz_fxv0EVFid5cM74bTkmA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEE8RKLAHOMGK2Pvw-oBQgVYpbSMEKerN7BNVSp2QxEL5U_xGZjd2Akj01rPtPcx8M_ONdx4Az10R-l6bkhqMfZQr7qmxiGWF3Ig5hIxOJf8nQzk45R_PxNkW_Op6YWJZZecTk6N2Exv_kb_GMMhjm2VfvZ3-oHFrVLxd7VZorGBx5Jc_MWWbvzn8gPp9kecH-6P3A9puFaCWKbGgGimRyBhnyjHPWe5FYaWxWWbKviyZsiGUzAfPtMRURyGDYtIUzGknRMGEZXjuNdhBmlGiFe282x9--twhOCuLuIVzjfC8REJTbCyIccFW92rtPYfMUrMeJkIqmrpq23pSc18abUMxptIMWQamjH-Hzg0f_ucKN0XGg9twq6W0ZG-FwTuw5eu7cPOPQYf3wH9pZkFbT-JOiPTTi0wCibVM0duOl-RC103ssWhm3pHRudwb868k9r_V580FicUBS2KWJFbpfyea1LqezGMq78i0weBOMAfws_tweiWqeADb9aT2D4HIwkuda2QcxnEZvCmFMn0rQqaczAPrQdbJrrLt9PO4hGNcrec2J3lXKO8qybsSPXi5_ma6mv1x6du7nUqq1g_Mqw1qe_CqU9Pm8f9Pe3T5ac_g-mB0clwdHw6PHsONPKIkVSXuwvZi1vgnyJQW5mkLTwLfrtoifgN3mhtJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKiE4UF4VgQJ74AZuY-_D62NEGwqFCokWlZO1z6pq6kSpfQi_ntm1nZQKkBBnv-TZWc83nvm-AXhtcz9ySheJxtiXMMlcog36skRsRC26jIot_5-PxMEJ-3jKT6-x-GO3e1-SbDkNQaWpqnfn1u-uiG9R9iXBeJOkGIExnboNGyyIsw9gY_z---F-71NpkYe5mCufy4owjH7t05Rx2la6usqDSCN9DlMTGTaf7Ig2v3_qr8FsjVBvFFVjrJpsgurfsm1Rudhpar1jftwQgPwfMzyA-x2QJePW8x7CLVc9gnvX5A0fg_vaLLwyjoRJEPFXF5l5EjqYwjd2uiSXqmoCs6JZOEuOz8V4yr6RwHqrzptLEloClkQvSejNPyOKVKqaXYUE3pJ5gyGdIPJ3iydwMtk_fneQdGMdEkMlrxOFmJSnlFFpqWM0czw3Qps01cVIFFQa7wvqvKNKYK4pEcJSoXNqleU8p9zQLRhUs8o9BSJyJ1SmEGdoy4R3uuBSjwz3qbQi83QIab8-pek0z8PojWm5UmuOJizRhGU0YcmH8GZ1zbxV_Pjr2dv9spfd7r8qEbKxQAkeySG87VdxffjPd3v2b6e_gjtf9iblpw9Hh8_hbhb8ILYmbsOgXjTuBcKlWr_sdsRP62ED8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+polishing+of+additively+manufactured+Ti6Al4V+titanium+alloy+by+using+a+nanosecond+pulse+laser&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jaritngam%2C+Pakin&rft.au=Saetang%2C+Viboon&rft.au=Qi%2C+Huan&rft.au=Dumkum%2C+Chaiya&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=127&rft.issue=7-8&rft.spage=3463&rft.epage=3480&rft_id=info:doi/10.1007%2Fs00170-023-11722-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon