Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments

Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy c...

Full description

Saved in:
Bibliographic Details
Published inBiointerphases Vol. 3; no. 3; pp. FC47 - FC51
Main Authors Howell, Caitlin, Schmidt, Ronny, Kurz, Volker, Koelsch, Patrick
Format Journal Article
LanguageEnglish
Published United States 01.09.2008
Online AccessGet full text

Cover

Loading…
Abstract Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D2O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D2O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D2O also revealed substantial conformational changes.
AbstractList Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes.Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes.
Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D(2)O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D(2)O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D(2)O also revealed substantial conformational changes.
Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and further developing the technology based on oligonucleotide binding. Here the authors demonstrate how sum-frequency-generation (SFG) spectroscopy can be used to compare the structure and orientation of model monolayers of ssDNA on gold in air, D2O, and phosphate buffered saline (PBS) solution. Films of adenine and thymine homo-oligonucleotides showed significant conformational changes in air versus aqueous environments in the CH stretching region. The thymine films showed changes between D2O and PBS solution, whereas the SFG spectra of adenine films under these conditions were largely similar, suggesting that the thymine films undergo greater conformational changes than the adenine films. Examination of thymine films in the amide I vibrational region revealed that molecules in films of nonthiolated DNA were lying down on the gold surface whereas molecules in films of thiol-linked DNA were arranged in a brushlike structure. Comparison of SFG spectra in the amide I region for thiol-linked DNA films in air and D2O also revealed substantial conformational changes.
Author Schmidt, Ronny
Howell, Caitlin
Koelsch, Patrick
Kurz, Volker
Author_xml – sequence: 1
  givenname: Caitlin
  surname: Howell
  fullname: Howell, Caitlin
– sequence: 2
  givenname: Ronny
  surname: Schmidt
  fullname: Schmidt, Ronny
– sequence: 3
  givenname: Volker
  surname: Kurz
  fullname: Kurz, Volker
– sequence: 4
  givenname: Patrick
  surname: Koelsch
  fullname: Koelsch, Patrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20408693$$D View this record in MEDLINE/PubMed
BookMark eNplkEtPwzAQhC0Eog848AeQb4hDWjt27PhYladUgcTjbDmOjYwSp9gJUv89Lm0vcNqV5pvV7EzAse-8AeACoxnGmM3xjCBGMeJHYIyLQmRpZ8dpF4RmJSNoBCYxfiJEi4KRUzDKEUUlE2QMXl6HNrPBfA3G6032YbwJqnedh3FtdB-6qLv1BnYW3jwtoHVNG6HzULkAla-hSr5uiND4bxc63xrfxzNwYlUTzfl-TsH73e3b8iFbPd8_LherTJOy6DNhreY5qa2ujdYiLxGtlKDaCswp5SyvhMmVoaouddJ0kUSOuKp4JUpUETIFV7u769ClGLGXrYvaNI3y20ySEyIQY3RLXu7JoWpNLdfBtSps5KGGBMx3gE4Px2Cs1K7_raEPyjUSI7ktWmK5Lzo5rv84Dkf_sz8wsnzi
CitedBy_id crossref_primary_10_1021_acs_jpcc_5b08747
crossref_primary_10_1021_cr400418b
crossref_primary_10_1039_c0jm04359a
crossref_primary_10_1021_acs_jpcb_5b07078
crossref_primary_10_1039_c3sm27710k
crossref_primary_10_1116_1_3651142
crossref_primary_10_1021_ja406551k
crossref_primary_10_1039_c1cp20374f
crossref_primary_10_1002_cphc_201201063
crossref_primary_10_1021_jz9001086
crossref_primary_10_1021_jz100742j
crossref_primary_10_1016_j_cplett_2010_02_061
crossref_primary_10_1038_s41467_022_35548_z
crossref_primary_10_1007_s11244_018_0924_3
crossref_primary_10_1021_jp301573g
crossref_primary_10_1016_j_cplett_2010_06_008
crossref_primary_10_1021_acs_analchem_1c00885
crossref_primary_10_1021_ja107883x
crossref_primary_10_1021_la301241s
crossref_primary_10_1016_j_cplett_2011_07_096
crossref_primary_10_1021_jp3105858
crossref_primary_10_1039_C9SM00321E
crossref_primary_10_1177_0003702817708321
crossref_primary_10_1021_acsabm_2c00837
crossref_primary_10_1039_C5CP00781J
crossref_primary_10_1007_s11426_014_5233_5
crossref_primary_10_1021_acs_jpcb_9b04633
crossref_primary_10_1063_1_3443096
crossref_primary_10_1002_jccs_201300416
crossref_primary_10_1021_acs_jpclett_5b00326
crossref_primary_10_1021_acsomega_7b01214
crossref_primary_10_1021_ja100838q
crossref_primary_10_1366_11_06583
crossref_primary_10_1021_acs_langmuir_2c00365
Cites_doi 10.1039/b803083a
10.1021/ja9930824
10.1021/ja055201n
10.1093/nar/29.24.5163
10.1021/ja801023r
10.1021/ja072552o
10.1021/ja075034m
10.1021/la8027463
10.1021/jp0645263
10.1021/ac010762s
10.1016/j.bios.2006.10.005
10.1016/j.elspec.2006.04.004
10.1016/S0006-3495(00)76351-X
10.1073/pnas.0608568103
10.1021/ja036373s
10.1038/337519a0
10.1021/jp077556u
10.1016/j.tibtech.2005.01.004
10.1142/S0217979205029341
10.1021/ja056031h
10.1021/ja071848r
10.1021/jp070383o
10.1021/ja037263o
10.1016/S0039-6028(01)01587-4
10.1021/jp992073e
10.1021/la034944o
10.1039/ft9959101281
10.1016/S0039-6028(01)01809-X
10.1021/ac052137j
10.1021/ja052443e
10.1021/jp0673967
10.1529/biophysj.107.111047
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1116/1.3064107
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1559-4106
EndPage FC51
ExternalDocumentID 20408693
10_1116_1_3064107
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.DC
23N
2VQ
2WC
4.4
40G
53G
5GY
6J9
AAAAW
AAGWI
AAKKN
AAPUP
AAYIH
AAYXX
ABEEZ
ABFTF
ABJGX
ABJNI
ABNAN
ACACY
ACBRY
ACGFS
ACIWK
ACULB
ADBBV
ADCOW
ADCTM
ADLOM
AECCQ
AEGXH
AEILP
AENEX
AFGXO
AFHCQ
AFRAH
AGKCL
AGLKD
AGMXG
AGTJO
AHBYD
AHSBF
AHSDT
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AQWKA
ASPBG
AVWKF
AZFZN
BAPOH
BAUXJ
BAWUL
C1A
C24
C6C
CITATION
CS3
DIK
DU5
EBS
EJD
EMOBN
F5P
GX1
HH5
HZ~
M71
OK1
OVT
PQQKQ
RAW
RIP
RNS
RQS
SCM
SOJ
TR2
U2A
VAS
-A0
AAEUA
AAJMC
ADINQ
KQ8
M~E
NPM
RSV
7X8
ID FETCH-LOGICAL-c385t-9ffc723dfcdecc92804ba94cf91744762b9e2ae4ad8c804c5a94707ab7b980b33
ISSN 1934-8630
1559-4106
IngestDate Fri Jul 11 15:17:02 EDT 2025
Wed Feb 19 01:53:17 EST 2025
Sun Jul 06 05:05:48 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-9ffc723dfcdecc92804ba94cf91744762b9e2ae4ad8c804c5a94707ab7b980b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubs.aip.org/avs/bip/article-pdf/3/3/FC47/13855102/fc47_1_online.pdf
PMID 20408693
PQID 733906643
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733906643
pubmed_primary_20408693
crossref_citationtrail_10_1116_1_3064107
crossref_primary_10_1116_1_3064107
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biointerphases
PublicationTitleAlternate Biointerphases
PublicationYear 2008
References (2023062411564632700_c2) 2002; 500
(2023062411564632700_c8) 2000; 79
(2023062411564632700_c24) 1989; 337
(2023062411564632700_c7) 2000; 122
(2023062411564632700_c21) 2003; 125
(2023062411564632700_c19) 2003; 125
(2023062411564632700_c27) 2008; 130
(2023062411564632700_c32) 2005; 127
(2023062411564632700_c10) 2004; 20
(2023062411564632700_c16) 2007; 111
(2023062411564632700_c23) 2008; 24
(2023062411564632700_c29) 2006; 152
(2023062411564632700_c30) 1995; 91
(2023062411564632700_c25) 2007; 129
(2023062411564632700_c28) 2007; 129
(2023062411564632700_c1) 2008; 133
(2023062411564632700_c9) 2006; 78
(2023062411564632700_c31) 2000; 104
(2023062411564632700_c17) 2007; 111
(2023062411564632700_c22) 2007; 129
(2023062411564632700_c20) 2007; 93
(2023062411564632700_c13) 2008; 112
(2023062411564632700_c4) 2005; 23
(2023062411564632700_c14) 2007; 111
(2023062411564632700_c5) 2001; 73
(2023062411564632700_c12) 2007; 104
(2023062411564632700_c26) 2007; 22
(2023062411564632700_c11) 2006; 128
(2023062411564632700_c3) 2002; 500
(2023062411564632700_c15) 2005; 19
(2023062411564632700_c18) 2006; 128
(2023062411564632700_c6) 2001; 29
References_xml – volume: 133
  start-page: 984
  year: 2008
  ident: 2023062411564632700_c1
  publication-title: Analyst (Cambridge, U.K.)
  doi: 10.1039/b803083a
– volume: 122
  start-page: 3166
  year: 2000
  ident: 2023062411564632700_c7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9930824
– volume: 127
  start-page: 17138
  year: 2005
  ident: 2023062411564632700_c32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055201n
– volume: 29
  start-page: 5163
  year: 2001
  ident: 2023062411564632700_c6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.24.5163
– volume: 130
  start-page: 8016
  year: 2008
  ident: 2023062411564632700_c27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801023r
– volume: 129
  start-page: 8420
  year: 2007
  ident: 2023062411564632700_c28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072552o
– volume: 129
  start-page: 15104
  year: 2007
  ident: 2023062411564632700_c22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075034m
– volume: 24
  start-page: 13819
  year: 2008
  ident: 2023062411564632700_c23
  publication-title: Langmuir
  doi: 10.1021/la8027463
– volume: 111
  start-page: 255
  year: 2007
  ident: 2023062411564632700_c17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0645263
– volume: 73
  start-page: 5525
  year: 2001
  ident: 2023062411564632700_c5
  publication-title: Anal. Chem.
  doi: 10.1021/ac010762s
– volume: 22
  start-page: 2179
  year: 2007
  ident: 2023062411564632700_c26
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.10.005
– volume: 152
  start-page: 134
  year: 2006
  ident: 2023062411564632700_c29
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2006.04.004
– volume: 79
  start-page: 975
  year: 2000
  ident: 2023062411564632700_c8
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76351-X
– volume: 104
  start-page: 9
  year: 2007
  ident: 2023062411564632700_c12
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0608568103
– volume: 125
  start-page: 9914
  year: 2003
  ident: 2023062411564632700_c19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036373s
– volume: 337
  start-page: 519
  year: 1989
  ident: 2023062411564632700_c24
  publication-title: Nature (London)
  doi: 10.1038/337519a0
– volume: 112
  start-page: 2281
  year: 2008
  ident: 2023062411564632700_c13
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp077556u
– volume: 23
  start-page: 143
  year: 2005
  ident: 2023062411564632700_c4
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.01.004
– volume: 19
  start-page: 691
  year: 2005
  ident: 2023062411564632700_c15
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979205029341
– volume: 128
  start-page: 3598
  year: 2006
  ident: 2023062411564632700_c18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056031h
– volume: 129
  start-page: 7492
  year: 2007
  ident: 2023062411564632700_c25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071848r
– volume: 111
  start-page: 6088
  year: 2007
  ident: 2023062411564632700_c14
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp070383o
– volume: 125
  start-page: 12782
  year: 2003
  ident: 2023062411564632700_c21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037263o
– volume: 500
  start-page: 28
  year: 2002
  ident: 2023062411564632700_c3
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01587-4
– volume: 104
  start-page: 576
  year: 2000
  ident: 2023062411564632700_c31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp992073e
– volume: 20
  start-page: 429
  year: 2004
  ident: 2023062411564632700_c10
  publication-title: Langmuir
  doi: 10.1021/la034944o
– volume: 91
  start-page: 1281
  year: 1995
  ident: 2023062411564632700_c30
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9959101281
– volume: 500
  start-page: 656
  year: 2002
  ident: 2023062411564632700_c2
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01809-X
– volume: 78
  start-page: 3316
  year: 2006
  ident: 2023062411564632700_c9
  publication-title: Anal. Chem.
  doi: 10.1021/ac052137j
– volume: 128
  start-page: 2
  year: 2006
  ident: 2023062411564632700_c11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052443e
– volume: 111
  start-page: 8866
  year: 2007
  ident: 2023062411564632700_c16
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0673967
– volume: 93
  start-page: 4433
  year: 2007
  ident: 2023062411564632700_c20
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.111047
SSID ssj0045563
Score 1.9547683
Snippet Understanding the organization and orientation of surface-immobilized single stranded DNA (ssDNA) in aqueous environments is essential for optimizing and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage FC47
Title Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments
URI https://www.ncbi.nlm.nih.gov/pubmed/20408693
https://www.proquest.com/docview/733906643
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYXLbDtLFf3cZkTTvsEhZiJ3GOqNBVwDpptFNvke3YEI0mqEoP8Nfv2XFMKhVtcImq_LBSf47fe_b3vofQF7B4KVMFIEA4D6jKooCDWx6kCmytUAlnyuQO_5gk4xk9mcfzrt69yy5pxL683ZhX8hhU4RzgarJkH4CsbxROwG_AF46AMBz_C-Pz1SLQy5YMfRNcWAVpi6fNnzQ6lfW13UE_mhwaBaaFJb_ysuVNcnjOEGD7uW5re7xlXVpK4iVYOu96j-uORz00NXdKP7jO5eWiLJqWrl1Vfqn-dLW0i9S_66s_d1Tg0xqMsnTkxMZr83frD8wTrPyUGZu95NAJWm845-ZZ0htOpDdnjoat5uaGydyuK-ybIMnVxl0XzJ78zEezs7N8ejyfPkE7EUQKpojF97ln-VCjf2Ylc90LOXEpaPqbb3jdJbknzrD-xvQFeu4CBXzYov4SbalqFz3ryUe-Qr_uwx_38ce1xoA_tvjjssKAPwb8scMf9_F_jWaj4-lwHLgaGYEkLG6CTGuZRqTQsoCPMYtYSAXPqNQQhlMKlk5kKuKK8oJJuCZjuJiGKRepyFgoCHmDtqu6Uu8Q1gehTKhIWBFKyqKCxxK-Y50U4ILrRIkB-tp1Uy6dgLypY3KVt4Fkkh_krkcH6LO_9bpVTdl0E-76Ooc5zWxU8cr87zwlJANXmJIBetti4FuJwOiwJCPv__3wB_T0brx-RNvNcqX2wINsxCc7Rv4CCWp0Mg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-frequency-generation+spectroscopy+of+DNA+films+in+air+and+aqueous+environments&rft.jtitle=Biointerphases&rft.au=Howell%2C+Caitlin&rft.au=Schmidt%2C+Ronny&rft.au=Kurz%2C+Volker&rft.au=Koelsch%2C+Patrick&rft.date=2008-09-01&rft.issn=1559-4106&rft.eissn=1559-4106&rft.volume=3&rft.issue=3&rft.spage=FC47&rft_id=info:doi/10.1116%2F1.3064107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-8630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-8630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-8630&client=summon