Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm

Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified w...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 17; pp. 10799 - 10811
Main Authors Lu, Siyuan, Wang, Shui-Hua, Zhang, Yu-Dong
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified with batch normalization layers and trained on our brain images. Then, the last several layers were replaced with an extreme learning machine. A searching method was proposed to find the best number of layers to be replaced. Finally, the extreme learning machine was optimized by chaotic bat algorithm to obtain better classification performance. Experiment results based on 5 × hold-out validation revealed that our method achieved state-of-the-art performance.
AbstractList Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic resonance image. Firstly, a pre-trained AlexNet was modified with batch normalization layers and trained on our brain images. Then, the last several layers were replaced with an extreme learning machine. A searching method was proposed to find the best number of layers to be replaced. Finally, the extreme learning machine was optimized by chaotic bat algorithm to obtain better classification performance. Experiment results based on 5 × hold-out validation revealed that our method achieved state-of-the-art performance.
Author Zhang, Yu-Dong
Lu, Siyuan
Wang, Shui-Hua
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Lu
  fullname: Lu, Siyuan
  organization: School of Informatics, University of Leicester
– sequence: 2
  givenname: Shui-Hua
  surname: Wang
  fullname: Wang, Shui-Hua
  email: sw546@le.ac.uk
  organization: School of Architecture Building and Civil engineering, Loughborough University, School of Computer Science and Technology, Henan Polytechnic University, School of Mathematics and Actuarial Science, University of Leicester
– sequence: 3
  givenname: Yu-Dong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yu-Dong
  email: yz461@le.ac.uk
  organization: School of Informatics, University of Leicester, Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology
BookMark eNp9kEFLwzAYhoNMcJv-AU8Bz9WvTZomxzGnDjYF0XNI03RG2mam2XD-ejMnCB4GgRze90m-7xmhQec6g9BlCtcpQHHTA-RZmkAGCeTAs4SeoGFKCUkI5HyAhiBojBklZ2jU9-8AQBnPh6i8NcHoYF2HXY1V2TnfqgaXXtkOx7N8nuOtVdi2a--2psKTxnw-moBVV-HZYondOtjWfsWk3GH9plywGpcqFpqV8za8tefotFZNby5-7zF6vZu9TB-SxdP9fDpZJJrwPCSCCUaMqDKmirouhKFQGUVMUTBRcipEAabSZc5rwupUx7V4DKkmRQWZ4AUZo6vDu3HSj43pg3x3G9_FL2WWM0hZxkQaW_zQ0t71vTe11DaovYAQd25kCnJvVB6MymhU_hiVNKLZP3Ttbav87jhEDlAfy93K-L-pjlDf3-2Jcg
CitedBy_id crossref_primary_10_3389_fnins_2020_615435
crossref_primary_10_1016_j_measurement_2023_114100
crossref_primary_10_1016_j_cmpb_2024_108080
crossref_primary_10_3390_biomimetics8060449
crossref_primary_10_1109_TCSVT_2021_3083978
crossref_primary_10_1016_j_bspc_2023_105484
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_3390_diagnostics13020312
crossref_primary_10_1016_j_bspc_2023_105914
crossref_primary_10_1002_ima_22814
crossref_primary_10_3390_e25030450
crossref_primary_10_1007_s10586_024_04940_3
crossref_primary_10_1016_j_bspc_2024_105999
crossref_primary_10_1016_j_cmpb_2024_108009
crossref_primary_10_3390_s21227584
crossref_primary_10_3390_pr11020443
crossref_primary_10_1002_ima_22819
crossref_primary_10_1093_jcde_qwac113
crossref_primary_10_7717_peerj_cs_1672
crossref_primary_10_1016_j_jksuci_2023_101783
crossref_primary_10_1016_j_robot_2024_104893
crossref_primary_10_3389_fpubh_2021_615597
crossref_primary_10_1016_j_engappai_2023_106415
crossref_primary_10_1016_j_bspc_2023_105599
crossref_primary_10_1007_s13042_023_02022_1
crossref_primary_10_1016_j_bspc_2023_105116
crossref_primary_10_1016_j_isatra_2022_08_003
crossref_primary_10_1007_s13042_023_01947_x
crossref_primary_10_1016_j_bspc_2023_105596
crossref_primary_10_1016_j_bspc_2023_105597
crossref_primary_10_1016_j_ijleo_2022_170212
crossref_primary_10_1016_j_engappai_2023_107590
crossref_primary_10_1007_s11042_023_17202_y
crossref_primary_10_1016_j_bspc_2022_103622
crossref_primary_10_1016_j_eswa_2023_121845
crossref_primary_10_1109_JSEN_2023_3300995
crossref_primary_10_1109_JSEN_2022_3161733
crossref_primary_10_1109_JSEN_2023_3267101
crossref_primary_10_1016_j_jksuci_2023_101793
crossref_primary_10_1016_j_bspc_2023_105908
crossref_primary_10_1109_JSEN_2023_3311644
crossref_primary_10_1109_JSEN_2023_3312975
crossref_primary_10_1109_JSEN_2023_3336667
crossref_primary_10_1007_s11831_021_09673_9
crossref_primary_10_32604_cmes_2021_014107
crossref_primary_10_1016_j_bspc_2022_104171
crossref_primary_10_1016_j_bspc_2023_105741
crossref_primary_10_1016_j_neunet_2022_04_027
crossref_primary_10_1016_j_bspc_2022_104175
crossref_primary_10_3390_math12050636
crossref_primary_10_1007_s00170_025_15010_2
crossref_primary_10_1016_j_bspc_2023_105066
crossref_primary_10_1002_ima_22997
crossref_primary_10_1016_j_bspc_2023_104921
crossref_primary_10_1016_j_eswa_2023_122505
crossref_primary_10_1038_s41598_022_10244_6
crossref_primary_10_3390_jpm12101739
crossref_primary_10_1007_s11831_022_09817_5
crossref_primary_10_1007_s13721_023_00428_z
crossref_primary_10_1016_j_bspc_2023_105293
crossref_primary_10_1109_JSEN_2023_3246133
crossref_primary_10_3390_diagnostics13091624
crossref_primary_10_4012_dmj_2022_098
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1093_ijlct_ctae204
crossref_primary_10_1016_j_isatra_2022_08_029
crossref_primary_10_1007_s10479_022_04933_8
crossref_primary_10_1007_s11571_024_10199_6
crossref_primary_10_1007_s10586_024_04385_8
crossref_primary_10_1016_j_bspc_2024_106207
crossref_primary_10_1016_j_bspc_2022_104103
crossref_primary_10_1002_ima_22623
crossref_primary_10_1016_j_compbiomed_2023_107914
crossref_primary_10_1002_ima_22987
crossref_primary_10_1007_s11042_024_19657_z
crossref_primary_10_1016_j_bspc_2023_105850
crossref_primary_10_1007_s00521_023_08466_4
crossref_primary_10_1016_j_bspc_2023_104756
crossref_primary_10_3390_s23187764
crossref_primary_10_54021_seesv5n1_002
crossref_primary_10_3390_biomimetics8020235
crossref_primary_10_1016_j_bspc_2023_105847
crossref_primary_10_3390_make5020035
crossref_primary_10_1109_JSEN_2022_3224931
crossref_primary_10_3389_fnsys_2022_838822
crossref_primary_10_1109_JSEN_2021_3050237
crossref_primary_10_1016_j_rico_2023_100276
crossref_primary_10_1007_s13042_023_01938_y
crossref_primary_10_1016_j_bspc_2023_105843
crossref_primary_10_1016_j_bspc_2023_104875
crossref_primary_10_1016_j_bspc_2022_104107
crossref_primary_10_2174_1573405619666230217100130
crossref_primary_10_3390_bioengineering10080981
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_1016_j_bspc_2023_105559
crossref_primary_10_1007_s11042_023_16392_9
crossref_primary_10_1007_s11063_023_11173_9
crossref_primary_10_1016_j_bspc_2023_104749
crossref_primary_10_1109_JSEN_2021_3078455
crossref_primary_10_1007_s00477_023_02435_y
crossref_primary_10_1016_j_bspc_2023_104869
crossref_primary_10_1109_JSEN_2023_3317056
crossref_primary_10_1007_s13042_024_02292_3
crossref_primary_10_1109_ACCESS_2021_3059342
crossref_primary_10_1016_j_compbiomed_2024_108353
crossref_primary_10_1109_JSEN_2023_3341428
crossref_primary_10_32604_cmes_2023_025217
crossref_primary_10_3390_diagnostics13213326
crossref_primary_10_1016_j_cmpb_2023_107997
crossref_primary_10_1109_JSEN_2023_3305290
crossref_primary_10_1016_j_bspc_2024_105975
crossref_primary_10_1016_j_cmpb_2024_108054
crossref_primary_10_1016_j_bspc_2023_104742
crossref_primary_10_1016_j_bspc_2023_104984
crossref_primary_10_3390_electronics11213503
crossref_primary_10_1109_JSEN_2022_3220712
crossref_primary_10_1109_JSEN_2023_3315280
crossref_primary_10_1002_ima_22848
crossref_primary_10_1016_j_aej_2024_08_089
crossref_primary_10_1007_s11042_022_13911_y
crossref_primary_10_1080_24705314_2024_2390258
crossref_primary_10_1016_j_bspc_2024_105969
crossref_primary_10_1016_j_bspc_2023_105429
crossref_primary_10_1007_s13721_024_00459_0
crossref_primary_10_1109_JBHI_2023_3345837
crossref_primary_10_1109_ACCESS_2021_3076347
crossref_primary_10_1016_j_knosys_2023_110834
crossref_primary_10_3390_rs14215402
crossref_primary_10_1109_JSEN_2023_3317426
crossref_primary_10_1016_j_bspc_2023_105543
crossref_primary_10_1016_j_bspc_2023_104694
crossref_primary_10_1016_j_bspc_2023_105787
crossref_primary_10_1007_s13042_023_02073_4
crossref_primary_10_1016_j_bspc_2023_105425
crossref_primary_10_1109_JSEN_2022_3196011
crossref_primary_10_1002_ima_22830
crossref_primary_10_1002_ima_23007
crossref_primary_10_3390_app15062928
crossref_primary_10_1002_ima_22832
crossref_primary_10_1016_j_jksuci_2023_101888
crossref_primary_10_1109_JBHI_2023_3329231
crossref_primary_10_1109_JSEN_2025_3529510
crossref_primary_10_1007_s11269_023_03454_8
crossref_primary_10_1007_s11042_022_12700_x
crossref_primary_10_1016_j_bspc_2024_106190
crossref_primary_10_1007_s44196_024_00615_4
crossref_primary_10_1016_j_iswa_2024_200432
crossref_primary_10_1002_ima_23194
crossref_primary_10_1016_j_bspc_2023_105493
crossref_primary_10_1016_j_bspc_2024_106880
crossref_primary_10_1016_j_bspc_2023_105091
crossref_primary_10_1109_JSEN_2023_3312389
crossref_primary_10_1016_j_bspc_2024_106084
crossref_primary_10_1038_s41598_021_90147_0
crossref_primary_10_1016_j_bspc_2023_105412
crossref_primary_10_1016_j_bspc_2023_105655
crossref_primary_10_1016_j_bspc_2023_105650
crossref_primary_10_1016_j_bspc_2022_104146
crossref_primary_10_3390_bioengineering10070830
crossref_primary_10_3390_diagnostics13111832
crossref_primary_10_1016_j_measen_2022_100426
crossref_primary_10_1109_ACCESS_2023_3339574
crossref_primary_10_1002_ima_22946
crossref_primary_10_1016_j_mex_2025_103201
crossref_primary_10_1109_JSEN_2023_3318371
crossref_primary_10_1016_j_bspc_2023_105767
crossref_primary_10_1016_j_jksuci_2023_101814
crossref_primary_10_1007_s13042_023_02043_w
crossref_primary_10_1016_j_asoc_2023_110149
crossref_primary_10_3390_electronics12051213
crossref_primary_10_3389_fninf_2021_781551
crossref_primary_10_1007_s13042_023_01952_0
crossref_primary_10_1007_s13042_024_02391_1
crossref_primary_10_12677_CSA_2021_115129
Cites_doi 10.1109/TNNLS.2015.2424995
10.1016/j.jocs.2018.12.003
10.1007/s10916-019-1428-9
10.1155/2014/178959
10.1016/j.swevo.2016.05.002
10.1016/j.neucom.2010.02.019
10.1007/s10278-018-0050-6
10.1016/j.dsp.2009.07.002
10.1166/jmihi.2016.1901
10.1016/j.bspc.2013.09.001
10.1109/ACCESS.2019.2947606
10.1109/ACCESS.2019.2901055
10.1016/j.neucom.2017.01.115
10.1016/j.asoc.2015.09.044
10.1007/978-981-13-1165-9_40
10.1016/j.jocs.2018.11.008
10.1016/0925-2312(94)90053-1
10.1016/j.neucom.2010.11.030
10.1016/j.patrec.2013.08.017
10.1016/j.neucom.2017.02.016
10.1016/j.eswa.2014.01.021
10.1504/IJBIC.2018.093339
10.1016/j.compbiomed.2019.103345
10.1016/j.bspc.2006.05.002
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1016/j.asoc.2014.08.025
10.1007/s11042-019-7233-0
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05082-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 10811
ExternalDocumentID 10_1007_s00521_020_05082_4
GrantInformation_xml – fundername: Royal Society International Exchanges Cost Share Award, UK
  grantid: RP202G0230
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-96963e9d26a7ff79e40dea3e7769b849970edcb58f36f1c05883e74c37d029873
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 07:11:14 EDT 2025
Tue Jul 01 01:46:55 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Fri Feb 21 02:47:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Deep learning
AlexNet
Extreme learning machine
Magnetic resonance image
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-96963e9d26a7ff79e40dea3e7769b849970edcb58f36f1c05883e74c37d029873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4870-1493
PQID 2560162691
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_2560162691
crossref_citationtrail_10_1007_s00521_020_05082_4
crossref_primary_10_1007_s00521_020_05082_4
springer_journals_10_1007_s00521_020_05082_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Lu (CR33) 2016; 6
Bahadure (CR6) 2018; 31
Liu (CR28) 2018; 277
Arasomwan (CR32) 2014; 2014
Pandey (CR11) 2016; 31
CR19
Pandey (CR9) 2016; 38
CR18
Lu (CR17) 2019; 30
Saritha (CR4) 2013; 34
CR14
CR31
Deepak (CR15) 2019; 111
Kalbkhani (CR3) 2013; 8
Pao (CR30) 1994; 6
Gudigar (CR7) 2019; 7
Han (CR16) 2019; 7
Guang-Bin (CR22) 2006; 70
Pandey, Yang (CR12) 2019
CR29
Huang (CR23) 2010; 74
Chaplot (CR1) 2006; 1
Acharya (CR8) 2019; 43
CR21
CR20
El-Dahshan (CR5) 2014; 41
Pandey (CR10) 2014; 24
El-Dahshan (CR2) 2010; 20
Tang (CR24) 2015; 27
Wang (CR25) 2011; 74
Pandey (CR13) 2018; 12
Yang (CR27) 2015; 2015
Sajjad (CR34) 2019; 30
Zhang (CR26) 2017; 239
HM Pandey (5082_CR11) 2016; 31
S Lu (5082_CR17) 2019; 30
Z Lu (5082_CR33) 2016; 6
YH Pao (5082_CR30) 1994; 6
X-C Yang (5082_CR27) 2015; 2015
H Kalbkhani (5082_CR3) 2013; 8
UR Acharya (5082_CR8) 2019; 43
S Deepak (5082_CR15) 2019; 111
5082_CR29
M Sajjad (5082_CR34) 2019; 30
G-B Huang (5082_CR23) 2010; 74
5082_CR14
H Guang-Bin (5082_CR22) 2006; 70
HM Pandey (5082_CR12) 2019
AM Arasomwan (5082_CR32) 2014; 2014
T Liu (5082_CR28) 2018; 277
NB Bahadure (5082_CR6) 2018; 31
S Chaplot (5082_CR1) 2006; 1
E-SA El-Dahshan (5082_CR2) 2010; 20
5082_CR31
A Gudigar (5082_CR7) 2019; 7
L Zhang (5082_CR26) 2017; 239
HM Pandey (5082_CR13) 2018; 12
Y Wang (5082_CR25) 2011; 74
HM Pandey (5082_CR9) 2016; 38
5082_CR19
5082_CR18
HM Pandey (5082_CR10) 2014; 24
C Han (5082_CR16) 2019; 7
5082_CR21
E-SA El-Dahshan (5082_CR5) 2014; 41
5082_CR20
M Saritha (5082_CR4) 2013; 34
J Tang (5082_CR24) 2015; 27
References_xml – volume: 27
  start-page: 809
  issue: 4
  year: 2015
  end-page: 821
  ident: CR24
  article-title: Extreme learning machine for multilayer perceptron
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2424995
– volume: 30
  start-page: 174
  year: 2019
  end-page: 182
  ident: CR34
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 43
  start-page: 302
  issue: 9
  year: 2019
  ident: CR8
  article-title: Automated detection of alzheimer’s disease using brain mri images- a study with various feature extraction techniques
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1428-9
– ident: CR18
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 17
  ident: CR32
  article-title: An investigation into the performance of particle swarm optimization with various chaotic maps
  publication-title: Math Prob Eng
  doi: 10.1155/2014/178959
– volume: 31
  start-page: 11
  year: 2016
  end-page: 23
  ident: CR11
  article-title: Maintaining regularity and generalization in data using the minimum description length principle and genetic algorithm: case of grammatical inference
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2016.05.002
– volume: 74
  start-page: 155
  issue: 1–3
  year: 2010
  end-page: 163
  ident: CR23
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.019
– volume: 31
  start-page: 477
  issue: 4
  year: 2018
  end-page: 489
  ident: CR6
  article-title: Comparative approach of MRI-Based brain tumor segmentation and classification using genetic algorithm
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0050-6
– ident: CR14
– volume: 20
  start-page: 433
  issue: 2
  year: 2010
  end-page: 441
  ident: CR2
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2009.07.002
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR27
  article-title: Pressure prediction of coal slurry transportation pipeline based on particle swarm optimization kernel function extreme learning machine
  publication-title: Math Probl Eng
– volume: 24
  start-page: 1047
  year: 2014
  end-page: 1077
  ident: CR10
  article-title: A comparative review of approaches to prevent premature convergence in GA
  publication-title: Appl Soft Comput
– volume: 6
  start-page: 1218
  issue: 5
  year: 2016
  end-page: 1222
  ident: CR33
  article-title: A pathological brain detection system based on radial basis function neural network
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2016.1901
– volume: 8
  start-page: 909
  issue: 6
  year: 2013
  end-page: 919
  ident: CR3
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.09.001
– ident: CR29
– volume: 7
  start-page: 156966
  year: 2019
  end-page: 156977
  ident: CR16
  article-title: Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947606
– ident: CR21
– volume: 7
  start-page: 28498
  year: 2019
  end-page: 28509
  ident: CR7
  article-title: Automated categorization of multi-class brain abnormalities using decomposition techniques with mri images: a comparative study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901055
– ident: CR19
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR22
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 277
  start-page: 78
  year: 2018
  end-page: 88
  ident: CR28
  article-title: Extreme learning machine for joint embedding and clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.115
– volume: 38
  start-page: 453
  year: 2016
  end-page: 468
  ident: CR9
  article-title: Grammar induction using bit masking oriented genetic algorithm and comparative analysis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.044
– start-page: 427
  year: 2019
  end-page: 435
  ident: CR12
  article-title: A comprehensive classification of deep learning libraries
  publication-title: Third international congress on information and communication technology
  doi: 10.1007/978-981-13-1165-9_40
– volume: 30
  start-page: 41
  year: 2019
  end-page: 47
  ident: CR17
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.11.008
– volume: 6
  start-page: 163
  year: 1994
  end-page: 180
  ident: CR30
  article-title: Learning and generalization characteristics of random vector functional-link net
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90053-1
– ident: CR31
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  end-page: 2490
  ident: CR25
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 34
  start-page: 2151
  issue: 16
  year: 2013
  end-page: 2156
  ident: CR4
  article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.08.017
– volume: 239
  start-page: 194
  year: 2017
  end-page: 203
  ident: CR26
  article-title: Deep object recognition across domains based on adaptive extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.016
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  end-page: 5545
  ident: CR5
  article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.01.021
– volume: 12
  start-page: 54
  issue: 1
  year: 2018
  end-page: 69
  ident: CR13
  article-title: Bit mask-oriented genetic algorithm for grammatical inference and premature convergence
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2018.093339
– volume: 111
  start-page: 103345
  year: 2019
  ident: CR15
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  end-page: 92
  ident: CR1
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2006.05.002
– ident: CR20
– volume: 38
  start-page: 453
  year: 2016
  ident: 5082_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.044
– volume: 31
  start-page: 477
  issue: 4
  year: 2018
  ident: 5082_CR6
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0050-6
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  ident: 5082_CR1
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2006.05.002
– ident: 5082_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 2015
  start-page: 1
  year: 2015
  ident: 5082_CR27
  publication-title: Math Probl Eng
– volume: 7
  start-page: 28498
  year: 2019
  ident: 5082_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901055
– volume: 6
  start-page: 163
  year: 1994
  ident: 5082_CR30
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90053-1
– volume: 30
  start-page: 41
  year: 2019
  ident: 5082_CR17
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.11.008
– start-page: 427
  volume-title: Third international congress on information and communication technology
  year: 2019
  ident: 5082_CR12
  doi: 10.1007/978-981-13-1165-9_40
– volume: 239
  start-page: 194
  year: 2017
  ident: 5082_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.016
– ident: 5082_CR18
– volume: 7
  start-page: 156966
  year: 2019
  ident: 5082_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947606
– volume: 43
  start-page: 302
  issue: 9
  year: 2019
  ident: 5082_CR8
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1428-9
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  ident: 5082_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.01.021
– ident: 5082_CR20
  doi: 10.1109/CVPR.2015.7298594
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 5082_CR22
  publication-title: Neurocomputing
– volume: 31
  start-page: 11
  year: 2016
  ident: 5082_CR11
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2016.05.002
– volume: 34
  start-page: 2151
  issue: 16
  year: 2013
  ident: 5082_CR4
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.08.017
– volume: 27
  start-page: 809
  issue: 4
  year: 2015
  ident: 5082_CR24
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2424995
– ident: 5082_CR31
– volume: 30
  start-page: 174
  year: 2019
  ident: 5082_CR34
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 5082_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 277
  start-page: 78
  year: 2018
  ident: 5082_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.115
– ident: 5082_CR29
– volume: 12
  start-page: 54
  issue: 1
  year: 2018
  ident: 5082_CR13
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2018.093339
– volume: 20
  start-page: 433
  issue: 2
  year: 2010
  ident: 5082_CR2
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2009.07.002
– volume: 2014
  start-page: 1
  year: 2014
  ident: 5082_CR32
  publication-title: Math Prob Eng
  doi: 10.1155/2014/178959
– volume: 8
  start-page: 909
  issue: 6
  year: 2013
  ident: 5082_CR3
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.09.001
– volume: 24
  start-page: 1047
  year: 2014
  ident: 5082_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.08.025
– ident: 5082_CR21
– volume: 6
  start-page: 1218
  issue: 5
  year: 2016
  ident: 5082_CR33
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2016.1901
– volume: 74
  start-page: 155
  issue: 1–3
  year: 2010
  ident: 5082_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.019
– volume: 111
  start-page: 103345
  year: 2019
  ident: 5082_CR15
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103345
– ident: 5082_CR14
  doi: 10.1007/s11042-019-7233-0
SSID ssj0004685
Score 2.6223898
SecondaryResourceType review_article
Snippet Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a verification of the doctors’ decisions....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10799
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Artificial Intelligence
Artificial neural networks
Automation
Brain
Brain cancer
Brain diseases
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Discriminant analysis
Experiments
Feature selection
Image Processing and Computer Vision
Machine learning
Magnetic resonance imaging
Medical imaging
Medical research
Neural networks
Probability and Statistics in Computer Science
S. I : Hybridization of Neural Computing with Nature Inspired Algorithms
Signal processing
Special Issue on Hybridization between Neural Computing and Nature Inspired Algorithms for Solving Multi-Criteria Decision-Making Problems
Support vector machines
Tumors
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmhbZJm-Y4dGOK20Ec7FaSJnGD2cpWBf3rfcnaTUUFobe8pPCSvPd-eV8InYfGz2KjuRczSj3Q0NJLIqU8SpnJQPolgOZstMUg7g3p7SgaVUlh8zravXZJOkm9THazL5gAfUPrvAXF5dF1tBFZ7A6neBi2P2VDukacgFtsTA8lVarMz2t8VUcrG_ObW9Rpm-4O2qrMRNxe7OsuWtP5HtquWzDg6kbuI3mtSxdMlePCYCFza4JOsbSNHzB8_fsb_DoReOLeDrTCNqFloEsscoU7d31cgMh4mrzDiHzD2VgU8EMsBRBMH4vZpBw_HaBht_Nw1fOqtgleRpKo9Gy9G6K5CmPBjGFcU19pQTRjMZcJIBzma5XJKDEkNkHmR0kCgzQjTNl67IwcokZe5PoIYWNCHvEw0iwklLNA2PL6kgQKZlHBSRMFNffSrKopbltbTNNlNWTH8RQ4njqOp7SJLpZznhcVNf6kbtWbkla3a546GAlIjAdNdFlv1Gr499WO_0d-gjZDG8LiQspaqFHOXvQp2CClPHNH7gPLgs7a
  priority: 102
  providerName: Springer Nature
Title Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm
URI https://link.springer.com/article/10.1007/s00521-020-05082-4
https://www.proquest.com/docview/2560162691
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Lb9Mw2NrWCxfGBoiOUfmwG1g0sRPbJ9Sydi9WoYlK4xT5uVXqksECEvv1--w560BiUqRI-WxH-mx_7wdCe7kfmtI7SUrOGAEOrYkorCWMcW-A-gnQ5kK0xaw8nLPj8-I8GdxuUlhlRxMjobaNCTbyj1F1AOlbZp-uf5DQNSp4V1MLjXXUAxIsQPnqjSezr2ePMiNjU07QYUJ8D6MpbSYmzwWLKHzNgzMYGCFhf7Omlbz5j4s0cp7pC_Q8iYx4dL_HW2jN1dtos2vHgNPtfIn0vmtjYFWNG4-VroM4usQ6NIHA8JyeHeHfC4UX0Y7gLA7JLTPXYlVbPPlyihsgH1eLW4DoP9hcqgZ-iLWCAcsLQEV7efUKzaeTb58PSWqhQAwVRUtC7RvqpM1Lxb3n0rGhdYo6zkupBWg7fOis0YXwtPSZGRZCAJAZym2ozc7pa7RRN7V7g7D3uSxkXjieUyZ5pkKpfU0zC7OYkrSPsg57lUn1xUObi2X1UBk5YrwCjFcR4xXro_cPc67vq2s8OXq325Qq3bSbanUu-uhDt1Er8P9X23l6tbfoWR7CV2I42S7aaH_-cu9A_mj1AK2L6cEA9Ubj_fE0vA--n0wG6egBdJ6P7gAvY9hC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCAR_gBBYb24njA0KIdtmlu3tArdRb8JOutE36CKDyo_iNjL1JF5DorVJOfkUaj-dhz8wH8IKFoS2CV7SQQlDU0IaWuXNUCBksSr8SvbkYbTEvxvvi00F-sAG_-lyYGFbZy8QkqF1j4x35m-Q6oPWtsnfHJzSiRsXX1R5CY8UWu_78B7psZ28n27i_Lxkb7ex9GNMOVYBaXuYtjeVguFeOFVqGIJUXQ-c191IWypToAMihd9bkZeBFyOwwL0vsFJZLF8uVS47rXoPrgnMVT1Q5-vhHHmaCAEWPKUYTCd4l6aRUvXj_iq0sPj2j2qXib0W4tm7_eZBNem50B251Bip5v-Kou7Dh63twuwd_IJ0suA9m27cpjKsmTSDa1NH4XRITIScIfrPPE_J9ocki3Vp4R2Iqzdy3RNeO7ExnpEFhdbT4iT3mnNhD3eAPidE4YPkVCd8eHj2A_Ssh7UPYrJvaPwISAlO5YrmXjAslMx0L-xueOZwltOIDyHrqVbarZh5BNZbVRR3mRPEKKV4lildiAK8u5hyvanlcOnqr35SqO9dn1ZoLB_C636h19_9Xe3z5as_hxnhvNq2mk_nuE7jJYuBMCmTbgs329Jt_ipZPa54ldiPw5ar5-zddDg4q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvWlybtGkeh3P4tSHiwLeSNIkbbK1oFfSv95K1c4oKQt9ySeGS3Efu7ncIHQammUZGcy9ilHqgoaUXh0p5lDKTgvSLwZuz2Ra96LxPL-_D-5kqfpftXoUkJzUNFqUpK04elTmZFr7Z10xwgwMbyAUl5tF5tADi2Lfnuh-0ZiojXVNO8GFsfg8lZdnMz2t8VU2f9ua3EKnTPJ1VtFyajLg12eM1NKezdbRStWPA5e3cQLKtC5dYleHcYCEza46OsLRNIDB83dsL_DoUeOjeEbTCtrilpwssMoXPrrs4B_ExHr7DiHzD6UDk8EMsBRCMHvKnYTEYb6J-5-zu9NwrWyh4KYnDwrPYN0RzFUSCGcO4pk2lBdGMRVzG4O2wplapDGNDIuOnzTCOYZCmhCmLzc7IFqpleaa3ETYm4CEPQs0CQjnzhYXal8RXMIsKTurIr7iXpCW-uG1zMUqmyMiO4wlwPHEcT2gdHU3nPE7QNf6kblSbkpQ37TlxLiV4Zdyvo-Nqoz6Hf19t53_kB2jxpt1Jri96V7toKbCZLS7TrIFqxdOL3gPTpJD77vR9ADgk1gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+abnormal+brain+in+MRI+via+improved+AlexNet+and+ELM+optimized+by+chaotic+bat+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Lu%2C+Siyuan&rft.au=Wang%2C+Shui-Hua&rft.au=Zhang%2C+Yu-Dong&rft.date=2021-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=17&rft.spage=10799&rft.epage=10811&rft_id=info:doi/10.1007%2Fs00521-020-05082-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05082_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon