Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling m...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent manufacturing Vol. 34; no. 4; pp. 2013 - 2026
Main Authors Zhu, Mengrui, Yang, Yun, Feng, Xiaobing, Du, Zhengchun, Yang, Jianguo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0956-5515
1572-8145
DOI10.1007/s10845-021-01894-w

Cover

Loading…
Abstract Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
AbstractList Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.
Author Feng, Xiaobing
Du, Zhengchun
Yang, Jianguo
Zhu, Mengrui
Yang, Yun
Author_xml – sequence: 1
  givenname: Mengrui
  surname: Zhu
  fullname: Zhu, Mengrui
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 2
  givenname: Yun
  surname: Yang
  fullname: Yang, Yun
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Xiaobing
  surname: Feng
  fullname: Feng, Xiaobing
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Zhengchun
  orcidid: 0000-0002-8010-7996
  surname: Du
  fullname: Du, Zhengchun
  email: zcdu@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 5
  givenname: Jianguo
  surname: Yang
  fullname: Yang, Jianguo
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University
BookMark eNp9kF9LwzAUxYNMcJt-AZ8CPleTJmnaRyn-g6Eg-mpIk3TtaJOZZAy_vZkVBB_2dLnc8zv3cBZgZp01AFxidI0R4jcBo5KyDOU4Q7isaLY_AXPMeJ6VmLIZmKOKFRljmJ2BRQgbhFBVFngOPl5dswsRjk6bobdrOJrYOQ1b52HsjB_lAI33aXMtrJ9rOErV9dbA6NwQYCOD0dBZ6KXVbjxgJrnJYe18H7vxHJy2cgjm4ncuwfv93Vv9mK1eHp7q21WmSMliVilVESY10kimYAQTXfBKN5RVBHOOqc4VKyQ1NB25Ik2rZYGwoUozxKkmS3A1-W69-9ylCGLjdt6mlyLnJUcFISVOqnxSKe9C8KYVW9-P0n8JjMShRzH1KFKP4qdHsU9Q-Q9SfZSxdzZ62Q_HUTKhIf2xa-P_Uh2hvgFObYpB
CitedBy_id crossref_primary_10_1007_s00170_023_12759_2
crossref_primary_10_1016_j_jmapro_2025_03_011
crossref_primary_10_1093_jom_ufad042
crossref_primary_10_1007_s10845_024_02403_5
crossref_primary_10_3389_frsen_2024_1432577
crossref_primary_10_1007_s10845_023_02234_w
crossref_primary_10_1016_j_fluid_2025_114423
crossref_primary_10_1007_s00170_023_11471_5
crossref_primary_10_3390_molecules29102337
crossref_primary_10_1007_s10845_023_02255_5
crossref_primary_10_3390_s24113536
crossref_primary_10_1007_s00170_023_10831_5
crossref_primary_10_1007_s10845_024_02350_1
crossref_primary_10_1007_s00170_024_14424_8
crossref_primary_10_1115_1_4057011
crossref_primary_10_3390_math11143204
crossref_primary_10_1016_j_csite_2024_104343
crossref_primary_10_1007_s00170_023_12685_3
crossref_primary_10_1109_ACCESS_2024_3406262
crossref_primary_10_1109_TEM_2023_3317922
crossref_primary_10_1016_j_jmsy_2025_02_021
crossref_primary_10_1007_s00170_022_09827_4
crossref_primary_10_1007_s00170_023_11616_6
crossref_primary_10_1007_s00170_024_13021_z
crossref_primary_10_1007_s10845_025_02565_w
crossref_primary_10_1007_s10845_023_02203_3
crossref_primary_10_3390_app14010381
crossref_primary_10_1016_j_aei_2024_102844
crossref_primary_10_1016_j_jmapro_2025_02_049
crossref_primary_10_1007_s40430_025_05485_1
crossref_primary_10_3390_machines12100728
crossref_primary_10_1016_j_aei_2024_102741
crossref_primary_10_1016_j_csite_2023_103858
crossref_primary_10_1007_s00170_025_15021_z
crossref_primary_10_2478_amns_2024_3246
crossref_primary_10_1021_acs_est_3c09788
crossref_primary_10_3390_machines10080624
crossref_primary_10_1016_j_measurement_2024_116341
crossref_primary_10_1007_s11665_022_07431_x
crossref_primary_10_1016_j_csite_2025_106009
crossref_primary_10_1016_j_jmapro_2024_01_024
crossref_primary_10_1016_j_measurement_2025_117152
crossref_primary_10_1080_08982112_2023_2208664
Cites_doi 10.1016/j.ijmachtools.2018.04.004
10.1115/1.1557296
10.1007/s00170-018-2994-6
10.1023/A:1010933404324
10.1016/j.ymssp.2020.107020
10.1016/j.ymssp.2014.04.012
10.1007/s10845-012-0623-z
10.1007/s10845-014-0933-4
10.1016/j.apm.2014.10.016
10.1016/j.ijadhadh.2016.02.010
10.1016/j.ijmachtools.2016.11.001
10.1016/j.ijmachtools.2015.07.004
10.1016/j.ijmachtools.2004.09.004
10.1016/j.cirpj.2018.04.003
10.1016/j.mechatronics.2018.06.018
10.1016/j.ymssp.2018.11.042
10.1016/j.jmsy.2016.08.006
10.1016/j.ymssp.2019.106538
10.1016/j.ijmachtools.2015.04.008
10.1016/j.cirp.2012.05.008
10.1007/s10845-021-01771-6
10.1007/s00170-013-5229-x
10.1007/s10845-020-01733-4
10.1016/j.ijmachtools.2014.03.002
10.1007/s10845-019-01469-w
10.1007/s10845-014-1023-3
10.1016/S0890-6955(99)00009-7
10.1007/s10994-006-6226-1
10.1007/s10845-012-0675-0
10.1007/s00170-017-1096-1
10.1007/s001700200132
10.1007/s00170-006-0751-8
10.15376/biores.16.3.4891-4904
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10845-021-01894-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Health & Medical Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 2026
ExternalDocumentID 10_1007_s10845_021_01894_w
GrantInformation_xml – fundername: Key Technologies Research and Development Program
  grantid: 2018YFB1701204
  funderid: http://dx.doi.org/10.13039/501100012165
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-9cc935ad0d0a098313d679db459317714d2c56a4e49837c3bfda601e4cd5074d3
IEDL.DBID BENPR
ISSN 0956-5515
IngestDate Sat Aug 16 19:40:35 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Tue Jul 01 03:01:01 EDT 2025
Fri Feb 21 02:44:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Thermal error
Random forest
Machine tool
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-9cc935ad0d0a098313d679db459317714d2c56a4e49837c3bfda601e4cd5074d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8010-7996
PQID 2787063381
PQPubID 32407
PageCount 14
ParticipantIDs proquest_journals_2787063381
crossref_primary_10_1007_s10845_021_01894_w
crossref_citationtrail_10_1007_s10845_021_01894_w
springer_journals_10_1007_s10845_021_01894_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tan, Mao, Liu, Li, He, Peng, Yin (CR26) 2014; 82–83
Geurts, Ernst, Wehenkel (CR7) 2006; 63
Katherasan, Elias, Sathiya, Haq (CR10) 2014; 25
Hassani, Tjahjowidodo, Do (CR9) 2014; 49
Abdulshahed, Longstaff, Fletcher, Myers (CR1) 2015; 39
Abdulshahed, Longstaff, Fletcher, Potdar (CR2) 2016; 41
Bardak, Tiryaki, Nemli, Aydın (CR4) 2016; 68
Liu, Ma, Wang (CR15) 2020; 138
Yang, Ni (CR31) 2005; 45
Świć, Gola, Sobaszek, Šmidová (CR25) 2021; 32
Nti, Adekoya, Weyori, Nyarko-Boateng (CR23) 2021
Liu, Miao, Wei, Zhuang (CR14) 2017; 113
Tian, Luo (CR28) 2020; 31
Lo, Yuan, Ni (CR18) 1999; 39
Tan, Yin, Wang, Yin (CR27) 2017; 94
Kovac, Rodic, Pucovsky, Savkovic, Gostimirovic (CR11) 2013; 24
Grama, Mathur, Badhe (CR8) 2018; 132
Li, Yang, Gelvis, Li (CR12) 2006; 35
Li, Zhao, Lan, Ni, Wu, Lu (CR13) 2015; 95
Yang, Ni (CR30) 2003; 125
CR3
Mayr, Jedrzejewski, Uhlmann, Alkan Donmez, Knapp, Härtig, Wendt, Moriwaki, Shore, Schmitt, Brecher, Würz, Wegener (CR19) 2012; 61
Miao, Liu, Liu, Gao, Li (CR21) 2015; 97
Liu, Wu, Liu, Sun, Wang (CR17) 2021; 146
Zhang, Wong (CR33) 2018; 29
Fujishima, Narimatsu, Irino, Ido (CR6) 2018; 22
Miao, Gong, Niu, Ji, Chen (CR20) 2013; 69
Breiman (CR5) 2001; 45
Ramesh, Mannan, Poo (CR24) 2002; 20
Yin, Tan, Chen, Yin (CR32) 2018; 101
Liu, Ma, Wang, Wang, Yang, Shi (CR16) 2019; 121
Mosallam, Medjaher, Zerhouni (CR22) 2016; 27
Xiang, Yao, Du, Yang (CR29) 2018; 53
E Miao (1894_CR21) 2015; 97
L Breiman (1894_CR5) 2001; 45
V Hassani (1894_CR9) 2014; 49
AM Abdulshahed (1894_CR2) 2016; 41
F Tan (1894_CR27) 2017; 94
M Fujishima (1894_CR6) 2018; 22
H Yang (1894_CR30) 2003; 125
D Katherasan (1894_CR10) 2014; 25
P Geurts (1894_CR7) 2006; 63
R Ramesh (1894_CR24) 2002; 20
A Mosallam (1894_CR22) 2016; 27
A Świć (1894_CR25) 2021; 32
S Xiang (1894_CR29) 2018; 53
JL Liu (1894_CR15) 2020; 138
B Tan (1894_CR26) 2014; 82–83
CH Lo (1894_CR18) 1999; 39
Q Yin (1894_CR32) 2018; 101
S Zhang (1894_CR33) 2018; 29
1894_CR3
E Miao (1894_CR20) 2013; 69
S Bardak (1894_CR4) 2016; 68
L Tian (1894_CR28) 2020; 31
JL Liu (1894_CR16) 2019; 121
AM Abdulshahed (1894_CR1) 2015; 39
Y Li (1894_CR13) 2015; 95
H Yang (1894_CR31) 2005; 45
SN Grama (1894_CR8) 2018; 132
H Liu (1894_CR14) 2017; 113
IK Nti (1894_CR23) 2021
YX Li (1894_CR12) 2006; 35
K Liu (1894_CR17) 2021; 146
J Mayr (1894_CR19) 2012; 61
P Kovac (1894_CR11) 2013; 24
References_xml – volume: 132
  start-page: 3
  year: 2018
  end-page: 16
  ident: CR8
  article-title: A model-based cooling strategy for motorized spindle to reduce thermal errors
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2018.04.004
– volume: 125
  start-page: 245
  issue: 2
  year: 2003
  end-page: 254
  ident: CR30
  article-title: Dynamic modeling for machine tool thermal error compensation
  publication-title: Transactions of the ASME Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.1557296
– volume: 101
  start-page: 1699
  issue: 5–8
  year: 2018
  end-page: 1713
  ident: CR32
  article-title: Spindle thermal error modeling based on selective ensemble BP neural networks
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-2994-6
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR5
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 146
  start-page: 107020
  year: 2021
  ident: CR17
  article-title: Reliability analysis of thermal error model based on DBN and Monte Carlo method
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107020
– volume: 49
  start-page: 209
  issue: 1–2
  year: 2014
  end-page: 233
  ident: CR9
  article-title: A survey on hysteresis modeling, identification and control
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2014.04.012
– volume: 24
  start-page: 755
  issue: 4
  year: 2013
  end-page: 762
  ident: CR11
  article-title: Application of fuzzy logic and regression analysis for modeling surface roughness in face milling
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0623-z
– volume: 27
  start-page: 1037
  issue: 5
  year: 2016
  end-page: 1048
  ident: CR22
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0933-4
– volume: 39
  start-page: 1837
  issue: 7
  year: 2015
  end-page: 1852
  ident: CR1
  article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2014.10.016
– volume: 68
  start-page: 115
  year: 2016
  end-page: 123
  ident: CR4
  article-title: Investigation and neural network prediction of wood bonding quality based on pressing conditions
  publication-title: International Journal of Adhesion and Adhesives
  doi: 10.1016/j.ijadhadh.2016.02.010
– volume: 113
  start-page: 35
  year: 2017
  end-page: 48
  ident: CR14
  article-title: Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2016.11.001
– volume: 97
  start-page: 50
  year: 2015
  end-page: 59
  ident: CR21
  article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2015.07.004
– volume: 45
  start-page: 455
  issue: 4–5
  year: 2005
  end-page: 465
  ident: CR31
  article-title: Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2004.09.004
– volume: 22
  start-page: 111
  year: 2018
  end-page: 115
  ident: CR6
  article-title: Thermal displacement reduction and compensation of a turning center
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2018.04.003
– volume: 53
  start-page: 215
  year: 2018
  end-page: 228
  ident: CR29
  article-title: Dynamic linearization modeling approach for spindle thermal errors of machine tools
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.06.018
– volume: 121
  start-page: 471
  year: 2019
  end-page: 495
  ident: CR16
  article-title: Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.11.042
– volume: 41
  start-page: 130
  year: 2016
  end-page: 142
  ident: CR2
  article-title: Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2016.08.006
– volume: 138
  year: 2020
  ident: CR15
  article-title: Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.106538
– volume: 95
  start-page: 20
  year: 2015
  end-page: 38
  ident: CR13
  article-title: A review on spindle thermal error compensation in machine tools
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2015.04.008
– volume: 61
  start-page: 771
  issue: 2
  year: 2012
  end-page: 791
  ident: CR19
  article-title: Thermal issues in machine tools
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2012.05.008
– year: 2021
  ident: CR23
  article-title: Applications of artificial intelligence in engineering and manufacturing: A systematic review
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01771-6
– volume: 69
  start-page: 2593
  issue: 9–12
  year: 2013
  end-page: 2603
  ident: CR20
  article-title: Robustness of thermal error compensation modeling models of CNC machine tools
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-5229-x
– volume: 32
  start-page: 1939
  issue: 7
  year: 2021
  end-page: 1951
  ident: CR25
  article-title: A thermo-mechanical machining method for improving the accuracy and stability of the geometric shape of long low-rigidity shafts
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01733-4
– ident: CR3
– volume: 82–83
  start-page: 11
  year: 2014
  end-page: 20
  ident: CR26
  article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2014.03.002
– volume: 31
  start-page: 575
  issue: 3
  year: 2020
  end-page: 596
  ident: CR28
  article-title: A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01469-w
– volume: 29
  start-page: 585
  issue: 3
  year: 2018
  end-page: 601
  ident: CR33
  article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-1023-3
– volume: 39
  start-page: 1383
  issue: 9
  year: 1999
  end-page: 1396
  ident: CR18
  article-title: Optimal temperature variable selection by grouping approach for thermal error modeling and compensation
  publication-title: International Journal of Machine Tools & Manufacture
  doi: 10.1016/S0890-6955(99)00009-7
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  end-page: 42
  ident: CR7
  article-title: Extremely randomized trees
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
– volume: 25
  start-page: 67
  issue: 1
  year: 2014
  end-page: 76
  ident: CR10
  article-title: Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0675-0
– volume: 94
  start-page: 2861
  issue: 5–8
  year: 2017
  end-page: 2874
  ident: CR27
  article-title: Spindle thermal error robust modeling using LASSO and LS-SVM
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1096-1
– volume: 20
  start-page: 114
  issue: 2
  year: 2002
  end-page: 120
  ident: CR24
  article-title: Support vector machines model for classification of thermal error in machine tools
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s001700200132
– volume: 35
  start-page: 745
  issue: 7–8
  year: 2006
  end-page: 750
  ident: CR12
  article-title: Optimization of measuring points for machine tool thermal error based on grey system theory
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-006-0751-8
– volume: 125
  start-page: 245
  issue: 2
  year: 2003
  ident: 1894_CR30
  publication-title: Transactions of the ASME Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.1557296
– volume: 31
  start-page: 575
  issue: 3
  year: 2020
  ident: 1894_CR28
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01469-w
– volume: 68
  start-page: 115
  year: 2016
  ident: 1894_CR4
  publication-title: International Journal of Adhesion and Adhesives
  doi: 10.1016/j.ijadhadh.2016.02.010
– volume: 39
  start-page: 1837
  issue: 7
  year: 2015
  ident: 1894_CR1
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2014.10.016
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 1894_CR7
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
– volume: 24
  start-page: 755
  issue: 4
  year: 2013
  ident: 1894_CR11
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0623-z
– volume: 121
  start-page: 471
  year: 2019
  ident: 1894_CR16
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.11.042
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1894_CR5
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 94
  start-page: 2861
  issue: 5–8
  year: 2017
  ident: 1894_CR27
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1096-1
– volume: 61
  start-page: 771
  issue: 2
  year: 2012
  ident: 1894_CR19
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2012.05.008
– year: 2021
  ident: 1894_CR23
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01771-6
– volume: 69
  start-page: 2593
  issue: 9–12
  year: 2013
  ident: 1894_CR20
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-5229-x
– volume: 41
  start-page: 130
  year: 2016
  ident: 1894_CR2
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2016.08.006
– volume: 146
  start-page: 107020
  year: 2021
  ident: 1894_CR17
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107020
– volume: 39
  start-page: 1383
  issue: 9
  year: 1999
  ident: 1894_CR18
  publication-title: International Journal of Machine Tools & Manufacture
  doi: 10.1016/S0890-6955(99)00009-7
– volume: 29
  start-page: 585
  issue: 3
  year: 2018
  ident: 1894_CR33
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-1023-3
– volume: 82–83
  start-page: 11
  year: 2014
  ident: 1894_CR26
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2014.03.002
– volume: 113
  start-page: 35
  year: 2017
  ident: 1894_CR14
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2016.11.001
– volume: 101
  start-page: 1699
  issue: 5–8
  year: 2018
  ident: 1894_CR32
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-2994-6
– volume: 49
  start-page: 209
  issue: 1–2
  year: 2014
  ident: 1894_CR9
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2014.04.012
– volume: 53
  start-page: 215
  year: 2018
  ident: 1894_CR29
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.06.018
– ident: 1894_CR3
  doi: 10.15376/biores.16.3.4891-4904
– volume: 132
  start-page: 3
  year: 2018
  ident: 1894_CR8
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2018.04.004
– volume: 45
  start-page: 455
  issue: 4–5
  year: 2005
  ident: 1894_CR31
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2004.09.004
– volume: 95
  start-page: 20
  year: 2015
  ident: 1894_CR13
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2015.04.008
– volume: 22
  start-page: 111
  year: 2018
  ident: 1894_CR6
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2018.04.003
– volume: 25
  start-page: 67
  issue: 1
  year: 2014
  ident: 1894_CR10
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0675-0
– volume: 35
  start-page: 745
  issue: 7–8
  year: 2006
  ident: 1894_CR12
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-006-0751-8
– volume: 138
  year: 2020
  ident: 1894_CR15
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.106538
– volume: 27
  start-page: 1037
  issue: 5
  year: 2016
  ident: 1894_CR22
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0933-4
– volume: 20
  start-page: 114
  issue: 2
  year: 2002
  ident: 1894_CR24
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s001700200132
– volume: 32
  start-page: 1939
  issue: 7
  year: 2021
  ident: 1894_CR25
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01733-4
– volume: 97
  start-page: 50
  year: 2015
  ident: 1894_CR21
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2015.07.004
SSID ssj0009861
Score 2.5629022
Snippet Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2013
SubjectTerms Accuracy
Advanced manufacturing technologies
Algorithms
Artificial intelligence
Business and Management
Control
Deformation effects
Errors
Machine learning
Machine tools
Machines
Manufacturing
Mathematical models
Mechatronics
Modelling
Parameters
Prediction models
Processes
Production
Robotics
Robustness
Time lag
Workpieces
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQttk_TjOIZjCO4gDnaypE2qwtpI27F_35e0tVNU8FJo80F5-Xi_l7z3ewhdy1hw4jrC0nRS8ABzJ3Ztbrk0Jr4tqJtKfaD_MPOmc3q_YIsmKKxsvd3bK0mzU28EuwVURxNr8zcIqbXeRjtM2-4wi-fuqKPaDQxLqmHYAzzAmlCZn_v4qo46jPntWtRom8kh2m9gIh7V43qEtmTeRwdtCgbcrMg-2tvgEzxGz48qXpUVNult4Auu80NjAKZYA70MupRFAW8qxePZGGfGlVLiSqllibVGE1jlGPSXUJluBn-J-fJFFW_Va3aC5pO7p_HUahIoWAkJWGWFSRISxoUtbA5iIQ4Rnh-KmLIQYIPvUOEmzONUUij0ExKngoOBJmkiACZSQU5RL1e5PEM49JnvSNtLXJJSR3iB9HiQ2oxLz-Y-owPktHKMkoZdXCe5WEYdL7KWfQSyj4zso_UA3Xy2ea-5Nf6sPWyHJ2rWWRm5er_xwMx2Bui2HbKu-Pfezv9X_QLt6jzztcvOEPWqYiUvAY1U8ZWZfB-j9tT2
  priority: 102
  providerName: Springer Nature
Title Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
URI https://link.springer.com/article/10.1007/s10845-021-01894-w
https://www.proquest.com/docview/2787063381
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB0BvcCBHVEolQ_cICKJ7SwnVKoWBKJCiEpwIXJsBw5tA20Qv884dQgg0Uuk2LEVjZd54-U9gGOdKkF9TzmGTgofGO6kviscn6U0dBXzM20W9G8HwdWQXT_yR7vgNrPHKqs5sZyoVS7NGvmZb3pWgAGVd_727hjVKLO7aiU0lqGBU3CEwVfjoje4u69pd6OSMbVk20NswO21GXt5LmLmdrIJp6OYOZ-_XVONN_9skZaep78J6xYyks68jbdgSU-2YaOSYyB2dG7D2g9uwR14vs_Tj1lBSqkbTCFzrWiCIJUY0DfGKvV0im95RrqDLhmXxyo1KfJ8NCPGuymSTwj6MpWPTTH8SyJGL2iU4nW8C8N-76F75VgxBUfSiBdOLGVMuVCucgWahXpUBWGsUsZjhBChx5QveSCYZpgZSppmSmCwpplUCBmZonuwMskneh9IHPLQ024gfZoxTwWRDkSUuVzowBUhZ03wKjsm0jKNG8GLUVJzJBvbJ2j7pLR98tmEk-8yb3OejYVft6rmSeyYmyV1D2nCadVkdfb_tR0sru0QVo3G_Py4TgtWiumHPkIkUqRtWI76l21odC6fbnpt2_kwdeh3vgDqfdxQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOvNqqC1vwAU4QNfEjj0NVoS3LLo89IJA4ERzbaQ-7m2U3aMWf6m_sOA8CleDGJVLixIpmxp4Z2_N9AHsm0ZJRTzsWTgovmO4k1JUO5QkLXM1pauyC_sXA713z0xtxswB_61oYe6yynhOLiVpnyq6Rf6fWsnxMqLyfk3vHskbZ3dWaQqM0izPzOMeUbfaj_wv1u09p9_iq03MqVgFHsVDkTqRUxITUrnalG4XMY9oPIp1wEaEvDTyuqRK-5IZjY6BYkmqJWYvhSmPsxDXDfj_AEmcssiMq7J40IL9hgc9aYPthJCKqIp2qVC_kthbaJu9hxJ35S0fYRLf_bcgWfq67DqtVgEqOSovagAUz3oS1mvyBVHPBJqw8QzL8BLeXWfIwy0lBrINPSMlMTTAkJjbEHGGXZjrFuywlnUGHjIpDnIbkWTacEetLNcnGBD2nzkb2M_xLIoe_UQX5n9FnuH4XIX-BxXE2Nl-BRIEIPOP6irKUe9oPjS_D1BXS-K4MBG-BV8sxVhWuuaXXGMYNIrOVfYyyjwvZx_MWHDx9MylRPd58u12rJ65G-Cxu7LEFh7XKmubXe9t6u7ddWO5dXZzH5_3B2TZ8tOz25UGhNizm0wfzDWOgPNkpDI_A3Xtb-j-MOxOM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToobQF1KWl-FBOENXxI48DQrDtqi9WVUWlngiO7bSH3U3ZTbXir_HrGCcOKZXorZdIieNRNDPxzNgz8wHs2twozkITuHZSeMFwJ2dUBUzkPKZGsMK6Df2vo-jwQhxfyssl-N3Wwri0ynZNrBdqU2q3R77HnGZFGFCFe4VPizjbH366-Rk4BCl30trCaTQqcmJ_LTB8m3882kdZv2NsePBtcBh4hIFA80RWQap1yqUy1FBF04SH3ERxanIhU7SrcSgM0zJSwgocjDXPC6MwgrFCG_SjhOFI9wksxxgV0R4sfzkYnZ13LX-Tultr3ekP_RLpS3Z84V4iXGW0C-WTVASLf81i5-veO56trd5wDVa9u0o-N_q1Dkt2ugHPWygI4leGDVi509fwBXw_L_PbeUVqmB18QhqcaoIOMnEO5wRJ2tkM78qCDEYDMqlTOi2pynI8J86yGlJOCdpRU07cNPxKosZXKITqevISLh6Fza-gNy2ndhNIGss4tDTSjBciNFFiI5UUVCobURVL0Yew5WOmfZdzB7Yxzrr-zI73GfI-q3mfLfrw_u-cm6bHx4Nvb7fiyfz_Ps867ezDh1Zk3fD_qb1-mNpbeIpanp0ejU624JmDum-yhrahV81u7Rt0iKp8x2segR-Prex_ACu-GR4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+modeling+method+for+thermal+error+of+CNC+machine+tools+based+on+random+forest+algorithm&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Zhu%2C+Mengrui&rft.au=Yang%2C+Yun&rft.au=Feng%2C+Xiaobing&rft.au=Du%2C+Zhengchun&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=2013&rft.epage=2026&rft_id=info:doi/10.1007%2Fs10845-021-01894-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon