STaTRL: Spatial-temporal and text representation learning for POI recommendation

With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However,...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 7; pp. 8286 - 8301
Main Authors Wang, Xinfeng, Fukumoto, Fumiyo, Li, Jiyi, Yu, Dongjin, Sun, Xiaoxiao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e., unvisited POI recommendation that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e., user’s POI preference learning whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods.
AbstractList With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e., unvisitedPOI recommendation that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e., user’s POI preferencelearning whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods.
With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more and more attention. Recent studies mostly utilize contextual features and sequential patterns of users’ check-ins to recommend POIs. However, there are still many deficiencies in existing works, such as: (1) insufficiently learning relations among far-apart visits in user check-ins; (2) not effectively incorporating geographical information when modeling user-POI interactions; and (3) little exploiting the features from reviews for the POI recommendation task. To tackle the above problems, we propose spatial-temporal and text representation learning (STaTRL), which employs Transformer to learn long-term dependencies among visits in the check-ins sequence and adopts an improved approach to compute the attention between visits by applying geographical information to the self-attention layer in Transformer. Meanwhile, users’ perspectives and POIs’ reputations learned from textual reviews are explored to improve the performance. In addition, a multi-task objective framework is adopted to simultaneously train the hidden representations of users’ historical check-ins trajectories which are shared by these two tasks. Concretely, STaTRL consists of (1) the principal task, i.e., unvisited POI recommendation that recommends to users the unvisited POIs, and (2) the auxiliary task, i.e., user’s POI preference learning whose candidates include both visited and unvisited POIs. We found that the latter task helped train the embedding of visited POIs and further boosted the performance of the former task, and lacking any of both would decline the performance. Extensive experiments on three public datasets demonstrated that STaTRL vastly outperformed the state-of-the-art methods.
Author Yu, Dongjin
Fukumoto, Fumiyo
Li, Jiyi
Sun, Xiaoxiao
Wang, Xinfeng
Author_xml – sequence: 1
  givenname: Xinfeng
  surname: Wang
  fullname: Wang, Xinfeng
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Integrated Graduate School of Medicine, Engineering, Agricultural Sciences, Faculty of Engineering, University of Yamanashi
– sequence: 2
  givenname: Fumiyo
  orcidid: 0000-0001-7858-6206
  surname: Fukumoto
  fullname: Fukumoto, Fumiyo
  email: fukumoto@yamanashi.ac.jp
  organization: Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi
– sequence: 3
  givenname: Jiyi
  surname: Li
  fullname: Li, Jiyi
  organization: Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi
– sequence: 4
  givenname: Dongjin
  surname: Yu
  fullname: Yu, Dongjin
  email: yudj@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 5
  givenname: Xiaoxiao
  surname: Sun
  fullname: Sun, Xiaoxiao
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
BookMark eNp9kFtLAzEQhYNUsFb_gE8LPkdz2Vt8k-KlUGixFXwLs0m2tOwma7Kl-u9Nu4JvPg3MnHNm5rtEI-usQeiGkjtKSHEfKElLgQljmPAyK_HhDI1pVnBcpKIYoTERLMV5Lj4u0GUIO0II54SO0XK1hvXb_CFZddBvocG9aTvnoUnA6qQ3X33iTedNMLaPAmeTxoC3W7tJaueT5WIW58q1rbH6NL9C5zU0wVz_1gl6f35aT1_xfPEymz7OsYr39VgUAohKSWnyGirBswq00kIpYExnwOpK0aqK3RQo1bkRvBZaqVxRrSH-wSfodsjtvPvcm9DLndt7G1dKVpQFyVOaHlVsUCnvQvCmlp3ftuC_JSXySE4O5GQkJ0_k5CGa-GAKUWw3xv9F_-P6AYPrdWo
CitedBy_id crossref_primary_10_3390_s23084140
crossref_primary_10_1016_j_asoc_2023_111200
crossref_primary_10_1016_j_ipm_2024_103676
crossref_primary_10_1016_j_neunet_2024_106207
crossref_primary_10_1016_j_eswa_2024_123436
crossref_primary_10_1016_j_is_2024_102366
crossref_primary_10_1007_s40747_023_01191_4
crossref_primary_10_3233_JIFS_234824
Cites_doi 10.24963/ijcai.2018/539
10.1145/3209978.3210042
10.1609/aaai.v34i05.6383
10.1145/3041021.3054138
10.1016/j.is.2021.101742
10.1145/3159652.3170459
10.1016/j.aci.2019.11.003
10.3390/app10196664
10.1016/j.eswa.2019.06.001
10.1007/978-3-030-75765-6_41
10.1145/3343037
10.1609/aaai.v33i01.33015877
10.24963/ijcai.2020/344
10.1609/aaai.v32i1.11244
10.1016/j.eswa.2020.113234
10.1109/ICDE.2019.00034
10.24963/ijcai.2018/458
10.1007/s10489-018-1276-1
10.1016/j.future.2018.07.008
10.18653/v1/2020.coling-main.21
10.1016/j.eswa.2021.114775
10.1145/3397482.3450717
10.1007/978-3-030-42835-8_7
10.1109/ICPR48806.2021.9412167
10.1145/3269206.3271733
10.1145/3274895.3274908
10.1007/978-3-030-45439-5_14
10.1007/s11280-021-00865-8
10.1145/3308558.3313608
10.14778/3115404.3115407
10.1145/3442381.3449998
10.1016/j.ipl.2016.08.002
10.1145/2020408.2020579
10.1145/3077136.3080797
10.1007/s11280-020-00824-9
10.1145/3295499
10.1145/3394486.3403252
10.3115/v1/S14-2004
10.1016/j.neucom.2019.12.046
10.1145/3460198
10.1609/aaai.v35i16.17664
10.1145/3178876.3186145
10.1145/3340531.3411876
10.1145/3397271.3401049
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03858-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 8301
ExternalDocumentID 10_1007_s10489_022_03858_w
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 21K12026
  funderid: https://doi.org/10.13039/501100001691
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z87
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZY4
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-979a0c408e6fab935badcd9cca22d5a2fbc1bb5ba4a11d6e93f9dcc6c1dda6693
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Thu Oct 10 16:32:55 EDT 2024
Thu Sep 12 16:55:16 EDT 2024
Sat Dec 16 12:07:12 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords POI recommendation
Aspect Based Sentiment Analysis (ABSA)
Multi-task
Spatial-temporal and text representation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-979a0c408e6fab935badcd9cca22d5a2fbc1bb5ba4a11d6e93f9dcc6c1dda6693
ORCID 0000-0001-7858-6206
PQID 2787064149
PQPubID 326365
PageCount 16
ParticipantIDs proquest_journals_2787064149
crossref_primary_10_1007_s10489_022_03858_w
springer_journals_10_1007_s10489_022_03858_w
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References XingSLiuFWangQZhaoXLiTContent-aware point-of-interest recommendation based on convolutional neural networkAppl Intell201949385887110.1007/s10489-018-1276-1
Zhao P, Zhu H, Liu Y, Xu J, Li Z, Zhuang F, Sheng VS, Zhou X (2019) Where to go next: A spatio-temporal gated network for next poi recommendation. AAAI, p 5877–5884
LaiC-HHsuC-YRating prediction based on combination of review mining and user preference analysisInf Syst20219910174210.1016/j.is.2021.101742
Pontiki M, Galanis D, Pavlopoulos J, Papageorgiou H, Androutsopoulos I, Manandhar S (2014) Semeval-2014 task4: Aspect-based sentiment analysis. In: Proc. of the 8th international workshop on semantic evaluation, pp 27–35
Li G, Chen Q, Zheng B, Yin H, Nguyen QVH, Zhou X (2020) Group-based recurrent neural networks for poi recommendation, ACM/IMS Trans Data Sci 1(1)
Luo Y, Liu Q, Liu Z (2021) Stan: Spatio-temporal attention network for next location recommendation. In: Proc. of the Web Conference 2021, pp 2177–2185
Cheng Z, Ding Y, Zhu L, Kankanhalli M (2018) Aspect-aware latent factor model: Rating prediction with ratings and reviews. In: Proc. of the 2018 World Wide Web conference, pp 639–648
ZhangYShiZZuoWYueLLiangSLiXJoint personalized markov chains with social network embedding for cold-start recommendationNeurocomputing202038620822010.1016/j.neucom.2019.12.046
Zhou F, Yue X, Trajcevski G, Zhong T, Zhang K (2019) Context-aware variational trajectory encoding and human mobility inference. In: Proc. of World Wide Web Conference, pp 3469–3475
Feng S, Tran LV, Cong G, Chen L, Li J, Li F (2020) Hme: A hyperbolic metric embedding approach for next-poi recommendation. In: Proc. of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1429–1438
Ma C, Zhang Y, Wang Q, Liu X (2018) Point-of-interest recommendation: Exploiting self-attentive autoencoders with neighbor-aware influence. In: Proc. of the 27th ACM International Conference on Information and Knowledge Management, pp 697–706
Wang H, Shen H, Ouyang W, Cheng X (2018) Exploiting poi-specific geographical influence for point-of-interest recommendation. IJCAI, p 3877–3883
LiuSWangLA self-adaptive point-of-interest recommendation algorithm based on a multi-order markov modelFutur Gener Comput Syst20188950651410.1016/j.future.2018.07.008
Zuo S, Jiang H, Li Z, Zhao T, Zha H (2020) Transformer hawkes process. In: Proc. of international conference on machine learning, pp 11692–11702
Gao Q, Trajcevski G, Zhou F, Zhang K, Zhong T, Zhang F (2018) Trajectory-based social circle inference. In: Proc. of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 369–378
Ho NL, Lim KH (2021) User preferential tour recommendation based on poi-embedding methods. In: Proc. of 26th International conference on intelligent user interfaces, pp 46–48
Peng H, Xu L, Bing L, Huang F, Lu W, Si L (2020) Knowing what, how and why: A near complete solution for aspect-based sentiment analysis. In: Proc. of the AAAI Conference on Artificial Intelligence, vol 34, pp 8600–8607
WerneckHSantosRSilvaNPereiraAdrianoCMMourãoFRochaLEffective and diverse poi recommendations through complementary diversification modelsExpert Syst Appl202117511477510.1016/j.eswa.2021.114775
Chen C, Liu Z, Zhao P, Zhou J, Li X (2018) Privacy preserving point-of-interest recommendation using decentralized matrix factorization. In: Proc. of the AAAI Conference on artificial intelligence, vol 32
Zhao S, Zhao T, King I, Lyu MR (2017) Geo-teaser: Geo-temporal sequential embedding rank for point-of-interest recommendation. In: Proc. of the 26th international conference on world wide web companion, pp 153–162
ShenR-PZhangH-RYuHMinFSentiment based matrix factorization with reliability for recommendationExpert Syst Appl201913524925810.1016/j.eswa.2019.06.001
Baratchi M, Afsharchi M, Crestani F (2020) Lglmf: Local geographical based logistic matrix factorization model for poi recommendation. In: Proc. of information retrieval technology, vol 12004, p 66
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30
CuiYSunHZhaoYYinHZhengKSequential-knowledge-aware next poi recommendation: A meta-learning approachACM Trans Inf Syst (TOIS)202140212210.1145/3460198
Chang B, Park Y, Park D, Kim S, Kang J (2018) Content-aware hierarchical point-of-interest embedding model for successive poi recommendation. IJCAI, p 3301–3307
LiaoJLiuTYinHChenTWangJWangYAn integrated model based on deep multimodal and rank learning for point-of-interest recommendationWorld Wide Web202124263165510.1007/s11280-021-00865-8
YuDMuYJinYRating prediction using review texts with underlying sentimentsInf Process Lett20171171018354854210.1016/j.ipl.2016.08.002
Song Y, Wang J, Liang Z, Liu Z, Jiang T (2020) Utilizing bert intermediate layers for aspect based sentiment analysis and natural language inference, arXiv:2002.04815
Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv:1810.04805
Karimi A, Rossi L, Prati A (2021) Adversarial training for aspect-based sentiment analysis with bert. 2020 25th International Conference on Pattern Recognition (ICPR), 8797–8803, IEEE
Han P, Li Z, Liu Y, Zhao P, Li J, Wang H, Shang S (2020) Contextualized point-of-interest recommendation. In: Proc. of the 29th International conference on artificial intelligence, pp 2484–2490
Liu Y, Pham T-AN, Cong G, Yuan Q (2017) An experimental evaluation of point-of-interest recommendation in location-based social networks. In: Proc. of the VLDB Endowment, vol 10, pp 1010–1021
ZhongTZhangSZhouFZhangKTrajcevskiGWuJHybrid graph convolutional networks with multi-head attention for location recommendationWorld Wide Web2020233125315110.1007/s11280-020-00824-9
Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proc. of KDD, ACM, pp 1082–1090
Lu J, Yao J, Zhang J, Zhu X, Xu H, Gao W, Xu C, Xiang T, Zhang L (2021) Soft: Softmax-free transformer with linear complexity. Advances in Neural Information Processing Systems 34
Chen J, Zhang H, He X, Nie L, Liu W, Chua T-S (2017) Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention. In: Proc. of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp 335–344
Manotumruksa J, Macdonald C, Ounis I (2018) A contextual attention recurrent architecture for context-aware venue recommendation. In: Proc. of The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp 555–564
Yao Z (2018) Exploiting human mobility patterns for point-of-interest recommendation. In: Proc. of the Eleventh ACM International conference on web search and data mining, pp 757–758
Rahmani HA, Aliannejadi M, Baratchi M, Crestani F (2020) Joint geographical and temporal modeling base on matrix factorization for point-of-interest recommendation. Advances in Information Retrieval, p 205–219
Kitaev N, Kaiser L, Levskaya A (2020) Reformer: The efficient transformer, arXiv:2001.04451
ZhangLSunZZhangJLeiYLiCWuZKloedenHKlannerFAn interactive multi-task learning framework for next poi recommendation with uncertain check-insCAL202030198513954
QianTLiuBVietQNguyenHYinHSpatiotemporal representation learning for translation-based poi recommendationACM Trans Inf Syst201937212410.1145/3295499
Han P, Li Z, Liu Y, Zhao P, Li J, Wang H, Shang S (2020) Contextualized point-of-interest recommendation. In: Proc. of twenty-ninth international joint conference on artificial intelligence and seventeenth pacific rim international conference on artificial intelligence IJCAI-PRICAI-20
XiaBBaiYYinJLiQXuLMtpr: A multi-task learning based poi recommendation considering temporal check-ins and geographical locationsAppl Sci20201019666410.3390/app10196664
XiongYZengZChakrabortyRTanMFungGLiYSinghVNyströmformer: A nystöm-based algorithm for approximating self-attentionAAAI202135161413810.1609/aaai.v35i16.17664
Xu H, Shu L, Yu PS, Liu B (2020) Understanding pre-trained bert for aspect-based sentiment analysis, arXiv:2011.00169
He J, Qi J, Ramamohanarao K (2019) A joint context-aware embedding for trip recommendations. In: Proc. of 2019 IEEE 35th International Conference on Data Engineering (ICDE), IEEE, pp 292–303
Lian D, Wu Y, Ge Y, Xie X, Chen E (2020) Geography-aware sequential location recommendation. In: Proc. of the 26th ACM SIGKDD International conference on knowledge discovery & data mining, pp 2009–2019
Alqaryouti O, Siyam N, Monem AA, Shaalan K (2020) Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics
MowlaeiMEAbadehMSKeshavarzHAspect-based sentiment analysis using adaptive aspect-based lexiconsExpert Syst Appl202014811323410.1016/j.eswa.2020.113234
Halder S, Lim KH, Chan J, Zhang X (2021) Transformer-based multi-task learning for queuing time aware next poi recommendation. In: Proc. of Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 510–523
Rahmani H A, Aliannejadi M, Baratchi M, Crestani F (2020) Joint geographical and temporal modeling based on matrix factorization for point-of-interest recommendation. In: Proc. of European conference on information retrieval, pp 205–219
Lim N, Hooi B, Ng S-K, Wang X, Goh YL, Weng R (2020) Stp-udgat: Spatial-temporal-preference user dimensional graph attention network for next poi recommendation. In: Proc. of the 29TH ACM International Conference on Information and Knowledge Management (CIKM’20), pp 845–855
Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) Albert: A lite bert for self-supervised learning of language representations, arXiv:1909.11942
LiuWWangZ-JYaoBYinJGeo-alm: Poi recommendation by fusing geographical information and adversarial learning mechanismIJCAI2019718071813
Kipf T N, Welling M (2017) Semi-supervised class
T Zhong (3858_CR32) 2020; 23
H Werneck (3858_CR18) 2021; 175
D Yu (3858_CR38) 2017; 117
3858_CR56
3858_CR11
3858_CR55
3858_CR54
3858_CR53
C-H Lai (3858_CR37) 2021; 99
3858_CR52
3858_CR51
3858_CR50
3858_CR19
S Liu (3858_CR5) 2018; 89
3858_CR16
3858_CR15
3858_CR14
S Xing (3858_CR17) 2019; 49
L Zhang (3858_CR45) 2020; 301
B Xia (3858_CR48) 2020; 10
T Qian (3858_CR13) 2019; 37
3858_CR44
3858_CR43
3858_CR42
3858_CR41
R-P Shen (3858_CR40) 2019; 135
3858_CR49
3858_CR47
3858_CR46
3858_CR1
3858_CR3
3858_CR2
Y Zhang (3858_CR4) 2020; 386
W Liu (3858_CR10) 2019; 7
J Liao (3858_CR29) 2021; 24
Y Xiong (3858_CR57) 2021; 35
3858_CR34
3858_CR33
3858_CR31
3858_CR30
3858_CR9
3858_CR8
3858_CR7
3858_CR6
3858_CR39
3858_CR36
3858_CR35
ME Mowlaei (3858_CR21) 2020; 148
Y Cui (3858_CR12) 2021; 40
3858_CR23
3858_CR22
3858_CR20
3858_CR28
3858_CR27
3858_CR26
3858_CR25
3858_CR24
References_xml – ident: 3858_CR9
  doi: 10.24963/ijcai.2018/539
– ident: 3858_CR31
  doi: 10.1145/3209978.3210042
– ident: 3858_CR22
  doi: 10.1609/aaai.v34i05.6383
– ident: 3858_CR27
  doi: 10.1145/3041021.3054138
– volume: 99
  start-page: 101742
  year: 2021
  ident: 3858_CR37
  publication-title: Inf Syst
  doi: 10.1016/j.is.2021.101742
  contributor:
    fullname: C-H Lai
– ident: 3858_CR11
  doi: 10.1145/3159652.3170459
– ident: 3858_CR23
  doi: 10.1016/j.aci.2019.11.003
– volume: 10
  start-page: 6664
  issue: 19
  year: 2020
  ident: 3858_CR48
  publication-title: Appl Sci
  doi: 10.3390/app10196664
  contributor:
    fullname: B Xia
– ident: 3858_CR55
– volume: 135
  start-page: 249
  year: 2019
  ident: 3858_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.001
  contributor:
    fullname: R-P Shen
– ident: 3858_CR46
  doi: 10.1007/978-3-030-75765-6_41
– volume: 7
  start-page: 1807
  year: 2019
  ident: 3858_CR10
  publication-title: IJCAI
  contributor:
    fullname: W Liu
– ident: 3858_CR6
  doi: 10.1145/3343037
– ident: 3858_CR7
  doi: 10.1609/aaai.v33i01.33015877
– ident: 3858_CR19
  doi: 10.24963/ijcai.2020/344
– ident: 3858_CR2
  doi: 10.1609/aaai.v32i1.11244
– volume: 148
  start-page: 113234
  year: 2020
  ident: 3858_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113234
  contributor:
    fullname: ME Mowlaei
– ident: 3858_CR28
  doi: 10.1109/ICDE.2019.00034
– ident: 3858_CR8
  doi: 10.24963/ijcai.2018/458
– volume: 49
  start-page: 858
  issue: 3
  year: 2019
  ident: 3858_CR17
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1276-1
  contributor:
    fullname: S Xing
– ident: 3858_CR54
– volume: 89
  start-page: 506
  year: 2018
  ident: 3858_CR5
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.07.008
  contributor:
    fullname: S Liu
– ident: 3858_CR43
  doi: 10.18653/v1/2020.coling-main.21
– volume: 175
  start-page: 114775
  year: 2021
  ident: 3858_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114775
  contributor:
    fullname: H Werneck
– ident: 3858_CR26
  doi: 10.1145/3397482.3450717
– ident: 3858_CR53
  doi: 10.1007/978-3-030-42835-8_7
– ident: 3858_CR41
  doi: 10.1109/ICPR48806.2021.9412167
– ident: 3858_CR35
  doi: 10.1145/3269206.3271733
– ident: 3858_CR15
  doi: 10.1145/3274895.3274908
– ident: 3858_CR44
– ident: 3858_CR3
  doi: 10.1007/978-3-030-45439-5_14
– ident: 3858_CR20
– volume: 24
  start-page: 631
  issue: 2
  year: 2021
  ident: 3858_CR29
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00865-8
  contributor:
    fullname: J Liao
– ident: 3858_CR33
– ident: 3858_CR16
  doi: 10.1145/3308558.3313608
– ident: 3858_CR24
– ident: 3858_CR1
  doi: 10.14778/3115404.3115407
– ident: 3858_CR34
  doi: 10.1145/3442381.3449998
– volume: 117
  start-page: 10
  year: 2017
  ident: 3858_CR38
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2016.08.002
  contributor:
    fullname: D Yu
– ident: 3858_CR49
  doi: 10.1145/2020408.2020579
– ident: 3858_CR30
  doi: 10.1145/3077136.3080797
– volume: 23
  start-page: 3125
  year: 2020
  ident: 3858_CR32
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00824-9
  contributor:
    fullname: T Zhong
– volume: 37
  start-page: 1
  issue: 2
  year: 2019
  ident: 3858_CR13
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/3295499
  contributor:
    fullname: T Qian
– volume: 301
  start-page: 13954
  issue: 985
  year: 2020
  ident: 3858_CR45
  publication-title: CAL
  contributor:
    fullname: L Zhang
– ident: 3858_CR47
  doi: 10.1145/3394486.3403252
– ident: 3858_CR51
  doi: 10.3115/v1/S14-2004
– volume: 386
  start-page: 208
  year: 2020
  ident: 3858_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.046
  contributor:
    fullname: Y Zhang
– volume: 40
  start-page: 1
  issue: 2
  year: 2021
  ident: 3858_CR12
  publication-title: ACM Trans Inf Syst (TOIS)
  doi: 10.1145/3460198
  contributor:
    fullname: Y Cui
– ident: 3858_CR36
– volume: 35
  start-page: 14138
  issue: 16
  year: 2021
  ident: 3858_CR57
  publication-title: AAAI
  doi: 10.1609/aaai.v35i16.17664
  contributor:
    fullname: Y Xiong
– ident: 3858_CR56
– ident: 3858_CR50
  doi: 10.24963/ijcai.2020/344
– ident: 3858_CR39
  doi: 10.1145/3178876.3186145
– ident: 3858_CR52
  doi: 10.1007/978-3-030-45439-5_14
– ident: 3858_CR14
  doi: 10.1145/3340531.3411876
– ident: 3858_CR42
– ident: 3858_CR25
  doi: 10.1145/3397271.3401049
SSID ssj0003301
Score 2.4284966
Snippet With the rapid development of location-based social networks (LBSNs), point-of-interest (POI) recommendations have become a practical problem attracting more...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 8286
SubjectTerms Artificial Intelligence
Computer Science
Food
Learning
Machines
Manufacturing
Mechanical Engineering
Performance enhancement
Pharmacy
Processes
Representations
Reputations
Restaurants
Sentiment analysis
Social networks
Transformers
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpTych9kqRFUQjwpaqVtknx0WGhAU9e9zdhwCCAbWJDrJn8_3iO_uI-Q44KADk0kmYg6Mc0x3JEDMuNJSgOBQ_8q-uU2HE341TaZtH7crdm9uJJ2h_tLrxm11Dwpzl1lssUxWMHjgto5rEvU_zS8m6I4mDxMLlqZi6jtlfpfx3Ru1IeaPW1HnbAYbZM1HibRfb-smWTLVFllvGBioP5DbZPQwluP76zNqmYVRk5ifNPVEZaWpLeqgbmpl02FUUc8S8UgxWKWju0tqM-LZzHhupR0yGVyMz4fMcyQwwBXMmciEDIAHuUlLqUScKKlBC9yXKNKJjEoFoVL4lMsw1KkRcSk0QAqh1hLhiXdJp3quzB6hUpdljN4pLCHnIsJcR-WoZ1kmc8jAiC45abAqXupRGEU79NgiWyCyhUO2WHRJr4Gz8MfirYiseUg5ZmVdctpA3L7-W9r-_z4_IKuWFr6usOmRzvz13Rxi8DBXR05ZPgANab4v
  priority: 102
  providerName: Springer Nature
Title STaTRL: Spatial-temporal and text representation learning for POI recommendation
URI https://link.springer.com/article/10.1007/s10489-022-03858-w
https://www.proquest.com/docview/2787064149
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXLz4NqJI9uBNN9J2abteDBgQX0gQEjw129nWi1YUDH_f2bKVaKKnJt1k034zu_PY2fkAjusCdT0JFJeeQC4EhTsK0eMi1kqiFLhIZd_3_O5I3IwbY5twm9qyymJPzDdq_YYmR37mGs3yBTn0F5N3blijzOmqpdBYhbJLkYJbgnKr3esPvvdiitZzzjyKMrjvy7G9NmMvzwlTLkRfl5-O8flP07T0N38dkeaWp7MJ69ZlZM2FjLdgJcm2YaOgY2B2de5A_3GohoO7c2ZohkmtuG079cJUppmp8GB5C8viulHGLGXEMyPPlfUfrpkJj19fE0u0tAujTnt42eWWMIEj_cGMy0CqOop6mPipiqXXiJVGLUlIrqsbyk1jdOKY3grlONpPpJdKjeijo7UieLw9KGVvWbIPTOk09chUOSmGQroU-MQhKV0QqBADTGQFTgqsosmiL0a07IBskI0I2ShHNppXoFrAGdk1Mo2WEq3AaQHxcvjv2Q7-n-0Q1gwn_KK8pgql2cdnckSewyyuwWrYuapBudlptXrmefV0265ZpaHRkdv8Apcxx2E
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLDwRhQKeGADiyZxk5gFIURpoS0VBKlb5JwdFpoWWtS_zzlxiECCNZGs5PP5Xr67j5DTJgfV1IFkwuPAOMdwRwJ4jCdKChAcilR2f-B3Xvj9qDWyCbeZLassdWKuqNUETI78wjWS5XN06K-m78ywRpnbVUuhsUxWuIeGxnSKt---NTHG6jljHsYYzPfFyDbN2NY5boqF8NvyuzG2-GmYKm_z1wVpbnfam2TdOoz0utjhLbKks22yUZIxUHs2d8jwOZLRU--SGpJhFCpmh069UZkpauo7aD7Asmw2yqgljHil6LfS4WOXmuB4PNaWZmmXvLRvo5sOs3QJDPAP5kwEQjaBN0PtpzIRXiuRCpTALXJd1ZJumoCTJPiUS8dRvhZeKhSAD45SEuHx9kgtm2R6n1Cp0tRDQ-WkEHLhYtiThChyQSBDCECLOjkrsYqnxVSMuJp_bJCNEdk4RzZe1EmjhDO2J2QWV_tZJ-clxNXrv1c7-H-1E7Laifq9uNcdPBySNcMOXxTaNEht_vGpj9CHmCfHuaB8AQmMxA0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagSIiFN6JQwAMbWM3DTWIWhIDQQikVtFK3yDknLDQttKh_n3PiEIEEayJZ9nfne9jn-wg5tTgoK_ElEy4HxjmmOxLAZTxWUoDgUBxlP_a89pDfj1ojU_80M2WVpU3MDbWagD4jbzpaszyOAX0zNWUR_ZvwcvrONIOUvmk1dBrLZAW9oq83aRDefVtlzNtz9jzMN5jniZF5QGOe0XFdOITzzO_J2OKnk6oiz1-XpbkPCjfJugke6VUh7S2ylGTbZKMkZqBmn-6Q_stADp67F1QTDqOCMdOA6o3KTFG9KJo3sywfHmXUkEe8Uoxhaf-pQ3WiPB4nhnJplwzD28F1mxnqBAa4gjkTvpAWcCtIvFTGwm3FUoESKC7HUS3ppDHYcYxfubRt5SXCTYUC8MBWSiI87h6pZZMs2SdUqjR10WnZKQRcOJgCxQGqn-_LAHxIRJ2clVhF06JDRlT1QtbIRohslCMbLeqkUcIZmd0yiyrZ1sl5CXH1--_RDv4f7YSsoo5E3U7v4ZCsaaL4ouamQWrzj8_kCMOJeXyc68kXGarIQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STaTRL%3A+Spatial-temporal+and+text+representation+learning+for+POI+recommendation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wang%2C+Xinfeng&rft.au=Fukumoto%2C+Fumiyo&rft.au=Li%2C+Jiyi&rft.au=Yu%2C+Dongjin&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=7&rft.spage=8286&rft.epage=8301&rft_id=info:doi/10.1007%2Fs10489-022-03858-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon