STaTRL: Spatial-temporal and text representation learning for POI recommendation
With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However,...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 7; pp. 8286 - 8301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e.,
unvisited
POI recommendation
that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e.,
user’s POI preference
learning
whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods. |
---|---|
AbstractList | With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e., unvisitedPOI recommendation that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e., user’s POI preferencelearning whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods. With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e., unvisited POI recommendation that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e., user’s POI preference learning whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods. |
Author | Yu, Dongjin Fukumoto, Fumiyo Li, Jiyi Sun, Xiaoxiao Wang, Xinfeng |
Author_xml | – sequence: 1 givenname: Xinfeng surname: Wang fullname: Wang, Xinfeng organization: School of Computer Science and Technology, Hangzhou Dianzi University, Integrated Graduate School of Medicine, Engineering, Agricultural Sciences, Faculty of Engineering, University of Yamanashi – sequence: 2 givenname: Fumiyo orcidid: 0000-0001-7858-6206 surname: Fukumoto fullname: Fukumoto, Fumiyo email: fukumoto@yamanashi.ac.jp organization: Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi – sequence: 3 givenname: Jiyi surname: Li fullname: Li, Jiyi organization: Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi – sequence: 4 givenname: Dongjin surname: Yu fullname: Yu, Dongjin email: yudj@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 5 givenname: Xiaoxiao surname: Sun fullname: Sun, Xiaoxiao organization: School of Computer Science and Technology, Hangzhou Dianzi University |
BookMark | eNp9kFtLAzEQhYNUsFb_gE8LPkdz2Vt8k-KlUGixFXwLs0m2tOwma7Kl-u9Nu4JvPg3MnHNm5rtEI-usQeiGkjtKSHEfKElLgQljmPAyK_HhDI1pVnBcpKIYoTERLMV5Lj4u0GUIO0II54SO0XK1hvXb_CFZddBvocG9aTvnoUnA6qQ3X33iTedNMLaPAmeTxoC3W7tJaueT5WIW58q1rbH6NL9C5zU0wVz_1gl6f35aT1_xfPEymz7OsYr39VgUAohKSWnyGirBswq00kIpYExnwOpK0aqK3RQo1bkRvBZaqVxRrSH-wSfodsjtvPvcm9DLndt7G1dKVpQFyVOaHlVsUCnvQvCmlp3ftuC_JSXySE4O5GQkJ0_k5CGa-GAKUWw3xv9F_-P6AYPrdWo |
CitedBy_id | crossref_primary_10_3390_s23084140 crossref_primary_10_1016_j_asoc_2023_111200 crossref_primary_10_1016_j_ipm_2024_103676 crossref_primary_10_1016_j_neunet_2024_106207 crossref_primary_10_1016_j_eswa_2024_123436 crossref_primary_10_1016_j_is_2024_102366 crossref_primary_10_1007_s40747_023_01191_4 crossref_primary_10_3233_JIFS_234824 |
Cites_doi | 10.24963/ijcai.2018/539 10.1145/3209978.3210042 10.1609/aaai.v34i05.6383 10.1145/3041021.3054138 10.1016/j.is.2021.101742 10.1145/3159652.3170459 10.1016/j.aci.2019.11.003 10.3390/app10196664 10.1016/j.eswa.2019.06.001 10.1007/978-3-030-75765-6_41 10.1145/3343037 10.1609/aaai.v33i01.33015877 10.24963/ijcai.2020/344 10.1609/aaai.v32i1.11244 10.1016/j.eswa.2020.113234 10.1109/ICDE.2019.00034 10.24963/ijcai.2018/458 10.1007/s10489-018-1276-1 10.1016/j.future.2018.07.008 10.18653/v1/2020.coling-main.21 10.1016/j.eswa.2021.114775 10.1145/3397482.3450717 10.1007/978-3-030-42835-8_7 10.1109/ICPR48806.2021.9412167 10.1145/3269206.3271733 10.1145/3274895.3274908 10.1007/978-3-030-45439-5_14 10.1007/s11280-021-00865-8 10.1145/3308558.3313608 10.14778/3115404.3115407 10.1145/3442381.3449998 10.1016/j.ipl.2016.08.002 10.1145/2020408.2020579 10.1145/3077136.3080797 10.1007/s11280-020-00824-9 10.1145/3295499 10.1145/3394486.3403252 10.3115/v1/S14-2004 10.1016/j.neucom.2019.12.046 10.1145/3460198 10.1609/aaai.v35i16.17664 10.1145/3178876.3186145 10.1145/3340531.3411876 10.1145/3397271.3401049 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-022-03858-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 8301 |
ExternalDocumentID | 10_1007_s10489_022_03858_w |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 21K12026 funderid: https://doi.org/10.13039/501100001691 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z87 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z91 Z92 ZMTXR ZY4 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-979a0c408e6fab935badcd9cca22d5a2fbc1bb5ba4a11d6e93f9dcc6c1dda6693 |
IEDL.DBID | BENPR |
ISSN | 0924-669X |
IngestDate | Thu Oct 10 16:32:55 EDT 2024 Thu Sep 12 16:55:16 EDT 2024 Sat Dec 16 12:07:12 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | POI recommendation Aspect Based Sentiment Analysis (ABSA) Multi-task Spatial-temporal and text representation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-979a0c408e6fab935badcd9cca22d5a2fbc1bb5ba4a11d6e93f9dcc6c1dda6693 |
ORCID | 0000-0001-7858-6206 |
PQID | 2787064149 |
PQPubID | 326365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2787064149 crossref_primary_10_1007_s10489_022_03858_w springer_journals_10_1007_s10489_022_03858_w |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | XingSLiuFWangQZhaoXLiTContent-aware point-of-interest recommendation based on convolutional neural networkAppl Intell201949385887110.1007/s10489-018-1276-1 Zhao P, Zhu H, Liu Y, Xu J, Li Z, Zhuang F, Sheng VS, Zhou X (2019) Where to go next: A spatio-temporal gated network for next poi recommendation. AAAI, p 5877–5884 LaiC-HHsuC-YRating prediction based on combination of review mining and user preference analysisInf Syst20219910174210.1016/j.is.2021.101742 Pontiki M, Galanis D, Pavlopoulos J, Papageorgiou H, Androutsopoulos I, Manandhar S (2014) Semeval-2014 task4: Aspect-based sentiment analysis. In: Proc. of the 8th international workshop on semantic evaluation, pp 27–35 Li G, Chen Q, Zheng B, Yin H, Nguyen QVH, Zhou X (2020) Group-based recurrent neural networks for poi recommendation, ACM/IMS Trans Data Sci 1(1) Luo Y, Liu Q, Liu Z (2021) Stan: Spatio-temporal attention network for next location recommendation. In: Proc. of the Web Conference 2021, pp 2177–2185 Cheng Z, Ding Y, Zhu L, Kankanhalli M (2018) Aspect-aware latent factor model: Rating prediction with ratings and reviews. In: Proc. of the 2018 World Wide Web conference, pp 639–648 ZhangYShiZZuoWYueLLiangSLiXJoint personalized markov chains with social network embedding for cold-start recommendationNeurocomputing202038620822010.1016/j.neucom.2019.12.046 Zhou F, Yue X, Trajcevski G, Zhong T, Zhang K (2019) Context-aware variational trajectory encoding and human mobility inference. In: Proc. of World Wide Web Conference, pp 3469–3475 Feng S, Tran LV, Cong G, Chen L, Li J, Li F (2020) Hme: A hyperbolic metric embedding approach for next-poi recommendation. In: Proc. of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1429–1438 Ma C, Zhang Y, Wang Q, Liu X (2018) Point-of-interest recommendation: Exploiting self-attentive autoencoders with neighbor-aware influence. In: Proc. of the 27th ACM International Conference on Information and Knowledge Management, pp 697–706 Wang H, Shen H, Ouyang W, Cheng X (2018) Exploiting poi-specific geographical influence for point-of-interest recommendation. IJCAI, p 3877–3883 LiuSWangLA self-adaptive point-of-interest recommendation algorithm based on a multi-order markov modelFutur Gener Comput Syst20188950651410.1016/j.future.2018.07.008 Zuo S, Jiang H, Li Z, Zhao T, Zha H (2020) Transformer hawkes process. In: Proc. of international conference on machine learning, pp 11692–11702 Gao Q, Trajcevski G, Zhou F, Zhang K, Zhong T, Zhang F (2018) Trajectory-based social circle inference. In: Proc. of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 369–378 Ho NL, Lim KH (2021) User preferential tour recommendation based on poi-embedding methods. In: Proc. of 26th International conference on intelligent user interfaces, pp 46–48 Peng H, Xu L, Bing L, Huang F, Lu W, Si L (2020) Knowing what, how and why: A near complete solution for aspect-based sentiment analysis. In: Proc. of the AAAI Conference on Artificial Intelligence, vol 34, pp 8600–8607 WerneckHSantosRSilvaNPereiraAdrianoCMMourãoFRochaLEffective and diverse poi recommendations through complementary diversification modelsExpert Syst Appl202117511477510.1016/j.eswa.2021.114775 Chen C, Liu Z, Zhao P, Zhou J, Li X (2018) Privacy preserving point-of-interest recommendation using decentralized matrix factorization. In: Proc. of the AAAI Conference on artificial intelligence, vol 32 Zhao S, Zhao T, King I, Lyu MR (2017) Geo-teaser: Geo-temporal sequential embedding rank for point-of-interest recommendation. In: Proc. of the 26th international conference on world wide web companion, pp 153–162 ShenR-PZhangH-RYuHMinFSentiment based matrix factorization with reliability for recommendationExpert Syst Appl201913524925810.1016/j.eswa.2019.06.001 Baratchi M, Afsharchi M, Crestani F (2020) Lglmf: Local geographical based logistic matrix factorization model for poi recommendation. In: Proc. of information retrieval technology, vol 12004, p 66 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30 CuiYSunHZhaoYYinHZhengKSequential-knowledge-aware next poi recommendation: A meta-learning approachACM Trans Inf Syst (TOIS)202140212210.1145/3460198 Chang B, Park Y, Park D, Kim S, Kang J (2018) Content-aware hierarchical point-of-interest embedding model for successive poi recommendation. IJCAI, p 3301–3307 LiaoJLiuTYinHChenTWangJWangYAn integrated model based on deep multimodal and rank learning for point-of-interest recommendationWorld Wide Web202124263165510.1007/s11280-021-00865-8 YuDMuYJinYRating prediction using review texts with underlying sentimentsInf Process Lett20171171018354854210.1016/j.ipl.2016.08.002 Song Y, Wang J, Liang Z, Liu Z, Jiang T (2020) Utilizing bert intermediate layers for aspect based sentiment analysis and natural language inference, arXiv:2002.04815 Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv:1810.04805 Karimi A, Rossi L, Prati A (2021) Adversarial training for aspect-based sentiment analysis with bert. 2020 25th International Conference on Pattern Recognition (ICPR), 8797–8803, IEEE Han P, Li Z, Liu Y, Zhao P, Li J, Wang H, Shang S (2020) Contextualized point-of-interest recommendation. In: Proc. of the 29th International conference on artificial intelligence, pp 2484–2490 Liu Y, Pham T-AN, Cong G, Yuan Q (2017) An experimental evaluation of point-of-interest recommendation in location-based social networks. In: Proc. of the VLDB Endowment, vol 10, pp 1010–1021 ZhongTZhangSZhouFZhangKTrajcevskiGWuJHybrid graph convolutional networks with multi-head attention for location recommendationWorld Wide Web2020233125315110.1007/s11280-020-00824-9 Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proc. of KDD, ACM, pp 1082–1090 Lu J, Yao J, Zhang J, Zhu X, Xu H, Gao W, Xu C, Xiang T, Zhang L (2021) Soft: Softmax-free transformer with linear complexity. Advances in Neural Information Processing Systems 34 Chen J, Zhang H, He X, Nie L, Liu W, Chua T-S (2017) Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention. In: Proc. of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp 335–344 Manotumruksa J, Macdonald C, Ounis I (2018) A contextual attention recurrent architecture for context-aware venue recommendation. In: Proc. of The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp 555–564 Yao Z (2018) Exploiting human mobility patterns for point-of-interest recommendation. In: Proc. of the Eleventh ACM International conference on web search and data mining, pp 757–758 Rahmani HA, Aliannejadi M, Baratchi M, Crestani F (2020) Joint geographical and temporal modeling base on matrix factorization for point-of-interest recommendation. Advances in Information Retrieval, p 205–219 Kitaev N, Kaiser L, Levskaya A (2020) Reformer: The efficient transformer, arXiv:2001.04451 ZhangLSunZZhangJLeiYLiCWuZKloedenHKlannerFAn interactive multi-task learning framework for next poi recommendation with uncertain check-insCAL202030198513954 QianTLiuBVietQNguyenHYinHSpatiotemporal representation learning for translation-based poi recommendationACM Trans Inf Syst201937212410.1145/3295499 Han P, Li Z, Liu Y, Zhao P, Li J, Wang H, Shang S (2020) Contextualized point-of-interest recommendation. In: Proc. of twenty-ninth international joint conference on artificial intelligence and seventeenth pacific rim international conference on artificial intelligence IJCAI-PRICAI-20 XiaBBaiYYinJLiQXuLMtpr: A multi-task learning based poi recommendation considering temporal check-ins and geographical locationsAppl Sci20201019666410.3390/app10196664 XiongYZengZChakrabortyRTanMFungGLiYSinghVNyströmformer: A nystöm-based algorithm for approximating self-attentionAAAI202135161413810.1609/aaai.v35i16.17664 Xu H, Shu L, Yu PS, Liu B (2020) Understanding pre-trained bert for aspect-based sentiment analysis, arXiv:2011.00169 He J, Qi J, Ramamohanarao K (2019) A joint context-aware embedding for trip recommendations. In: Proc. of 2019 IEEE 35th International Conference on Data Engineering (ICDE), IEEE, pp 292–303 Lian D, Wu Y, Ge Y, Xie X, Chen E (2020) Geography-aware sequential location recommendation. In: Proc. of the 26th ACM SIGKDD International conference on knowledge discovery & data mining, pp 2009–2019 Alqaryouti O, Siyam N, Monem AA, Shaalan K (2020) Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics MowlaeiMEAbadehMSKeshavarzHAspect-based sentiment analysis using adaptive aspect-based lexiconsExpert Syst Appl202014811323410.1016/j.eswa.2020.113234 Halder S, Lim KH, Chan J, Zhang X (2021) Transformer-based multi-task learning for queuing time aware next poi recommendation. In: Proc. of Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 510–523 Rahmani H A, Aliannejadi M, Baratchi M, Crestani F (2020) Joint geographical and temporal modeling based on matrix factorization for point-of-interest recommendation. In: Proc. of European conference on information retrieval, pp 205–219 Lim N, Hooi B, Ng S-K, Wang X, Goh YL, Weng R (2020) Stp-udgat: Spatial-temporal-preference user dimensional graph attention network for next poi recommendation. In: Proc. of the 29TH ACM International Conference on Information and Knowledge Management (CIKM’20), pp 845–855 Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) Albert: A lite bert for self-supervised learning of language representations, arXiv:1909.11942 LiuWWangZ-JYaoBYinJGeo-alm: Poi recommendation by fusing geographical information and adversarial learning mechanismIJCAI2019718071813 Kipf T N, Welling M (2017) Semi-supervised class T Zhong (3858_CR32) 2020; 23 H Werneck (3858_CR18) 2021; 175 D Yu (3858_CR38) 2017; 117 3858_CR56 3858_CR11 3858_CR55 3858_CR54 3858_CR53 C-H Lai (3858_CR37) 2021; 99 3858_CR52 3858_CR51 3858_CR50 3858_CR19 S Liu (3858_CR5) 2018; 89 3858_CR16 3858_CR15 3858_CR14 S Xing (3858_CR17) 2019; 49 L Zhang (3858_CR45) 2020; 301 B Xia (3858_CR48) 2020; 10 T Qian (3858_CR13) 2019; 37 3858_CR44 3858_CR43 3858_CR42 3858_CR41 R-P Shen (3858_CR40) 2019; 135 3858_CR49 3858_CR47 3858_CR46 3858_CR1 3858_CR3 3858_CR2 Y Zhang (3858_CR4) 2020; 386 W Liu (3858_CR10) 2019; 7 J Liao (3858_CR29) 2021; 24 Y Xiong (3858_CR57) 2021; 35 3858_CR34 3858_CR33 3858_CR31 3858_CR30 3858_CR9 3858_CR8 3858_CR7 3858_CR6 3858_CR39 3858_CR36 3858_CR35 ME Mowlaei (3858_CR21) 2020; 148 Y Cui (3858_CR12) 2021; 40 3858_CR23 3858_CR22 3858_CR20 3858_CR28 3858_CR27 3858_CR26 3858_CR25 3858_CR24 |
References_xml | – ident: 3858_CR9 doi: 10.24963/ijcai.2018/539 – ident: 3858_CR31 doi: 10.1145/3209978.3210042 – ident: 3858_CR22 doi: 10.1609/aaai.v34i05.6383 – ident: 3858_CR27 doi: 10.1145/3041021.3054138 – volume: 99 start-page: 101742 year: 2021 ident: 3858_CR37 publication-title: Inf Syst doi: 10.1016/j.is.2021.101742 contributor: fullname: C-H Lai – ident: 3858_CR11 doi: 10.1145/3159652.3170459 – ident: 3858_CR23 doi: 10.1016/j.aci.2019.11.003 – volume: 10 start-page: 6664 issue: 19 year: 2020 ident: 3858_CR48 publication-title: Appl Sci doi: 10.3390/app10196664 contributor: fullname: B Xia – ident: 3858_CR55 – volume: 135 start-page: 249 year: 2019 ident: 3858_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.001 contributor: fullname: R-P Shen – ident: 3858_CR46 doi: 10.1007/978-3-030-75765-6_41 – volume: 7 start-page: 1807 year: 2019 ident: 3858_CR10 publication-title: IJCAI contributor: fullname: W Liu – ident: 3858_CR6 doi: 10.1145/3343037 – ident: 3858_CR7 doi: 10.1609/aaai.v33i01.33015877 – ident: 3858_CR19 doi: 10.24963/ijcai.2020/344 – ident: 3858_CR2 doi: 10.1609/aaai.v32i1.11244 – volume: 148 start-page: 113234 year: 2020 ident: 3858_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113234 contributor: fullname: ME Mowlaei – ident: 3858_CR28 doi: 10.1109/ICDE.2019.00034 – ident: 3858_CR8 doi: 10.24963/ijcai.2018/458 – volume: 49 start-page: 858 issue: 3 year: 2019 ident: 3858_CR17 publication-title: Appl Intell doi: 10.1007/s10489-018-1276-1 contributor: fullname: S Xing – ident: 3858_CR54 – volume: 89 start-page: 506 year: 2018 ident: 3858_CR5 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.07.008 contributor: fullname: S Liu – ident: 3858_CR43 doi: 10.18653/v1/2020.coling-main.21 – volume: 175 start-page: 114775 year: 2021 ident: 3858_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114775 contributor: fullname: H Werneck – ident: 3858_CR26 doi: 10.1145/3397482.3450717 – ident: 3858_CR53 doi: 10.1007/978-3-030-42835-8_7 – ident: 3858_CR41 doi: 10.1109/ICPR48806.2021.9412167 – ident: 3858_CR35 doi: 10.1145/3269206.3271733 – ident: 3858_CR15 doi: 10.1145/3274895.3274908 – ident: 3858_CR44 – ident: 3858_CR3 doi: 10.1007/978-3-030-45439-5_14 – ident: 3858_CR20 – volume: 24 start-page: 631 issue: 2 year: 2021 ident: 3858_CR29 publication-title: World Wide Web doi: 10.1007/s11280-021-00865-8 contributor: fullname: J Liao – ident: 3858_CR33 – ident: 3858_CR16 doi: 10.1145/3308558.3313608 – ident: 3858_CR24 – ident: 3858_CR1 doi: 10.14778/3115404.3115407 – ident: 3858_CR34 doi: 10.1145/3442381.3449998 – volume: 117 start-page: 10 year: 2017 ident: 3858_CR38 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2016.08.002 contributor: fullname: D Yu – ident: 3858_CR49 doi: 10.1145/2020408.2020579 – ident: 3858_CR30 doi: 10.1145/3077136.3080797 – volume: 23 start-page: 3125 year: 2020 ident: 3858_CR32 publication-title: World Wide Web doi: 10.1007/s11280-020-00824-9 contributor: fullname: T Zhong – volume: 37 start-page: 1 issue: 2 year: 2019 ident: 3858_CR13 publication-title: ACM Trans Inf Syst doi: 10.1145/3295499 contributor: fullname: T Qian – volume: 301 start-page: 13954 issue: 985 year: 2020 ident: 3858_CR45 publication-title: CAL contributor: fullname: L Zhang – ident: 3858_CR47 doi: 10.1145/3394486.3403252 – ident: 3858_CR51 doi: 10.3115/v1/S14-2004 – volume: 386 start-page: 208 year: 2020 ident: 3858_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.046 contributor: fullname: Y Zhang – volume: 40 start-page: 1 issue: 2 year: 2021 ident: 3858_CR12 publication-title: ACM Trans Inf Syst (TOIS) doi: 10.1145/3460198 contributor: fullname: Y Cui – ident: 3858_CR36 – volume: 35 start-page: 14138 issue: 16 year: 2021 ident: 3858_CR57 publication-title: AAAI doi: 10.1609/aaai.v35i16.17664 contributor: fullname: Y Xiong – ident: 3858_CR56 – ident: 3858_CR50 doi: 10.24963/ijcai.2020/344 – ident: 3858_CR39 doi: 10.1145/3178876.3186145 – ident: 3858_CR52 doi: 10.1007/978-3-030-45439-5_14 – ident: 3858_CR14 doi: 10.1145/3340531.3411876 – ident: 3858_CR42 – ident: 3858_CR25 doi: 10.1145/3397271.3401049 |
SSID | ssj0003301 |
Score | 2.4284966 |
Snippet | With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 8286 |
SubjectTerms | Artificial Intelligence Computer Science Food Learning Machines Manufacturing Mechanical Engineering Performance enhancement Pharmacy Processes Representations Reputations Restaurants Sentiment analysis Social networks Transformers |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpTych9kqRFUQjwpaqVtknx0WGhAU9e9zdhwCCAbWJDrJn8_3iO_uI-Q44KADk0kmYg6Mc0x3JEDMuNJSgOBQ_8q-uU2HE341TaZtH7crdm9uJJ2h_tLrxm11Dwpzl1lssUxWMHjgto5rEvU_zS8m6I4mDxMLlqZi6jtlfpfx3Ru1IeaPW1HnbAYbZM1HibRfb-smWTLVFllvGBioP5DbZPQwluP76zNqmYVRk5ifNPVEZaWpLeqgbmpl02FUUc8S8UgxWKWju0tqM-LZzHhupR0yGVyMz4fMcyQwwBXMmciEDIAHuUlLqUScKKlBC9yXKNKJjEoFoVL4lMsw1KkRcSk0QAqh1hLhiXdJp3quzB6hUpdljN4pLCHnIsJcR-WoZ1kmc8jAiC45abAqXupRGEU79NgiWyCyhUO2WHRJr4Gz8MfirYiseUg5ZmVdctpA3L7-W9r-_z4_IKuWFr6usOmRzvz13Rxi8DBXR05ZPgANab4v priority: 102 providerName: Springer Nature |
Title | STaTRL: Spatial-temporal and text representation learning for POI recommendation |
URI | https://link.springer.com/article/10.1007/s10489-022-03858-w https://www.proquest.com/docview/2787064149 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXLz4NqJI9uBNN9J2abteDBgQX0gQEjw129nWi1YUDH_f2bKVaKKnJt1k034zu_PY2fkAjusCdT0JFJeeQC4EhTsK0eMi1kqiFLhIZd_3_O5I3IwbY5twm9qyymJPzDdq_YYmR37mGs3yBTn0F5N3blijzOmqpdBYhbJLkYJbgnKr3esPvvdiitZzzjyKMrjvy7G9NmMvzwlTLkRfl5-O8flP07T0N38dkeaWp7MJ69ZlZM2FjLdgJcm2YaOgY2B2de5A_3GohoO7c2ZohkmtuG079cJUppmp8GB5C8viulHGLGXEMyPPlfUfrpkJj19fE0u0tAujTnt42eWWMIEj_cGMy0CqOop6mPipiqXXiJVGLUlIrqsbyk1jdOKY3grlONpPpJdKjeijo7UieLw9KGVvWbIPTOk09chUOSmGQroU-MQhKV0QqBADTGQFTgqsosmiL0a07IBskI0I2ShHNppXoFrAGdk1Mo2WEq3AaQHxcvjv2Q7-n-0Q1gwn_KK8pgql2cdnckSewyyuwWrYuapBudlptXrmefV0265ZpaHRkdv8Apcxx2E |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLDwRhQKeGADiyZxk5gFIURpoS0VBKlb5JwdFpoWWtS_zzlxiECCNZGs5PP5Xr67j5DTJgfV1IFkwuPAOMdwRwJ4jCdKChAcilR2f-B3Xvj9qDWyCbeZLassdWKuqNUETI78wjWS5XN06K-m78ywRpnbVUuhsUxWuIeGxnSKt---NTHG6jljHsYYzPfFyDbN2NY5boqF8NvyuzG2-GmYKm_z1wVpbnfam2TdOoz0utjhLbKks22yUZIxUHs2d8jwOZLRU--SGpJhFCpmh069UZkpauo7aD7Asmw2yqgljHil6LfS4WOXmuB4PNaWZmmXvLRvo5sOs3QJDPAP5kwEQjaBN0PtpzIRXiuRCpTALXJd1ZJumoCTJPiUS8dRvhZeKhSAD45SEuHx9kgtm2R6n1Cp0tRDQ-WkEHLhYtiThChyQSBDCECLOjkrsYqnxVSMuJp_bJCNEdk4RzZe1EmjhDO2J2QWV_tZJ-clxNXrv1c7-H-1E7Laifq9uNcdPBySNcMOXxTaNEht_vGpj9CHmCfHuaB8AQmMxA0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagSIiFN6JQwAMbWM3DTWIWhIDQQikVtFK3yDknLDQttKh_n3PiEIEEayJZ9nfne9jn-wg5tTgoK_ElEy4HxjmmOxLAZTxWUoDgUBxlP_a89pDfj1ojU_80M2WVpU3MDbWagD4jbzpaszyOAX0zNWUR_ZvwcvrONIOUvmk1dBrLZAW9oq83aRDefVtlzNtz9jzMN5jniZF5QGOe0XFdOITzzO_J2OKnk6oiz1-XpbkPCjfJugke6VUh7S2ylGTbZKMkZqBmn-6Q_stADp67F1QTDqOCMdOA6o3KTFG9KJo3sywfHmXUkEe8Uoxhaf-pQ3WiPB4nhnJplwzD28F1mxnqBAa4gjkTvpAWcCtIvFTGwm3FUoESKC7HUS3ppDHYcYxfubRt5SXCTYUC8MBWSiI87h6pZZMs2SdUqjR10WnZKQRcOJgCxQGqn-_LAHxIRJ2clVhF06JDRlT1QtbIRohslCMbLeqkUcIZmd0yiyrZ1sl5CXH1--_RDv4f7YSsoo5E3U7v4ZCsaaL4ouamQWrzj8_kCMOJeXyc68kXGarIQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STaTRL%3A+Spatial-temporal+and+text+representation+learning+for+POI+recommendation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wang%2C+Xinfeng&rft.au=Fukumoto%2C+Fumiyo&rft.au=Li%2C+Jiyi&rft.au=Yu%2C+Dongjin&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=7&rft.spage=8286&rft.epage=8301&rft_id=info:doi/10.1007%2Fs10489-022-03858-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |