Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland
Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed t...
Saved in:
Published in | Geoderma Regional Vol. 27; p. e00437 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover.
Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R2 of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R2 = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps.
•Legacy soil data were used to map soil properties for the entire Swiss forest area.•Seven chemical and physical soil properties for six depth intervals were predicted.•Performances of six modelling approaches and model averaging were compared.•Quantile regression forest performed best and was used for prediction.•Accompanying uncertainty maps provide guidelines for future mapping campaigns. |
---|---|
AbstractList | Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover.Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R² of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R² = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps. Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover. Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R2 of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R2 = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps. •Legacy soil data were used to map soil properties for the entire Swiss forest area.•Seven chemical and physical soil properties for six depth intervals were predicted.•Performances of six modelling approaches and model averaging were compared.•Quantile regression forest performed best and was used for prediction.•Accompanying uncertainty maps provide guidelines for future mapping campaigns. |
ArticleNumber | e00437 |
Author | Walthert, Lorenz Hanewinkel, Marc Baltensweiler, Andri Zimmermann, Stephan Nussbaum, Madlene |
Author_xml | – sequence: 1 givenname: Andri surname: Baltensweiler fullname: Baltensweiler, Andri email: andri.baltensweiler@wsl.ch organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland – sequence: 2 givenname: Lorenz surname: Walthert fullname: Walthert, Lorenz organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland – sequence: 3 givenname: Marc surname: Hanewinkel fullname: Hanewinkel, Marc organization: Chair of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany – sequence: 4 givenname: Stephan surname: Zimmermann fullname: Zimmermann, Stephan organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland – sequence: 5 givenname: Madlene surname: Nussbaum fullname: Nussbaum, Madlene organization: School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences BFH, Zollikofen, Switzerland |
BookMark | eNqFkD1rHDEQhkWwIf64f-BCZZq7jKT9TBEIxk4MDils12JWGt3p2JMukmwT_3rvsSmCC6fRCOZ9hpfnlB2FGIixCwErAaL5vF2tKdqUVxKkWBFApdoP7ESqWi4B-uron_9Htsh5CwCyr1XbyBPmf6LZ-EB8JEzBhzUfMJPlOfqR73CfuYuJI3_2lnjCsCYe3bzdp7inVDzNmbKhw6RcJhwT4SF49-zLC6URgz1nxw7HTIu_84w9XF_dX_5Y3v76fnP57XZpVFeXZdf1wimoh6Z1najBygZrYV0PvUEwHQxKWKjBoejapmmr6cWhVq7tAAdh1Rn7NN-d-v1-nOronc-GxqkDxcesZaOaSlWdVFP0yxw1KeacyGnjCxYfQ0noRy1AHxTrrZ4V64NiPSue4OoNvE9-h-nP_7CvM0aTgydPSWfjKRiyPpEp2kb__oFX6RWaIg |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_112654 crossref_primary_10_1016_j_geoderma_2022_116193 crossref_primary_10_3390_land12020494 crossref_primary_10_3389_frsen_2024_1461537 crossref_primary_10_1016_j_gca_2024_12_009 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1098_rsta_2023_0052 crossref_primary_10_1002_saj2_20705 crossref_primary_10_3389_fpls_2023_1309171 crossref_primary_10_3390_land12091696 crossref_primary_10_3390_rs16224304 crossref_primary_10_1016_j_jag_2022_102730 crossref_primary_10_1016_j_animal_2023_101028 crossref_primary_10_1007_s11295_023_01598_7 crossref_primary_10_1111_jbi_15124 crossref_primary_10_1111_ejss_13589 crossref_primary_10_1111_ecog_07174 crossref_primary_10_1016_j_catena_2024_108024 crossref_primary_10_3390_app14219990 crossref_primary_10_3390_rs16152712 crossref_primary_10_5194_essd_16_2941_2024 crossref_primary_10_1111_plb_13467 crossref_primary_10_1016_j_jag_2021_102614 crossref_primary_10_3390_land11122180 crossref_primary_10_1111_gcb_16332 crossref_primary_10_3390_bdcc7020113 crossref_primary_10_3390_su141912170 |
Cites_doi | 10.1038/s41598-019-39133-1 10.1016/j.geoderma.2012.11.020 10.1016/j.envsoft.2021.105139 10.1016/j.geoderma.2018.12.037 10.1016/j.tree.2006.09.010 10.1016/j.jhydrol.2011.08.067 10.1016/j.scitotenv.2020.142291 10.5194/soil-6-269-2020 10.1016/j.geoderma.2018.09.007 10.1016/S0921-8009(01)00154-9 10.1016/j.geoderma.2009.04.022 10.5194/gmd-7-1197-2014 10.1016/j.coesh.2017.12.003 10.1111/jbi.13803 10.1016/S0016-7061(01)00067-2 10.1002/jpln.200900158 10.1023/A:1015886308016 10.1016/j.foreco.2005.08.015 10.1016/j.geoderma.2019.114061 10.1016/j.geoderma.2011.06.002 10.1109/LGRS.2005.857030 10.1016/j.geoderma.2015.07.017 10.1111/avsc.12028 10.1016/j.geoderma.2020.114663 10.1051/forest:2006042 10.1071/SR15100 10.1098/rsta.2007.2076 10.1016/j.geoderma.2014.09.019 10.1016/B978-0-12-800137-0.00003-0 10.1016/j.geoderma.2007.05.013 10.3390/soilsystems3020037 10.1016/j.rse.2011.11.026 10.1016/j.earscirev.2020.103359 10.5194/soil-4-1-2018 10.1016/j.scitotenv.2016.07.066 10.1002/sim.4780111409 10.1016/j.geoderma.2019.05.012 10.1111/j.2517-6161.1964.tb00553.x 10.1016/j.geoderma.2014.03.021 10.1016/j.geoderma.2014.09.018 10.1016/j.catena.2019.104141 10.1016/j.geodrs.2016.12.001 10.1007/s00477-010-0378-z 10.1016/S0016-7061(03)00223-4 10.3390/rs9080766 10.1016/S0378-1127(02)00656-4 10.1016/j.ecolind.2015.08.036 10.1016/j.geoderma.2009.07.010 10.1016/j.envsoft.2017.05.009 10.1016/j.geoderma.2017.03.015 10.1007/978-0-387-84858-7 10.5194/soil-4-173-2018 10.1016/j.geoderma.2014.04.033 10.1038/ismej.2012.84 10.1016/j.geoderma.2007.11.004 10.1016/j.geoderma.2019.01.007 10.1016/j.geoderma.2020.114237 10.1071/SR14366 10.1016/j.geoderma.2016.12.017 10.1016/j.geoderma.2010.12.018 10.1016/j.geoderma.2014.11.016 10.7717/peerj.5518 10.1016/j.geoderma.2020.114383 10.1016/S0034-4257(96)00072-7 10.1126/science.aaz9463 10.1016/j.catena.2013.09.009 10.1016/j.geoderma.2016.12.001 10.2136/sssaj2011.0025 10.1016/S0034-4257(98)00059-5 10.1111/jvs.12444 10.1016/j.geoderma.2019.02.025 10.1016/j.geoderma.2010.11.013 10.1002/jpln.201500546 10.1016/j.geodrs.2014.11.003 10.1016/j.landusepol.2017.06.025 10.2307/3237182 10.1016/j.geoderma.2018.09.008 10.1016/j.geoderma.2016.09.019 10.1016/0098-3004(91)90048-I 10.1016/S0734-189X(84)80011-0 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2021.e00437 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2021_e00437 S2352009421000821 |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GroupedDBID | --M 0R~ 4.4 457 4G. 6I. 7-5 AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c385t-8891f305b67f8150d26a51df909ca0c80b31d050fa1876674876ab53f780ab1d3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Mon Jul 21 09:23:00 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Thu Apr 24 22:58:58 EDT 2025 Fri Feb 23 02:44:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quantile regression forest Uncertainty maps Digital soil mapping Model averaging Machine learning Forest soils |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-8891f305b67f8150d26a51df909ca0c80b31d050fa1876674876ab53f780ab1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352009421000821 |
PQID | 2636434823 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636434823 crossref_citationtrail_10_1016_j_geodrs_2021_e00437 crossref_primary_10_1016_j_geodrs_2021_e00437 elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00437 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Frehner, Remund, Walthert, Kägi, Rihm, Brang (bb0150) 2011 Freeman (bb0145) 1991; 17 Wilks (bb0550) 2011 Swiss Federal Statistical Office (bb0455) 2001 Malone, McBratney, Minasny (bb0305) 2011; 160 Bundesamt für Raumentwicklung (bb0085) 2016 McDowell, Allen, Anderson-Teixeira, Aukema, Bond-Lamberty, Chini, Clark, Dietze, Grossiord, Hanbury-Brown, Hurtt, Jackson, Johnson, Kueppers, Lichstein, Ogle, Poulter, Pugh, Seidl, Turner, Uriarte, Walker, Xu (bb0330) 2020; 368 Vaysse, Lagacherie (bb0500) 2015; 4 Goovaerts (bb0180) 2001; 103 Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0510) 2015; 53 Hartmann, Howes, VanInsberghe, Yu, Bachar, Christen, Henrik Nilsson, Hallam, Mohn (bb0220) 2012; 6 Malone, Minasny, Odgers, McBratney (bb0310) 2014; 232-234 Miller, Koszinski, Wehrhan, Sommer (bb0350) 2015; 239 Motiejūnaitė, Børja, Ostonen, Bakker, Bjarnadottir, Brunner, Iršėnaitė, Mrak, Oddsdóttir, Lehto (bb0375) 2019; 343 Hümann, Schüler, Müller, Schneider, Johst, Caspari (bb0250) 2011; 409 Kuhn, Johnson (bb0275) 2013 Hamzehpour, Shafizadeh-Moghadam, Valavi (bb0210) 2019; 182 Gomes, Faria, de Souza, Veloso, Schaefer, Filho (bb0170) 2019; 340 Meinshausen (bb0340) 2017 AK SK (Arbeitskreis Standortskartierung) (bb0015) 2016 Pereira, Bogunovic, Muñoz-Rojas, Brevik (bb0415) 2018; 5 Spiess (bb0450) 2016 Mulder, de Bruin, Schaepman, Mayr (bb0380) 2011; 162 Keskin, Grunwald, Harris (bb0265) 2019; 339 Jenness (bb0255) 2011 Simon, Geitner, Katzensteiner (bb0445) 2020; 371 Guevara, Olmedo, Stell, Yigini, Aguilar Duarte, Arellano Hernández, Arévalo, Arroyo-Cruz, Bolivar, Bunning, Bustamante Cañas, Cruz-Gaistardo, Davila, Dell Acqua, Encina, Figueredo Tacona, Fontes, Hernández Herrera, Ibelles Navarro, Loayza, Manueles, Mendoza Jara, Olivera, Osorio Hermosilla, Pereira, Prieto, Ramos, Rey Brina, Rivera, Rodríguez-Rodríguez, Roopnarine, Rosales Ibarra, Rosales Riveiro, Schulz, Spence, Vasques, Vargas, Vargas (bb0200) 2018; 4 Wadoux (bb0515) 2019; 351 Wadoux, Minasny, McBratney (bb0520) 2020; 210 Creed, Trick, Band, Morrison (bb0120) 2002; 2 Hartanto, Prabhu, Widayat, Asdak (bb0215) 2003; 180 Hertzog (bb0235) 2017 Román Dobarco, Arrouays, Lagacherie, Ciampalini, Saby (bb0425) 2017; 298 Lal (bb0280) 2005; 220 Tebaldi, Knutti (bb0490) 2007; 365 Bundesamt für Landestopografie (bb0080) 1967 Caubet, Román Dobarco, Arrouays, Minasny, Saby (bb0105) 2019; 337 Minasny, McBratney (bb0355) 2016; 264 Waser, Ginzler, Rehush (bb0540) 2017; 9 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0140) 2012; 120 Mosimann, T., 2004-2010. Dokumentation der Waldböden der Kantone Basel-Landschaft und Basel-Stadt. Geosynthesis Sonderbände 1–4; Physische Geographie und Landschaftsökologie, Leibniz Universität Hannover; erarbeitet im Auftrag des Amts für Umweltschutz und Energie des Kantons Basel-Landschaft sowie des Forstamts beider Basel. Zimmermann, Kienast (bb0560) 1999; 10 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonca-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0025) 2014 Mahmoudzadeh, Matinfar, Taghizadeh-Mehrjardi, Kerry (bb0300) 2020; 21 Liaw, Wiener (bb0285) 2002; 2 Chen, Mulder, Heuvelink, Poggio, Caubet, Román Dobarco, Walter, Arrouays (bb0115) 2020; 366 Camathias, Bergamini, Kuchler, Stofer, Baltensweiler (bb0095) 2013; 16 MeteoSwiss (bb0345) 2020 Møller, Beucher, Pouladi, Greve (bb0365) 2020; 6 Walthert, Graf, Kammer, Luster, Pezzotta, Zimmermann, Hagedorn (bb0530) 2010; 173 Ågren, Larson, Paul, Laudon, Lidberg (bb0010) 2021 Hengl, Nussbaum, Wright, Heuvelink, Graler (bb0230) 2018; 6 Behrens, Zhu, Schmidt, Scholten (bb0050) 2010; 155 Davison, Hinkley (bb0125) 1997 Dharumarajan, Kalaiselvi, Suputhra, Lalitha, Hegde, Singh, Lagacherie (bb0130) 2020; 20 Grunwald, Thompson, Boettinger (bb0195) 2011; 75 O'Callaghan, Mark (bb0405) 1984; 28 Padarian, Minasny, McBratney (bb0410) 2017; 9 Gee, Bauder, Klute (bb0160) 1986 Kasraei, Heung, Saurette, Schmidt, Bulmer, Bethel (bb0260) 2021; 144 Araujo, New (bb0020) 2007; 22 Cavazzi, Corstanje, Mayr, Hannam, Fealy (bb0110) 2013; 195-196 Walthert, Zimmermann, Blaser, Luster, Lüscher (bb0525) 2004 Baltensweiler, Heuvelink, Hanewinkel, Walthert (bb0045) 2020; 380 Swisstopo (bb0475) 2020 Nussbaum, Spiess, Baltensweiler, Grob, Keller, Greiner, Schaepman, Papritz (bb0400) 2018; 4 Vaysse, Lagacherie (bb0505) 2017; 291 Camera, Zomeni, Noller, Zissimos, Christoforou, Bruggeman (bb0100) 2017; 285 Heung, Hodul, Schmidt (bb0240) 2017; 290 Liu, Zhang, Song, Li, Zhao, Yang, Wu, Yang (bb0295) 2020; 361 Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich, Feng, Kutler, Teng-Kui (bb0315) 2006; 3 Assami, Hamdi-Aissa (bb0030) 2019; 16 Taghizadeh-Mehrjardi, Minasny, Toomanian, Zeraatpisheh, Amirian-Chakan, Triantafilis (bb0485) 2019; 3 Buri, Grand, Yashiro, Adatte, Spangenberg, Pinto-Figueroa, Verrecchia, Guisan (bb0090) 2020; 47 Kim, Zheng (bb0270) 2011; 164 Blackburn (bb0055) 1998; 66 Thomas, Clifford, Bartley, Philip, Brough, Gregory, Willis, Glover (bb0495) 2015; 241-242 Rouse, Haas, Schell, Deering (bb0430) 1974 Baltensweiler, Walthert, Ginzler, Sutter, Purves, Hanewinkel (bb0040) 2017; 95 Abbott (bb0005) 2014 Petermann, Meyer, Nussbaum, Bossew (bb0420) 2021; 754 Diks, Vrugt (bb0135) 2010; 24 Brungard, Boettinger, Duniway, Wills, Edwards (bb0075) 2015; 239-240 McBratney, Santos, Minasny (bb0325) 2003; 117 Gal, Ghahramani (bb0155) 2016 Mulder, Lacoste, Richer-de-Forges, Arrouays (bb0385) 2016; 573 Wei (bb0545) 1992; 11 Walthert, Scherler, Stähli, Huber, Baltensweiler, Ramirez-Lopez, Papritz (bb0535) 2015 Szatmári, Pásztor (bb0480) 2019; 337 Gitelson, Kaufman, Merzlyak (bb0165) 1996; 58 Nussbaum, Papritz, Zimmermann, Walthert (bb0395) 2016; 179 Greiner, Keller, Gret-Regamey, Papritz (bb0185) 2017; 69 Liddicoat, Maschmedt, Clifford, Searle, Herrmann, Macdonald, Baldock (bb0290) 2015; 53 Swiss National Forest Inventory LFI (bb0460) 1984 Yang, Zhang, Liu, Lu, Yang, Yang, Yang, Zhao, Li (bb0555) 2016; 60 Hastie, Tibshirani, Friedman (bb0225) 2009 Guo, Xiao, Gan, Zheng (bb0205) 2001; 38 Scherrer, Guisan (bb0435) 2019; 9 Nussbaum, Papritz, Baltensweiler, Walthert (bb0390) 2014; 7 Gonseth, Wohlgemuth, Sansonnens, Buttler (bb0175) 2001 Box, Cox (bb0060) 1964; 26 Ballabio (bb0035) 2009; 151 Maynard, Johnson (bb0320) 2014; 230 Hoffmann, Hoffmann, Johnson, Kuhn (bb0245) 2014; 113 Bréda, Huc, Granier, Dreyer (bb0070) 2006; 63 Mod, Scherrer, Luoto, Guisan, Scheiner (bb0360) 2016; 27 Grinand, Arrouays, Laroche, Martin (bb0190) 2008; 143 Meinshausen (bb0335) 2006; 7 Swisstopo (bb0465) 2007 Brändli, Abegg, Allgaier Leuch (bb0065) 2020 Swisstopo (bb0470) 2009 Seibert, Stendahl, Sorensen (bb0440) 2007; 141 Camera (10.1016/j.geodrs.2021.e00437_bb0100) 2017; 285 Guevara (10.1016/j.geodrs.2021.e00437_bb0200) 2018; 4 Araujo (10.1016/j.geodrs.2021.e00437_bb0020) 2007; 22 Minasny (10.1016/j.geodrs.2021.e00437_bb0355) 2016; 264 Brungard (10.1016/j.geodrs.2021.e00437_bb0075) 2015; 239-240 Swisstopo (10.1016/j.geodrs.2021.e00437_bb0470) 2009 Wei (10.1016/j.geodrs.2021.e00437_bb0545) 1992; 11 Motiejūnaitė (10.1016/j.geodrs.2021.e00437_bb0375) 2019; 343 Swisstopo (10.1016/j.geodrs.2021.e00437_bb0465) Bundesamt für Landestopografie (10.1016/j.geodrs.2021.e00437_bb0080) 1967 Seibert (10.1016/j.geodrs.2021.e00437_bb0440) 2007; 141 Jenness (10.1016/j.geodrs.2021.e00437_bb0255) 2011 Hartanto (10.1016/j.geodrs.2021.e00437_bb0215) 2003; 180 Hartmann (10.1016/j.geodrs.2021.e00437_bb0220) 2012; 6 Szatmári (10.1016/j.geodrs.2021.e00437_bb0480) 2019; 337 Davison (10.1016/j.geodrs.2021.e00437_bb0125) 1997 Wadoux (10.1016/j.geodrs.2021.e00437_bb0520) 2020; 210 Cavazzi (10.1016/j.geodrs.2021.e00437_bb0110) 2013; 195-196 Malone (10.1016/j.geodrs.2021.e00437_bb0305) 2011; 160 Mod (10.1016/j.geodrs.2021.e00437_bb0360) 2016; 27 McDowell (10.1016/j.geodrs.2021.e00437_bb0330) 2020; 368 Diks (10.1016/j.geodrs.2021.e00437_bb0135) 2010; 24 Vaysse (10.1016/j.geodrs.2021.e00437_bb0505) 2017; 291 Simon (10.1016/j.geodrs.2021.e00437_bb0445) 2020; 371 Greiner (10.1016/j.geodrs.2021.e00437_bb0185) 2017; 69 McBratney (10.1016/j.geodrs.2021.e00437_bb0325) 2003; 117 Scherrer (10.1016/j.geodrs.2021.e00437_bb0435) 2019; 9 Tebaldi (10.1016/j.geodrs.2021.e00437_bb0490) 2007; 365 Grunwald (10.1016/j.geodrs.2021.e00437_bb0195) 2011; 75 Gee (10.1016/j.geodrs.2021.e00437_bb0160) 1986 Behrens (10.1016/j.geodrs.2021.e00437_bb0050) 2010; 155 AK SK (Arbeitskreis Standortskartierung) (10.1016/j.geodrs.2021.e00437_bb0015) 2016 Meinshausen (10.1016/j.geodrs.2021.e00437_bb0340) Bréda (10.1016/j.geodrs.2021.e00437_bb0070) 2006; 63 Guo (10.1016/j.geodrs.2021.e00437_bb0205) 2001; 38 Liu (10.1016/j.geodrs.2021.e00437_bb0295) 2020; 361 Ballabio (10.1016/j.geodrs.2021.e00437_bb0035) 2009; 151 Caubet (10.1016/j.geodrs.2021.e00437_bb0105) 2019; 337 Wilks (10.1016/j.geodrs.2021.e00437_bb0550) 2011 Møller (10.1016/j.geodrs.2021.e00437_bb0365) 2020; 6 Camathias (10.1016/j.geodrs.2021.e00437_bb0095) 2013; 16 Blackburn (10.1016/j.geodrs.2021.e00437_bb0055) 1998; 66 Viscarra Rossel (10.1016/j.geodrs.2021.e00437_bb0510) 2015; 53 Malone (10.1016/j.geodrs.2021.e00437_bb0310) 2014; 232-234 Zimmermann (10.1016/j.geodrs.2021.e00437_bb0560) 1999; 10 Box (10.1016/j.geodrs.2021.e00437_bb0060) 1964; 26 Arrouays (10.1016/j.geodrs.2021.e00437_bb0025) 2014 Hümann (10.1016/j.geodrs.2021.e00437_bb0250) 2011; 409 Román Dobarco (10.1016/j.geodrs.2021.e00437_bb0425) 2017; 298 Frehner (10.1016/j.geodrs.2021.e00437_bb0150) 2011 Padarian (10.1016/j.geodrs.2021.e00437_bb0410) 2017; 9 Baltensweiler (10.1016/j.geodrs.2021.e00437_bb0045) 2020; 380 Swiss Federal Statistical Office (10.1016/j.geodrs.2021.e00437_bb0455) 2001 Goovaerts (10.1016/j.geodrs.2021.e00437_bb0180) 2001; 103 Hengl (10.1016/j.geodrs.2021.e00437_bb0230) 2018; 6 Kuhn (10.1016/j.geodrs.2021.e00437_bb0275) 2013 Hastie (10.1016/j.geodrs.2021.e00437_bb0225) 2009 Walthert (10.1016/j.geodrs.2021.e00437_bb0525) 2004 Mahmoudzadeh (10.1016/j.geodrs.2021.e00437_bb0300) 2020; 21 Grinand (10.1016/j.geodrs.2021.e00437_bb0190) 2008; 143 Rouse (10.1016/j.geodrs.2021.e00437_bb0430) 1974 Chen (10.1016/j.geodrs.2021.e00437_bb0115) 2020; 366 Meinshausen (10.1016/j.geodrs.2021.e00437_bb0335) 2006; 7 Kasraei (10.1016/j.geodrs.2021.e00437_bb0260) 2021; 144 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00437_bb0485) 2019; 3 Brändli (10.1016/j.geodrs.2021.e00437_bb0065) 2020 Thomas (10.1016/j.geodrs.2021.e00437_bb0495) 2015; 241-242 Creed (10.1016/j.geodrs.2021.e00437_bb0120) 2002; 2 Swiss National Forest Inventory LFI (10.1016/j.geodrs.2021.e00437_bb0460) 1984 Drusch (10.1016/j.geodrs.2021.e00437_bb0140) 2012; 120 Maynard (10.1016/j.geodrs.2021.e00437_bb0320) 2014; 230 Liaw (10.1016/j.geodrs.2021.e00437_bb0285) 2002; 2 Nussbaum (10.1016/j.geodrs.2021.e00437_bb0400) 2018; 4 10.1016/j.geodrs.2021.e00437_bb0370 Liddicoat (10.1016/j.geodrs.2021.e00437_bb0290) 2015; 53 Gomes (10.1016/j.geodrs.2021.e00437_bb0170) 2019; 340 Assami (10.1016/j.geodrs.2021.e00437_bb0030) 2019; 16 Hoffmann (10.1016/j.geodrs.2021.e00437_bb0245) 2014; 113 Nussbaum (10.1016/j.geodrs.2021.e00437_bb0395) 2016; 179 O'Callaghan (10.1016/j.geodrs.2021.e00437_bb0405) 1984; 28 Ågren (10.1016/j.geodrs.2021.e00437_bb0010) 2021 Freeman (10.1016/j.geodrs.2021.e00437_bb0145) 1991; 17 Vaysse (10.1016/j.geodrs.2021.e00437_bb0500) 2015; 4 Walthert (10.1016/j.geodrs.2021.e00437_bb0530) 2010; 173 Gitelson (10.1016/j.geodrs.2021.e00437_bb0165) 1996; 58 Waser (10.1016/j.geodrs.2021.e00437_bb0540) 2017; 9 Miller (10.1016/j.geodrs.2021.e00437_bb0350) 2015; 239 Hertzog (10.1016/j.geodrs.2021.e00437_bb0235) 2017 Abbott (10.1016/j.geodrs.2021.e00437_bb0005) 2014 MeteoSwiss (10.1016/j.geodrs.2021.e00437_bb0345) Keskin (10.1016/j.geodrs.2021.e00437_bb0265) 2019; 339 Swisstopo (10.1016/j.geodrs.2021.e00437_bb0475) Mulder (10.1016/j.geodrs.2021.e00437_bb0380) 2011; 162 Gonseth (10.1016/j.geodrs.2021.e00437_bb0175) 2001 Pereira (10.1016/j.geodrs.2021.e00437_bb0415) 2018; 5 Hamzehpour (10.1016/j.geodrs.2021.e00437_bb0210) 2019; 182 Petermann (10.1016/j.geodrs.2021.e00437_bb0420) 2021; 754 Bundesamt für Raumentwicklung (10.1016/j.geodrs.2021.e00437_bb0085) 2016 Walthert (10.1016/j.geodrs.2021.e00437_bb0535) 2015 Baltensweiler (10.1016/j.geodrs.2021.e00437_bb0040) 2017; 95 Yang (10.1016/j.geodrs.2021.e00437_bb0555) 2016; 60 Heung (10.1016/j.geodrs.2021.e00437_bb0240) 2017; 290 Nussbaum (10.1016/j.geodrs.2021.e00437_bb0390) 2014; 7 Kim (10.1016/j.geodrs.2021.e00437_bb0270) 2011; 164 Lal (10.1016/j.geodrs.2021.e00437_bb0280) 2005; 220 Spiess (10.1016/j.geodrs.2021.e00437_bb0450) 2016 Buri (10.1016/j.geodrs.2021.e00437_bb0090) 2020; 47 Mulder (10.1016/j.geodrs.2021.e00437_bb0385) 2016; 573 Wadoux (10.1016/j.geodrs.2021.e00437_bb0515) 2019; 351 Dharumarajan (10.1016/j.geodrs.2021.e00437_bb0130) 2020; 20 Gal (10.1016/j.geodrs.2021.e00437_bb0155) 2016 Masek (10.1016/j.geodrs.2021.e00437_bb0315) 2006; 3 |
References_xml | – volume: 22 start-page: 42 year: 2007 end-page: 47 ident: bb0020 article-title: Ensemble forecasting of species distributions publication-title: Trends Ecol. Evol. – volume: 26 start-page: 211 year: 1964 end-page: 243 ident: bb0060 article-title: An analysis of transformations publication-title: J R Stat Soc B Methodol – volume: 182 start-page: 104141 year: 2019 ident: bb0210 article-title: Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture publication-title: Catena – start-page: 404 year: 1986 end-page: 410 ident: bb0160 article-title: Methods of soil analysis, part 1, physical and mineralogical methods. Soil science Society of America Book Series – volume: 151 start-page: 338 year: 2009 end-page: 350 ident: bb0035 article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression publication-title: Geoderma – year: 2017 ident: bb0340 article-title: quantregForest: Quantile Regression Forests – volume: 95 start-page: 13 year: 2017 end-page: 21 ident: bb0040 article-title: Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation publication-title: Environ. Model Softw. – volume: 241-242 start-page: 145 year: 2015 end-page: 157 ident: bb0495 article-title: Putting regional digital soil mapping into practice in tropical northern Australia publication-title: Geoderma – year: 2001 ident: bb0175 article-title: Die biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien Nr. 137. Swiss Agency for the Environment, Forests and Landscape SAEFL, Bern – volume: 232-234 start-page: 34 year: 2014 end-page: 44 ident: bb0310 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma – year: 2011 ident: bb0150 article-title: Schätzung standortspezifischer Trockenstressrisiken in Schweizer Wäldern. Schlussbericht / Version 2.3, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bb0335 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 269 year: 2020 end-page: 289 ident: bb0365 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL – volume: 63 start-page: 625 year: 2006 end-page: 644 ident: bb0070 article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences publication-title: Ann. For. Sci. – volume: 230 start-page: 29 year: 2014 end-page: 40 ident: bb0320 article-title: Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent publication-title: Geoderma – volume: 4 start-page: 1 year: 2018 end-page: 22 ident: bb0400 article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates publication-title: Soil – volume: 210 year: 2020 ident: bb0520 article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions publication-title: Earth Sci. Rev. – volume: 113 start-page: 107 year: 2014 end-page: 121 ident: bb0245 article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta) publication-title: CATENA – volume: 162 start-page: 1 year: 2011 end-page: 19 ident: bb0380 article-title: The use of remote sensing in soil and terrain mapping - a review publication-title: Geoderma – start-page: 404 year: 2021 ident: bb0010 article-title: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape Geoderma – volume: 380 start-page: 114663 year: 2020 ident: bb0045 article-title: Microtopography shapes soil pH in flysch regions across Switzerland publication-title: Geoderma – volume: 340 start-page: 337 year: 2019 end-page: 350 ident: bb0170 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma – volume: 6 start-page: 2199 year: 2012 end-page: 2218 ident: bb0220 article-title: Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests publication-title: ISME J – year: 2020 ident: bb0475 article-title: Height Models – volume: 366 start-page: 114237 year: 2020 ident: bb0115 article-title: Model averaging for mapping topsoil organic carbon in France publication-title: Geoderma – volume: 339 start-page: 40 year: 2019 end-page: 58 ident: bb0265 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma – volume: 103 start-page: 3 year: 2001 end-page: 26 ident: bb0180 article-title: Geostatistical modelling of uncertainty in soil science publication-title: Geoderma – year: 2009 ident: bb0225 article-title: The Elements of Statistical Learning. Springer Series in Statistics – volume: 9 start-page: 766 year: 2017 ident: bb0540 article-title: Wall-To-Wall tree type mapping from countrywide airborne remote sensing surveys publication-title: Remote Sens. – volume: 371 start-page: 114383 year: 2020 ident: bb0445 article-title: A framework for the predictive mapping of forest soil properties in mountain areas publication-title: Geoderma – volume: 220 start-page: 242 year: 2005 end-page: 258 ident: bb0280 article-title: Forest soils and carbon sequestration publication-title: For. Ecol. Manag. – year: 2009 ident: bb0470 article-title: Switzerland during the Last Glacial Maximum – volume: 27 start-page: 1308 year: 2016 end-page: 1322 ident: bb0360 article-title: What we use is not what we know: environmental predictors in plant distribution models publication-title: J. Veg. Sci. – volume: 60 start-page: 870 year: 2016 end-page: 878 ident: bb0555 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. – volume: 2 start-page: 81 year: 2002 end-page: 102 ident: bb0120 article-title: Characterizing the spatial pattern of soil carbon and nitrogen pools in the Turkey Lakes watershed: a comparison of regression techniques publication-title: Water, Air and Soil Pollution: Focus – volume: 53 start-page: 845 year: 2015 end-page: 864 ident: bb0510 article-title: The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project publication-title: Soil Research – year: 1967 ident: bb0080 article-title: Geotechnische Karte der Schweiz – volume: 343 start-page: 19 year: 2019 end-page: 30 ident: bb0375 article-title: Cultural ecosystem services provided by the biodiversity of forest soils: a European review publication-title: Geoderma – volume: 179 start-page: 321 year: 2016 end-page: 326 ident: bb0395 article-title: Pedotransfer function to predict density of forest soils in Switzerland publication-title: J. Plant Nutr. Soil Sci. – volume: 239 start-page: 97 year: 2015 end-page: 106 ident: bb0350 article-title: Impact of multi-scale predictor selection for modeling soil properties publication-title: Geoderma – volume: 47 start-page: 1143 year: 2020 end-page: 1153 ident: bb0090 article-title: What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps publication-title: J. Biogeogr. – volume: 141 start-page: 139 year: 2007 end-page: 148 ident: bb0440 article-title: Topographical influences on soil properties in boreal forests publication-title: Geoderma – volume: 20 year: 2020 ident: bb0130 article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau publication-title: Geoderma Reg – volume: 754 start-page: 142291 year: 2021 ident: bb0420 article-title: Mapping the geogenic radon potential for Germany by machine learning publication-title: Sci. Total Environ. – volume: 75 start-page: 1201 year: 2011 end-page: 1213 ident: bb0195 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. – volume: 409 start-page: 637 year: 2011 end-page: 649 ident: bb0250 article-title: Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods publication-title: J. Hydrol. – volume: 24 start-page: 809 year: 2010 end-page: 820 ident: bb0135 article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications publication-title: Stoch. Env. Res. Risk A. – year: 2020 ident: bb0345 article-title: Spatial Climate Analyses – year: 2015 ident: bb0535 article-title: Böden und Wasserhaushalt von Wäldern und Waldstandorten der Schweiz unter heutigem und zukünftigem Klima (BOWA-CH) publication-title: Birmensdorf. – start-page: 341 year: 2020 ident: bb0065 article-title: Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009-2017. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt BAFU publication-title: Birmensdorf; Bern – volume: 4 start-page: 173 year: 2018 end-page: 193 ident: bb0200 article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America publication-title: SOIL – volume: 239-240 start-page: 68 year: 2015 end-page: 83 ident: bb0075 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – year: 2004 ident: bb0525 article-title: Waldböden der Schweiz publication-title: Grundlagen und Region Jura, Band 1 – volume: 160 start-page: 614 year: 2011 end-page: 626 ident: bb0305 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma – volume: 290 start-page: 51 year: 2017 end-page: 68 ident: bb0240 article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes publication-title: Geoderma – volume: 16 start-page: 539 year: 2013 end-page: 551 ident: bb0095 article-title: High-resolution remote sensing data improves models of species richness publication-title: Appl. Veg. Sci. – volume: 9 start-page: 3061 year: 2019 ident: bb0435 article-title: Ecological indicator values reveal missing predictors of species distributions publication-title: Sci. Rep. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0140 article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services publication-title: Remote Sens. Environ. – volume: 365 start-page: 2053 year: 2007 end-page: 2075 ident: bb0490 article-title: The use of the multi-model ensemble in probabilistic climate projections publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – year: 2016 ident: bb0085 article-title: Landschaftstypologie Schweiz – year: 2016 ident: bb0450 article-title: Vorhersage von Bodeneigenschaften mit Quantile Regression Forest, Validierung und Vergleich mit den Vorhersagen aus geoadditiven Modellen – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0315 article-title: A Landsat surface reflectance dataset for North America, 1990-2000 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 start-page: 1197 year: 2014 end-page: 1210 ident: bb0390 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. – volume: 21 year: 2020 ident: bb0300 article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran publication-title: Geoderma Reg – year: 2011 ident: bb0550 article-title: Statistical Methods in the Atmospheric Sciences, 100 – volume: 361 start-page: 114061 year: 2020 ident: bb0295 article-title: High-resolution and three-dimensional mapping of soil texture of China publication-title: Geoderma – volume: 264 start-page: 301 year: 2016 end-page: 311 ident: bb0355 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – volume: 11 start-page: 1871 year: 1992 end-page: 1879 ident: bb0545 article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis publication-title: Stat. Med. – volume: 573 start-page: 1352 year: 2016 end-page: 1369 ident: bb0385 article-title: GlobalSoilMap France: high-resolution spatial modelling the soils of France up to two meter depth publication-title: Sci. Total Environ. – volume: 3 start-page: 37 year: 2019 ident: bb0485 article-title: Digital mapping of soil classes using Ensemble of Models in Isfahan region, Iran publication-title: Soil Systems – volume: 337 start-page: 99 year: 2019 end-page: 110 ident: bb0105 article-title: Merging country, continental and global predictions of soil texture: lessons from ensemble modelling in France publication-title: Geoderma – volume: 368 year: 2020 ident: bb0330 article-title: Pervasive shifts in forest dynamics in a changing world publication-title: Science – start-page: 1050 year: 2016 end-page: 1059 ident: bb0155 article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning, international conference on machine learning publication-title: PMLR – volume: 58 start-page: 289 year: 1996 end-page: 298 ident: bb0165 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. – volume: 144 start-page: 105139 year: 2021 ident: bb0260 article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning publication-title: Environ. Model Softw. – volume: 28 start-page: 323 year: 1984 end-page: 344 ident: bb0405 article-title: The extraction of drainage networks from digital elevation data publication-title: Computer Vision, Graphics, and Image Processing – volume: 69 start-page: 224 year: 2017 end-page: 237 ident: bb0185 article-title: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services publication-title: Land Use Policy – year: 1984 ident: bb0460 article-title: PH Topsoil Samples from the Swiss National Forest Inventory. Swiss Federal Institute for Forest – volume: 143 start-page: 180 year: 2008 end-page: 190 ident: bb0190 article-title: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context publication-title: Geoderma – year: 2017 ident: bb0235 article-title: Modelling Soil Attributes with the Random Forest Method for the Swiss Forest Area – volume: 195-196 start-page: 111 year: 2013 end-page: 121 ident: bb0110 article-title: Are fine resolution digital elevation models always the best choice in digital soil mapping? publication-title: Geoderma – volume: 53 year: 2015 ident: bb0290 article-title: Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone publication-title: Soil Research – volume: 10 start-page: 469 year: 1999 end-page: 482 ident: bb0560 article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach publication-title: J. Veg. Sci. – start-page: 93 year: 2014 end-page: 134 ident: bb0025 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. – volume: 66 start-page: 273 year: 1998 end-page: 285 ident: bb0055 article-title: Quantifying chlorophylls and Caroteniods at leaf and canopy scales: an evaluation of some Hyperspectral approaches publication-title: Remote Sens. Environ. – volume: 9 start-page: 17 year: 2017 end-page: 28 ident: bb0410 article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap publication-title: Geoderma Reg – volume: 4 start-page: 20 year: 2015 end-page: 30 ident: bb0500 article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France) publication-title: Geoderma Reg – volume: 17 start-page: 413 year: 1991 end-page: 422 ident: bb0145 article-title: Calculating catchment-area with divergent flow based on a regular grid publication-title: Comput. Geosci. – volume: 298 start-page: 67 year: 2017 end-page: 77 ident: bb0425 article-title: Prediction of topsoil texture for region Centre (France) applying model ensemble methods publication-title: Geoderma – year: 2001 ident: bb0455 article-title: Swiss soil suitability map – year: 2014 ident: bb0005 article-title: Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst – volume: 291 start-page: 55 year: 2017 end-page: 64 ident: bb0505 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma – year: 1997 ident: bb0125 article-title: Bootstrap Methods and their Application – volume: 155 start-page: 175 year: 2010 end-page: 185 ident: bb0050 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma – year: 2013 ident: bb0275 article-title: Applied Predictive Modeling, 26 – volume: 337 start-page: 1329 year: 2019 end-page: 1340 ident: bb0480 article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms publication-title: Geoderma – volume: 164 start-page: 181 year: 2011 end-page: 194 ident: bb0270 article-title: Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system publication-title: Geoderma – volume: 16 year: 2019 ident: bb0030 article-title: Digital mapping of soil classes in Algeria - a comparison of methods publication-title: Geoderma Reg – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0325 article-title: On digital soil mapping publication-title: Geoderma – volume: 285 start-page: 35 year: 2017 end-page: 49 ident: bb0100 article-title: A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization publication-title: Geoderma – year: 2007 ident: bb0465 article-title: Hydrogeological Map of Switzerland – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0285 article-title: Classification and regression by randomForest publication-title: R News – volume: 173 start-page: 207 year: 2010 end-page: 216 ident: bb0530 article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl publication-title: J. Plant Nutr. Soil Sci. – start-page: 309 year: 1974 end-page: 317 ident: bb0430 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: Third Earth Resource Technology Satellite (ERTS) Symposium. National Aeronautics and Space Administration, NASA SP-351, Washington D.C. – year: 2016 ident: bb0015 article-title: Forstliche Standortsaufnahme. Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen – volume: 180 start-page: 361 year: 2003 end-page: 374 ident: bb0215 article-title: Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management publication-title: For. Ecol. Manag. – volume: 351 start-page: 59 year: 2019 end-page: 70 ident: bb0515 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma – volume: 5 start-page: 7 year: 2018 end-page: 13 ident: bb0415 article-title: Soil ecosystem services, sustainability, valuation and management publication-title: Current Opinion in Environmental Science & Health – volume: 38 start-page: 141 year: 2001 end-page: 154 ident: bb0205 article-title: Ecosystem functions, services and their values – a case study in Xingshan County of China publication-title: Ecol. Econ. – year: 2011 ident: bb0255 article-title: Topographic Position Index (TPI) v. 1.2 – reference: Mosimann, T., 2004-2010. Dokumentation der Waldböden der Kantone Basel-Landschaft und Basel-Stadt. Geosynthesis Sonderbände 1–4; Physische Geographie und Landschaftsökologie, Leibniz Universität Hannover; erarbeitet im Auftrag des Amts für Umweltschutz und Energie des Kantons Basel-Landschaft sowie des Forstamts beider Basel. – volume: 6 year: 2018 ident: bb0230 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ – volume: 9 start-page: 3061 issue: 1 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0435 article-title: Ecological indicator values reveal missing predictors of species distributions publication-title: Sci. Rep. doi: 10.1038/s41598-019-39133-1 – volume: 195-196 start-page: 111 issue: 0 year: 2013 ident: 10.1016/j.geodrs.2021.e00437_bb0110 article-title: Are fine resolution digital elevation models always the best choice in digital soil mapping? publication-title: Geoderma doi: 10.1016/j.geoderma.2012.11.020 – year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0235 – volume: 144 start-page: 105139 year: 2021 ident: 10.1016/j.geodrs.2021.e00437_bb0260 article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning publication-title: Environ. Model Softw. doi: 10.1016/j.envsoft.2021.105139 – volume: 339 start-page: 40 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0265 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.037 – volume: 22 start-page: 42 issue: 1 year: 2007 ident: 10.1016/j.geodrs.2021.e00437_bb0020 article-title: Ensemble forecasting of species distributions publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2006.09.010 – volume: 409 start-page: 637 issue: 3–4 year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0250 article-title: Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.08.067 – volume: 754 start-page: 142291 year: 2021 ident: 10.1016/j.geodrs.2021.e00437_bb0420 article-title: Mapping the geogenic radon potential for Germany by machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142291 – volume: 6 start-page: 269 issue: 2 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0365 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL doi: 10.5194/soil-6-269-2020 – start-page: 341 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0065 article-title: Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009-2017. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt BAFU publication-title: Birmensdorf; Bern – volume: 337 start-page: 99 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0105 article-title: Merging country, continental and global predictions of soil texture: lessons from ensemble modelling in France publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.007 – volume: 38 start-page: 141 issue: 1 year: 2001 ident: 10.1016/j.geodrs.2021.e00437_bb0205 article-title: Ecosystem functions, services and their values – a case study in Xingshan County of China publication-title: Ecol. Econ. doi: 10.1016/S0921-8009(01)00154-9 – year: 1984 ident: 10.1016/j.geodrs.2021.e00437_bb0460 – volume: 151 start-page: 338 issue: 3–4 year: 2009 ident: 10.1016/j.geodrs.2021.e00437_bb0035 article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.022 – volume: 7 start-page: 1197 issue: 3 year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0390 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1197-2014 – volume: 5 start-page: 7 year: 2018 ident: 10.1016/j.geodrs.2021.e00437_bb0415 article-title: Soil ecosystem services, sustainability, valuation and management publication-title: Current Opinion in Environmental Science & Health doi: 10.1016/j.coesh.2017.12.003 – volume: 47 start-page: 1143 issue: 5 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0090 article-title: What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps publication-title: J. Biogeogr. doi: 10.1111/jbi.13803 – ident: 10.1016/j.geodrs.2021.e00437_bb0345 – volume: 103 start-page: 3 issue: 1 year: 2001 ident: 10.1016/j.geodrs.2021.e00437_bb0180 article-title: Geostatistical modelling of uncertainty in soil science publication-title: Geoderma doi: 10.1016/S0016-7061(01)00067-2 – volume: 173 start-page: 207 issue: 2 year: 2010 ident: 10.1016/j.geodrs.2021.e00437_bb0530 article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200900158 – volume: 2 start-page: 81 issue: 1 year: 2002 ident: 10.1016/j.geodrs.2021.e00437_bb0120 article-title: Characterizing the spatial pattern of soil carbon and nitrogen pools in the Turkey Lakes watershed: a comparison of regression techniques publication-title: Water, Air and Soil Pollution: Focus doi: 10.1023/A:1015886308016 – volume: 220 start-page: 242 issue: 1–3 year: 2005 ident: 10.1016/j.geodrs.2021.e00437_bb0280 article-title: Forest soils and carbon sequestration publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.08.015 – volume: 361 start-page: 114061 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0295 article-title: High-resolution and three-dimensional mapping of soil texture of China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114061 – volume: 164 start-page: 181 issue: 3–4 year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0270 article-title: Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system publication-title: Geoderma doi: 10.1016/j.geoderma.2011.06.002 – volume: 3 start-page: 68 issue: 1 year: 2006 ident: 10.1016/j.geodrs.2021.e00437_bb0315 article-title: A Landsat surface reflectance dataset for North America, 1990-2000 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0355 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 16 start-page: 539 issue: 4 year: 2013 ident: 10.1016/j.geodrs.2021.e00437_bb0095 article-title: High-resolution remote sensing data improves models of species richness publication-title: Appl. Veg. Sci. doi: 10.1111/avsc.12028 – volume: 380 start-page: 114663 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0045 article-title: Microtopography shapes soil pH in flysch regions across Switzerland publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114663 – volume: 63 start-page: 625 issue: 6 year: 2006 ident: 10.1016/j.geodrs.2021.e00437_bb0070 article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences publication-title: Ann. For. Sci. doi: 10.1051/forest:2006042 – volume: 53 issue: 8 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0290 article-title: Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone publication-title: Soil Research doi: 10.1071/SR15100 – year: 1967 ident: 10.1016/j.geodrs.2021.e00437_bb0080 – volume: 365 start-page: 2053 issue: 1857 year: 2007 ident: 10.1016/j.geodrs.2021.e00437_bb0490 article-title: The use of the multi-model ensemble in probabilistic climate projections publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2007.2076 – volume: 239-240 start-page: 68 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0075 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – start-page: 93 year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0025 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 141 start-page: 139 issue: 1–2 year: 2007 ident: 10.1016/j.geodrs.2021.e00437_bb0440 article-title: Topographical influences on soil properties in boreal forests publication-title: Geoderma doi: 10.1016/j.geoderma.2007.05.013 – volume: 3 start-page: 37 issue: 2 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0485 article-title: Digital mapping of soil classes using Ensemble of Models in Isfahan region, Iran publication-title: Soil Systems doi: 10.3390/soilsystems3020037 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.geodrs.2021.e00437_bb0140 article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 210 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0520 article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103359 – year: 2004 ident: 10.1016/j.geodrs.2021.e00437_bb0525 article-title: Waldböden der Schweiz – year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0005 – ident: 10.1016/j.geodrs.2021.e00437_bb0340 – start-page: 1050 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0155 article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning, international conference on machine learning publication-title: PMLR – year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0255 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.geodrs.2021.e00437_bb0400 article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates publication-title: Soil doi: 10.5194/soil-4-1-2018 – volume: 573 start-page: 1352 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0385 article-title: GlobalSoilMap France: high-resolution spatial modelling the soils of France up to two meter depth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.066 – volume: 11 start-page: 1871 issue: 14–15 year: 1992 ident: 10.1016/j.geodrs.2021.e00437_bb0545 article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis publication-title: Stat. Med. doi: 10.1002/sim.4780111409 – ident: 10.1016/j.geodrs.2021.e00437_bb0475 – volume: 351 start-page: 59 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0515 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.012 – volume: 26 start-page: 211 issue: 2 year: 1964 ident: 10.1016/j.geodrs.2021.e00437_bb0060 article-title: An analysis of transformations publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1964.tb00553.x – volume: 230 start-page: 29 issue: 0 year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0320 article-title: Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.021 – volume: 239 start-page: 97 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0350 article-title: Impact of multi-scale predictor selection for modeling soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.018 – volume: 182 start-page: 104141 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0210 article-title: Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture publication-title: Catena doi: 10.1016/j.catena.2019.104141 – volume: 9 start-page: 17 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0410 article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2016.12.001 – volume: 24 start-page: 809 issue: 6 year: 2010 ident: 10.1016/j.geodrs.2021.e00437_bb0135 article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-010-0378-z – volume: 117 start-page: 3 issue: 1–2 year: 2003 ident: 10.1016/j.geodrs.2021.e00437_bb0325 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 9 start-page: 766 issue: 8 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0540 article-title: Wall-To-Wall tree type mapping from countrywide airborne remote sensing surveys publication-title: Remote Sens. doi: 10.3390/rs9080766 – volume: 180 start-page: 361 issue: 1–3 year: 2003 ident: 10.1016/j.geodrs.2021.e00437_bb0215 article-title: Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(02)00656-4 – volume: 60 start-page: 870 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0555 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.08.036 – volume: 155 start-page: 175 issue: 3–4 year: 2010 ident: 10.1016/j.geodrs.2021.e00437_bb0050 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.010 – start-page: 309 year: 1974 ident: 10.1016/j.geodrs.2021.e00437_bb0430 article-title: Monitoring vegetation systems in the Great Plains with ERTS – volume: 95 start-page: 13 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0040 article-title: Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation publication-title: Environ. Model Softw. doi: 10.1016/j.envsoft.2017.05.009 – volume: 298 start-page: 67 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0425 article-title: Prediction of topsoil texture for region Centre (France) applying model ensemble methods publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.015 – year: 2009 ident: 10.1016/j.geodrs.2021.e00437_bb0225 doi: 10.1007/978-0-387-84858-7 – volume: 4 start-page: 173 issue: 3 year: 2018 ident: 10.1016/j.geodrs.2021.e00437_bb0200 article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America publication-title: SOIL doi: 10.5194/soil-4-173-2018 – ident: 10.1016/j.geodrs.2021.e00437_bb0465 – volume: 232-234 start-page: 34 year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0310 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 6 start-page: 2199 issue: 12 year: 2012 ident: 10.1016/j.geodrs.2021.e00437_bb0220 article-title: Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests publication-title: ISME J doi: 10.1038/ismej.2012.84 – volume: 143 start-page: 180 issue: 1–2 year: 2008 ident: 10.1016/j.geodrs.2021.e00437_bb0190 article-title: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context publication-title: Geoderma doi: 10.1016/j.geoderma.2007.11.004 – volume: 340 start-page: 337 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0170 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 366 start-page: 114237 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0115 article-title: Model averaging for mapping topsoil organic carbon in France publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114237 – volume: 53 start-page: 845 issue: 8 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0510 article-title: The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project publication-title: Soil Research doi: 10.1071/SR14366 – volume: 291 start-page: 55 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0505 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.017 – year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0550 – volume: 20 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0130 article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau publication-title: Geoderma Reg – volume: 21 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0300 article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran publication-title: Geoderma Reg – volume: 162 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0380 article-title: The use of remote sensing in soil and terrain mapping - a review publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – year: 1997 ident: 10.1016/j.geodrs.2021.e00437_bb0125 – volume: 241-242 start-page: 145 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0495 article-title: Putting regional digital soil mapping into practice in tropical northern Australia publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.016 – volume: 6 year: 2018 ident: 10.1016/j.geodrs.2021.e00437_bb0230 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ doi: 10.7717/peerj.5518 – year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0150 – volume: 371 start-page: 114383 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0445 article-title: A framework for the predictive mapping of forest soil properties in mountain areas publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114383 – volume: 58 start-page: 289 issue: 3 year: 1996 ident: 10.1016/j.geodrs.2021.e00437_bb0165 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 – start-page: 404 year: 2021 ident: 10.1016/j.geodrs.2021.e00437_bb0010 – year: 2001 ident: 10.1016/j.geodrs.2021.e00437_bb0175 – volume: 368 issue: 6494 year: 2020 ident: 10.1016/j.geodrs.2021.e00437_bb0330 article-title: Pervasive shifts in forest dynamics in a changing world publication-title: Science doi: 10.1126/science.aaz9463 – volume: 113 start-page: 107 year: 2014 ident: 10.1016/j.geodrs.2021.e00437_bb0245 article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta) publication-title: CATENA doi: 10.1016/j.catena.2013.09.009 – volume: 290 start-page: 51 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0240 article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.001 – start-page: 404 year: 1986 ident: 10.1016/j.geodrs.2021.e00437_bb0160 – volume: 75 start-page: 1201 issue: 4 year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0195 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0025 – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.geodrs.2021.e00437_bb0335 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – year: 2001 ident: 10.1016/j.geodrs.2021.e00437_bb0455 – year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0015 – volume: 66 start-page: 273 issue: 3 year: 1998 ident: 10.1016/j.geodrs.2021.e00437_bb0055 article-title: Quantifying chlorophylls and Caroteniods at leaf and canopy scales: an evaluation of some Hyperspectral approaches publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00059-5 – volume: 27 start-page: 1308 issue: 6 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0360 article-title: What we use is not what we know: environmental predictors in plant distribution models publication-title: J. Veg. Sci. doi: 10.1111/jvs.12444 – volume: 343 start-page: 19 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0375 article-title: Cultural ecosystem services provided by the biodiversity of forest soils: a European review publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.025 – volume: 160 start-page: 614 issue: 3–4 year: 2011 ident: 10.1016/j.geodrs.2021.e00437_bb0305 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2010.11.013 – volume: 179 start-page: 321 issue: 3 year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0395 article-title: Pedotransfer function to predict density of forest soils in Switzerland publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201500546 – volume: 4 start-page: 20 year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0500 article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France) publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2014.11.003 – year: 2015 ident: 10.1016/j.geodrs.2021.e00437_bb0535 article-title: Böden und Wasserhaushalt von Wäldern und Waldstandorten der Schweiz unter heutigem und zukünftigem Klima (BOWA-CH) publication-title: Birmensdorf. – volume: 69 start-page: 224 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0185 article-title: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.06.025 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.geodrs.2021.e00437_bb0285 article-title: Classification and regression by randomForest publication-title: R News – volume: 16 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0030 article-title: Digital mapping of soil classes in Algeria - a comparison of methods publication-title: Geoderma Reg – year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0085 – year: 2013 ident: 10.1016/j.geodrs.2021.e00437_bb0275 – ident: 10.1016/j.geodrs.2021.e00437_bb0370 – volume: 10 start-page: 469 year: 1999 ident: 10.1016/j.geodrs.2021.e00437_bb0560 article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach publication-title: J. Veg. Sci. doi: 10.2307/3237182 – volume: 337 start-page: 1329 year: 2019 ident: 10.1016/j.geodrs.2021.e00437_bb0480 article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.008 – volume: 285 start-page: 35 year: 2017 ident: 10.1016/j.geodrs.2021.e00437_bb0100 article-title: A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.019 – volume: 17 start-page: 413 issue: 3 year: 1991 ident: 10.1016/j.geodrs.2021.e00437_bb0145 article-title: Calculating catchment-area with divergent flow based on a regular grid publication-title: Comput. Geosci. doi: 10.1016/0098-3004(91)90048-I – volume: 28 start-page: 323 issue: 3 year: 1984 ident: 10.1016/j.geodrs.2021.e00437_bb0405 article-title: The extraction of drainage networks from digital elevation data publication-title: Computer Vision, Graphics, and Image Processing doi: 10.1016/S0734-189X(84)80011-0 – year: 2009 ident: 10.1016/j.geodrs.2021.e00437_bb0470 – year: 2016 ident: 10.1016/j.geodrs.2021.e00437_bb0450 |
SSID | ssj0002953762 |
Score | 2.3960063 |
Snippet | Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00437 |
SubjectTerms | biodiversity carbon sequestration clay data collection Digital soil mapping ecosystems Forest soils forests geostatistics gravel kriging landscapes Machine learning Model averaging prediction Quantile regression forest regression analysis sand soil density soil depth soil organic carbon Switzerland uncertainty Uncertainty maps water purification |
Title | Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland |
URI | https://dx.doi.org/10.1016/j.geodrs.2021.e00437 https://www.proquest.com/docview/2636434823 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_EiiopvVvAam93N81iKpVrag7XYW9hHIhFtQh8U_PXObJKCggieliS7Iczszny7mfmGkNtQZrDrCjMn1mACvTBjDtKmO0b4SgXMRIHEbOTxJBjOvMe5P2-RfpMLg2GVte2vbLq11vWdbi3Nbpnn3SkXljLI48w6MtgCdTh4V7dNOr2H0XCyO2rhMXKWcFtmzucOjmmS6Gyk12tamCVSd3N2l1qyn9-c1A9zbX3Q4IDs1-CR9qrvOyStdHFE8rGNh0xpXQDilaJnMnRV5O_0Q5YrCriUSrrNTUqXmEtAi6x6WuJJ_BIpVW0fwILY2hNQKgFNYsfpNl9_VinBx2Q2uH_uD526gIKjReSvnSiKWQYLWoEyIkB-hgfSZyaL3VhLV0euEsy4vptJBkYRy46EoBpfZGHkSsWMOCHtRbFITwlVSipYr7F2pfYCphUAGW0C3yCDmWfkGRGNxBJds4tjkYv3pAkje0sqOSco56SS8xlxdqPKil3jj_5ho4zk2yxJwAH8MfKm0V0CCwj_ishFWmygUyAAlXkRF-f_fvsF2cOrKszlkrTXy016BWBlra7ryYjt6Oll9AXRquoL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFFBXrcwWvsdlsnsdSLK3aXrTQ27KPRCI1KX1Q8Nc7s0kEBRE8BZLZEGZ2Z77dzHxDyG0kM9h1RZmTaHCBfpQxB2nTHcMDpUJm4lBiNfJ4Eg6n_sMsmLVIv6mFwbTK2vdXPt166_pOt9Zmd5Hn3WePW8og32M2kMEWaAfZqWCa7_RGj8PJ11GLlyBniWfbzAWeg2OaIjqb6fWalmaJ1N0eu0st2c9vQeqHu7YxaHBA9mvwSHvV9x2SVlockXxs8yFTWjeAeKUYmQxdlfmcvsvFigIupZJuc5PSJdYS0DKrni7wJH6JlKpWBrAgXu0JKJWAJlHweZuvP6qS4GMyHdy_9IdO3UDB0TwO1k4cJyyDBa3AGDEgP-OFMmAmS9xES1fHruLMuIGbSQZOEduORGCagGdR7ErFDD8h7aIs0lNClZIK1muiXan9kGkFQEabMDDIYOYb2SG80ZjQNbs4NrmYiyaN7E1UehaoZ1HpuUOcr1GLil3jD_moMYb4NksEBIA_Rt40thOwgPCviCzScgNCIQdU5sceP_v326_J7vBl_CSeRpPHc7KHT6qUlwvSXi836SUAl7W6qifmJ5t061c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+soil+maps+for+a+wide+range+of+soil+properties+for+the+forested+area+of+Switzerland&rft.jtitle=Geoderma+Regional&rft.au=Baltensweiler%2C+Andri&rft.au=Walthert%2C+Lorenz&rft.au=Hanewinkel%2C+Marc&rft.au=Zimmermann%2C+Stephan&rft.date=2021-12-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=27+p.e00437-&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00437&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |