Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling m...
Saved in:
Published in | Journal of intelligent manufacturing Vol. 34; no. 4; pp. 2013 - 2026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0956-5515 1572-8145 |
DOI | 10.1007/s10845-021-01894-w |
Cover
Loading…
Abstract | Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness. |
---|---|
AbstractList | Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness. |
Author | Feng, Xiaobing Du, Zhengchun Yang, Jianguo Zhu, Mengrui Yang, Yun |
Author_xml | – sequence: 1 givenname: Mengrui surname: Zhu fullname: Zhu, Mengrui organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 2 givenname: Yun surname: Yang fullname: Yang, Yun organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Xiaobing surname: Feng fullname: Feng, Xiaobing organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Zhengchun orcidid: 0000-0002-8010-7996 surname: Du fullname: Du, Zhengchun email: zcdu@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 5 givenname: Jianguo surname: Yang fullname: Yang, Jianguo organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University |
BookMark | eNp9kF9LwzAUxYNMcJt-AZ8CPleTJmnaRyn-g6Eg-mpIk3TtaJOZZAy_vZkVBB_2dLnc8zv3cBZgZp01AFxidI0R4jcBo5KyDOU4Q7isaLY_AXPMeJ6VmLIZmKOKFRljmJ2BRQgbhFBVFngOPl5dswsRjk6bobdrOJrYOQ1b52HsjB_lAI33aXMtrJ9rOErV9dbA6NwQYCOD0dBZ6KXVbjxgJrnJYe18H7vxHJy2cgjm4ncuwfv93Vv9mK1eHp7q21WmSMliVilVESY10kimYAQTXfBKN5RVBHOOqc4VKyQ1NB25Ik2rZYGwoUozxKkmS3A1-W69-9ylCGLjdt6mlyLnJUcFISVOqnxSKe9C8KYVW9-P0n8JjMShRzH1KFKP4qdHsU9Q-Q9SfZSxdzZ62Q_HUTKhIf2xa-P_Uh2hvgFObYpB |
CitedBy_id | crossref_primary_10_1007_s00170_023_12759_2 crossref_primary_10_1016_j_jmapro_2025_03_011 crossref_primary_10_1093_jom_ufad042 crossref_primary_10_1007_s10845_024_02403_5 crossref_primary_10_3389_frsen_2024_1432577 crossref_primary_10_1007_s10845_023_02234_w crossref_primary_10_1016_j_fluid_2025_114423 crossref_primary_10_1007_s00170_023_11471_5 crossref_primary_10_3390_molecules29102337 crossref_primary_10_1007_s10845_023_02255_5 crossref_primary_10_3390_s24113536 crossref_primary_10_1007_s00170_023_10831_5 crossref_primary_10_1007_s10845_024_02350_1 crossref_primary_10_1007_s00170_024_14424_8 crossref_primary_10_1115_1_4057011 crossref_primary_10_3390_math11143204 crossref_primary_10_1016_j_csite_2024_104343 crossref_primary_10_1007_s00170_023_12685_3 crossref_primary_10_1109_ACCESS_2024_3406262 crossref_primary_10_1109_TEM_2023_3317922 crossref_primary_10_1016_j_jmsy_2025_02_021 crossref_primary_10_1007_s00170_022_09827_4 crossref_primary_10_1007_s00170_023_11616_6 crossref_primary_10_1007_s00170_024_13021_z crossref_primary_10_1007_s10845_025_02565_w crossref_primary_10_1007_s10845_023_02203_3 crossref_primary_10_3390_app14010381 crossref_primary_10_1016_j_aei_2024_102844 crossref_primary_10_1016_j_jmapro_2025_02_049 crossref_primary_10_1007_s40430_025_05485_1 crossref_primary_10_3390_machines12100728 crossref_primary_10_1016_j_aei_2024_102741 crossref_primary_10_1016_j_csite_2023_103858 crossref_primary_10_1007_s00170_025_15021_z crossref_primary_10_2478_amns_2024_3246 crossref_primary_10_1021_acs_est_3c09788 crossref_primary_10_3390_machines10080624 crossref_primary_10_1016_j_measurement_2024_116341 crossref_primary_10_1007_s11665_022_07431_x crossref_primary_10_1016_j_csite_2025_106009 crossref_primary_10_1016_j_jmapro_2024_01_024 crossref_primary_10_1016_j_measurement_2025_117152 crossref_primary_10_1080_08982112_2023_2208664 |
Cites_doi | 10.1016/j.ijmachtools.2018.04.004 10.1115/1.1557296 10.1007/s00170-018-2994-6 10.1023/A:1010933404324 10.1016/j.ymssp.2020.107020 10.1016/j.ymssp.2014.04.012 10.1007/s10845-012-0623-z 10.1007/s10845-014-0933-4 10.1016/j.apm.2014.10.016 10.1016/j.ijadhadh.2016.02.010 10.1016/j.ijmachtools.2016.11.001 10.1016/j.ijmachtools.2015.07.004 10.1016/j.ijmachtools.2004.09.004 10.1016/j.cirpj.2018.04.003 10.1016/j.mechatronics.2018.06.018 10.1016/j.ymssp.2018.11.042 10.1016/j.jmsy.2016.08.006 10.1016/j.ymssp.2019.106538 10.1016/j.ijmachtools.2015.04.008 10.1016/j.cirp.2012.05.008 10.1007/s10845-021-01771-6 10.1007/s00170-013-5229-x 10.1007/s10845-020-01733-4 10.1016/j.ijmachtools.2014.03.002 10.1007/s10845-019-01469-w 10.1007/s10845-014-1023-3 10.1016/S0890-6955(99)00009-7 10.1007/s10994-006-6226-1 10.1007/s10845-012-0675-0 10.1007/s00170-017-1096-1 10.1007/s001700200132 10.1007/s00170-006-0751-8 10.15376/biores.16.3.4891-4904 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10845-021-01894-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Health & Medical Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1572-8145 |
EndPage | 2026 |
ExternalDocumentID | 10_1007_s10845_021_01894_w |
GrantInformation_xml | – fundername: Key Technologies Research and Development Program grantid: 2018YFB1701204 funderid: http://dx.doi.org/10.13039/501100012165 |
GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-9cc935ad0d0a098313d679db459317714d2c56a4e49837c3bfda601e4cd5074d3 |
IEDL.DBID | BENPR |
ISSN | 0956-5515 |
IngestDate | Sat Aug 16 19:40:35 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Tue Jul 01 03:01:01 EDT 2025 Fri Feb 21 02:44:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Thermal error Random forest Machine tool Artificial intelligence Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-9cc935ad0d0a098313d679db459317714d2c56a4e49837c3bfda601e4cd5074d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8010-7996 |
PQID | 2787063381 |
PQPubID | 32407 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2787063381 crossref_primary_10_1007_s10845_021_01894_w crossref_citationtrail_10_1007_s10845_021_01894_w springer_journals_10_1007_s10845_021_01894_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: London |
PublicationTitle | Journal of intelligent manufacturing |
PublicationTitleAbbrev | J Intell Manuf |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Tan, Mao, Liu, Li, He, Peng, Yin (CR26) 2014; 82–83 Geurts, Ernst, Wehenkel (CR7) 2006; 63 Katherasan, Elias, Sathiya, Haq (CR10) 2014; 25 Hassani, Tjahjowidodo, Do (CR9) 2014; 49 Abdulshahed, Longstaff, Fletcher, Myers (CR1) 2015; 39 Abdulshahed, Longstaff, Fletcher, Potdar (CR2) 2016; 41 Bardak, Tiryaki, Nemli, Aydın (CR4) 2016; 68 Liu, Ma, Wang (CR15) 2020; 138 Yang, Ni (CR31) 2005; 45 Świć, Gola, Sobaszek, Šmidová (CR25) 2021; 32 Nti, Adekoya, Weyori, Nyarko-Boateng (CR23) 2021 Liu, Miao, Wei, Zhuang (CR14) 2017; 113 Tian, Luo (CR28) 2020; 31 Lo, Yuan, Ni (CR18) 1999; 39 Tan, Yin, Wang, Yin (CR27) 2017; 94 Kovac, Rodic, Pucovsky, Savkovic, Gostimirovic (CR11) 2013; 24 Grama, Mathur, Badhe (CR8) 2018; 132 Li, Yang, Gelvis, Li (CR12) 2006; 35 Li, Zhao, Lan, Ni, Wu, Lu (CR13) 2015; 95 Yang, Ni (CR30) 2003; 125 CR3 Mayr, Jedrzejewski, Uhlmann, Alkan Donmez, Knapp, Härtig, Wendt, Moriwaki, Shore, Schmitt, Brecher, Würz, Wegener (CR19) 2012; 61 Miao, Liu, Liu, Gao, Li (CR21) 2015; 97 Liu, Wu, Liu, Sun, Wang (CR17) 2021; 146 Zhang, Wong (CR33) 2018; 29 Fujishima, Narimatsu, Irino, Ido (CR6) 2018; 22 Miao, Gong, Niu, Ji, Chen (CR20) 2013; 69 Breiman (CR5) 2001; 45 Ramesh, Mannan, Poo (CR24) 2002; 20 Yin, Tan, Chen, Yin (CR32) 2018; 101 Liu, Ma, Wang, Wang, Yang, Shi (CR16) 2019; 121 Mosallam, Medjaher, Zerhouni (CR22) 2016; 27 Xiang, Yao, Du, Yang (CR29) 2018; 53 E Miao (1894_CR21) 2015; 97 L Breiman (1894_CR5) 2001; 45 V Hassani (1894_CR9) 2014; 49 AM Abdulshahed (1894_CR2) 2016; 41 F Tan (1894_CR27) 2017; 94 M Fujishima (1894_CR6) 2018; 22 H Yang (1894_CR30) 2003; 125 D Katherasan (1894_CR10) 2014; 25 P Geurts (1894_CR7) 2006; 63 R Ramesh (1894_CR24) 2002; 20 A Mosallam (1894_CR22) 2016; 27 A Świć (1894_CR25) 2021; 32 S Xiang (1894_CR29) 2018; 53 JL Liu (1894_CR15) 2020; 138 B Tan (1894_CR26) 2014; 82–83 CH Lo (1894_CR18) 1999; 39 Q Yin (1894_CR32) 2018; 101 S Zhang (1894_CR33) 2018; 29 1894_CR3 E Miao (1894_CR20) 2013; 69 S Bardak (1894_CR4) 2016; 68 L Tian (1894_CR28) 2020; 31 JL Liu (1894_CR16) 2019; 121 AM Abdulshahed (1894_CR1) 2015; 39 Y Li (1894_CR13) 2015; 95 H Yang (1894_CR31) 2005; 45 SN Grama (1894_CR8) 2018; 132 H Liu (1894_CR14) 2017; 113 IK Nti (1894_CR23) 2021 YX Li (1894_CR12) 2006; 35 K Liu (1894_CR17) 2021; 146 J Mayr (1894_CR19) 2012; 61 P Kovac (1894_CR11) 2013; 24 |
References_xml | – volume: 132 start-page: 3 year: 2018 end-page: 16 ident: CR8 article-title: A model-based cooling strategy for motorized spindle to reduce thermal errors publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2018.04.004 – volume: 125 start-page: 245 issue: 2 year: 2003 end-page: 254 ident: CR30 article-title: Dynamic modeling for machine tool thermal error compensation publication-title: Transactions of the ASME Journal of Manufacturing Science and Engineering doi: 10.1115/1.1557296 – volume: 101 start-page: 1699 issue: 5–8 year: 2018 end-page: 1713 ident: CR32 article-title: Spindle thermal error modeling based on selective ensemble BP neural networks publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-2994-6 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR5 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 146 start-page: 107020 year: 2021 ident: CR17 article-title: Reliability analysis of thermal error model based on DBN and Monte Carlo method publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107020 – volume: 49 start-page: 209 issue: 1–2 year: 2014 end-page: 233 ident: CR9 article-title: A survey on hysteresis modeling, identification and control publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2014.04.012 – volume: 24 start-page: 755 issue: 4 year: 2013 end-page: 762 ident: CR11 article-title: Application of fuzzy logic and regression analysis for modeling surface roughness in face milling publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0623-z – volume: 27 start-page: 1037 issue: 5 year: 2016 end-page: 1048 ident: CR22 article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0933-4 – volume: 39 start-page: 1837 issue: 7 year: 2015 end-page: 1852 ident: CR1 article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2014.10.016 – volume: 68 start-page: 115 year: 2016 end-page: 123 ident: CR4 article-title: Investigation and neural network prediction of wood bonding quality based on pressing conditions publication-title: International Journal of Adhesion and Adhesives doi: 10.1016/j.ijadhadh.2016.02.010 – volume: 113 start-page: 35 year: 2017 end-page: 48 ident: CR14 article-title: Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2016.11.001 – volume: 97 start-page: 50 year: 2015 end-page: 59 ident: CR21 article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2015.07.004 – volume: 45 start-page: 455 issue: 4–5 year: 2005 end-page: 465 ident: CR31 article-title: Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2004.09.004 – volume: 22 start-page: 111 year: 2018 end-page: 115 ident: CR6 article-title: Thermal displacement reduction and compensation of a turning center publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2018.04.003 – volume: 53 start-page: 215 year: 2018 end-page: 228 ident: CR29 article-title: Dynamic linearization modeling approach for spindle thermal errors of machine tools publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.06.018 – volume: 121 start-page: 471 year: 2019 end-page: 495 ident: CR16 article-title: Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.11.042 – volume: 41 start-page: 130 year: 2016 end-page: 142 ident: CR2 article-title: Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2016.08.006 – volume: 138 year: 2020 ident: CR15 article-title: Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106538 – volume: 95 start-page: 20 year: 2015 end-page: 38 ident: CR13 article-title: A review on spindle thermal error compensation in machine tools publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2015.04.008 – volume: 61 start-page: 771 issue: 2 year: 2012 end-page: 791 ident: CR19 article-title: Thermal issues in machine tools publication-title: CIRP Annals doi: 10.1016/j.cirp.2012.05.008 – year: 2021 ident: CR23 article-title: Applications of artificial intelligence in engineering and manufacturing: A systematic review publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01771-6 – volume: 69 start-page: 2593 issue: 9–12 year: 2013 end-page: 2603 ident: CR20 article-title: Robustness of thermal error compensation modeling models of CNC machine tools publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-5229-x – volume: 32 start-page: 1939 issue: 7 year: 2021 end-page: 1951 ident: CR25 article-title: A thermo-mechanical machining method for improving the accuracy and stability of the geometric shape of long low-rigidity shafts publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01733-4 – ident: CR3 – volume: 82–83 start-page: 11 year: 2014 end-page: 20 ident: CR26 article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2014.03.002 – volume: 31 start-page: 575 issue: 3 year: 2020 end-page: 596 ident: CR28 article-title: A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01469-w – volume: 29 start-page: 585 issue: 3 year: 2018 end-page: 601 ident: CR33 article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-1023-3 – volume: 39 start-page: 1383 issue: 9 year: 1999 end-page: 1396 ident: CR18 article-title: Optimal temperature variable selection by grouping approach for thermal error modeling and compensation publication-title: International Journal of Machine Tools & Manufacture doi: 10.1016/S0890-6955(99)00009-7 – volume: 63 start-page: 3 issue: 1 year: 2006 end-page: 42 ident: CR7 article-title: Extremely randomized trees publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 – volume: 25 start-page: 67 issue: 1 year: 2014 end-page: 76 ident: CR10 article-title: Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0675-0 – volume: 94 start-page: 2861 issue: 5–8 year: 2017 end-page: 2874 ident: CR27 article-title: Spindle thermal error robust modeling using LASSO and LS-SVM publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1096-1 – volume: 20 start-page: 114 issue: 2 year: 2002 end-page: 120 ident: CR24 article-title: Support vector machines model for classification of thermal error in machine tools publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s001700200132 – volume: 35 start-page: 745 issue: 7–8 year: 2006 end-page: 750 ident: CR12 article-title: Optimization of measuring points for machine tool thermal error based on grey system theory publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-006-0751-8 – volume: 125 start-page: 245 issue: 2 year: 2003 ident: 1894_CR30 publication-title: Transactions of the ASME Journal of Manufacturing Science and Engineering doi: 10.1115/1.1557296 – volume: 31 start-page: 575 issue: 3 year: 2020 ident: 1894_CR28 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01469-w – volume: 68 start-page: 115 year: 2016 ident: 1894_CR4 publication-title: International Journal of Adhesion and Adhesives doi: 10.1016/j.ijadhadh.2016.02.010 – volume: 39 start-page: 1837 issue: 7 year: 2015 ident: 1894_CR1 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2014.10.016 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 1894_CR7 publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 – volume: 24 start-page: 755 issue: 4 year: 2013 ident: 1894_CR11 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0623-z – volume: 121 start-page: 471 year: 2019 ident: 1894_CR16 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.11.042 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1894_CR5 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 94 start-page: 2861 issue: 5–8 year: 2017 ident: 1894_CR27 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1096-1 – volume: 61 start-page: 771 issue: 2 year: 2012 ident: 1894_CR19 publication-title: CIRP Annals doi: 10.1016/j.cirp.2012.05.008 – year: 2021 ident: 1894_CR23 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01771-6 – volume: 69 start-page: 2593 issue: 9–12 year: 2013 ident: 1894_CR20 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-5229-x – volume: 41 start-page: 130 year: 2016 ident: 1894_CR2 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2016.08.006 – volume: 146 start-page: 107020 year: 2021 ident: 1894_CR17 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107020 – volume: 39 start-page: 1383 issue: 9 year: 1999 ident: 1894_CR18 publication-title: International Journal of Machine Tools & Manufacture doi: 10.1016/S0890-6955(99)00009-7 – volume: 29 start-page: 585 issue: 3 year: 2018 ident: 1894_CR33 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-1023-3 – volume: 82–83 start-page: 11 year: 2014 ident: 1894_CR26 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2014.03.002 – volume: 113 start-page: 35 year: 2017 ident: 1894_CR14 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2016.11.001 – volume: 101 start-page: 1699 issue: 5–8 year: 2018 ident: 1894_CR32 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-018-2994-6 – volume: 49 start-page: 209 issue: 1–2 year: 2014 ident: 1894_CR9 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2014.04.012 – volume: 53 start-page: 215 year: 2018 ident: 1894_CR29 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.06.018 – ident: 1894_CR3 doi: 10.15376/biores.16.3.4891-4904 – volume: 132 start-page: 3 year: 2018 ident: 1894_CR8 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2018.04.004 – volume: 45 start-page: 455 issue: 4–5 year: 2005 ident: 1894_CR31 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2004.09.004 – volume: 95 start-page: 20 year: 2015 ident: 1894_CR13 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2015.04.008 – volume: 22 start-page: 111 year: 2018 ident: 1894_CR6 publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2018.04.003 – volume: 25 start-page: 67 issue: 1 year: 2014 ident: 1894_CR10 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0675-0 – volume: 35 start-page: 745 issue: 7–8 year: 2006 ident: 1894_CR12 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-006-0751-8 – volume: 138 year: 2020 ident: 1894_CR15 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106538 – volume: 27 start-page: 1037 issue: 5 year: 2016 ident: 1894_CR22 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0933-4 – volume: 20 start-page: 114 issue: 2 year: 2002 ident: 1894_CR24 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s001700200132 – volume: 32 start-page: 1939 issue: 7 year: 2021 ident: 1894_CR25 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01733-4 – volume: 97 start-page: 50 year: 2015 ident: 1894_CR21 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2015.07.004 |
SSID | ssj0009861 |
Score | 2.5629022 |
Snippet | Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2013 |
SubjectTerms | Accuracy Advanced manufacturing technologies Algorithms Artificial intelligence Business and Management Control Deformation effects Errors Machine learning Machine tools Machines Manufacturing Mathematical models Mechatronics Modelling Parameters Prediction models Processes Production Robotics Robustness Time lag Workpieces |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwYypOp-TgTQttk_TjOIZjCO4gDnaypE2qwtpI27F_35e0tVNU8FJo80F5-Xi_l7z3ewhdy1hw4jrC0nRS8ABzJ3Ztbrk0Jr4tqJtKfaD_MPOmc3q_YIsmKKxsvd3bK0mzU28EuwVURxNr8zcIqbXeRjtM2-4wi-fuqKPaDQxLqmHYAzzAmlCZn_v4qo46jPntWtRom8kh2m9gIh7V43qEtmTeRwdtCgbcrMg-2tvgEzxGz48qXpUVNult4Auu80NjAKZYA70MupRFAW8qxePZGGfGlVLiSqllibVGE1jlGPSXUJluBn-J-fJFFW_Va3aC5pO7p_HUahIoWAkJWGWFSRISxoUtbA5iIQ4Rnh-KmLIQYIPvUOEmzONUUij0ExKngoOBJmkiACZSQU5RL1e5PEM49JnvSNtLXJJSR3iB9HiQ2oxLz-Y-owPktHKMkoZdXCe5WEYdL7KWfQSyj4zso_UA3Xy2ea-5Nf6sPWyHJ2rWWRm5er_xwMx2Bui2HbKu-Pfezv9X_QLt6jzztcvOEPWqYiUvAY1U8ZWZfB-j9tT2 priority: 102 providerName: Springer Nature |
Title | Robust modeling method for thermal error of CNC machine tools based on random forest algorithm |
URI | https://link.springer.com/article/10.1007/s10845-021-01894-w https://www.proquest.com/docview/2787063381 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB0BvcCBHVEolQ_cICKJ7SwnVKoWBKJCiEpwIXJsBw5tA20Qv884dQgg0Uuk2LEVjZd54-U9gGOdKkF9TzmGTgofGO6kviscn6U0dBXzM20W9G8HwdWQXT_yR7vgNrPHKqs5sZyoVS7NGvmZb3pWgAGVd_727hjVKLO7aiU0lqGBU3CEwVfjoje4u69pd6OSMbVk20NswO21GXt5LmLmdrIJp6OYOZ-_XVONN_9skZaep78J6xYyks68jbdgSU-2YaOSYyB2dG7D2g9uwR14vs_Tj1lBSqkbTCFzrWiCIJUY0DfGKvV0im95RrqDLhmXxyo1KfJ8NCPGuymSTwj6MpWPTTH8SyJGL2iU4nW8C8N-76F75VgxBUfSiBdOLGVMuVCucgWahXpUBWGsUsZjhBChx5QveSCYZpgZSppmSmCwpplUCBmZonuwMskneh9IHPLQ024gfZoxTwWRDkSUuVzowBUhZ03wKjsm0jKNG8GLUVJzJBvbJ2j7pLR98tmEk-8yb3OejYVft6rmSeyYmyV1D2nCadVkdfb_tR0sru0QVo3G_Py4TgtWiumHPkIkUqRtWI76l21odC6fbnpt2_kwdeh3vgDqfdxQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOvNqqC1vwAU4QNfEjj0NVoS3LLo89IJA4ERzbaQ-7m2U3aMWf6m_sOA8CleDGJVLixIpmxp4Z2_N9AHsm0ZJRTzsWTgovmO4k1JUO5QkLXM1pauyC_sXA713z0xtxswB_61oYe6yynhOLiVpnyq6Rf6fWsnxMqLyfk3vHskbZ3dWaQqM0izPzOMeUbfaj_wv1u09p9_iq03MqVgFHsVDkTqRUxITUrnalG4XMY9oPIp1wEaEvDTyuqRK-5IZjY6BYkmqJWYvhSmPsxDXDfj_AEmcssiMq7J40IL9hgc9aYPthJCKqIp2qVC_kthbaJu9hxJ35S0fYRLf_bcgWfq67DqtVgEqOSovagAUz3oS1mvyBVHPBJqw8QzL8BLeXWfIwy0lBrINPSMlMTTAkJjbEHGGXZjrFuywlnUGHjIpDnIbkWTacEetLNcnGBD2nzkb2M_xLIoe_UQX5n9FnuH4XIX-BxXE2Nl-BRIEIPOP6irKUe9oPjS_D1BXS-K4MBG-BV8sxVhWuuaXXGMYNIrOVfYyyjwvZx_MWHDx9MylRPd58u12rJ65G-Cxu7LEFh7XKmubXe9t6u7ddWO5dXZzH5_3B2TZ8tOz25UGhNizm0wfzDWOgPNkpDI_A3Xtb-j-MOxOM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToobQF1KWl-FBOENXxI48DQrDtqi9WVUWlngiO7bSH3U3ZTbXir_HrGCcOKZXorZdIieNRNDPxzNgz8wHs2twozkITuHZSeMFwJ2dUBUzkPKZGsMK6Df2vo-jwQhxfyssl-N3Wwri0ynZNrBdqU2q3R77HnGZFGFCFe4VPizjbH366-Rk4BCl30trCaTQqcmJ_LTB8m3882kdZv2NsePBtcBh4hIFA80RWQap1yqUy1FBF04SH3ERxanIhU7SrcSgM0zJSwgocjDXPC6MwgrFCG_SjhOFI9wksxxgV0R4sfzkYnZ13LX-Tultr3ekP_RLpS3Z84V4iXGW0C-WTVASLf81i5-veO56trd5wDVa9u0o-N_q1Dkt2ugHPWygI4leGDVi509fwBXw_L_PbeUVqmB18QhqcaoIOMnEO5wRJ2tkM78qCDEYDMqlTOi2pynI8J86yGlJOCdpRU07cNPxKosZXKITqevISLh6Fza-gNy2ndhNIGss4tDTSjBciNFFiI5UUVCobURVL0Yew5WOmfZdzB7Yxzrr-zI73GfI-q3mfLfrw_u-cm6bHx4Nvb7fiyfz_Ps867ezDh1Zk3fD_qb1-mNpbeIpanp0ejU624JmDum-yhrahV81u7Rt0iKp8x2segR-Prex_ACu-GR4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+modeling+method+for+thermal+error+of+CNC+machine+tools+based+on+random+forest+algorithm&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Zhu%2C+Mengrui&rft.au=Yang%2C+Yun&rft.au=Feng%2C+Xiaobing&rft.au=Du%2C+Zhengchun&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=2013&rft.epage=2026&rft_id=info:doi/10.1007%2Fs10845-021-01894-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |