Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland

Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed t...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 27; p. e00437
Main Authors Baltensweiler, Andri, Walthert, Lorenz, Hanewinkel, Marc, Zimmermann, Stephan, Nussbaum, Madlene
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover. Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R2 of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R2 = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps. •Legacy soil data were used to map soil properties for the entire Swiss forest area.•Seven chemical and physical soil properties for six depth intervals were predicted.•Performances of six modelling approaches and model averaging were compared.•Quantile regression forest performed best and was used for prediction.•Accompanying uncertainty maps provide guidelines for future mapping campaigns.
AbstractList Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover.Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R² of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R² = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps.
Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the predictions of the individual models by applying a weighted model averaging approach. All models were built from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data characterizing vegetation cover. Model performances, evaluated against an independent dataset were similar for all methods. However, QRF achieved the best prediction performance in most cases (18 out of 37 models), while model averaging outperformed the individual models in five cases. For the final soil property maps we therefore used the QRF predictions. Prediction performance showed large differences for the individual soil properties. While for fine earth density the R2 of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content was more difficult to predict (R2 = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the predictions and provide guidance for future mapping campaigns to improve the soil maps. •Legacy soil data were used to map soil properties for the entire Swiss forest area.•Seven chemical and physical soil properties for six depth intervals were predicted.•Performances of six modelling approaches and model averaging were compared.•Quantile regression forest performed best and was used for prediction.•Accompanying uncertainty maps provide guidelines for future mapping campaigns.
ArticleNumber e00437
Author Walthert, Lorenz
Hanewinkel, Marc
Baltensweiler, Andri
Zimmermann, Stephan
Nussbaum, Madlene
Author_xml – sequence: 1
  givenname: Andri
  surname: Baltensweiler
  fullname: Baltensweiler, Andri
  email: andri.baltensweiler@wsl.ch
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
– sequence: 2
  givenname: Lorenz
  surname: Walthert
  fullname: Walthert, Lorenz
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
– sequence: 3
  givenname: Marc
  surname: Hanewinkel
  fullname: Hanewinkel, Marc
  organization: Chair of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany
– sequence: 4
  givenname: Stephan
  surname: Zimmermann
  fullname: Zimmermann, Stephan
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
– sequence: 5
  givenname: Madlene
  surname: Nussbaum
  fullname: Nussbaum, Madlene
  organization: School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences BFH, Zollikofen, Switzerland
BookMark eNqFkD1rHDEQhkWwIf64f-BCZZq7jKT9TBEIxk4MDils12JWGt3p2JMukmwT_3rvsSmCC6fRCOZ9hpfnlB2FGIixCwErAaL5vF2tKdqUVxKkWBFApdoP7ESqWi4B-uron_9Htsh5CwCyr1XbyBPmf6LZ-EB8JEzBhzUfMJPlOfqR73CfuYuJI3_2lnjCsCYe3bzdp7inVDzNmbKhw6RcJhwT4SF49-zLC6URgz1nxw7HTIu_84w9XF_dX_5Y3v76fnP57XZpVFeXZdf1wimoh6Z1najBygZrYV0PvUEwHQxKWKjBoejapmmr6cWhVq7tAAdh1Rn7NN-d-v1-nOronc-GxqkDxcesZaOaSlWdVFP0yxw1KeacyGnjCxYfQ0noRy1AHxTrrZ4V64NiPSue4OoNvE9-h-nP_7CvM0aTgydPSWfjKRiyPpEp2kb__oFX6RWaIg
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_112654
crossref_primary_10_1016_j_geoderma_2022_116193
crossref_primary_10_3390_land12020494
crossref_primary_10_3389_frsen_2024_1461537
crossref_primary_10_1016_j_gca_2024_12_009
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1098_rsta_2023_0052
crossref_primary_10_1002_saj2_20705
crossref_primary_10_3389_fpls_2023_1309171
crossref_primary_10_3390_land12091696
crossref_primary_10_3390_rs16224304
crossref_primary_10_1016_j_jag_2022_102730
crossref_primary_10_1016_j_animal_2023_101028
crossref_primary_10_1007_s11295_023_01598_7
crossref_primary_10_1111_jbi_15124
crossref_primary_10_1111_ejss_13589
crossref_primary_10_1111_ecog_07174
crossref_primary_10_1016_j_catena_2024_108024
crossref_primary_10_3390_app14219990
crossref_primary_10_3390_rs16152712
crossref_primary_10_5194_essd_16_2941_2024
crossref_primary_10_1111_plb_13467
crossref_primary_10_1016_j_jag_2021_102614
crossref_primary_10_3390_land11122180
crossref_primary_10_1111_gcb_16332
crossref_primary_10_3390_bdcc7020113
crossref_primary_10_3390_su141912170
Cites_doi 10.1038/s41598-019-39133-1
10.1016/j.geoderma.2012.11.020
10.1016/j.envsoft.2021.105139
10.1016/j.geoderma.2018.12.037
10.1016/j.tree.2006.09.010
10.1016/j.jhydrol.2011.08.067
10.1016/j.scitotenv.2020.142291
10.5194/soil-6-269-2020
10.1016/j.geoderma.2018.09.007
10.1016/S0921-8009(01)00154-9
10.1016/j.geoderma.2009.04.022
10.5194/gmd-7-1197-2014
10.1016/j.coesh.2017.12.003
10.1111/jbi.13803
10.1016/S0016-7061(01)00067-2
10.1002/jpln.200900158
10.1023/A:1015886308016
10.1016/j.foreco.2005.08.015
10.1016/j.geoderma.2019.114061
10.1016/j.geoderma.2011.06.002
10.1109/LGRS.2005.857030
10.1016/j.geoderma.2015.07.017
10.1111/avsc.12028
10.1016/j.geoderma.2020.114663
10.1051/forest:2006042
10.1071/SR15100
10.1098/rsta.2007.2076
10.1016/j.geoderma.2014.09.019
10.1016/B978-0-12-800137-0.00003-0
10.1016/j.geoderma.2007.05.013
10.3390/soilsystems3020037
10.1016/j.rse.2011.11.026
10.1016/j.earscirev.2020.103359
10.5194/soil-4-1-2018
10.1016/j.scitotenv.2016.07.066
10.1002/sim.4780111409
10.1016/j.geoderma.2019.05.012
10.1111/j.2517-6161.1964.tb00553.x
10.1016/j.geoderma.2014.03.021
10.1016/j.geoderma.2014.09.018
10.1016/j.catena.2019.104141
10.1016/j.geodrs.2016.12.001
10.1007/s00477-010-0378-z
10.1016/S0016-7061(03)00223-4
10.3390/rs9080766
10.1016/S0378-1127(02)00656-4
10.1016/j.ecolind.2015.08.036
10.1016/j.geoderma.2009.07.010
10.1016/j.envsoft.2017.05.009
10.1016/j.geoderma.2017.03.015
10.1007/978-0-387-84858-7
10.5194/soil-4-173-2018
10.1016/j.geoderma.2014.04.033
10.1038/ismej.2012.84
10.1016/j.geoderma.2007.11.004
10.1016/j.geoderma.2019.01.007
10.1016/j.geoderma.2020.114237
10.1071/SR14366
10.1016/j.geoderma.2016.12.017
10.1016/j.geoderma.2010.12.018
10.1016/j.geoderma.2014.11.016
10.7717/peerj.5518
10.1016/j.geoderma.2020.114383
10.1016/S0034-4257(96)00072-7
10.1126/science.aaz9463
10.1016/j.catena.2013.09.009
10.1016/j.geoderma.2016.12.001
10.2136/sssaj2011.0025
10.1016/S0034-4257(98)00059-5
10.1111/jvs.12444
10.1016/j.geoderma.2019.02.025
10.1016/j.geoderma.2010.11.013
10.1002/jpln.201500546
10.1016/j.geodrs.2014.11.003
10.1016/j.landusepol.2017.06.025
10.2307/3237182
10.1016/j.geoderma.2018.09.008
10.1016/j.geoderma.2016.09.019
10.1016/0098-3004(91)90048-I
10.1016/S0734-189X(84)80011-0
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2021.e00437
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2021_e00437
S2352009421000821
GeographicLocations Switzerland
GeographicLocations_xml – name: Switzerland
GroupedDBID --M
0R~
4.4
457
4G.
6I.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c385t-8891f305b67f8150d26a51df909ca0c80b31d050fa1876674876ab53f780ab1d3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Mon Jul 21 09:23:00 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Thu Apr 24 22:58:58 EDT 2025
Fri Feb 23 02:44:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Quantile regression forest
Uncertainty maps
Digital soil mapping
Model averaging
Machine learning
Forest soils
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-8891f305b67f8150d26a51df909ca0c80b31d050fa1876674876ab53f780ab1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352009421000821
PQID 2636434823
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636434823
crossref_citationtrail_10_1016_j_geodrs_2021_e00437
crossref_primary_10_1016_j_geodrs_2021_e00437
elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Frehner, Remund, Walthert, Kägi, Rihm, Brang (bb0150) 2011
Freeman (bb0145) 1991; 17
Wilks (bb0550) 2011
Swiss Federal Statistical Office (bb0455) 2001
Malone, McBratney, Minasny (bb0305) 2011; 160
Bundesamt für Raumentwicklung (bb0085) 2016
McDowell, Allen, Anderson-Teixeira, Aukema, Bond-Lamberty, Chini, Clark, Dietze, Grossiord, Hanbury-Brown, Hurtt, Jackson, Johnson, Kueppers, Lichstein, Ogle, Poulter, Pugh, Seidl, Turner, Uriarte, Walker, Xu (bb0330) 2020; 368
Vaysse, Lagacherie (bb0500) 2015; 4
Goovaerts (bb0180) 2001; 103
Viscarra Rossel, Chen, Grundy, Searle, Clifford, Campbell (bb0510) 2015; 53
Hartmann, Howes, VanInsberghe, Yu, Bachar, Christen, Henrik Nilsson, Hallam, Mohn (bb0220) 2012; 6
Malone, Minasny, Odgers, McBratney (bb0310) 2014; 232-234
Miller, Koszinski, Wehrhan, Sommer (bb0350) 2015; 239
Motiejūnaitė, Børja, Ostonen, Bakker, Bjarnadottir, Brunner, Iršėnaitė, Mrak, Oddsdóttir, Lehto (bb0375) 2019; 343
Hümann, Schüler, Müller, Schneider, Johst, Caspari (bb0250) 2011; 409
Kuhn, Johnson (bb0275) 2013
Hamzehpour, Shafizadeh-Moghadam, Valavi (bb0210) 2019; 182
Gomes, Faria, de Souza, Veloso, Schaefer, Filho (bb0170) 2019; 340
Meinshausen (bb0340) 2017
AK SK (Arbeitskreis Standortskartierung) (bb0015) 2016
Pereira, Bogunovic, Muñoz-Rojas, Brevik (bb0415) 2018; 5
Spiess (bb0450) 2016
Mulder, de Bruin, Schaepman, Mayr (bb0380) 2011; 162
Keskin, Grunwald, Harris (bb0265) 2019; 339
Jenness (bb0255) 2011
Simon, Geitner, Katzensteiner (bb0445) 2020; 371
Guevara, Olmedo, Stell, Yigini, Aguilar Duarte, Arellano Hernández, Arévalo, Arroyo-Cruz, Bolivar, Bunning, Bustamante Cañas, Cruz-Gaistardo, Davila, Dell Acqua, Encina, Figueredo Tacona, Fontes, Hernández Herrera, Ibelles Navarro, Loayza, Manueles, Mendoza Jara, Olivera, Osorio Hermosilla, Pereira, Prieto, Ramos, Rey Brina, Rivera, Rodríguez-Rodríguez, Roopnarine, Rosales Ibarra, Rosales Riveiro, Schulz, Spence, Vasques, Vargas, Vargas (bb0200) 2018; 4
Wadoux (bb0515) 2019; 351
Wadoux, Minasny, McBratney (bb0520) 2020; 210
Creed, Trick, Band, Morrison (bb0120) 2002; 2
Hartanto, Prabhu, Widayat, Asdak (bb0215) 2003; 180
Hertzog (bb0235) 2017
Román Dobarco, Arrouays, Lagacherie, Ciampalini, Saby (bb0425) 2017; 298
Lal (bb0280) 2005; 220
Tebaldi, Knutti (bb0490) 2007; 365
Bundesamt für Landestopografie (bb0080) 1967
Caubet, Román Dobarco, Arrouays, Minasny, Saby (bb0105) 2019; 337
Minasny, McBratney (bb0355) 2016; 264
Waser, Ginzler, Rehush (bb0540) 2017; 9
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0140) 2012; 120
Mosimann, T., 2004-2010. Dokumentation der Waldböden der Kantone Basel-Landschaft und Basel-Stadt. Geosynthesis Sonderbände 1–4; Physische Geographie und Landschaftsökologie, Leibniz Universität Hannover; erarbeitet im Auftrag des Amts für Umweltschutz und Energie des Kantons Basel-Landschaft sowie des Forstamts beider Basel.
Zimmermann, Kienast (bb0560) 1999; 10
Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonca-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0025) 2014
Mahmoudzadeh, Matinfar, Taghizadeh-Mehrjardi, Kerry (bb0300) 2020; 21
Liaw, Wiener (bb0285) 2002; 2
Chen, Mulder, Heuvelink, Poggio, Caubet, Román Dobarco, Walter, Arrouays (bb0115) 2020; 366
Camathias, Bergamini, Kuchler, Stofer, Baltensweiler (bb0095) 2013; 16
MeteoSwiss (bb0345) 2020
Møller, Beucher, Pouladi, Greve (bb0365) 2020; 6
Walthert, Graf, Kammer, Luster, Pezzotta, Zimmermann, Hagedorn (bb0530) 2010; 173
Ågren, Larson, Paul, Laudon, Lidberg (bb0010) 2021
Hengl, Nussbaum, Wright, Heuvelink, Graler (bb0230) 2018; 6
Behrens, Zhu, Schmidt, Scholten (bb0050) 2010; 155
Davison, Hinkley (bb0125) 1997
Dharumarajan, Kalaiselvi, Suputhra, Lalitha, Hegde, Singh, Lagacherie (bb0130) 2020; 20
Grunwald, Thompson, Boettinger (bb0195) 2011; 75
O'Callaghan, Mark (bb0405) 1984; 28
Padarian, Minasny, McBratney (bb0410) 2017; 9
Gee, Bauder, Klute (bb0160) 1986
Kasraei, Heung, Saurette, Schmidt, Bulmer, Bethel (bb0260) 2021; 144
Araujo, New (bb0020) 2007; 22
Cavazzi, Corstanje, Mayr, Hannam, Fealy (bb0110) 2013; 195-196
Walthert, Zimmermann, Blaser, Luster, Lüscher (bb0525) 2004
Baltensweiler, Heuvelink, Hanewinkel, Walthert (bb0045) 2020; 380
Swisstopo (bb0475) 2020
Nussbaum, Spiess, Baltensweiler, Grob, Keller, Greiner, Schaepman, Papritz (bb0400) 2018; 4
Vaysse, Lagacherie (bb0505) 2017; 291
Camera, Zomeni, Noller, Zissimos, Christoforou, Bruggeman (bb0100) 2017; 285
Heung, Hodul, Schmidt (bb0240) 2017; 290
Liu, Zhang, Song, Li, Zhao, Yang, Wu, Yang (bb0295) 2020; 361
Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich, Feng, Kutler, Teng-Kui (bb0315) 2006; 3
Assami, Hamdi-Aissa (bb0030) 2019; 16
Taghizadeh-Mehrjardi, Minasny, Toomanian, Zeraatpisheh, Amirian-Chakan, Triantafilis (bb0485) 2019; 3
Buri, Grand, Yashiro, Adatte, Spangenberg, Pinto-Figueroa, Verrecchia, Guisan (bb0090) 2020; 47
Kim, Zheng (bb0270) 2011; 164
Blackburn (bb0055) 1998; 66
Thomas, Clifford, Bartley, Philip, Brough, Gregory, Willis, Glover (bb0495) 2015; 241-242
Rouse, Haas, Schell, Deering (bb0430) 1974
Baltensweiler, Walthert, Ginzler, Sutter, Purves, Hanewinkel (bb0040) 2017; 95
Abbott (bb0005) 2014
Petermann, Meyer, Nussbaum, Bossew (bb0420) 2021; 754
Diks, Vrugt (bb0135) 2010; 24
Brungard, Boettinger, Duniway, Wills, Edwards (bb0075) 2015; 239-240
McBratney, Santos, Minasny (bb0325) 2003; 117
Gal, Ghahramani (bb0155) 2016
Mulder, Lacoste, Richer-de-Forges, Arrouays (bb0385) 2016; 573
Wei (bb0545) 1992; 11
Walthert, Scherler, Stähli, Huber, Baltensweiler, Ramirez-Lopez, Papritz (bb0535) 2015
Szatmári, Pásztor (bb0480) 2019; 337
Gitelson, Kaufman, Merzlyak (bb0165) 1996; 58
Nussbaum, Papritz, Zimmermann, Walthert (bb0395) 2016; 179
Greiner, Keller, Gret-Regamey, Papritz (bb0185) 2017; 69
Liddicoat, Maschmedt, Clifford, Searle, Herrmann, Macdonald, Baldock (bb0290) 2015; 53
Swiss National Forest Inventory LFI (bb0460) 1984
Yang, Zhang, Liu, Lu, Yang, Yang, Yang, Zhao, Li (bb0555) 2016; 60
Hastie, Tibshirani, Friedman (bb0225) 2009
Guo, Xiao, Gan, Zheng (bb0205) 2001; 38
Scherrer, Guisan (bb0435) 2019; 9
Nussbaum, Papritz, Baltensweiler, Walthert (bb0390) 2014; 7
Gonseth, Wohlgemuth, Sansonnens, Buttler (bb0175) 2001
Box, Cox (bb0060) 1964; 26
Ballabio (bb0035) 2009; 151
Maynard, Johnson (bb0320) 2014; 230
Hoffmann, Hoffmann, Johnson, Kuhn (bb0245) 2014; 113
Bréda, Huc, Granier, Dreyer (bb0070) 2006; 63
Mod, Scherrer, Luoto, Guisan, Scheiner (bb0360) 2016; 27
Grinand, Arrouays, Laroche, Martin (bb0190) 2008; 143
Meinshausen (bb0335) 2006; 7
Swisstopo (bb0465) 2007
Brändli, Abegg, Allgaier Leuch (bb0065) 2020
Swisstopo (bb0470) 2009
Seibert, Stendahl, Sorensen (bb0440) 2007; 141
Camera (10.1016/j.geodrs.2021.e00437_bb0100) 2017; 285
Guevara (10.1016/j.geodrs.2021.e00437_bb0200) 2018; 4
Araujo (10.1016/j.geodrs.2021.e00437_bb0020) 2007; 22
Minasny (10.1016/j.geodrs.2021.e00437_bb0355) 2016; 264
Brungard (10.1016/j.geodrs.2021.e00437_bb0075) 2015; 239-240
Swisstopo (10.1016/j.geodrs.2021.e00437_bb0470) 2009
Wei (10.1016/j.geodrs.2021.e00437_bb0545) 1992; 11
Motiejūnaitė (10.1016/j.geodrs.2021.e00437_bb0375) 2019; 343
Swisstopo (10.1016/j.geodrs.2021.e00437_bb0465)
Bundesamt für Landestopografie (10.1016/j.geodrs.2021.e00437_bb0080) 1967
Seibert (10.1016/j.geodrs.2021.e00437_bb0440) 2007; 141
Jenness (10.1016/j.geodrs.2021.e00437_bb0255) 2011
Hartanto (10.1016/j.geodrs.2021.e00437_bb0215) 2003; 180
Hartmann (10.1016/j.geodrs.2021.e00437_bb0220) 2012; 6
Szatmári (10.1016/j.geodrs.2021.e00437_bb0480) 2019; 337
Davison (10.1016/j.geodrs.2021.e00437_bb0125) 1997
Wadoux (10.1016/j.geodrs.2021.e00437_bb0520) 2020; 210
Cavazzi (10.1016/j.geodrs.2021.e00437_bb0110) 2013; 195-196
Malone (10.1016/j.geodrs.2021.e00437_bb0305) 2011; 160
Mod (10.1016/j.geodrs.2021.e00437_bb0360) 2016; 27
McDowell (10.1016/j.geodrs.2021.e00437_bb0330) 2020; 368
Diks (10.1016/j.geodrs.2021.e00437_bb0135) 2010; 24
Vaysse (10.1016/j.geodrs.2021.e00437_bb0505) 2017; 291
Simon (10.1016/j.geodrs.2021.e00437_bb0445) 2020; 371
Greiner (10.1016/j.geodrs.2021.e00437_bb0185) 2017; 69
McBratney (10.1016/j.geodrs.2021.e00437_bb0325) 2003; 117
Scherrer (10.1016/j.geodrs.2021.e00437_bb0435) 2019; 9
Tebaldi (10.1016/j.geodrs.2021.e00437_bb0490) 2007; 365
Grunwald (10.1016/j.geodrs.2021.e00437_bb0195) 2011; 75
Gee (10.1016/j.geodrs.2021.e00437_bb0160) 1986
Behrens (10.1016/j.geodrs.2021.e00437_bb0050) 2010; 155
AK SK (Arbeitskreis Standortskartierung) (10.1016/j.geodrs.2021.e00437_bb0015) 2016
Meinshausen (10.1016/j.geodrs.2021.e00437_bb0340)
Bréda (10.1016/j.geodrs.2021.e00437_bb0070) 2006; 63
Guo (10.1016/j.geodrs.2021.e00437_bb0205) 2001; 38
Liu (10.1016/j.geodrs.2021.e00437_bb0295) 2020; 361
Ballabio (10.1016/j.geodrs.2021.e00437_bb0035) 2009; 151
Caubet (10.1016/j.geodrs.2021.e00437_bb0105) 2019; 337
Wilks (10.1016/j.geodrs.2021.e00437_bb0550) 2011
Møller (10.1016/j.geodrs.2021.e00437_bb0365) 2020; 6
Camathias (10.1016/j.geodrs.2021.e00437_bb0095) 2013; 16
Blackburn (10.1016/j.geodrs.2021.e00437_bb0055) 1998; 66
Viscarra Rossel (10.1016/j.geodrs.2021.e00437_bb0510) 2015; 53
Malone (10.1016/j.geodrs.2021.e00437_bb0310) 2014; 232-234
Zimmermann (10.1016/j.geodrs.2021.e00437_bb0560) 1999; 10
Box (10.1016/j.geodrs.2021.e00437_bb0060) 1964; 26
Arrouays (10.1016/j.geodrs.2021.e00437_bb0025) 2014
Hümann (10.1016/j.geodrs.2021.e00437_bb0250) 2011; 409
Román Dobarco (10.1016/j.geodrs.2021.e00437_bb0425) 2017; 298
Frehner (10.1016/j.geodrs.2021.e00437_bb0150) 2011
Padarian (10.1016/j.geodrs.2021.e00437_bb0410) 2017; 9
Baltensweiler (10.1016/j.geodrs.2021.e00437_bb0045) 2020; 380
Swiss Federal Statistical Office (10.1016/j.geodrs.2021.e00437_bb0455) 2001
Goovaerts (10.1016/j.geodrs.2021.e00437_bb0180) 2001; 103
Hengl (10.1016/j.geodrs.2021.e00437_bb0230) 2018; 6
Kuhn (10.1016/j.geodrs.2021.e00437_bb0275) 2013
Hastie (10.1016/j.geodrs.2021.e00437_bb0225) 2009
Walthert (10.1016/j.geodrs.2021.e00437_bb0525) 2004
Mahmoudzadeh (10.1016/j.geodrs.2021.e00437_bb0300) 2020; 21
Grinand (10.1016/j.geodrs.2021.e00437_bb0190) 2008; 143
Rouse (10.1016/j.geodrs.2021.e00437_bb0430) 1974
Chen (10.1016/j.geodrs.2021.e00437_bb0115) 2020; 366
Meinshausen (10.1016/j.geodrs.2021.e00437_bb0335) 2006; 7
Kasraei (10.1016/j.geodrs.2021.e00437_bb0260) 2021; 144
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00437_bb0485) 2019; 3
Brändli (10.1016/j.geodrs.2021.e00437_bb0065) 2020
Thomas (10.1016/j.geodrs.2021.e00437_bb0495) 2015; 241-242
Creed (10.1016/j.geodrs.2021.e00437_bb0120) 2002; 2
Swiss National Forest Inventory LFI (10.1016/j.geodrs.2021.e00437_bb0460) 1984
Drusch (10.1016/j.geodrs.2021.e00437_bb0140) 2012; 120
Maynard (10.1016/j.geodrs.2021.e00437_bb0320) 2014; 230
Liaw (10.1016/j.geodrs.2021.e00437_bb0285) 2002; 2
Nussbaum (10.1016/j.geodrs.2021.e00437_bb0400) 2018; 4
10.1016/j.geodrs.2021.e00437_bb0370
Liddicoat (10.1016/j.geodrs.2021.e00437_bb0290) 2015; 53
Gomes (10.1016/j.geodrs.2021.e00437_bb0170) 2019; 340
Assami (10.1016/j.geodrs.2021.e00437_bb0030) 2019; 16
Hoffmann (10.1016/j.geodrs.2021.e00437_bb0245) 2014; 113
Nussbaum (10.1016/j.geodrs.2021.e00437_bb0395) 2016; 179
O'Callaghan (10.1016/j.geodrs.2021.e00437_bb0405) 1984; 28
Ågren (10.1016/j.geodrs.2021.e00437_bb0010) 2021
Freeman (10.1016/j.geodrs.2021.e00437_bb0145) 1991; 17
Vaysse (10.1016/j.geodrs.2021.e00437_bb0500) 2015; 4
Walthert (10.1016/j.geodrs.2021.e00437_bb0530) 2010; 173
Gitelson (10.1016/j.geodrs.2021.e00437_bb0165) 1996; 58
Waser (10.1016/j.geodrs.2021.e00437_bb0540) 2017; 9
Miller (10.1016/j.geodrs.2021.e00437_bb0350) 2015; 239
Hertzog (10.1016/j.geodrs.2021.e00437_bb0235) 2017
Abbott (10.1016/j.geodrs.2021.e00437_bb0005) 2014
MeteoSwiss (10.1016/j.geodrs.2021.e00437_bb0345)
Keskin (10.1016/j.geodrs.2021.e00437_bb0265) 2019; 339
Swisstopo (10.1016/j.geodrs.2021.e00437_bb0475)
Mulder (10.1016/j.geodrs.2021.e00437_bb0380) 2011; 162
Gonseth (10.1016/j.geodrs.2021.e00437_bb0175) 2001
Pereira (10.1016/j.geodrs.2021.e00437_bb0415) 2018; 5
Hamzehpour (10.1016/j.geodrs.2021.e00437_bb0210) 2019; 182
Petermann (10.1016/j.geodrs.2021.e00437_bb0420) 2021; 754
Bundesamt für Raumentwicklung (10.1016/j.geodrs.2021.e00437_bb0085) 2016
Walthert (10.1016/j.geodrs.2021.e00437_bb0535) 2015
Baltensweiler (10.1016/j.geodrs.2021.e00437_bb0040) 2017; 95
Yang (10.1016/j.geodrs.2021.e00437_bb0555) 2016; 60
Heung (10.1016/j.geodrs.2021.e00437_bb0240) 2017; 290
Nussbaum (10.1016/j.geodrs.2021.e00437_bb0390) 2014; 7
Kim (10.1016/j.geodrs.2021.e00437_bb0270) 2011; 164
Lal (10.1016/j.geodrs.2021.e00437_bb0280) 2005; 220
Spiess (10.1016/j.geodrs.2021.e00437_bb0450) 2016
Buri (10.1016/j.geodrs.2021.e00437_bb0090) 2020; 47
Mulder (10.1016/j.geodrs.2021.e00437_bb0385) 2016; 573
Wadoux (10.1016/j.geodrs.2021.e00437_bb0515) 2019; 351
Dharumarajan (10.1016/j.geodrs.2021.e00437_bb0130) 2020; 20
Gal (10.1016/j.geodrs.2021.e00437_bb0155) 2016
Masek (10.1016/j.geodrs.2021.e00437_bb0315) 2006; 3
References_xml – volume: 22
  start-page: 42
  year: 2007
  end-page: 47
  ident: bb0020
  article-title: Ensemble forecasting of species distributions
  publication-title: Trends Ecol. Evol.
– volume: 26
  start-page: 211
  year: 1964
  end-page: 243
  ident: bb0060
  article-title: An analysis of transformations
  publication-title: J R Stat Soc B Methodol
– volume: 182
  start-page: 104141
  year: 2019
  ident: bb0210
  article-title: Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture
  publication-title: Catena
– start-page: 404
  year: 1986
  end-page: 410
  ident: bb0160
  article-title: Methods of soil analysis, part 1, physical and mineralogical methods. Soil science Society of America Book Series
– volume: 151
  start-page: 338
  year: 2009
  end-page: 350
  ident: bb0035
  article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression
  publication-title: Geoderma
– year: 2017
  ident: bb0340
  article-title: quantregForest: Quantile Regression Forests
– volume: 95
  start-page: 13
  year: 2017
  end-page: 21
  ident: bb0040
  article-title: Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation
  publication-title: Environ. Model Softw.
– volume: 241-242
  start-page: 145
  year: 2015
  end-page: 157
  ident: bb0495
  article-title: Putting regional digital soil mapping into practice in tropical northern Australia
  publication-title: Geoderma
– year: 2001
  ident: bb0175
  article-title: Die biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien Nr. 137. Swiss Agency for the Environment, Forests and Landscape SAEFL, Bern
– volume: 232-234
  start-page: 34
  year: 2014
  end-page: 44
  ident: bb0310
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
– year: 2011
  ident: bb0150
  article-title: Schätzung standortspezifischer Trockenstressrisiken in Schweizer Wäldern. Schlussbericht / Version 2.3, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bb0335
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 269
  year: 2020
  end-page: 289
  ident: bb0365
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
– volume: 63
  start-page: 625
  year: 2006
  end-page: 644
  ident: bb0070
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences
  publication-title: Ann. For. Sci.
– volume: 230
  start-page: 29
  year: 2014
  end-page: 40
  ident: bb0320
  article-title: Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent
  publication-title: Geoderma
– volume: 4
  start-page: 1
  year: 2018
  end-page: 22
  ident: bb0400
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: Soil
– volume: 210
  year: 2020
  ident: bb0520
  article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
– volume: 113
  start-page: 107
  year: 2014
  end-page: 121
  ident: bb0245
  article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta)
  publication-title: CATENA
– volume: 162
  start-page: 1
  year: 2011
  end-page: 19
  ident: bb0380
  article-title: The use of remote sensing in soil and terrain mapping - a review
  publication-title: Geoderma
– start-page: 404
  year: 2021
  ident: bb0010
  article-title: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape Geoderma
– volume: 380
  start-page: 114663
  year: 2020
  ident: bb0045
  article-title: Microtopography shapes soil pH in flysch regions across Switzerland
  publication-title: Geoderma
– volume: 340
  start-page: 337
  year: 2019
  end-page: 350
  ident: bb0170
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
– volume: 6
  start-page: 2199
  year: 2012
  end-page: 2218
  ident: bb0220
  article-title: Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests
  publication-title: ISME J
– year: 2020
  ident: bb0475
  article-title: Height Models
– volume: 366
  start-page: 114237
  year: 2020
  ident: bb0115
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
– volume: 339
  start-page: 40
  year: 2019
  end-page: 58
  ident: bb0265
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
– volume: 103
  start-page: 3
  year: 2001
  end-page: 26
  ident: bb0180
  article-title: Geostatistical modelling of uncertainty in soil science
  publication-title: Geoderma
– year: 2009
  ident: bb0225
  article-title: The Elements of Statistical Learning. Springer Series in Statistics
– volume: 9
  start-page: 766
  year: 2017
  ident: bb0540
  article-title: Wall-To-Wall tree type mapping from countrywide airborne remote sensing surveys
  publication-title: Remote Sens.
– volume: 371
  start-page: 114383
  year: 2020
  ident: bb0445
  article-title: A framework for the predictive mapping of forest soil properties in mountain areas
  publication-title: Geoderma
– volume: 220
  start-page: 242
  year: 2005
  end-page: 258
  ident: bb0280
  article-title: Forest soils and carbon sequestration
  publication-title: For. Ecol. Manag.
– year: 2009
  ident: bb0470
  article-title: Switzerland during the Last Glacial Maximum
– volume: 27
  start-page: 1308
  year: 2016
  end-page: 1322
  ident: bb0360
  article-title: What we use is not what we know: environmental predictors in plant distribution models
  publication-title: J. Veg. Sci.
– volume: 60
  start-page: 870
  year: 2016
  end-page: 878
  ident: bb0555
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
– volume: 2
  start-page: 81
  year: 2002
  end-page: 102
  ident: bb0120
  article-title: Characterizing the spatial pattern of soil carbon and nitrogen pools in the Turkey Lakes watershed: a comparison of regression techniques
  publication-title: Water, Air and Soil Pollution: Focus
– volume: 53
  start-page: 845
  year: 2015
  end-page: 864
  ident: bb0510
  article-title: The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project
  publication-title: Soil Research
– year: 1967
  ident: bb0080
  article-title: Geotechnische Karte der Schweiz
– volume: 343
  start-page: 19
  year: 2019
  end-page: 30
  ident: bb0375
  article-title: Cultural ecosystem services provided by the biodiversity of forest soils: a European review
  publication-title: Geoderma
– volume: 179
  start-page: 321
  year: 2016
  end-page: 326
  ident: bb0395
  article-title: Pedotransfer function to predict density of forest soils in Switzerland
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 239
  start-page: 97
  year: 2015
  end-page: 106
  ident: bb0350
  article-title: Impact of multi-scale predictor selection for modeling soil properties
  publication-title: Geoderma
– volume: 47
  start-page: 1143
  year: 2020
  end-page: 1153
  ident: bb0090
  article-title: What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps
  publication-title: J. Biogeogr.
– volume: 141
  start-page: 139
  year: 2007
  end-page: 148
  ident: bb0440
  article-title: Topographical influences on soil properties in boreal forests
  publication-title: Geoderma
– volume: 20
  year: 2020
  ident: bb0130
  article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau
  publication-title: Geoderma Reg
– volume: 754
  start-page: 142291
  year: 2021
  ident: bb0420
  article-title: Mapping the geogenic radon potential for Germany by machine learning
  publication-title: Sci. Total Environ.
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: bb0195
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
– volume: 409
  start-page: 637
  year: 2011
  end-page: 649
  ident: bb0250
  article-title: Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods
  publication-title: J. Hydrol.
– volume: 24
  start-page: 809
  year: 2010
  end-page: 820
  ident: bb0135
  article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications
  publication-title: Stoch. Env. Res. Risk A.
– year: 2020
  ident: bb0345
  article-title: Spatial Climate Analyses
– year: 2015
  ident: bb0535
  article-title: Böden und Wasserhaushalt von Wäldern und Waldstandorten der Schweiz unter heutigem und zukünftigem Klima (BOWA-CH)
  publication-title: Birmensdorf.
– start-page: 341
  year: 2020
  ident: bb0065
  article-title: Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009-2017. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt BAFU
  publication-title: Birmensdorf; Bern
– volume: 4
  start-page: 173
  year: 2018
  end-page: 193
  ident: bb0200
  article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
  publication-title: SOIL
– volume: 239-240
  start-page: 68
  year: 2015
  end-page: 83
  ident: bb0075
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– year: 2004
  ident: bb0525
  article-title: Waldböden der Schweiz
  publication-title: Grundlagen und Region Jura, Band 1
– volume: 160
  start-page: 614
  year: 2011
  end-page: 626
  ident: bb0305
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
– volume: 290
  start-page: 51
  year: 2017
  end-page: 68
  ident: bb0240
  article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes
  publication-title: Geoderma
– volume: 16
  start-page: 539
  year: 2013
  end-page: 551
  ident: bb0095
  article-title: High-resolution remote sensing data improves models of species richness
  publication-title: Appl. Veg. Sci.
– volume: 9
  start-page: 3061
  year: 2019
  ident: bb0435
  article-title: Ecological indicator values reveal missing predictors of species distributions
  publication-title: Sci. Rep.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0140
  article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services
  publication-title: Remote Sens. Environ.
– volume: 365
  start-page: 2053
  year: 2007
  end-page: 2075
  ident: bb0490
  article-title: The use of the multi-model ensemble in probabilistic climate projections
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– year: 2016
  ident: bb0085
  article-title: Landschaftstypologie Schweiz
– year: 2016
  ident: bb0450
  article-title: Vorhersage von Bodeneigenschaften mit Quantile Regression Forest, Validierung und Vergleich mit den Vorhersagen aus geoadditiven Modellen
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0315
  article-title: A Landsat surface reflectance dataset for North America, 1990-2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  start-page: 1197
  year: 2014
  end-page: 1210
  ident: bb0390
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
– volume: 21
  year: 2020
  ident: bb0300
  article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran
  publication-title: Geoderma Reg
– year: 2011
  ident: bb0550
  article-title: Statistical Methods in the Atmospheric Sciences, 100
– volume: 361
  start-page: 114061
  year: 2020
  ident: bb0295
  article-title: High-resolution and three-dimensional mapping of soil texture of China
  publication-title: Geoderma
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: bb0355
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  ident: bb0545
  article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis
  publication-title: Stat. Med.
– volume: 573
  start-page: 1352
  year: 2016
  end-page: 1369
  ident: bb0385
  article-title: GlobalSoilMap France: high-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 37
  year: 2019
  ident: bb0485
  article-title: Digital mapping of soil classes using Ensemble of Models in Isfahan region, Iran
  publication-title: Soil Systems
– volume: 337
  start-page: 99
  year: 2019
  end-page: 110
  ident: bb0105
  article-title: Merging country, continental and global predictions of soil texture: lessons from ensemble modelling in France
  publication-title: Geoderma
– volume: 368
  year: 2020
  ident: bb0330
  article-title: Pervasive shifts in forest dynamics in a changing world
  publication-title: Science
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: bb0155
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning, international conference on machine learning
  publication-title: PMLR
– volume: 58
  start-page: 289
  year: 1996
  end-page: 298
  ident: bb0165
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 105139
  year: 2021
  ident: bb0260
  article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning
  publication-title: Environ. Model Softw.
– volume: 28
  start-page: 323
  year: 1984
  end-page: 344
  ident: bb0405
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 69
  start-page: 224
  year: 2017
  end-page: 237
  ident: bb0185
  article-title: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services
  publication-title: Land Use Policy
– year: 1984
  ident: bb0460
  article-title: PH Topsoil Samples from the Swiss National Forest Inventory. Swiss Federal Institute for Forest
– volume: 143
  start-page: 180
  year: 2008
  end-page: 190
  ident: bb0190
  article-title: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context
  publication-title: Geoderma
– year: 2017
  ident: bb0235
  article-title: Modelling Soil Attributes with the Random Forest Method for the Swiss Forest Area
– volume: 195-196
  start-page: 111
  year: 2013
  end-page: 121
  ident: bb0110
  article-title: Are fine resolution digital elevation models always the best choice in digital soil mapping?
  publication-title: Geoderma
– volume: 53
  year: 2015
  ident: bb0290
  article-title: Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone
  publication-title: Soil Research
– volume: 10
  start-page: 469
  year: 1999
  end-page: 482
  ident: bb0560
  article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach
  publication-title: J. Veg. Sci.
– start-page: 93
  year: 2014
  end-page: 134
  ident: bb0025
  article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
– volume: 66
  start-page: 273
  year: 1998
  end-page: 285
  ident: bb0055
  article-title: Quantifying chlorophylls and Caroteniods at leaf and canopy scales: an evaluation of some Hyperspectral approaches
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 17
  year: 2017
  end-page: 28
  ident: bb0410
  article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap
  publication-title: Geoderma Reg
– volume: 4
  start-page: 20
  year: 2015
  end-page: 30
  ident: bb0500
  article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
  publication-title: Geoderma Reg
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  ident: bb0145
  article-title: Calculating catchment-area with divergent flow based on a regular grid
  publication-title: Comput. Geosci.
– volume: 298
  start-page: 67
  year: 2017
  end-page: 77
  ident: bb0425
  article-title: Prediction of topsoil texture for region Centre (France) applying model ensemble methods
  publication-title: Geoderma
– year: 2001
  ident: bb0455
  article-title: Swiss soil suitability map
– year: 2014
  ident: bb0005
  article-title: Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst
– volume: 291
  start-page: 55
  year: 2017
  end-page: 64
  ident: bb0505
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
– year: 1997
  ident: bb0125
  article-title: Bootstrap Methods and their Application
– volume: 155
  start-page: 175
  year: 2010
  end-page: 185
  ident: bb0050
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma
– year: 2013
  ident: bb0275
  article-title: Applied Predictive Modeling, 26
– volume: 337
  start-page: 1329
  year: 2019
  end-page: 1340
  ident: bb0480
  article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms
  publication-title: Geoderma
– volume: 164
  start-page: 181
  year: 2011
  end-page: 194
  ident: bb0270
  article-title: Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system
  publication-title: Geoderma
– volume: 16
  year: 2019
  ident: bb0030
  article-title: Digital mapping of soil classes in Algeria - a comparison of methods
  publication-title: Geoderma Reg
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0325
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 285
  start-page: 35
  year: 2017
  end-page: 49
  ident: bb0100
  article-title: A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization
  publication-title: Geoderma
– year: 2007
  ident: bb0465
  article-title: Hydrogeological Map of Switzerland
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0285
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 173
  start-page: 207
  year: 2010
  end-page: 216
  ident: bb0530
  article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl
  publication-title: J. Plant Nutr. Soil Sci.
– start-page: 309
  year: 1974
  end-page: 317
  ident: bb0430
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: Third Earth Resource Technology Satellite (ERTS) Symposium. National Aeronautics and Space Administration, NASA SP-351, Washington D.C.
– year: 2016
  ident: bb0015
  article-title: Forstliche Standortsaufnahme. Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen
– volume: 180
  start-page: 361
  year: 2003
  end-page: 374
  ident: bb0215
  article-title: Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management
  publication-title: For. Ecol. Manag.
– volume: 351
  start-page: 59
  year: 2019
  end-page: 70
  ident: bb0515
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
– volume: 5
  start-page: 7
  year: 2018
  end-page: 13
  ident: bb0415
  article-title: Soil ecosystem services, sustainability, valuation and management
  publication-title: Current Opinion in Environmental Science & Health
– volume: 38
  start-page: 141
  year: 2001
  end-page: 154
  ident: bb0205
  article-title: Ecosystem functions, services and their values – a case study in Xingshan County of China
  publication-title: Ecol. Econ.
– year: 2011
  ident: bb0255
  article-title: Topographic Position Index (TPI) v. 1.2
– reference: Mosimann, T., 2004-2010. Dokumentation der Waldböden der Kantone Basel-Landschaft und Basel-Stadt. Geosynthesis Sonderbände 1–4; Physische Geographie und Landschaftsökologie, Leibniz Universität Hannover; erarbeitet im Auftrag des Amts für Umweltschutz und Energie des Kantons Basel-Landschaft sowie des Forstamts beider Basel.
– volume: 6
  year: 2018
  ident: bb0230
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
– volume: 9
  start-page: 3061
  issue: 1
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0435
  article-title: Ecological indicator values reveal missing predictors of species distributions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39133-1
– volume: 195-196
  start-page: 111
  issue: 0
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00437_bb0110
  article-title: Are fine resolution digital elevation models always the best choice in digital soil mapping?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.11.020
– year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0235
– volume: 144
  start-page: 105139
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00437_bb0260
  article-title: Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2021.105139
– volume: 339
  start-page: 40
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0265
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.037
– volume: 22
  start-page: 42
  issue: 1
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00437_bb0020
  article-title: Ensemble forecasting of species distributions
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2006.09.010
– volume: 409
  start-page: 637
  issue: 3–4
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0250
  article-title: Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.08.067
– volume: 754
  start-page: 142291
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00437_bb0420
  article-title: Mapping the geogenic radon potential for Germany by machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142291
– volume: 6
  start-page: 269
  issue: 2
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0365
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-6-269-2020
– start-page: 341
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0065
  article-title: Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009-2017. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt BAFU
  publication-title: Birmensdorf; Bern
– volume: 337
  start-page: 99
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0105
  article-title: Merging country, continental and global predictions of soil texture: lessons from ensemble modelling in France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.007
– volume: 38
  start-page: 141
  issue: 1
  year: 2001
  ident: 10.1016/j.geodrs.2021.e00437_bb0205
  article-title: Ecosystem functions, services and their values – a case study in Xingshan County of China
  publication-title: Ecol. Econ.
  doi: 10.1016/S0921-8009(01)00154-9
– year: 1984
  ident: 10.1016/j.geodrs.2021.e00437_bb0460
– volume: 151
  start-page: 338
  issue: 3–4
  year: 2009
  ident: 10.1016/j.geodrs.2021.e00437_bb0035
  article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.022
– volume: 7
  start-page: 1197
  issue: 3
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0390
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1197-2014
– volume: 5
  start-page: 7
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00437_bb0415
  article-title: Soil ecosystem services, sustainability, valuation and management
  publication-title: Current Opinion in Environmental Science & Health
  doi: 10.1016/j.coesh.2017.12.003
– volume: 47
  start-page: 1143
  issue: 5
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0090
  article-title: What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.13803
– ident: 10.1016/j.geodrs.2021.e00437_bb0345
– volume: 103
  start-page: 3
  issue: 1
  year: 2001
  ident: 10.1016/j.geodrs.2021.e00437_bb0180
  article-title: Geostatistical modelling of uncertainty in soil science
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00067-2
– volume: 173
  start-page: 207
  issue: 2
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00437_bb0530
  article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200900158
– volume: 2
  start-page: 81
  issue: 1
  year: 2002
  ident: 10.1016/j.geodrs.2021.e00437_bb0120
  article-title: Characterizing the spatial pattern of soil carbon and nitrogen pools in the Turkey Lakes watershed: a comparison of regression techniques
  publication-title: Water, Air and Soil Pollution: Focus
  doi: 10.1023/A:1015886308016
– volume: 220
  start-page: 242
  issue: 1–3
  year: 2005
  ident: 10.1016/j.geodrs.2021.e00437_bb0280
  article-title: Forest soils and carbon sequestration
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.08.015
– volume: 361
  start-page: 114061
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0295
  article-title: High-resolution and three-dimensional mapping of soil texture of China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114061
– volume: 164
  start-page: 181
  issue: 3–4
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0270
  article-title: Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.06.002
– volume: 3
  start-page: 68
  issue: 1
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00437_bb0315
  article-title: A Landsat surface reflectance dataset for North America, 1990-2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0355
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 16
  start-page: 539
  issue: 4
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00437_bb0095
  article-title: High-resolution remote sensing data improves models of species richness
  publication-title: Appl. Veg. Sci.
  doi: 10.1111/avsc.12028
– volume: 380
  start-page: 114663
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0045
  article-title: Microtopography shapes soil pH in flysch regions across Switzerland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114663
– volume: 63
  start-page: 625
  issue: 6
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00437_bb0070
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences
  publication-title: Ann. For. Sci.
  doi: 10.1051/forest:2006042
– volume: 53
  issue: 8
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0290
  article-title: Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone
  publication-title: Soil Research
  doi: 10.1071/SR15100
– year: 1967
  ident: 10.1016/j.geodrs.2021.e00437_bb0080
– volume: 365
  start-page: 2053
  issue: 1857
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00437_bb0490
  article-title: The use of the multi-model ensemble in probabilistic climate projections
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2007.2076
– volume: 239-240
  start-page: 68
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0075
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– start-page: 93
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0025
  article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800137-0.00003-0
– volume: 141
  start-page: 139
  issue: 1–2
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00437_bb0440
  article-title: Topographical influences on soil properties in boreal forests
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.05.013
– volume: 3
  start-page: 37
  issue: 2
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0485
  article-title: Digital mapping of soil classes using Ensemble of Models in Isfahan region, Iran
  publication-title: Soil Systems
  doi: 10.3390/soilsystems3020037
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.geodrs.2021.e00437_bb0140
  article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 210
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0520
  article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103359
– year: 2004
  ident: 10.1016/j.geodrs.2021.e00437_bb0525
  article-title: Waldböden der Schweiz
– year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0005
– ident: 10.1016/j.geodrs.2021.e00437_bb0340
– start-page: 1050
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0155
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning, international conference on machine learning
  publication-title: PMLR
– year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0255
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00437_bb0400
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: Soil
  doi: 10.5194/soil-4-1-2018
– volume: 573
  start-page: 1352
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0385
  article-title: GlobalSoilMap France: high-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.066
– volume: 11
  start-page: 1871
  issue: 14–15
  year: 1992
  ident: 10.1016/j.geodrs.2021.e00437_bb0545
  article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111409
– ident: 10.1016/j.geodrs.2021.e00437_bb0475
– volume: 351
  start-page: 59
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0515
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.012
– volume: 26
  start-page: 211
  issue: 2
  year: 1964
  ident: 10.1016/j.geodrs.2021.e00437_bb0060
  article-title: An analysis of transformations
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– volume: 230
  start-page: 29
  issue: 0
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0320
  article-title: Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: effects of grid resolution vs. neighborhood extent
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.021
– volume: 239
  start-page: 97
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0350
  article-title: Impact of multi-scale predictor selection for modeling soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.018
– volume: 182
  start-page: 104141
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0210
  article-title: Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104141
– volume: 9
  start-page: 17
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0410
  article-title: Chile and the Chilean soil grid: a contribution to GlobalSoilMap
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2016.12.001
– volume: 24
  start-page: 809
  issue: 6
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00437_bb0135
  article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-010-0378-z
– volume: 117
  start-page: 3
  issue: 1–2
  year: 2003
  ident: 10.1016/j.geodrs.2021.e00437_bb0325
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 9
  start-page: 766
  issue: 8
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0540
  article-title: Wall-To-Wall tree type mapping from countrywide airborne remote sensing surveys
  publication-title: Remote Sens.
  doi: 10.3390/rs9080766
– volume: 180
  start-page: 361
  issue: 1–3
  year: 2003
  ident: 10.1016/j.geodrs.2021.e00437_bb0215
  article-title: Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(02)00656-4
– volume: 60
  start-page: 870
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0555
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.08.036
– volume: 155
  start-page: 175
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00437_bb0050
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.010
– start-page: 309
  year: 1974
  ident: 10.1016/j.geodrs.2021.e00437_bb0430
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
– volume: 95
  start-page: 13
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0040
  article-title: Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2017.05.009
– volume: 298
  start-page: 67
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0425
  article-title: Prediction of topsoil texture for region Centre (France) applying model ensemble methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.015
– year: 2009
  ident: 10.1016/j.geodrs.2021.e00437_bb0225
  doi: 10.1007/978-0-387-84858-7
– volume: 4
  start-page: 173
  issue: 3
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00437_bb0200
  article-title: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
  publication-title: SOIL
  doi: 10.5194/soil-4-173-2018
– ident: 10.1016/j.geodrs.2021.e00437_bb0465
– volume: 232-234
  start-page: 34
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0310
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 6
  start-page: 2199
  issue: 12
  year: 2012
  ident: 10.1016/j.geodrs.2021.e00437_bb0220
  article-title: Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests
  publication-title: ISME J
  doi: 10.1038/ismej.2012.84
– volume: 143
  start-page: 180
  issue: 1–2
  year: 2008
  ident: 10.1016/j.geodrs.2021.e00437_bb0190
  article-title: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.11.004
– volume: 340
  start-page: 337
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0170
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.007
– volume: 366
  start-page: 114237
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0115
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114237
– volume: 53
  start-page: 845
  issue: 8
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0510
  article-title: The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project
  publication-title: Soil Research
  doi: 10.1071/SR14366
– volume: 291
  start-page: 55
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0505
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0550
– volume: 20
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0130
  article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau
  publication-title: Geoderma Reg
– volume: 21
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0300
  article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran
  publication-title: Geoderma Reg
– volume: 162
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0380
  article-title: The use of remote sensing in soil and terrain mapping - a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– year: 1997
  ident: 10.1016/j.geodrs.2021.e00437_bb0125
– volume: 241-242
  start-page: 145
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0495
  article-title: Putting regional digital soil mapping into practice in tropical northern Australia
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.016
– volume: 6
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00437_bb0230
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0150
– volume: 371
  start-page: 114383
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0445
  article-title: A framework for the predictive mapping of forest soil properties in mountain areas
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114383
– volume: 58
  start-page: 289
  issue: 3
  year: 1996
  ident: 10.1016/j.geodrs.2021.e00437_bb0165
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– start-page: 404
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00437_bb0010
– year: 2001
  ident: 10.1016/j.geodrs.2021.e00437_bb0175
– volume: 368
  issue: 6494
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00437_bb0330
  article-title: Pervasive shifts in forest dynamics in a changing world
  publication-title: Science
  doi: 10.1126/science.aaz9463
– volume: 113
  start-page: 107
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00437_bb0245
  article-title: Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta)
  publication-title: CATENA
  doi: 10.1016/j.catena.2013.09.009
– volume: 290
  start-page: 51
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0240
  article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.001
– start-page: 404
  year: 1986
  ident: 10.1016/j.geodrs.2021.e00437_bb0160
– volume: 75
  start-page: 1201
  issue: 4
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0195
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0025
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00437_bb0335
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.geodrs.2021.e00437_bb0455
– year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0015
– volume: 66
  start-page: 273
  issue: 3
  year: 1998
  ident: 10.1016/j.geodrs.2021.e00437_bb0055
  article-title: Quantifying chlorophylls and Caroteniods at leaf and canopy scales: an evaluation of some Hyperspectral approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00059-5
– volume: 27
  start-page: 1308
  issue: 6
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0360
  article-title: What we use is not what we know: environmental predictors in plant distribution models
  publication-title: J. Veg. Sci.
  doi: 10.1111/jvs.12444
– volume: 343
  start-page: 19
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0375
  article-title: Cultural ecosystem services provided by the biodiversity of forest soils: a European review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.025
– volume: 160
  start-page: 614
  issue: 3–4
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00437_bb0305
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.11.013
– volume: 179
  start-page: 321
  issue: 3
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0395
  article-title: Pedotransfer function to predict density of forest soils in Switzerland
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201500546
– volume: 4
  start-page: 20
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0500
  article-title: Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2014.11.003
– year: 2015
  ident: 10.1016/j.geodrs.2021.e00437_bb0535
  article-title: Böden und Wasserhaushalt von Wäldern und Waldstandorten der Schweiz unter heutigem und zukünftigem Klima (BOWA-CH)
  publication-title: Birmensdorf.
– volume: 69
  start-page: 224
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0185
  article-title: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.06.025
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.geodrs.2021.e00437_bb0285
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 16
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0030
  article-title: Digital mapping of soil classes in Algeria - a comparison of methods
  publication-title: Geoderma Reg
– year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0085
– year: 2013
  ident: 10.1016/j.geodrs.2021.e00437_bb0275
– ident: 10.1016/j.geodrs.2021.e00437_bb0370
– volume: 10
  start-page: 469
  year: 1999
  ident: 10.1016/j.geodrs.2021.e00437_bb0560
  article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach
  publication-title: J. Veg. Sci.
  doi: 10.2307/3237182
– volume: 337
  start-page: 1329
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00437_bb0480
  article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.008
– volume: 285
  start-page: 35
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00437_bb0100
  article-title: A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.019
– volume: 17
  start-page: 413
  issue: 3
  year: 1991
  ident: 10.1016/j.geodrs.2021.e00437_bb0145
  article-title: Calculating catchment-area with divergent flow based on a regular grid
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(91)90048-I
– volume: 28
  start-page: 323
  issue: 3
  year: 1984
  ident: 10.1016/j.geodrs.2021.e00437_bb0405
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/S0734-189X(84)80011-0
– year: 2009
  ident: 10.1016/j.geodrs.2021.e00437_bb0470
– year: 2016
  ident: 10.1016/j.geodrs.2021.e00437_bb0450
SSID ssj0002953762
Score 2.3960063
Snippet Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification or biodiversity. However, spatially...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00437
SubjectTerms biodiversity
carbon sequestration
clay
data collection
Digital soil mapping
ecosystems
Forest soils
forests
geostatistics
gravel
kriging
landscapes
Machine learning
Model averaging
prediction
Quantile regression forest
regression analysis
sand
soil density
soil depth
soil organic carbon
Switzerland
uncertainty
Uncertainty maps
water purification
Title Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland
URI https://dx.doi.org/10.1016/j.geodrs.2021.e00437
https://www.proquest.com/docview/2636434823
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_EiiopvVvAam93N81iKpVrag7XYW9hHIhFtQh8U_PXObJKCggieliS7Iczszny7mfmGkNtQZrDrCjMn1mACvTBjDtKmO0b4SgXMRIHEbOTxJBjOvMe5P2-RfpMLg2GVte2vbLq11vWdbi3Nbpnn3SkXljLI48w6MtgCdTh4V7dNOr2H0XCyO2rhMXKWcFtmzucOjmmS6Gyk12tamCVSd3N2l1qyn9-c1A9zbX3Q4IDs1-CR9qrvOyStdHFE8rGNh0xpXQDilaJnMnRV5O_0Q5YrCriUSrrNTUqXmEtAi6x6WuJJ_BIpVW0fwILY2hNQKgFNYsfpNl9_VinBx2Q2uH_uD526gIKjReSvnSiKWQYLWoEyIkB-hgfSZyaL3VhLV0euEsy4vptJBkYRy46EoBpfZGHkSsWMOCHtRbFITwlVSipYr7F2pfYCphUAGW0C3yCDmWfkGRGNxBJds4tjkYv3pAkje0sqOSco56SS8xlxdqPKil3jj_5ho4zk2yxJwAH8MfKm0V0CCwj_ishFWmygUyAAlXkRF-f_fvsF2cOrKszlkrTXy016BWBlra7ryYjt6Oll9AXRquoL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFFBXrcwWvsdlsnsdSLK3aXrTQ27KPRCI1KX1Q8Nc7s0kEBRE8BZLZEGZ2Z77dzHxDyG0kM9h1RZmTaHCBfpQxB2nTHcMDpUJm4lBiNfJ4Eg6n_sMsmLVIv6mFwbTK2vdXPt166_pOt9Zmd5Hn3WePW8og32M2kMEWaAfZqWCa7_RGj8PJ11GLlyBniWfbzAWeg2OaIjqb6fWalmaJ1N0eu0st2c9vQeqHu7YxaHBA9mvwSHvV9x2SVlockXxs8yFTWjeAeKUYmQxdlfmcvsvFigIupZJuc5PSJdYS0DKrni7wJH6JlKpWBrAgXu0JKJWAJlHweZuvP6qS4GMyHdy_9IdO3UDB0TwO1k4cJyyDBa3AGDEgP-OFMmAmS9xES1fHruLMuIGbSQZOEduORGCagGdR7ErFDD8h7aIs0lNClZIK1muiXan9kGkFQEabMDDIYOYb2SG80ZjQNbs4NrmYiyaN7E1UehaoZ1HpuUOcr1GLil3jD_moMYb4NksEBIA_Rt40thOwgPCviCzScgNCIQdU5sceP_v326_J7vBl_CSeRpPHc7KHT6qUlwvSXi836SUAl7W6qifmJ5t061c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+soil+maps+for+a+wide+range+of+soil+properties+for+the+forested+area+of+Switzerland&rft.jtitle=Geoderma+Regional&rft.au=Baltensweiler%2C+Andri&rft.au=Walthert%2C+Lorenz&rft.au=Hanewinkel%2C+Marc&rft.au=Zimmermann%2C+Stephan&rft.date=2021-12-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=27+p.e00437-&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00437&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon