Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments
Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy c...
Saved in:
Published in | Biointerphases Vol. 3; no. 3; pp. FC47 - FC51 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2008
|
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D2O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D2O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D2O also revealed substantial conformational changes. |
---|---|
AbstractList | Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes.Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes. Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes. Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D2O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D2O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D2O also revealed substantial conformational changes. |
Author | Schmidt, Ronny Howell, Caitlin Koelsch, Patrick Kurz, Volker |
Author_xml | – sequence: 1 givenname: Caitlin surname: Howell fullname: Howell, Caitlin – sequence: 2 givenname: Ronny surname: Schmidt fullname: Schmidt, Ronny – sequence: 3 givenname: Volker surname: Kurz fullname: Kurz, Volker – sequence: 4 givenname: Patrick surname: Koelsch fullname: Koelsch, Patrick |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20408693$$D View this record in MEDLINE/PubMed |
BookMark | eNplkEtPwzAQhC0Eog848AeQb4hDWjt27PhYladUgcTjbDmOjYwSp9gJUv89Lm0vcNqV5pvV7EzAse-8AeACoxnGmM3xjCBGMeJHYIyLQmRpZ8dpF4RmJSNoBCYxfiJEi4KRUzDKEUUlE2QMXl6HNrPBfA3G6032YbwJqnedh3FtdB-6qLv1BnYW3jwtoHVNG6HzULkAla-hSr5uiND4bxc63xrfxzNwYlUTzfl-TsH73e3b8iFbPd8_LherTJOy6DNhreY5qa2ujdYiLxGtlKDaCswp5SyvhMmVoaouddJ0kUSOuKp4JUpUETIFV7u769ClGLGXrYvaNI3y20ySEyIQY3RLXu7JoWpNLdfBtSps5KGGBMx3gE4Px2Cs1K7_raEPyjUSI7ktWmK5Lzo5rv84Dkf_sz8wsnzi |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_5b08747 crossref_primary_10_1021_cr400418b crossref_primary_10_1039_c0jm04359a crossref_primary_10_1021_acs_jpcb_5b07078 crossref_primary_10_1039_c3sm27710k crossref_primary_10_1116_1_3651142 crossref_primary_10_1021_ja406551k crossref_primary_10_1039_c1cp20374f crossref_primary_10_1002_cphc_201201063 crossref_primary_10_1021_jz9001086 crossref_primary_10_1021_jz100742j crossref_primary_10_1016_j_cplett_2010_02_061 crossref_primary_10_1038_s41467_022_35548_z crossref_primary_10_1007_s11244_018_0924_3 crossref_primary_10_1021_jp301573g crossref_primary_10_1016_j_cplett_2010_06_008 crossref_primary_10_1021_acs_analchem_1c00885 crossref_primary_10_1021_ja107883x crossref_primary_10_1021_la301241s crossref_primary_10_1016_j_cplett_2011_07_096 crossref_primary_10_1021_jp3105858 crossref_primary_10_1039_C9SM00321E crossref_primary_10_1177_0003702817708321 crossref_primary_10_1021_acsabm_2c00837 crossref_primary_10_1039_C5CP00781J crossref_primary_10_1007_s11426_014_5233_5 crossref_primary_10_1021_acs_jpcb_9b04633 crossref_primary_10_1063_1_3443096 crossref_primary_10_1002_jccs_201300416 crossref_primary_10_1021_acs_jpclett_5b00326 crossref_primary_10_1021_acsomega_7b01214 crossref_primary_10_1021_ja100838q crossref_primary_10_1366_11_06583 crossref_primary_10_1021_acs_langmuir_2c00365 |
Cites_doi | 10.1039/b803083a 10.1021/ja9930824 10.1021/ja055201n 10.1093/nar/29.24.5163 10.1021/ja801023r 10.1021/ja072552o 10.1021/ja075034m 10.1021/la8027463 10.1021/jp0645263 10.1021/ac010762s 10.1016/j.bios.2006.10.005 10.1016/j.elspec.2006.04.004 10.1016/S0006-3495(00)76351-X 10.1073/pnas.0608568103 10.1021/ja036373s 10.1038/337519a0 10.1021/jp077556u 10.1016/j.tibtech.2005.01.004 10.1142/S0217979205029341 10.1021/ja056031h 10.1021/ja071848r 10.1021/jp070383o 10.1021/ja037263o 10.1016/S0039-6028(01)01587-4 10.1021/jp992073e 10.1021/la034944o 10.1039/ft9959101281 10.1016/S0039-6028(01)01809-X 10.1021/ac052137j 10.1021/ja052443e 10.1021/jp0673967 10.1529/biophysj.107.111047 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1116/1.3064107 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1559-4106 |
EndPage | FC51 |
ExternalDocumentID | 20408693 10_1116_1_3064107 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .DC 23N 2VQ 2WC 4.4 40G 53G 5GY 6J9 AAAAW AAGWI AAKKN AAPUP AAYIH AAYXX ABEEZ ABFTF ABJGX ABJNI ABNAN ACACY ACBRY ACGFS ACIWK ACULB ADBBV ADCOW ADCTM ADLOM AECCQ AEGXH AEILP AENEX AFGXO AFHCQ AFRAH AGKCL AGLKD AGMXG AGTJO AHBYD AHSBF AHSDT ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AQWKA ASPBG AVWKF AZFZN BAPOH BAUXJ BAWUL C1A C24 C6C CITATION CS3 DIK DU5 EBS EJD EMOBN F5P GX1 HH5 HZ~ M71 OK1 OVT PQQKQ RAW RIP RNS RQS SCM SOJ TR2 U2A VAS -A0 AAEUA AAJMC ADINQ KQ8 M~E NPM RSV 7X8 |
ID | FETCH-LOGICAL-c385t-9ffc723dfcdecc92804ba94cf91744762b9e2ae4ad8c804c5a94707ab7b980b33 |
ISSN | 1934-8630 1559-4106 |
IngestDate | Fri Jul 11 15:17:02 EDT 2025 Wed Feb 19 01:53:17 EST 2025 Sun Jul 06 05:05:48 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-9ffc723dfcdecc92804ba94cf91744762b9e2ae4ad8c804c5a94707ab7b980b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubs.aip.org/avs/bip/article-pdf/3/3/FC47/13855102/fc47_1_online.pdf |
PMID | 20408693 |
PQID | 733906643 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_733906643 pubmed_primary_20408693 crossref_citationtrail_10_1116_1_3064107 crossref_primary_10_1116_1_3064107 |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biointerphases |
PublicationTitleAlternate | Biointerphases |
PublicationYear | 2008 |
References | (2023062411564632700_c2) 2002; 500 (2023062411564632700_c8) 2000; 79 (2023062411564632700_c24) 1989; 337 (2023062411564632700_c7) 2000; 122 (2023062411564632700_c21) 2003; 125 (2023062411564632700_c19) 2003; 125 (2023062411564632700_c27) 2008; 130 (2023062411564632700_c32) 2005; 127 (2023062411564632700_c10) 2004; 20 (2023062411564632700_c16) 2007; 111 (2023062411564632700_c23) 2008; 24 (2023062411564632700_c29) 2006; 152 (2023062411564632700_c30) 1995; 91 (2023062411564632700_c25) 2007; 129 (2023062411564632700_c28) 2007; 129 (2023062411564632700_c1) 2008; 133 (2023062411564632700_c9) 2006; 78 (2023062411564632700_c31) 2000; 104 (2023062411564632700_c17) 2007; 111 (2023062411564632700_c22) 2007; 129 (2023062411564632700_c20) 2007; 93 (2023062411564632700_c13) 2008; 112 (2023062411564632700_c4) 2005; 23 (2023062411564632700_c14) 2007; 111 (2023062411564632700_c5) 2001; 73 (2023062411564632700_c12) 2007; 104 (2023062411564632700_c26) 2007; 22 (2023062411564632700_c11) 2006; 128 (2023062411564632700_c3) 2002; 500 (2023062411564632700_c15) 2005; 19 (2023062411564632700_c18) 2006; 128 (2023062411564632700_c6) 2001; 29 |
References_xml | – volume: 133 start-page: 984 year: 2008 ident: 2023062411564632700_c1 publication-title: Analyst (Cambridge, U.K.) doi: 10.1039/b803083a – volume: 122 start-page: 3166 year: 2000 ident: 2023062411564632700_c7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9930824 – volume: 127 start-page: 17138 year: 2005 ident: 2023062411564632700_c32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055201n – volume: 29 start-page: 5163 year: 2001 ident: 2023062411564632700_c6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.24.5163 – volume: 130 start-page: 8016 year: 2008 ident: 2023062411564632700_c27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801023r – volume: 129 start-page: 8420 year: 2007 ident: 2023062411564632700_c28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072552o – volume: 129 start-page: 15104 year: 2007 ident: 2023062411564632700_c22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075034m – volume: 24 start-page: 13819 year: 2008 ident: 2023062411564632700_c23 publication-title: Langmuir doi: 10.1021/la8027463 – volume: 111 start-page: 255 year: 2007 ident: 2023062411564632700_c17 publication-title: J. Phys. Chem. C doi: 10.1021/jp0645263 – volume: 73 start-page: 5525 year: 2001 ident: 2023062411564632700_c5 publication-title: Anal. Chem. doi: 10.1021/ac010762s – volume: 22 start-page: 2179 year: 2007 ident: 2023062411564632700_c26 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.10.005 – volume: 152 start-page: 134 year: 2006 ident: 2023062411564632700_c29 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2006.04.004 – volume: 79 start-page: 975 year: 2000 ident: 2023062411564632700_c8 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76351-X – volume: 104 start-page: 9 year: 2007 ident: 2023062411564632700_c12 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0608568103 – volume: 125 start-page: 9914 year: 2003 ident: 2023062411564632700_c19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036373s – volume: 337 start-page: 519 year: 1989 ident: 2023062411564632700_c24 publication-title: Nature (London) doi: 10.1038/337519a0 – volume: 112 start-page: 2281 year: 2008 ident: 2023062411564632700_c13 publication-title: J. Phys. Chem. B doi: 10.1021/jp077556u – volume: 23 start-page: 143 year: 2005 ident: 2023062411564632700_c4 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2005.01.004 – volume: 19 start-page: 691 year: 2005 ident: 2023062411564632700_c15 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979205029341 – volume: 128 start-page: 3598 year: 2006 ident: 2023062411564632700_c18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056031h – volume: 129 start-page: 7492 year: 2007 ident: 2023062411564632700_c25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071848r – volume: 111 start-page: 6088 year: 2007 ident: 2023062411564632700_c14 publication-title: J. Phys. Chem. B doi: 10.1021/jp070383o – volume: 125 start-page: 12782 year: 2003 ident: 2023062411564632700_c21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037263o – volume: 500 start-page: 28 year: 2002 ident: 2023062411564632700_c3 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01587-4 – volume: 104 start-page: 576 year: 2000 ident: 2023062411564632700_c31 publication-title: J. Phys. Chem. B doi: 10.1021/jp992073e – volume: 20 start-page: 429 year: 2004 ident: 2023062411564632700_c10 publication-title: Langmuir doi: 10.1021/la034944o – volume: 91 start-page: 1281 year: 1995 ident: 2023062411564632700_c30 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9959101281 – volume: 500 start-page: 656 year: 2002 ident: 2023062411564632700_c2 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01809-X – volume: 78 start-page: 3316 year: 2006 ident: 2023062411564632700_c9 publication-title: Anal. Chem. doi: 10.1021/ac052137j – volume: 128 start-page: 2 year: 2006 ident: 2023062411564632700_c11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052443e – volume: 111 start-page: 8866 year: 2007 ident: 2023062411564632700_c16 publication-title: J. Phys. Chem. C doi: 10.1021/jp0673967 – volume: 93 start-page: 4433 year: 2007 ident: 2023062411564632700_c20 publication-title: Biophys. J. doi: 10.1529/biophysj.107.111047 |
SSID | ssj0045563 |
Score | 1.9547683 |
Snippet | Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | FC47 |
Title | Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20408693 https://www.proquest.com/docview/733906643 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYXLbDtLFf3cZkTTvsEhZiJ3GOqNBVwDpptFNvke3YEI0mqEoP8Nfv2XFMKhVtcImq_LBSf47fe_b3vofQF7B4KVMFIEA4D6jKooCDWx6kCmytUAlnyuQO_5gk4xk9mcfzrt69yy5pxL683ZhX8hhU4RzgarJkH4CsbxROwG_AF46AMBz_C-Pz1SLQy5YMfRNcWAVpi6fNnzQ6lfW13UE_mhwaBaaFJb_ysuVNcnjOEGD7uW5re7xlXVpK4iVYOu96j-uORz00NXdKP7jO5eWiLJqWrl1Vfqn-dLW0i9S_66s_d1Tg0xqMsnTkxMZr83frD8wTrPyUGZu95NAJWm845-ZZ0htOpDdnjoat5uaGydyuK-ybIMnVxl0XzJ78zEezs7N8ejyfPkE7EUQKpojF97ln-VCjf2Ylc90LOXEpaPqbb3jdJbknzrD-xvQFeu4CBXzYov4SbalqFz3ryUe-Qr_uwx_38ce1xoA_tvjjssKAPwb8scMf9_F_jWaj4-lwHLgaGYEkLG6CTGuZRqTQsoCPMYtYSAXPqNQQhlMKlk5kKuKK8oJJuCZjuJiGKRepyFgoCHmDtqu6Uu8Q1gehTKhIWBFKyqKCxxK-Y50U4ILrRIkB-tp1Uy6dgLypY3KVt4Fkkh_krkcH6LO_9bpVTdl0E-76Ooc5zWxU8cr87zwlJANXmJIBetti4FuJwOiwJCPv__3wB_T0brx-RNvNcqX2wINsxCc7Rv4CCWp0Mg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-frequency-generation+spectroscopy+of+DNA+films+in+air+and+aqueous+environments&rft.jtitle=Biointerphases&rft.au=Howell%2C+Caitlin&rft.au=Schmidt%2C+Ronny&rft.au=Kurz%2C+Volker&rft.au=Koelsch%2C+Patrick&rft.date=2008-09-01&rft.issn=1559-4106&rft.eissn=1559-4106&rft.volume=3&rft.issue=3&rft.spage=FC47&rft_id=info:doi/10.1116%2F1.3064107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-8630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-8630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-8630&client=summon |