Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm
Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified w...
Saved in:
Published in | Neural computing & applications Vol. 33; no. 17; pp. 10799 - 10811 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified with batch normalization layers and trained on our brain images. Then, the last several layers were replaced with an extreme learning machine. A searching method was proposed to find the best number of layers to be replaced. Finally, the extreme learning machine was optimized by chaotic bat algorithm to obtain better classification performance. Experiment results based on 5 × hold-out validation revealed that our method achieved state-of-the-art performance. |
---|---|
AbstractList | Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified with batch normalization layers and trained on our brain images. Then, the last several layers were replaced with an extreme learning machine. A searching method was proposed to find the best number of layers to be replaced. Finally, the extreme learning machine was optimized by chaotic bat algorithm to obtain better classification performance. Experiment results based on 5 × hold-out validation revealed that our method achieved state-of-the-art performance. |
Author | Zhang, Yu-Dong Lu, Siyuan Wang, Shui-Hua |
Author_xml | – sequence: 1 givenname: Siyuan surname: Lu fullname: Lu, Siyuan organization: School of Informatics, University of Leicester – sequence: 2 givenname: Shui-Hua surname: Wang fullname: Wang, Shui-Hua email: sw546@le.ac.uk organization: School of Architecture Building and Civil engineering, Loughborough University, School of Computer Science and Technology, Henan Polytechnic University, School of Mathematics and Actuarial Science, University of Leicester – sequence: 3 givenname: Yu-Dong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yu-Dong email: yz461@le.ac.uk organization: School of Informatics, University of Leicester, Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology |
BookMark | eNp9kEFLwzAYhoNMcJv-AU8Bz9WvTZomxzGnDjYF0XNI03RG2mam2XD-ejMnCB4GgRze90m-7xmhQec6g9BlCtcpQHHTA-RZmkAGCeTAs4SeoGFKCUkI5HyAhiBojBklZ2jU9-8AQBnPh6i8NcHoYF2HXY1V2TnfqgaXXtkOx7N8nuOtVdi2a--2psKTxnw-moBVV-HZYondOtjWfsWk3GH9plywGpcqFpqV8za8tefotFZNby5-7zF6vZu9TB-SxdP9fDpZJJrwPCSCCUaMqDKmirouhKFQGUVMUTBRcipEAabSZc5rwupUx7V4DKkmRQWZ4AUZo6vDu3HSj43pg3x3G9_FL2WWM0hZxkQaW_zQ0t71vTe11DaovYAQd25kCnJvVB6MymhU_hiVNKLZP3Ttbav87jhEDlAfy93K-L-pjlDf3-2Jcg |
CitedBy_id | crossref_primary_10_3389_fnins_2020_615435 crossref_primary_10_1016_j_measurement_2023_114100 crossref_primary_10_1016_j_cmpb_2024_108080 crossref_primary_10_3390_biomimetics8060449 crossref_primary_10_1109_TCSVT_2021_3083978 crossref_primary_10_1016_j_bspc_2023_105484 crossref_primary_10_1016_j_bspc_2024_106577 crossref_primary_10_3390_diagnostics13020312 crossref_primary_10_1016_j_bspc_2023_105914 crossref_primary_10_1002_ima_22814 crossref_primary_10_3390_e25030450 crossref_primary_10_1007_s10586_024_04940_3 crossref_primary_10_1016_j_bspc_2024_105999 crossref_primary_10_1016_j_cmpb_2024_108009 crossref_primary_10_3390_s21227584 crossref_primary_10_3390_pr11020443 crossref_primary_10_1002_ima_22819 crossref_primary_10_1093_jcde_qwac113 crossref_primary_10_7717_peerj_cs_1672 crossref_primary_10_1016_j_jksuci_2023_101783 crossref_primary_10_1016_j_robot_2024_104893 crossref_primary_10_3389_fpubh_2021_615597 crossref_primary_10_1016_j_engappai_2023_106415 crossref_primary_10_1016_j_bspc_2023_105599 crossref_primary_10_1007_s13042_023_02022_1 crossref_primary_10_1016_j_bspc_2023_105116 crossref_primary_10_1016_j_isatra_2022_08_003 crossref_primary_10_1007_s13042_023_01947_x crossref_primary_10_1016_j_bspc_2023_105596 crossref_primary_10_1016_j_bspc_2023_105597 crossref_primary_10_1016_j_ijleo_2022_170212 crossref_primary_10_1016_j_engappai_2023_107590 crossref_primary_10_1007_s11042_023_17202_y crossref_primary_10_1016_j_bspc_2022_103622 crossref_primary_10_1016_j_eswa_2023_121845 crossref_primary_10_1109_JSEN_2023_3300995 crossref_primary_10_1109_JSEN_2022_3161733 crossref_primary_10_1109_JSEN_2023_3267101 crossref_primary_10_1016_j_jksuci_2023_101793 crossref_primary_10_1016_j_bspc_2023_105908 crossref_primary_10_1109_JSEN_2023_3311644 crossref_primary_10_1109_JSEN_2023_3312975 crossref_primary_10_1109_JSEN_2023_3336667 crossref_primary_10_1007_s11831_021_09673_9 crossref_primary_10_32604_cmes_2021_014107 crossref_primary_10_1016_j_bspc_2022_104171 crossref_primary_10_1016_j_bspc_2023_105741 crossref_primary_10_1016_j_neunet_2022_04_027 crossref_primary_10_1016_j_bspc_2022_104175 crossref_primary_10_3390_math12050636 crossref_primary_10_1007_s00170_025_15010_2 crossref_primary_10_1016_j_bspc_2023_105066 crossref_primary_10_1002_ima_22997 crossref_primary_10_1016_j_bspc_2023_104921 crossref_primary_10_1016_j_eswa_2023_122505 crossref_primary_10_1038_s41598_022_10244_6 crossref_primary_10_3390_jpm12101739 crossref_primary_10_1007_s11831_022_09817_5 crossref_primary_10_1007_s13721_023_00428_z crossref_primary_10_1016_j_bspc_2023_105293 crossref_primary_10_1109_JSEN_2023_3246133 crossref_primary_10_3390_diagnostics13091624 crossref_primary_10_4012_dmj_2022_098 crossref_primary_10_1016_j_engappai_2023_106237 crossref_primary_10_1093_ijlct_ctae204 crossref_primary_10_1016_j_isatra_2022_08_029 crossref_primary_10_1007_s10479_022_04933_8 crossref_primary_10_1007_s11571_024_10199_6 crossref_primary_10_1007_s10586_024_04385_8 crossref_primary_10_1016_j_bspc_2024_106207 crossref_primary_10_1016_j_bspc_2022_104103 crossref_primary_10_1002_ima_22623 crossref_primary_10_1016_j_compbiomed_2023_107914 crossref_primary_10_1002_ima_22987 crossref_primary_10_1007_s11042_024_19657_z crossref_primary_10_1016_j_bspc_2023_105850 crossref_primary_10_1007_s00521_023_08466_4 crossref_primary_10_1016_j_bspc_2023_104756 crossref_primary_10_3390_s23187764 crossref_primary_10_54021_seesv5n1_002 crossref_primary_10_3390_biomimetics8020235 crossref_primary_10_1016_j_bspc_2023_105847 crossref_primary_10_3390_make5020035 crossref_primary_10_1109_JSEN_2022_3224931 crossref_primary_10_3389_fnsys_2022_838822 crossref_primary_10_1109_JSEN_2021_3050237 crossref_primary_10_1016_j_rico_2023_100276 crossref_primary_10_1007_s13042_023_01938_y crossref_primary_10_1016_j_bspc_2023_105843 crossref_primary_10_1016_j_bspc_2023_104875 crossref_primary_10_1016_j_bspc_2022_104107 crossref_primary_10_2174_1573405619666230217100130 crossref_primary_10_3390_bioengineering10080981 crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_1016_j_bspc_2023_105559 crossref_primary_10_1007_s11042_023_16392_9 crossref_primary_10_1007_s11063_023_11173_9 crossref_primary_10_1016_j_bspc_2023_104749 crossref_primary_10_1109_JSEN_2021_3078455 crossref_primary_10_1007_s00477_023_02435_y crossref_primary_10_1016_j_bspc_2023_104869 crossref_primary_10_1109_JSEN_2023_3317056 crossref_primary_10_1007_s13042_024_02292_3 crossref_primary_10_1109_ACCESS_2021_3059342 crossref_primary_10_1016_j_compbiomed_2024_108353 crossref_primary_10_1109_JSEN_2023_3341428 crossref_primary_10_32604_cmes_2023_025217 crossref_primary_10_3390_diagnostics13213326 crossref_primary_10_1016_j_cmpb_2023_107997 crossref_primary_10_1109_JSEN_2023_3305290 crossref_primary_10_1016_j_bspc_2024_105975 crossref_primary_10_1016_j_cmpb_2024_108054 crossref_primary_10_1016_j_bspc_2023_104742 crossref_primary_10_1016_j_bspc_2023_104984 crossref_primary_10_3390_electronics11213503 crossref_primary_10_1109_JSEN_2022_3220712 crossref_primary_10_1109_JSEN_2023_3315280 crossref_primary_10_1002_ima_22848 crossref_primary_10_1016_j_aej_2024_08_089 crossref_primary_10_1007_s11042_022_13911_y crossref_primary_10_1080_24705314_2024_2390258 crossref_primary_10_1016_j_bspc_2024_105969 crossref_primary_10_1016_j_bspc_2023_105429 crossref_primary_10_1007_s13721_024_00459_0 crossref_primary_10_1109_JBHI_2023_3345837 crossref_primary_10_1109_ACCESS_2021_3076347 crossref_primary_10_1016_j_knosys_2023_110834 crossref_primary_10_3390_rs14215402 crossref_primary_10_1109_JSEN_2023_3317426 crossref_primary_10_1016_j_bspc_2023_105543 crossref_primary_10_1016_j_bspc_2023_104694 crossref_primary_10_1016_j_bspc_2023_105787 crossref_primary_10_1007_s13042_023_02073_4 crossref_primary_10_1016_j_bspc_2023_105425 crossref_primary_10_1109_JSEN_2022_3196011 crossref_primary_10_1002_ima_22830 crossref_primary_10_1002_ima_23007 crossref_primary_10_3390_app15062928 crossref_primary_10_1002_ima_22832 crossref_primary_10_1016_j_jksuci_2023_101888 crossref_primary_10_1109_JBHI_2023_3329231 crossref_primary_10_1109_JSEN_2025_3529510 crossref_primary_10_1007_s11269_023_03454_8 crossref_primary_10_1007_s11042_022_12700_x crossref_primary_10_1016_j_bspc_2024_106190 crossref_primary_10_1007_s44196_024_00615_4 crossref_primary_10_1016_j_iswa_2024_200432 crossref_primary_10_1002_ima_23194 crossref_primary_10_1016_j_bspc_2023_105493 crossref_primary_10_1016_j_bspc_2024_106880 crossref_primary_10_1016_j_bspc_2023_105091 crossref_primary_10_1109_JSEN_2023_3312389 crossref_primary_10_1016_j_bspc_2024_106084 crossref_primary_10_1038_s41598_021_90147_0 crossref_primary_10_1016_j_bspc_2023_105412 crossref_primary_10_1016_j_bspc_2023_105655 crossref_primary_10_1016_j_bspc_2023_105650 crossref_primary_10_1016_j_bspc_2022_104146 crossref_primary_10_3390_bioengineering10070830 crossref_primary_10_3390_diagnostics13111832 crossref_primary_10_1016_j_measen_2022_100426 crossref_primary_10_1109_ACCESS_2023_3339574 crossref_primary_10_1002_ima_22946 crossref_primary_10_1016_j_mex_2025_103201 crossref_primary_10_1109_JSEN_2023_3318371 crossref_primary_10_1016_j_bspc_2023_105767 crossref_primary_10_1016_j_jksuci_2023_101814 crossref_primary_10_1007_s13042_023_02043_w crossref_primary_10_1016_j_asoc_2023_110149 crossref_primary_10_3390_electronics12051213 crossref_primary_10_3389_fninf_2021_781551 crossref_primary_10_1007_s13042_023_01952_0 crossref_primary_10_1007_s13042_024_02391_1 crossref_primary_10_12677_CSA_2021_115129 |
Cites_doi | 10.1109/TNNLS.2015.2424995 10.1016/j.jocs.2018.12.003 10.1007/s10916-019-1428-9 10.1155/2014/178959 10.1016/j.swevo.2016.05.002 10.1016/j.neucom.2010.02.019 10.1007/s10278-018-0050-6 10.1016/j.dsp.2009.07.002 10.1166/jmihi.2016.1901 10.1016/j.bspc.2013.09.001 10.1109/ACCESS.2019.2947606 10.1109/ACCESS.2019.2901055 10.1016/j.neucom.2017.01.115 10.1016/j.asoc.2015.09.044 10.1007/978-981-13-1165-9_40 10.1016/j.jocs.2018.11.008 10.1016/0925-2312(94)90053-1 10.1016/j.neucom.2010.11.030 10.1016/j.patrec.2013.08.017 10.1016/j.neucom.2017.02.016 10.1016/j.eswa.2014.01.021 10.1504/IJBIC.2018.093339 10.1016/j.compbiomed.2019.103345 10.1016/j.bspc.2006.05.002 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1016/j.asoc.2014.08.025 10.1007/s11042-019-7233-0 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-020-05082-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 10811 |
ExternalDocumentID | 10_1007_s00521_020_05082_4 |
GrantInformation_xml | – fundername: Royal Society International Exchanges Cost Share Award, UK grantid: RP202G0230 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-96963e9d26a7ff79e40dea3e7769b849970edcb58f36f1c05883e74c37d029873 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 07:11:14 EDT 2025 Tue Jul 01 01:46:55 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Fri Feb 21 02:47:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Deep learning AlexNet Extreme learning machine Magnetic resonance image Computer-aided diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-96963e9d26a7ff79e40dea3e7769b849970edcb58f36f1c05883e74c37d029873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4870-1493 |
PQID | 2560162691 |
PQPubID | 2043988 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2560162691 crossref_citationtrail_10_1007_s00521_020_05082_4 crossref_primary_10_1007_s00521_020_05082_4 springer_journals_10_1007_s00521_020_05082_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Lu (CR33) 2016; 6 Bahadure (CR6) 2018; 31 Liu (CR28) 2018; 277 Arasomwan (CR32) 2014; 2014 Pandey (CR11) 2016; 31 CR19 Pandey (CR9) 2016; 38 CR18 Lu (CR17) 2019; 30 Saritha (CR4) 2013; 34 CR14 CR31 Deepak (CR15) 2019; 111 Kalbkhani (CR3) 2013; 8 Pao (CR30) 1994; 6 Gudigar (CR7) 2019; 7 Han (CR16) 2019; 7 Guang-Bin (CR22) 2006; 70 Pandey, Yang (CR12) 2019 CR29 Huang (CR23) 2010; 74 Chaplot (CR1) 2006; 1 Acharya (CR8) 2019; 43 CR21 CR20 El-Dahshan (CR5) 2014; 41 Pandey (CR10) 2014; 24 El-Dahshan (CR2) 2010; 20 Tang (CR24) 2015; 27 Wang (CR25) 2011; 74 Pandey (CR13) 2018; 12 Yang (CR27) 2015; 2015 Sajjad (CR34) 2019; 30 Zhang (CR26) 2017; 239 HM Pandey (5082_CR11) 2016; 31 S Lu (5082_CR17) 2019; 30 Z Lu (5082_CR33) 2016; 6 YH Pao (5082_CR30) 1994; 6 X-C Yang (5082_CR27) 2015; 2015 H Kalbkhani (5082_CR3) 2013; 8 UR Acharya (5082_CR8) 2019; 43 S Deepak (5082_CR15) 2019; 111 5082_CR29 M Sajjad (5082_CR34) 2019; 30 G-B Huang (5082_CR23) 2010; 74 5082_CR14 H Guang-Bin (5082_CR22) 2006; 70 HM Pandey (5082_CR12) 2019 AM Arasomwan (5082_CR32) 2014; 2014 T Liu (5082_CR28) 2018; 277 NB Bahadure (5082_CR6) 2018; 31 S Chaplot (5082_CR1) 2006; 1 E-SA El-Dahshan (5082_CR2) 2010; 20 5082_CR31 A Gudigar (5082_CR7) 2019; 7 L Zhang (5082_CR26) 2017; 239 HM Pandey (5082_CR13) 2018; 12 Y Wang (5082_CR25) 2011; 74 HM Pandey (5082_CR9) 2016; 38 5082_CR19 5082_CR18 HM Pandey (5082_CR10) 2014; 24 C Han (5082_CR16) 2019; 7 5082_CR21 E-SA El-Dahshan (5082_CR5) 2014; 41 5082_CR20 M Saritha (5082_CR4) 2013; 34 J Tang (5082_CR24) 2015; 27 |
References_xml | – volume: 27 start-page: 809 issue: 4 year: 2015 end-page: 821 ident: CR24 article-title: Extreme learning machine for multilayer perceptron publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2424995 – volume: 30 start-page: 174 year: 2019 end-page: 182 ident: CR34 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 43 start-page: 302 issue: 9 year: 2019 ident: CR8 article-title: Automated detection of alzheimer’s disease using brain mri images- a study with various feature extraction techniques publication-title: J Med Syst doi: 10.1007/s10916-019-1428-9 – ident: CR18 – volume: 2014 start-page: 1 year: 2014 end-page: 17 ident: CR32 article-title: An investigation into the performance of particle swarm optimization with various chaotic maps publication-title: Math Prob Eng doi: 10.1155/2014/178959 – volume: 31 start-page: 11 year: 2016 end-page: 23 ident: CR11 article-title: Maintaining regularity and generalization in data using the minimum description length principle and genetic algorithm: case of grammatical inference publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2016.05.002 – volume: 74 start-page: 155 issue: 1–3 year: 2010 end-page: 163 ident: CR23 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 31 start-page: 477 issue: 4 year: 2018 end-page: 489 ident: CR6 article-title: Comparative approach of MRI-Based brain tumor segmentation and classification using genetic algorithm publication-title: J Digit Imaging doi: 10.1007/s10278-018-0050-6 – ident: CR14 – volume: 20 start-page: 433 issue: 2 year: 2010 end-page: 441 ident: CR2 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process doi: 10.1016/j.dsp.2009.07.002 – volume: 2015 start-page: 1 year: 2015 end-page: 7 ident: CR27 article-title: Pressure prediction of coal slurry transportation pipeline based on particle swarm optimization kernel function extreme learning machine publication-title: Math Probl Eng – volume: 24 start-page: 1047 year: 2014 end-page: 1077 ident: CR10 article-title: A comparative review of approaches to prevent premature convergence in GA publication-title: Appl Soft Comput – volume: 6 start-page: 1218 issue: 5 year: 2016 end-page: 1222 ident: CR33 article-title: A pathological brain detection system based on radial basis function neural network publication-title: J Med Imaging Health Inf doi: 10.1166/jmihi.2016.1901 – volume: 8 start-page: 909 issue: 6 year: 2013 end-page: 919 ident: CR3 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.09.001 – ident: CR29 – volume: 7 start-page: 156966 year: 2019 end-page: 156977 ident: CR16 article-title: Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947606 – ident: CR21 – volume: 7 start-page: 28498 year: 2019 end-page: 28509 ident: CR7 article-title: Automated categorization of multi-class brain abnormalities using decomposition techniques with mri images: a comparative study publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901055 – ident: CR19 – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR22 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 277 start-page: 78 year: 2018 end-page: 88 ident: CR28 article-title: Extreme learning machine for joint embedding and clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.115 – volume: 38 start-page: 453 year: 2016 end-page: 468 ident: CR9 article-title: Grammar induction using bit masking oriented genetic algorithm and comparative analysis publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.044 – start-page: 427 year: 2019 end-page: 435 ident: CR12 article-title: A comprehensive classification of deep learning libraries publication-title: Third international congress on information and communication technology doi: 10.1007/978-981-13-1165-9_40 – volume: 30 start-page: 41 year: 2019 end-page: 47 ident: CR17 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.11.008 – volume: 6 start-page: 163 year: 1994 end-page: 180 ident: CR30 article-title: Learning and generalization characteristics of random vector functional-link net publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90053-1 – ident: CR31 – volume: 74 start-page: 2483 issue: 16 year: 2011 end-page: 2490 ident: CR25 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 34 start-page: 2151 issue: 16 year: 2013 end-page: 2156 ident: CR4 article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.08.017 – volume: 239 start-page: 194 year: 2017 end-page: 203 ident: CR26 article-title: Deep object recognition across domains based on adaptive extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.016 – volume: 41 start-page: 5526 issue: 11 year: 2014 end-page: 5545 ident: CR5 article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.01.021 – volume: 12 start-page: 54 issue: 1 year: 2018 end-page: 69 ident: CR13 article-title: Bit mask-oriented genetic algorithm for grammatical inference and premature convergence publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2018.093339 – volume: 111 start-page: 103345 year: 2019 ident: CR15 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103345 – volume: 1 start-page: 86 issue: 1 year: 2006 end-page: 92 ident: CR1 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2006.05.002 – ident: CR20 – volume: 38 start-page: 453 year: 2016 ident: 5082_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.044 – volume: 31 start-page: 477 issue: 4 year: 2018 ident: 5082_CR6 publication-title: J Digit Imaging doi: 10.1007/s10278-018-0050-6 – volume: 1 start-page: 86 issue: 1 year: 2006 ident: 5082_CR1 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2006.05.002 – ident: 5082_CR19 doi: 10.1109/CVPR.2016.90 – volume: 2015 start-page: 1 year: 2015 ident: 5082_CR27 publication-title: Math Probl Eng – volume: 7 start-page: 28498 year: 2019 ident: 5082_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901055 – volume: 6 start-page: 163 year: 1994 ident: 5082_CR30 publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90053-1 – volume: 30 start-page: 41 year: 2019 ident: 5082_CR17 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.11.008 – start-page: 427 volume-title: Third international congress on information and communication technology year: 2019 ident: 5082_CR12 doi: 10.1007/978-981-13-1165-9_40 – volume: 239 start-page: 194 year: 2017 ident: 5082_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.016 – ident: 5082_CR18 – volume: 7 start-page: 156966 year: 2019 ident: 5082_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947606 – volume: 43 start-page: 302 issue: 9 year: 2019 ident: 5082_CR8 publication-title: J Med Syst doi: 10.1007/s10916-019-1428-9 – volume: 41 start-page: 5526 issue: 11 year: 2014 ident: 5082_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.01.021 – ident: 5082_CR20 doi: 10.1109/CVPR.2015.7298594 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 5082_CR22 publication-title: Neurocomputing – volume: 31 start-page: 11 year: 2016 ident: 5082_CR11 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2016.05.002 – volume: 34 start-page: 2151 issue: 16 year: 2013 ident: 5082_CR4 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.08.017 – volume: 27 start-page: 809 issue: 4 year: 2015 ident: 5082_CR24 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2424995 – ident: 5082_CR31 – volume: 30 start-page: 174 year: 2019 ident: 5082_CR34 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 74 start-page: 2483 issue: 16 year: 2011 ident: 5082_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 277 start-page: 78 year: 2018 ident: 5082_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.115 – ident: 5082_CR29 – volume: 12 start-page: 54 issue: 1 year: 2018 ident: 5082_CR13 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2018.093339 – volume: 20 start-page: 433 issue: 2 year: 2010 ident: 5082_CR2 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2009.07.002 – volume: 2014 start-page: 1 year: 2014 ident: 5082_CR32 publication-title: Math Prob Eng doi: 10.1155/2014/178959 – volume: 8 start-page: 909 issue: 6 year: 2013 ident: 5082_CR3 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.09.001 – volume: 24 start-page: 1047 year: 2014 ident: 5082_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.08.025 – ident: 5082_CR21 – volume: 6 start-page: 1218 issue: 5 year: 2016 ident: 5082_CR33 publication-title: J Med Imaging Health Inf doi: 10.1166/jmihi.2016.1901 – volume: 74 start-page: 155 issue: 1–3 year: 2010 ident: 5082_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 111 start-page: 103345 year: 2019 ident: 5082_CR15 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103345 – ident: 5082_CR14 doi: 10.1007/s11042-019-7233-0 |
SSID | ssj0004685 |
Score | 2.6223898 |
SecondaryResourceType | review_article |
Snippet | Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10799 |
SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial Intelligence Artificial neural networks Automation Brain Brain cancer Brain diseases Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Discriminant analysis Experiments Feature selection Image Processing and Computer Vision Machine learning Magnetic resonance imaging Medical imaging Medical research Neural networks Probability and Statistics in Computer Science S. I : Hybridization of Neural Computing with Nature Inspired Algorithms Signal processing Special Issue on Hybridization between Neural Computing and Nature Inspired Algorithms for Solving Multi-Criteria Decision-Making Problems Support vector machines Tumors Wavelet transforms |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmhbZJm-Y4dGOK20Ec7FaSJnGD2cpWBf3rfcnaTUUFobe8pPCSvPd-eV8InYfGz2KjuRczSj3Q0NJLIqU8SpnJQPolgOZstMUg7g3p7SgaVUlh8zravXZJOkm9THazL5gAfUPrvAXF5dF1tBFZ7A6neBi2P2VDukacgFtsTA8lVarMz2t8VUcrG_ObW9Rpm-4O2qrMRNxe7OsuWtP5HtquWzDg6kbuI3mtSxdMlePCYCFza4JOsbSNHzB8_fsb_DoReOLeDrTCNqFloEsscoU7d31cgMh4mrzDiHzD2VgU8EMsBRBMH4vZpBw_HaBht_Nw1fOqtgleRpKo9Gy9G6K5CmPBjGFcU19pQTRjMZcJIBzma5XJKDEkNkHmR0kCgzQjTNl67IwcokZe5PoIYWNCHvEw0iwklLNA2PL6kgQKZlHBSRMFNffSrKopbltbTNNlNWTH8RQ4njqOp7SJLpZznhcVNf6kbtWbkla3a546GAlIjAdNdFlv1Gr499WO_0d-gjZDG8LiQspaqFHOXvQp2CClPHNH7gPLgs7a priority: 102 providerName: Springer Nature |
Title | Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm |
URI | https://link.springer.com/article/10.1007/s00521-020-05082-4 https://www.proquest.com/docview/2560162691 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Lb9Mw2NrWCxfGBoiOUfmwG1g0sRPbJ9Sydi9WoYlK4xT5uVXqksECEvv1--w560BiUqRI-WxH-mx_7wdCe7kfmtI7SUrOGAEOrYkorCWMcW-A-gnQ5kK0xaw8nLPj8-I8GdxuUlhlRxMjobaNCTbyj1F1AOlbZp-uf5DQNSp4V1MLjXXUAxIsQPnqjSezr2ePMiNjU07QYUJ8D6MpbSYmzwWLKHzNgzMYGCFhf7Omlbz5j4s0cp7pC_Q8iYx4dL_HW2jN1dtos2vHgNPtfIn0vmtjYFWNG4-VroM4usQ6NIHA8JyeHeHfC4UX0Y7gLA7JLTPXYlVbPPlyihsgH1eLW4DoP9hcqgZ-iLWCAcsLQEV7efUKzaeTb58PSWqhQAwVRUtC7RvqpM1Lxb3n0rGhdYo6zkupBWg7fOis0YXwtPSZGRZCAJAZym2ozc7pa7RRN7V7g7D3uSxkXjieUyZ5pkKpfU0zC7OYkrSPsg57lUn1xUObi2X1UBk5YrwCjFcR4xXro_cPc67vq2s8OXq325Qq3bSbanUu-uhDt1Er8P9X23l6tbfoWR7CV2I42S7aaH_-cu9A_mj1AK2L6cEA9Ubj_fE0vA--n0wG6egBdJ6P7gAvY9hC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCAR_gBBYb24njA0KIdtmlu3tArdRb8JOutE36CKDyo_iNjL1JF5DorVJOfkUaj-dhz8wH8IKFoS2CV7SQQlDU0IaWuXNUCBksSr8SvbkYbTEvxvvi00F-sAG_-lyYGFbZy8QkqF1j4x35m-Q6oPWtsnfHJzSiRsXX1R5CY8UWu_78B7psZ28n27i_Lxkb7ex9GNMOVYBaXuYtjeVguFeOFVqGIJUXQ-c191IWypToAMihd9bkZeBFyOwwL0vsFJZLF8uVS47rXoPrgnMVT1Q5-vhHHmaCAEWPKUYTCd4l6aRUvXj_iq0sPj2j2qXib0W4tm7_eZBNem50B251Bip5v-Kou7Dh63twuwd_IJ0suA9m27cpjKsmTSDa1NH4XRITIScIfrPPE_J9ocki3Vp4R2Iqzdy3RNeO7ExnpEFhdbT4iT3mnNhD3eAPidE4YPkVCd8eHj2A_Ssh7UPYrJvaPwISAlO5YrmXjAslMx0L-xueOZwltOIDyHrqVbarZh5BNZbVRR3mRPEKKV4lildiAK8u5hyvanlcOnqr35SqO9dn1ZoLB_C636h19_9Xe3z5as_hxnhvNq2mk_nuE7jJYuBMCmTbgs329Jt_ipZPa54ldiPw5ar5-zddDg4q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvWlybtGkeh3P4tSHiwLeSNIkbbK1oFfSv95K1c4oKQt9ySeGS3Efu7ncIHQammUZGcy9ilHqgoaUXh0p5lDKTgvSLwZuz2Ra96LxPL-_D-5kqfpftXoUkJzUNFqUpK04elTmZFr7Z10xwgwMbyAUl5tF5tADi2Lfnuh-0ZiojXVNO8GFsfg8lZdnMz2t8VU2f9ua3EKnTPJ1VtFyajLg12eM1NKezdbRStWPA5e3cQLKtC5dYleHcYCEza46OsLRNIDB83dsL_DoUeOjeEbTCtrilpwssMoXPrrs4B_ExHr7DiHzD6UDk8EMsBRCMHvKnYTEYb6J-5-zu9NwrWyh4KYnDwrPYN0RzFUSCGcO4pk2lBdGMRVzG4O2wplapDGNDIuOnzTCOYZCmhCmLzc7IFqpleaa3ETYm4CEPQs0CQjnzhYXal8RXMIsKTurIr7iXpCW-uG1zMUqmyMiO4wlwPHEcT2gdHU3nPE7QNf6kblSbkpQ37TlxLiV4Zdyvo-Nqoz6Hf19t53_kB2jxpt1Jri96V7toKbCZLS7TrIFqxdOL3gPTpJD77vR9ADgk1gk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+abnormal+brain+in+MRI+via+improved+AlexNet+and+ELM+optimized+by+chaotic+bat+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Lu%2C+Siyuan&rft.au=Wang%2C+Shui-Hua&rft.au=Zhang%2C+Yu-Dong&rft.date=2021-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=17&rft.spage=10799&rft.epage=10811&rft_id=info:doi/10.1007%2Fs00521-020-05082-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05082_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |