Surface polishing of additively manufactured Ti6Al4V titanium alloy by using a nanosecond pulse laser
Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughn...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 127; no. 7-8; pp. 3463 - 3480 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0268-3768 1433-3015 |
DOI | 10.1007/s00170-023-11722-5 |
Cover
Loading…
Abstract | Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study. |
---|---|
AbstractList | Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study. Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10 μm. However, the laser polishing performance for the surfaces of additively manufactured parts having different levels of morphology and roughness greater than 10 μm has not been comprehensively investigated. This paper therefore aims to unveil the viability of the laser polishing process for smoothing the additively manufactured surfaces possessing different degrees of morphologies and initial roughness. Three-dimensional printed sample and shot-peened Ti6Al4V titanium alloy sheets having various levels of surface roughness were polished by a nanosecond pulse laser under different processing conditions. Three experimental sets were performed to investigate the effects of initial surface roughness, laser scanning speed, laser pulse repetition rate, number of scanning passes, and flow rate of argon gas on the roughness and morphology of the polished surface. A smooth surface was achievable by using slow laser scanning speed, high laser pulse repetition rate, and multiple-scanning passes. Besides the initial roughness, the improvement was substantially subject to the initial surface morphology. The roughness of the laser-polished surface was improved by up to 73% when a suitable polishing condition was applied. The findings of this study have provided better insight into the laser polishing process and its ability to smooth the rough 3D-printed surfaces. The post-processing of additively manufactured parts, whose surface roughness is a critical concern, will benefit from the laser polishing guidelines suggested in this study. |
Author | Dumkum, Chaiya Saetang, Viboon Qi, Huan Jaritngam, Pakin |
Author_xml | – sequence: 1 givenname: Pakin surname: Jaritngam fullname: Jaritngam, Pakin organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi – sequence: 2 givenname: Viboon orcidid: 0000-0002-5922-8873 surname: Saetang fullname: Saetang, Viboon email: viboon.tan@kmutt.ac.th organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi – sequence: 3 givenname: Huan surname: Qi fullname: Qi, Huan organization: Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology – sequence: 4 givenname: Chaiya surname: Dumkum fullname: Dumkum, Chaiya organization: Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi |
BookMark | eNp9kMtKAzEUhoNUsK2-gKuA69FkzuQyy1K8QcGF1W1IM5maMk1qMiP07U2tILjo6nDg-87ln6CRD94idE3JLSVE3CVCqCAFKaGgVJRlwc7QmFYABRDKRmhMSi4LEFxeoElKm4xzyuUY2dchttpYvAudSx_Or3FosW4a17sv2-3xVvshA_0QbYOXjs-66h33rtfeDVusuy7s8WqPh3RQNfbah2RN8A3eDV2yuNPJxkt03urcXf3WKXp7uF_On4rFy-PzfLYoDEjWF7qua0ahAtmAraC0TBi-MpSuasJrkKZta7CtBc0FFZLUNfCVgEY3jAlgBqbo5jh3F8PnYFOvNmGIPq9UpYRKlowSmSl5pEwMKUXbKpP_6V3wfdSuU5SoQ6jqGKrKoaqfUBXLavlP3UW31XF_WoKjlDLs1zb-XXXC-gZdEIuU |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_105013 crossref_primary_10_1016_j_ijfatigue_2024_108348 crossref_primary_10_1016_j_jmatprotec_2024_118520 crossref_primary_10_3390_pr13020416 crossref_primary_10_3390_ma16175861 crossref_primary_10_3390_met14010058 crossref_primary_10_1007_s00170_024_14630_4 |
Cites_doi | 10.1016/j.ijmachtools.2007.01.013 10.1016/j.addma.2019.101013 10.1016/j.procir.2018.05.088 10.1016/j.apsusc.2021.149887 10.1016/j.apsusc.2018.02.246 10.1016/j.phpro.2010.08.066 10.1063/1.2930808 10.1007/s00170-022-09664-5 10.1016/j.surfcoat.2019.125113 10.1016/j.jmapro.2012.09.004 10.1016/j.ijmachtools.2021.103745 10.1016/j.surfcoat.2019.125016 10.1016/j.cirp.2013.03.112 10.1016/j.jmatprotec.2019.05.022 10.1016/j.optlastec.2020.106102 10.1016/j.procir.2020.02.072 10.1016/j.ijmachtools.2015.05.002 10.1016/j.optlastec.2014.01.009 10.1007/s00170-014-6297-2 10.1007/s00170-021-06861-6 10.1533/9781845690144.18 10.1016/j.optlaseng.2017.02.005 10.1007/s11696-021-01976-2 10.1016/j.jmapro.2022.01.072 10.1016/j.matpr.2020.02.443 10.1016/j.ijlmm.2022.04.005 10.1016/j.procir.2020.02.104 10.1016/j.jmbbm.2010.12.001 10.1016/j.procir.2015.07.055 10.1007/s10845-021-01744-9 10.1016/j.procir.2018.08.111 10.1016/j.jmatprotec.2018.06.019 10.1016/j.procir.2015.06.102 10.1016/j.heliyon.2022.e12505 10.1016/j.surfcoat.2022.128179 10.1016/j.apsusc.2017.01.211 10.1016/j.optlaseng.2018.03.006 10.1016/j.actbio.2007.12.002 10.1016/j.optlastec.2018.05.025 10.1016/j.mser.2004.11.001 10.1016/j.optlastec.2021.106947 10.3390/met10020191 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s00170-023-11722-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central (New) (NC LIVE) Technology Collection ProQuest One ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 3480 |
ExternalDocumentID | 10_1007_s00170_023_11722_5 |
GrantInformation_xml | – fundername: Thailand Science Research and Innovation – fundername: Thailand Research Fund grantid: PHD/0200/2561 – fundername: National Key Research and Development Program of China grantid: 2021YFE0110300 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c385t-a999513438d3e432e57c6bc11b906938cff93efe3a6717809936b73dad55735c3 |
IEDL.DBID | BENPR |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:00:05 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 02:01:34 EDT 2025 Fri Feb 21 02:42:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Keywords | Titanium alloy Polishing Additive manufacturing Laser Roughness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-a999513438d3e432e57c6bc11b906938cff93efe3a6717809936b73dad55735c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5922-8873 |
PQID | 2834825108 |
PQPubID | 2044010 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2834825108 crossref_citationtrail_10_1007_s00170_023_11722_5 crossref_primary_10_1007_s00170_023_11722_5 springer_journals_10_1007_s00170_023_11722_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Li, Jin, Chang, Zuo (CR38) 2022 Basha, Bhuyan, Basha, Venkaiah, Sankar (CR14) 2020; 26 Chen, Tsai (CR7) 2018; 107 Mohamed, Abd Elmomen, El-Hadad (CR39) 2022; 76 Lamikiz, Sánchez, López de Lacalle, Arana (CR1) 2007; 47 Chen, Richter, Zhang, Ren, Pfefferkorn (CR3) 2020; 32 Pfefferkorn, Duffie, Li, Vadali, Ma (CR16) 2013; 62 Grenadyorov, Solovyev, Oskomov, Onischenko, Chernyavskiy, Zhulkov, Kaichev (CR31) 2020; 381 Zhou, Liao, Shen, Ding (CR22) 2019; 380 Yang, Patel, Jarosz, Özel (CR12) 2020; 87 De Giorgi, Furlan, Demir, Tallarita, Candiani, Previtali (CR25) 2016; 49 Cherry, Davies, Mehmood, Lavery, Brown, Sienz (CR2) 2015; 76 CR11 Ukar, Lamikiz, Lacalle, Martínez, Liebana, Tabernero (CR17) 2010; 5, Part B Kibria, Doloi, Bhattacharyya (CR28) 2014; 60 Park, Liu, Yi, Choi, Jhang, Sohn (CR15) 2021; 166 Simoni, Huxol, Villmer (CR29) 2021; 32 Wang, Yung, Choy, Xiao, Cai (CR9) 2018; 443 Marimuthu, Triantaphyllou, Antar, Wimpenny, Morton, Beard (CR5) 2015; 95 Chen, Tsai, Liu, Horng (CR27) 2018; 107 Nesli, Yilmaz (CR26) 2021; 114 Jaritngam, Tangwarodomnukun, Qi, Dumkum (CR36) 2020; 126 Obeidi, Mussatto, Dogu, Sreenilayam, McCarthy, Ahad, Keaveney, Brabazon (CR4) 2022; 434 Mills (CR41) 2002 Yung, Xiao, Choy, Wang, Cai (CR20) 2018; 262 dos Santos, Jürgen Seifert, Pfleging (CR21) 2018; 74 Ma, Guan, Zhou (CR6) 2017; 93 Sen, Subasi, Ozaner, Orhangul (CR13) 2020; 87 Hafiz, Bordatchev, Tutunea-Fatan (CR24) 2012; 14 Liu, Chu, Ding (CR30) 2004; 47 Dias CorpaTardelli, Duarte Firmino, Ferreira, Cândido dos Reis (CR33) 2022; 8 Le Guehennec, Lopez-Heredia, Enkel, Weiss, Amouriq, Layrolle (CR35) 2008; 4 Bhaduri, Penchev, Batal, Dimov, Soo, Sten, Harrysson, Zhang, Dong (CR19) 2017; 405 Zhihao, Libin, Longfei, Yingchun (CR10) 2018; 71 Mondal, Das, Wazeer, Karmakar (CR34) 2022; 5 Bhaduri, Ghara, Penchev, Paul, Pruncu, Dimov, Morgan (CR8) 2021; 558 Giorleo, Ceretti, Giardini (CR40) 2015; 33 Zhou, Shen, Lin, Liao, Yu (CR42) 2022; 75 Janeček, Nový, Stráský, Harcuba, Wagner (CR32) 2011; 4 Dai, Li, Zhang, Zheng (CR23) 2019; 273 Bergström, Powell, Kaplan (CR37) 2008; 103 Xu, Zou, Wang, Kang (CR18) 2021; 139 L Chen (11722_CR3) 2020; 32 KC Mills (11722_CR41) 2002 E Ukar (11722_CR17) 2010; 5, Part B LZ Mohamed (11722_CR39) 2022; 76 KC Yung (11722_CR20) 2018; 262 P Jaritngam (11722_CR36) 2020; 126 F Zhihao (11722_CR10) 2018; 71 SJ dos Santos (11722_CR21) 2018; 74 AS Grenadyorov (11722_CR31) 2020; 381 J Dias CorpaTardelli (11722_CR33) 2022; 8 L Yang (11722_CR12) 2020; 87 L Giorleo (11722_CR40) 2015; 33 C Sen (11722_CR13) 2020; 87 A Lamikiz (11722_CR1) 2007; 47 MA Obeidi (11722_CR4) 2022; 434 J Zhou (11722_CR22) 2019; 380 P Mondal (11722_CR34) 2022; 5 C De Giorgi (11722_CR25) 2016; 49 CP Ma (11722_CR6) 2017; 93 G Kibria (11722_CR28) 2014; 60 L Le Guehennec (11722_CR35) 2008; 4 F Simoni (11722_CR29) 2021; 32 11722_CR11 D Bergström (11722_CR37) 2008; 103 J Xu (11722_CR18) 2021; 139 Y-D Chen (11722_CR27) 2018; 107 D Bhaduri (11722_CR8) 2021; 558 C Chen (11722_CR7) 2018; 107 SM Basha (11722_CR14) 2020; 26 JA Cherry (11722_CR2) 2015; 76 S-H Park (11722_CR15) 2021; 166 J Zhou (11722_CR42) 2022; 75 AMK Hafiz (11722_CR24) 2012; 14 M Janeček (11722_CR32) 2011; 4 WJ Wang (11722_CR9) 2018; 443 J Li (11722_CR38) 2022 FE Pfefferkorn (11722_CR16) 2013; 62 S Nesli (11722_CR26) 2021; 114 S Marimuthu (11722_CR5) 2015; 95 W Dai (11722_CR23) 2019; 273 X Liu (11722_CR30) 2004; 47 D Bhaduri (11722_CR19) 2017; 405 |
References_xml | – volume: 47 start-page: 2040 issue: 12 year: 2007 end-page: 2050 ident: CR1 article-title: Laser polishing of parts built up by selective laser sintering publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2007.01.013 – volume: 32 start-page: 101013 year: 2020 ident: CR3 article-title: Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing publication-title: Addit Manuf doi: 10.1016/j.addma.2019.101013 – volume: 71 start-page: 150 year: 2018 end-page: 154 ident: CR10 article-title: Laser polishing of additive manufactured superalloy publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.05.088 – volume: 558 start-page: 149887 year: 2021 ident: CR8 article-title: Pulsed laser polishing of selective laser melted aluminium alloy parts publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149887 – volume: 443 start-page: 167 year: 2018 end-page: 175 ident: CR9 article-title: Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.02.246 – volume: 5, Part B start-page: 395 year: 2010 end-page: 403 ident: CR17 article-title: Thermal model with phase change for process parameter determination in laser surface processing publication-title: Phys Procedia doi: 10.1016/j.phpro.2010.08.066 – volume: 103 start-page: 103515 issue: 10 year: 2008 ident: CR37 article-title: The absorption of light by rough metal surfaces—a three-dimensional ray-tracing analysis publication-title: J Appl Phys doi: 10.1063/1.2930808 – year: 2022 ident: CR38 article-title: Finite element simulation and experimental study of single-laser track in laser polishing of Ti6Al4V publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09664-5 – volume: 381 start-page: 125113 year: 2020 ident: CR31 article-title: Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125113 – volume: 14 start-page: 425 issue: 4 year: 2012 end-page: 434 ident: CR24 article-title: Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel publication-title: J Manuf Process doi: 10.1016/j.jmapro.2012.09.004 – volume: 166 start-page: 103745 year: 2021 ident: CR15 article-title: Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2021.103745 – volume: 380 start-page: 125016 year: 2019 ident: CR22 article-title: Surface and property characterization of laser polished Ti6Al4V publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125016 – volume: 62 start-page: 203 issue: 1 year: 2013 end-page: 206 ident: CR16 article-title: Improving surface finish in pulsed laser micro polishing using thermocapillary flow publication-title: CIRP Ann doi: 10.1016/j.cirp.2013.03.112 – volume: 273 start-page: 116241 year: 2019 ident: CR23 article-title: Evaluation of fluences and surface characteristics in laser polishing SKD 11 tool steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2019.05.022 – volume: 126 start-page: 106102 year: 2020 ident: CR36 article-title: Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2020.106102 – volume: 87 start-page: 31 year: 2020 end-page: 34 ident: CR13 article-title: The effect of milling parameters on surface properties of additively manufactured inconel 939 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.072 – volume: 95 start-page: 97 year: 2015 end-page: 104 ident: CR5 article-title: Laser polishing of selective laser melted components publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2015.05.002 – volume: 60 start-page: 90 year: 2014 end-page: 98 ident: CR28 article-title: Investigation into the effect of overlap factors and process parameters on surface roughness and machined depth during micro-turning process with Nd:YAG laser publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2014.01.009 – volume: 76 start-page: 869 issue: 5 year: 2015 end-page: 879 ident: CR2 article-title: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6297-2 – volume: 114 start-page: 271 issue: 1 year: 2021 end-page: 289 ident: CR26 article-title: Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06861-6 – year: 2002 ident: CR41 article-title: Recommended values of thermophysical properties for selected commercial alloys publication-title: Woodhead Publ doi: 10.1533/9781845690144.18 – volume: 93 start-page: 171 year: 2017 end-page: 177 ident: CR6 article-title: Laser polishing of additive manufactured Ti alloys publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2017.02.005 – volume: 76 start-page: 1627 issue: 3 year: 2022 end-page: 1638 ident: CR39 article-title: Influence of the oxidation behavior of Ti–6Al–4V alloy in dry air on the oxide layer microstructure publication-title: Chem Pap doi: 10.1007/s11696-021-01976-2 – volume: 75 start-page: 1202 year: 2022 end-page: 1216 ident: CR42 article-title: Microstructural evolution during multiple scans in laser polishing of Ti6Al4V publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.01.072 – volume: 26 start-page: 2047 year: 2020 end-page: 2054 ident: CR14 article-title: Laser polishing of 3D printed metallic components: a review on surface integrity publication-title: Mater Today: Proc doi: 10.1016/j.matpr.2020.02.443 – volume: 5 start-page: 384 issue: 3 year: 2022 end-page: 396 ident: CR34 article-title: Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization publication-title: Int J Lightweight Mater Manuf doi: 10.1016/j.ijlmm.2022.04.005 – volume: 87 start-page: 351 year: 2020 end-page: 354 ident: CR12 article-title: Surface integrity induced in machining additively fabricated nickel alloy Inconel 625 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.104 – volume: 4 start-page: 417 issue: 3 year: 2011 end-page: 422 ident: CR32 article-title: Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2010.12.001 – volume: 49 start-page: 88 year: 2016 end-page: 93 ident: CR25 article-title: Laser micro-polishing of stainless steel for antibacterial surface applications publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.07.055 – volume: 32 start-page: 1927 issue: 7 year: 2021 end-page: 1938 ident: CR29 article-title: Improving surface quality in selective laser melting based tool making publication-title: J Intell Manuf doi: 10.1007/s10845-021-01744-9 – volume: 74 start-page: 280 year: 2018 end-page: 284 ident: CR21 article-title: Laser surface modification and polishing of additive manufactured metallic parts publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.111 – ident: CR11 – volume: 262 start-page: 53 year: 2018 end-page: 64 ident: CR20 article-title: Laser polishing of additive manufactured CoCr alloy components with complex surface geometry publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.06.019 – volume: 33 start-page: 446 year: 2015 end-page: 451 ident: CR40 article-title: Ti surface laser polishing: effect of laser path and assist gas publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.06.102 – volume: 8 start-page: e12505 issue: 12 year: 2022 ident: CR33 article-title: Influence of the roughness of dental implants obtained by additive manufacturing on osteoblastic adhesion and proliferation: a systematic review publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12505 – volume: 434 start-page: 128179 year: 2022 ident: CR4 article-title: Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2022.128179 – volume: 405 start-page: 29 year: 2017 end-page: 46 ident: CR19 article-title: Laser polishing of 3D printed mesoscale components publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.01.211 – volume: 107 start-page: 54 year: 2018 end-page: 61 ident: CR7 article-title: Fundamental study of the bulge structure generated in laser polishing process publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.03.006 – volume: 4 start-page: 535 issue: 3 year: 2008 end-page: 543 ident: CR35 article-title: Osteoblastic cell behaviour on different titanium implant surfaces publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.12.002 – volume: 107 start-page: 180 year: 2018 end-page: 185 ident: CR27 article-title: Picosecond laser pulse polishing of ASP23 steel publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.05.025 – volume: 47 start-page: 49 issue: 3 year: 2004 end-page: 121 ident: CR30 article-title: Surface modification of titanium, titanium alloys, and related materials for biomedical applications publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2004.11.001 – volume: 139 start-page: 106947 year: 2021 ident: CR18 article-title: Study on the mechanism of surface topography evolution in melting and transition regimes of laser polishing publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.106947 – volume: 5 start-page: 384 issue: 3 year: 2022 ident: 11722_CR34 publication-title: Int J Lightweight Mater Manuf doi: 10.1016/j.ijlmm.2022.04.005 – volume: 49 start-page: 88 year: 2016 ident: 11722_CR25 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.07.055 – volume: 262 start-page: 53 year: 2018 ident: 11722_CR20 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.06.019 – volume: 114 start-page: 271 issue: 1 year: 2021 ident: 11722_CR26 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06861-6 – volume: 47 start-page: 2040 issue: 12 year: 2007 ident: 11722_CR1 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2007.01.013 – volume: 434 start-page: 128179 year: 2022 ident: 11722_CR4 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2022.128179 – volume: 93 start-page: 171 year: 2017 ident: 11722_CR6 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2017.02.005 – volume: 71 start-page: 150 year: 2018 ident: 11722_CR10 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.05.088 – volume: 87 start-page: 351 year: 2020 ident: 11722_CR12 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.104 – volume: 4 start-page: 417 issue: 3 year: 2011 ident: 11722_CR32 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2010.12.001 – volume: 4 start-page: 535 issue: 3 year: 2008 ident: 11722_CR35 publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.12.002 – volume: 558 start-page: 149887 year: 2021 ident: 11722_CR8 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149887 – volume: 443 start-page: 167 year: 2018 ident: 11722_CR9 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.02.246 – volume: 107 start-page: 180 year: 2018 ident: 11722_CR27 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.05.025 – volume: 273 start-page: 116241 year: 2019 ident: 11722_CR23 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2019.05.022 – volume: 32 start-page: 101013 year: 2020 ident: 11722_CR3 publication-title: Addit Manuf doi: 10.1016/j.addma.2019.101013 – volume: 8 start-page: e12505 issue: 12 year: 2022 ident: 11722_CR33 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12505 – volume: 381 start-page: 125113 year: 2020 ident: 11722_CR31 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125113 – volume: 33 start-page: 446 year: 2015 ident: 11722_CR40 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.06.102 – volume: 380 start-page: 125016 year: 2019 ident: 11722_CR22 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125016 – volume: 87 start-page: 31 year: 2020 ident: 11722_CR13 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.072 – volume: 405 start-page: 29 year: 2017 ident: 11722_CR19 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.01.211 – volume: 76 start-page: 1627 issue: 3 year: 2022 ident: 11722_CR39 publication-title: Chem Pap doi: 10.1007/s11696-021-01976-2 – ident: 11722_CR11 doi: 10.3390/met10020191 – volume: 32 start-page: 1927 issue: 7 year: 2021 ident: 11722_CR29 publication-title: J Intell Manuf doi: 10.1007/s10845-021-01744-9 – volume: 139 start-page: 106947 year: 2021 ident: 11722_CR18 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.106947 – volume: 76 start-page: 869 issue: 5 year: 2015 ident: 11722_CR2 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6297-2 – volume: 95 start-page: 97 year: 2015 ident: 11722_CR5 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2015.05.002 – volume: 107 start-page: 54 year: 2018 ident: 11722_CR7 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.03.006 – volume: 47 start-page: 49 issue: 3 year: 2004 ident: 11722_CR30 publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2004.11.001 – volume: 103 start-page: 103515 issue: 10 year: 2008 ident: 11722_CR37 publication-title: J Appl Phys doi: 10.1063/1.2930808 – volume: 5, Part B start-page: 395 year: 2010 ident: 11722_CR17 publication-title: Phys Procedia doi: 10.1016/j.phpro.2010.08.066 – volume: 74 start-page: 280 year: 2018 ident: 11722_CR21 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.111 – volume: 60 start-page: 90 year: 2014 ident: 11722_CR28 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2014.01.009 – volume: 166 start-page: 103745 year: 2021 ident: 11722_CR15 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2021.103745 – year: 2022 ident: 11722_CR38 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09664-5 – year: 2002 ident: 11722_CR41 publication-title: Woodhead Publ doi: 10.1533/9781845690144.18 – volume: 75 start-page: 1202 year: 2022 ident: 11722_CR42 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.01.072 – volume: 14 start-page: 425 issue: 4 year: 2012 ident: 11722_CR24 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2012.09.004 – volume: 62 start-page: 203 issue: 1 year: 2013 ident: 11722_CR16 publication-title: CIRP Ann doi: 10.1016/j.cirp.2013.03.112 – volume: 126 start-page: 106102 year: 2020 ident: 11722_CR36 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2020.106102 – volume: 26 start-page: 2047 year: 2020 ident: 11722_CR14 publication-title: Mater Today: Proc doi: 10.1016/j.matpr.2020.02.443 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.4350379 |
Snippet | Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than... Several studies have found that the laser polishing process is exceptionally effective in smoothing metal surfaces with an initial roughness of less than 10... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3463 |
SubjectTerms | Additive manufacturing Argon CAE) and Design Computer-Aided Engineering (CAD Engineering Industrial and Production Engineering Laser applications Lasers Mechanical Engineering Media Management Metal sheets Metal surfaces Morphology Nanosecond pulses Original Article Polishing Pulse repetition rate Smoothing Surface roughness Three dimensional printing Titanium alloys Titanium base alloys |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ_eNNBkH9kci1iKoBdb6S3sUwptWtrm0H_v7DZpVVTwnE0Ck9n9vsnMN4PQrUld20qVRQqwL6KC2khp8GUB3IgYcBkZSv6fX3hvQJ-GbFiJwhZ1tXudkgwn9UbsFlq9RIAxUQyoCyHULtpjELv7Qr5B0qm9KM5SPwlz42VJ5sfPb72YUEbWua0q18DjIJiDYET47SYqac3P7_wKX1tO-i2NGtCpe4QOK1qJO2s_OEY7tjhBB5-aDZ4i-1rOndQW-7kM4ccTnjrs64n8iTde4YksSq9zKOfW4P6Id8b0DXsNWjEqJ9gn6FdYrbCvlH_HEheymC58OG3wrASAxcDD7fwMDbqP_YdeVA1ZiDQRbBlJYIgsJpQIQywliWWp5krHscraPCNCO5cR6yyRHCI_AYSScJUSIw1jKWGanKNGMS3sBcI8tVwmElBfGcqdVRkTqq2Zi4XhiSNNFNe2y3XVgdwPwhjnm97Jwd452DsP9s5ZE91t7pmt-2_8ubpVf5K82ouLHAgU9QLdtmii-_ozbS___rTL_y2_Qvt-Fv26OrCFGst5aa-BsSzVTXDQD1nq2yQ priority: 102 providerName: Springer Nature |
Title | Surface polishing of additively manufactured Ti6Al4V titanium alloy by using a nanosecond pulse laser |
URI | https://link.springer.com/article/10.1007/s00170-023-11722-5 https://www.proquest.com/docview/2834825108 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLZocoEDYhWBNvKBG1hkxst4TlWCklZFRAgaVE4jr1WldBKSzCH_vs-OJylI7WkOnvHhzee3-C0fQh9t4QdO6ZJosH2ESeaINoBlCb4RtQAZFUv-v0_F-YxdXPGrdOG2TmWVrU6MitouTLgj_wJmkIU2y4E8Xf4lgTUqZFcThcYR6oIKlryDuqPx9MfPFlFZWQRWzD3i8jJQ0R8QTRmnuzxXyjuILDbPQWAiw9GTqc0mNtvFUTMEbBzJwOpDCPevKTv4p_-lVKOlmrxAz5OLiYc7TLxET1z9Cj27N3jwNXK_mpVXxuHA0RAvofDC41BbFLTffItvVd2Enodm5Sy-vBHDOfuNQz9afdPc4pCs32K9xaFq_horXKt6sQ6htcXLBowtBp_crd6g2WR8-fWcJMIFYqjkG6LAW-QZZVRa6hjNHS-M0CbLdDkQJZXG-5I676gSEAVKcC6p0AW1ynJeUG7oW9SpF7V7h7AonFC5Ag9AWya80yWXemC4z6QVuac9lLWyq0yaRh5IMebVfo5ylHcF8q6ivCveQ5_23yx3szgeffu4_SVVOpfr6oCiHvrc_qbD8sO7vX98tw_oaeCh31UGHqPOZtW4E_BWNrqPjuTkrI-6w8loNA3Psz_fxv0EVFid5cM74bTkmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEE8RKLAHOMGK2Pvw-oBQgVYpbSMEKerN7BNVSp2QxEL5U_xGZjd2Akj01rPtPcx8M_ONdx4Az10R-l6bkhqMfZQr7qmxiGWF3Ig5hIxOJf8nQzk45R_PxNkW_Op6YWJZZecTk6N2Exv_kb_GMMhjm2VfvZ3-oHFrVLxd7VZorGBx5Jc_MWWbvzn8gPp9kecH-6P3A9puFaCWKbGgGimRyBhnyjHPWe5FYaWxWWbKviyZsiGUzAfPtMRURyGDYtIUzGknRMGEZXjuNdhBmlGiFe282x9--twhOCuLuIVzjfC8REJTbCyIccFW92rtPYfMUrMeJkIqmrpq23pSc18abUMxptIMWQamjH-Hzg0f_ucKN0XGg9twq6W0ZG-FwTuw5eu7cPOPQYf3wH9pZkFbT-JOiPTTi0wCibVM0duOl-RC103ssWhm3pHRudwb868k9r_V580FicUBS2KWJFbpfyea1LqezGMq78i0weBOMAfws_tweiWqeADb9aT2D4HIwkuda2QcxnEZvCmFMn0rQqaczAPrQdbJrrLt9PO4hGNcrec2J3lXKO8qybsSPXi5_ma6mv1x6du7nUqq1g_Mqw1qe_CqU9Pm8f9Pe3T5ac_g-mB0clwdHw6PHsONPKIkVSXuwvZi1vgnyJQW5mkLTwLfrtoifgN3mhtJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKiE4UF4VgQJ74AZuY-_D62NEGwqFCokWlZO1z6pq6kSpfQi_ntm1nZQKkBBnv-TZWc83nvm-AXhtcz9ySheJxtiXMMlcog36skRsRC26jIot_5-PxMEJ-3jKT6-x-GO3e1-SbDkNQaWpqnfn1u-uiG9R9iXBeJOkGIExnboNGyyIsw9gY_z---F-71NpkYe5mCufy4owjH7t05Rx2la6usqDSCN9DlMTGTaf7Ig2v3_qr8FsjVBvFFVjrJpsgurfsm1Rudhpar1jftwQgPwfMzyA-x2QJePW8x7CLVc9gnvX5A0fg_vaLLwyjoRJEPFXF5l5EjqYwjd2uiSXqmoCs6JZOEuOz8V4yr6RwHqrzptLEloClkQvSejNPyOKVKqaXYUE3pJ5gyGdIPJ3iydwMtk_fneQdGMdEkMlrxOFmJSnlFFpqWM0czw3Qps01cVIFFQa7wvqvKNKYK4pEcJSoXNqleU8p9zQLRhUs8o9BSJyJ1SmEGdoy4R3uuBSjwz3qbQi83QIab8-pek0z8PojWm5UmuOJizRhGU0YcmH8GZ1zbxV_Pjr2dv9spfd7r8qEbKxQAkeySG87VdxffjPd3v2b6e_gjtf9iblpw9Hh8_hbhb8ILYmbsOgXjTuBcKlWr_sdsRP62ED8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+polishing+of+additively+manufactured+Ti6Al4V+titanium+alloy+by+using+a+nanosecond+pulse+laser&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jaritngam%2C+Pakin&rft.au=Saetang%2C+Viboon&rft.au=Qi%2C+Huan&rft.au=Dumkum%2C+Chaiya&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=127&rft.issue=7-8&rft.spage=3463&rft.epage=3480&rft_id=info:doi/10.1007%2Fs00170-023-11722-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |