High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that...
Saved in:
Published in | Physical review. X Vol. 11; no. 1; p. 011027 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
10.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself. |
---|---|
AbstractList | We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself. We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself. |
ArticleNumber | 011027 |
Author | Christensen, B. G. Sank, D. Burkett, B. McDermott, R. White, T. C. Giustina, M. Liu, C. H. Opremcak, A. Plourde, B. L. T. Wilen, C. Okubo, K. Vainsencher, A. Megrant, A. |
Author_xml | – sequence: 1 givenname: A. surname: Opremcak fullname: Opremcak, A. – sequence: 2 givenname: C. H. orcidid: 0000-0002-3198-2460 surname: Liu fullname: Liu, C. H. – sequence: 3 givenname: C. surname: Wilen fullname: Wilen, C. – sequence: 4 givenname: K. orcidid: 0000-0001-5887-1077 surname: Okubo fullname: Okubo, K. – sequence: 5 givenname: B. G. surname: Christensen fullname: Christensen, B. G. – sequence: 6 givenname: D. surname: Sank fullname: Sank, D. – sequence: 7 givenname: T. C. surname: White fullname: White, T. C. – sequence: 8 givenname: A. surname: Vainsencher fullname: Vainsencher, A. – sequence: 9 givenname: M. surname: Giustina fullname: Giustina, M. – sequence: 10 givenname: A. surname: Megrant fullname: Megrant, A. – sequence: 11 givenname: B. surname: Burkett fullname: Burkett, B. – sequence: 12 givenname: B. L. T. orcidid: 0000-0001-9890-8532 surname: Plourde fullname: Plourde, B. L. T. – sequence: 13 givenname: R. surname: McDermott fullname: McDermott, R. |
BookMark | eNpNUU1LAzEQDVLBqv0DngKeV_O92aMUq4VK60fBkyG7m21T2qQmWaX_3q1VcS4z7zG8mcc7BT3nnQHgAqMrjBG9ni138cl8vHboCnUMyY9An2CBMkqR7P2bT8AgxhXqSiDM8rwP3u7tYpmNbG3WNu3gg9GxDWZjXIK-gRo-t1sTKu_qtkrWLeBjW9oE53E_awenLhsu7RY-2Cr4T_1h4Gzpk3dw6FuXTDgHx41eRzP46WdgPrp9Gd5nk-ndeHgzySoqecqkFCSvGa6ZyCVmNRcaF0RynmtTybLhEmHNKaUGiRJjVjApOg8VkQ3BZZnTMzA-6NZer9Q22I0OO-W1Vd-EDwulQ7LV2ijCaMkpR0iKhuValIgjynlTUE4ZKkSndXnQ2gb_3pqY1Mq3wXXvK8I5EowXZL9FDlud8RiDaf6uYqT2sajfWDqkDrHQL9AYgEA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_105_032450 crossref_primary_10_1063_10_0023896 crossref_primary_10_1103_PhysRevA_103_042404 crossref_primary_10_1103_PhysRevA_108_063710 crossref_primary_10_1103_PRXQuantum_4_030310 crossref_primary_10_1103_PRXQuantum_2_040360 crossref_primary_10_1109_TASC_2024_3354681 crossref_primary_10_1103_PhysRevLett_126_090503 crossref_primary_10_22331_q_2023_05_04_994 crossref_primary_10_1103_PhysRevApplied_19_064025 crossref_primary_10_1109_LCA_2023_3322700 crossref_primary_10_1140_epja_s10050_023_01006_7 crossref_primary_10_1103_PhysRevLett_131_126301 |
Cites_doi | 10.1103/PhysRevA.76.042319 10.1088/2058-9565/aaa3a0 10.1063/1.4962172 10.1103/PhysRevA.94.012347 10.1038/s41567-020-0920-y 10.1103/PhysRevApplied.10.034040 10.1038/nature05461 10.1103/PhysRevLett.109.050506 10.1103/PhysRevLett.94.123602 10.1038/s41586-019-1666-5 10.1063/1.4886408 10.1103/PhysRevA.82.042339 10.1103/PhysRevLett.103.110501 10.1103/PhysRevX.7.041043 10.1126/science.aal2469 10.1103/PhysRevLett.93.180401 10.1103/PhysRevApplied.11.014009 10.1103/PhysRevX.9.011004 10.1088/0953-2048/20/11/S29 10.1103/PhysRevB.96.220501 10.1103/PhysRevB.100.144514 10.1063/1.89690 10.1103/PhysRevApplied.7.024028 10.1103/PhysRevApplied.8.054007 10.1103/PhysRevB.86.180504 10.1126/science.aat4625 10.1103/PhysRevLett.109.080505 10.1103/PhysRevLett.111.080502 10.1103/PhysRevX.8.041018 10.1038/s41565-019-0488-9 10.1103/PhysRevX.5.041020 10.1103/PhysRevA.76.012325 10.1103/PhysRevLett.95.060501 10.1103/PhysRevLett.101.080502 10.1103/PhysRevA.96.013833 10.1126/science.aaa8525 10.1002/352760278X 10.1103/PhysRevApplied.2.014007 10.1103/PhysRevLett.116.020501 10.1126/science.1107572 10.1103/PhysRevLett.112.190504 10.1103/PhysRevA.69.062320 10.1103/PhysRevApplied.8.044003 10.1103/PhysRevB.84.024501 10.1103/PhysRevApplied.7.054020 10.1103/PhysRevB.67.094510 10.1038/s41467-019-11101-3 10.1103/PhysRevLett.120.260504 10.1103/PhysRevLett.110.150502 10.1038/nature07136 10.1103/PhysRevLett.112.160502 10.1103/PhysRevA.96.043839 10.1103/PhysRevLett.107.217401 10.1038/nphys1994 10.1063/5.0016248 10.1103/PhysRevA.86.032324 10.1038/ncomms12964 10.1103/PhysRevA.90.062307 10.1038/s41534-019-0185-4 10.1109/TASC.2019.2908884 10.1103/PhysRevLett.109.050507 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.11.011027 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Science Journals Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_243b5350086f47a6b050355f93534096 10_1103_PhysRevX_11_011027 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-88627d41d467814d56a1928557aec8bf5801a5333e06b1149486006c28f21bb73 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Tue Oct 22 15:15:43 EDT 2024 Thu Oct 10 19:22:44 EDT 2024 Fri Aug 23 02:43:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-88627d41d467814d56a1928557aec8bf5801a5333e06b1149486006c28f21bb73 |
ORCID | 0000-0002-3198-2460 0000-0001-9890-8532 0000-0001-5887-1077 |
OpenAccessLink | https://doaj.org/article/243b5350086f47a6b050355f93534096 |
PQID | 2550645926 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_243b5350086f47a6b050355f93534096 proquest_journals_2550645926 crossref_primary_10_1103_PhysRevX_11_011027 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-10 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | A. Barone (PhysRevX.11.011027Cc18R1) 1982 PhysRevX.11.011027Cc17R1 PhysRevX.11.011027Cc19R1 PhysRevX.11.011027Cc38R1 PhysRevX.11.011027Cc13R1 PhysRevX.11.011027Cc36R1 PhysRevX.11.011027Cc59R1 PhysRevX.11.011027Cc3R1 PhysRevX.11.011027Cc15R1 PhysRevX.11.011027Cc34R1 PhysRevX.11.011027Cc57R1 PhysRevX.11.011027Cc1R1 PhysRevX.11.011027Cc32R1 PhysRevX.11.011027Cc55R1 PhysRevX.11.011027Cc11R1 PhysRevX.11.011027Cc30R1 PhysRevX.11.011027Cc53R1 PhysRevX.11.011027Cc51R1 PhysRevX.11.011027Cc9R1 PhysRevX.11.011027Cc7R1 PhysRevX.11.011027Cc5R1 PhysRevX.11.011027Cc27R1 PhysRevX.11.011027Cc29R1 PhysRevX.11.011027Cc23R1 PhysRevX.11.011027Cc48R1 PhysRevX.11.011027Cc25R1 PhysRevX.11.011027Cc46R1 PhysRevX.11.011027Cc21R1 PhysRevX.11.011027Cc42R1 PhysRevX.11.011027Cc40R1 PhysRevX.11.011027Cc61R1 PhysRevX.11.011027Cc16R1 PhysRevX.11.011027Cc39R1 PhysRevX.11.011027Cc4R1 PhysRevX.11.011027Cc12R1 PhysRevX.11.011027Cc37R1 PhysRevX.11.011027Cc58R1 PhysRevX.11.011027Cc2R1 PhysRevX.11.011027Cc14R1 PhysRevX.11.011027Cc35R1 PhysRevX.11.011027Cc56R1 PhysRevX.11.011027Cc54R1 PhysRevX.11.011027Cc33R1 PhysRevX.11.011027Cc52R1 PhysRevX.11.011027Cc10R1 PhysRevX.11.011027Cc31R1 PhysRevX.11.011027Cc50R1 PhysRevX.11.011027Cc8R1 PhysRevX.11.011027Cc6R1 PhysRevX.11.011027Cc28R1 PhysRevX.11.011027Cc49R1 PhysRevX.11.011027Cc24R1 PhysRevX.11.011027Cc47R1 PhysRevX.11.011027Cc26R1 PhysRevX.11.011027Cc45R1 PhysRevX.11.011027Cc20R1 PhysRevX.11.011027Cc43R1 PhysRevX.11.011027Cc22R1 PhysRevX.11.011027Cc41R1 PhysRevX.11.011027Cc62R1 PhysRevX.11.011027Cc60R1 |
References_xml | – ident: PhysRevX.11.011027Cc26R1 doi: 10.1103/PhysRevA.76.042319 – ident: PhysRevX.11.011027Cc2R1 doi: 10.1088/2058-9565/aaa3a0 – ident: PhysRevX.11.011027Cc24R1 doi: 10.1063/1.4962172 – ident: PhysRevX.11.011027Cc34R1 doi: 10.1103/PhysRevA.94.012347 – ident: PhysRevX.11.011027Cc49R1 doi: 10.1038/s41567-020-0920-y – ident: PhysRevX.11.011027Cc5R1 doi: 10.1103/PhysRevApplied.10.034040 – ident: PhysRevX.11.011027Cc62R1 doi: 10.1038/nature05461 – ident: PhysRevX.11.011027Cc39R1 doi: 10.1103/PhysRevLett.109.050506 – ident: PhysRevX.11.011027Cc61R1 doi: 10.1103/PhysRevLett.94.123602 – ident: PhysRevX.11.011027Cc54R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevX.11.011027Cc6R1 doi: 10.1063/1.4886408 – ident: PhysRevX.11.011027Cc30R1 doi: 10.1103/PhysRevA.82.042339 – ident: PhysRevX.11.011027Cc29R1 doi: 10.1103/PhysRevLett.103.110501 – ident: PhysRevX.11.011027Cc10R1 doi: 10.1103/PhysRevX.7.041043 – ident: PhysRevX.11.011027Cc19R1 doi: 10.1126/science.aal2469 – ident: PhysRevX.11.011027Cc33R1 doi: 10.1103/PhysRevLett.93.180401 – ident: PhysRevX.11.011027Cc59R1 doi: 10.1103/PhysRevApplied.11.014009 – ident: PhysRevX.11.011027Cc13R1 doi: 10.1103/PhysRevX.9.011004 – ident: PhysRevX.11.011027Cc55R1 doi: 10.1088/0953-2048/20/11/S29 – ident: PhysRevX.11.011027Cc52R1 doi: 10.1103/PhysRevB.96.220501 – ident: PhysRevX.11.011027Cc53R1 doi: 10.1103/PhysRevB.100.144514 – ident: PhysRevX.11.011027Cc60R1 doi: 10.1063/1.89690 – ident: PhysRevX.11.011027Cc9R1 doi: 10.1103/PhysRevApplied.7.024028 – ident: PhysRevX.11.011027Cc11R1 doi: 10.1103/PhysRevApplied.8.054007 – ident: PhysRevX.11.011027Cc45R1 doi: 10.1103/PhysRevB.86.180504 – ident: PhysRevX.11.011027Cc17R1 doi: 10.1126/science.aat4625 – ident: PhysRevX.11.011027Cc37R1 doi: 10.1103/PhysRevLett.109.080505 – ident: PhysRevX.11.011027Cc27R1 doi: 10.1103/PhysRevLett.111.080502 – ident: PhysRevX.11.011027Cc20R1 doi: 10.1103/PhysRevX.8.041018 – ident: PhysRevX.11.011027Cc21R1 doi: 10.1038/s41565-019-0488-9 – ident: PhysRevX.11.011027Cc8R1 doi: 10.1103/PhysRevX.5.041020 – ident: PhysRevX.11.011027Cc36R1 doi: 10.1103/PhysRevA.76.012325 – ident: PhysRevX.11.011027Cc25R1 doi: 10.1103/PhysRevLett.95.060501 – ident: PhysRevX.11.011027Cc28R1 doi: 10.1103/PhysRevLett.101.080502 – ident: PhysRevX.11.011027Cc23R1 doi: 10.1103/PhysRevA.96.013833 – ident: PhysRevX.11.011027Cc7R1 doi: 10.1126/science.aaa8525 – volume-title: Physics and Applications of the Josephson Effect year: 1982 ident: PhysRevX.11.011027Cc18R1 doi: 10.1002/352760278X contributor: fullname: A. Barone – ident: PhysRevX.11.011027Cc58R1 doi: 10.1103/PhysRevApplied.2.014007 – ident: PhysRevX.11.011027Cc31R1 doi: 10.1103/PhysRevLett.116.020501 – ident: PhysRevX.11.011027Cc38R1 doi: 10.1126/science.1107572 – ident: PhysRevX.11.011027Cc3R1 doi: 10.1103/PhysRevLett.112.190504 – ident: PhysRevX.11.011027Cc14R1 doi: 10.1103/PhysRevA.69.062320 – ident: PhysRevX.11.011027Cc43R1 doi: 10.1103/PhysRevApplied.8.044003 – ident: PhysRevX.11.011027Cc50R1 doi: 10.1103/PhysRevB.84.024501 – ident: PhysRevX.11.011027Cc4R1 doi: 10.1103/PhysRevApplied.7.054020 – ident: PhysRevX.11.011027Cc41R1 doi: 10.1103/PhysRevB.67.094510 – ident: PhysRevX.11.011027Cc12R1 doi: 10.1038/s41467-019-11101-3 – ident: PhysRevX.11.011027Cc47R1 doi: 10.1103/PhysRevLett.120.260504 – ident: PhysRevX.11.011027Cc51R1 doi: 10.1103/PhysRevLett.110.150502 – ident: PhysRevX.11.011027Cc32R1 doi: 10.1038/nature07136 – ident: PhysRevX.11.011027Cc56R1 doi: 10.1103/PhysRevLett.112.160502 – ident: PhysRevX.11.011027Cc35R1 doi: 10.1103/PhysRevA.96.043839 – ident: PhysRevX.11.011027Cc16R1 doi: 10.1103/PhysRevLett.107.217401 – ident: PhysRevX.11.011027Cc42R1 doi: 10.1038/nphys1994 – ident: PhysRevX.11.011027Cc22R1 doi: 10.1063/5.0016248 – ident: PhysRevX.11.011027Cc1R1 doi: 10.1103/PhysRevA.86.032324 – ident: PhysRevX.11.011027Cc46R1 doi: 10.1038/ncomms12964 – ident: PhysRevX.11.011027Cc15R1 doi: 10.1103/PhysRevA.90.062307 – ident: PhysRevX.11.011027Cc48R1 doi: 10.1038/s41534-019-0185-4 – ident: PhysRevX.11.011027Cc57R1 doi: 10.1109/TASC.2019.2908884 – ident: PhysRevX.11.011027Cc40R1 doi: 10.1103/PhysRevLett.109.050507 |
SSID | ssj0000601477 |
Score | 2.4593408 |
Snippet | We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 011027 |
SubjectTerms | Accuracy Arrays Crosstalk Damping Error correction Fault tolerance Photomultiplier tubes Photon counters Photons Quantum computers Qubits (quantum computing) Resonators Robustness Room temperature Superconductivity Transient response |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgCIkLYhVlkw_ckGniNT0hWrWqkFp2qSciO3GAS1K6wO8zkyaAhMQxjk9je-bN-PkNIWcygbjtrWcB6s5Kbzmz2nDmpWzbMLXel9cFw5EePMnrsRpXBbdZRausfWLpqNMiwRp5C6AvSqu1ub6cvDPsGoW3q1ULjVWyxiFT4A2y1umNbu-_qyyoNiKNqV_LBKKFxMp7_zG-QO1OGMF2Mr8iUinc_8cvl8Gmv0U2K5RIr5bLuk1WfL5D1ku2ZjLbJc_IzmB9VKgCEE2HP3U-WmTU0ofFxE8h0UUtVwhN9G7h3ua0ZAdQm9ObnHVf3yZ0iGS8T_vh6e1rARiQ4gN1sPMeeer3HrsDVjVKYImI1JxFkJaYVIYpeL0olKnSFoBbpJSxPolcpiAMWcB1wgfaQQLUxs5TgU54lPHQOSP2SSMvcn9AaGCcTrSBKWkoM-GsSUyKNQ9nEav5JjmvjRVPlnoYcZlHBCKuTQtf8dK0TdJBe37PRC3rcqCYvsTV0Yi5FE4JhclVJo3VDiVqlMraQgnIPnWTHNerEVcHbBb_bIfD_38fkQ2ONBTs4RIck8Z8uvAngCPm7rTaLF-HnsXe priority: 102 providerName: ProQuest |
Title | High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter |
URI | https://www.proquest.com/docview/2550645926 https://doaj.org/article/243b5350086f47a6b050355f93534096 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0oxsSL8TOiSPbgzVTa7ld7FAISExBREk42u-02cCkECv59Z1pQEg9ePHazSZuZdue97ds3hNzxGOq21dZx0XeWW-07WirfsZyH2ku0tcXvgl5fdkf8eSzGO62-UBNW2gOXgWv4nBnBBELvlCstDRqYCJGGTDDgJqXZthvukKlyDQbor9T2lIzLGiioHNr1-AE9O2EE28jsVKLCsP_XelwUmc4JOd6gQ_pYPtUp2bPZGTksVJrx8px8oCrD6aAzFYBn2vvZ36OzlGr6tprbBRBc9HCFkkRfV2aa00IVQHVGXzKnNZnOaQ9FeJ96belgMgPsR_FgOsT3gow67fdW19k0SHBiFojcCYCOqIR7Cax2gccTITUAtkAIpW0cmFRA-dGA55h1pQHiE2LHKVfGfpD6njGKXZJKNsvsFaGuMjKWCqYkHk-Z0SpWCe51GI0YzVbJ_TZY0bz0wYgK_uCyaBtauIrK0FZJE-P5PRM9rIsByGy0yWz0V2arpLbNRrT5sJYRMCB02At9ef0f97ghRz6KVLDDi1sjlXyxsreAMnJTJ_tB56lODprt_mBYL16vL15dzPI |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKCNEL4im2POoDN-SSxK_sqWoRyxZ2eZRdaU-17MQpXJLtvvr3O-NNoBISxzg-je2Zb8afvyHkVGQQt731LELdWeFtwqzSCfNCtG2cW-_DdUH_VnWH4nokR3XBbVrTKhufGBx1XmVYIz8H6IvSau1EfR3_Ydg1Cm9X6xYaK2RNcAg0-FK8c_VSY0GtEaF181Ym4udIq_zpF6MvqNwJI9hM5r94FGT733jlEGo6W2Szxoj023JRt8kHX-6Q9cDVzKa75BdyM1gH9akAQtP-a5WPVgW19HE-9hNIc1HJFQITfZi75xkN3ABqS3pXsoun5zHtIxXvr114ev9UAQKk-DwdrLxHhp3LwUWX1W0SWMZTOWMpJCU6F3EOPi-NRS6VBdiWSqmtz1JXSAhCFlAd95FykP60se9UpLIkLZLYOc33yWpZlf6A0Eg7lSkNU_JYFNxZnekcKx7OIlLzLXLWGMuMl2oYJmQRETeNaeHLLE3bIt_Rni8zUck6DFST36Y-GCYR3EkuMbUqhLbKoUCNlEWbSw65p2qRo2Y1TH28puZ1M3x6__dnstEd9Hum9-P25pB8TJCQgt1coiOyOpvM_TEgipk7CdvmH5cTx2k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Fidelity+Measurement+of+a+Superconducting+Qubit+Using+an+On-Chip+Microwave+Photon+Counter&rft.jtitle=Physical+review.+X&rft.au=A.+Opremcak&rft.au=C.%E2%80%89H.+Liu&rft.au=C.+Wilen&rft.au=K.+Okubo&rft.date=2021-02-10&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=1&rft.spage=011027&rft_id=info:doi/10.1103%2FPhysRevX.11.011027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_243b5350086f47a6b050355f93534096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |