High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter

We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 11; no. 1; p. 011027
Main Authors Opremcak, A., Liu, C. H., Wilen, C., Okubo, K., Christensen, B. G., Sank, D., White, T. C., Vainsencher, A., Giustina, M., Megrant, A., Burkett, B., Plourde, B. L. T., McDermott, R.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 10.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself.
AbstractList We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself.
We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself.
ArticleNumber 011027
Author Christensen, B. G.
Sank, D.
Burkett, B.
McDermott, R.
White, T. C.
Giustina, M.
Liu, C. H.
Opremcak, A.
Plourde, B. L. T.
Wilen, C.
Okubo, K.
Vainsencher, A.
Megrant, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Opremcak
  fullname: Opremcak, A.
– sequence: 2
  givenname: C. H.
  orcidid: 0000-0002-3198-2460
  surname: Liu
  fullname: Liu, C. H.
– sequence: 3
  givenname: C.
  surname: Wilen
  fullname: Wilen, C.
– sequence: 4
  givenname: K.
  orcidid: 0000-0001-5887-1077
  surname: Okubo
  fullname: Okubo, K.
– sequence: 5
  givenname: B. G.
  surname: Christensen
  fullname: Christensen, B. G.
– sequence: 6
  givenname: D.
  surname: Sank
  fullname: Sank, D.
– sequence: 7
  givenname: T. C.
  surname: White
  fullname: White, T. C.
– sequence: 8
  givenname: A.
  surname: Vainsencher
  fullname: Vainsencher, A.
– sequence: 9
  givenname: M.
  surname: Giustina
  fullname: Giustina, M.
– sequence: 10
  givenname: A.
  surname: Megrant
  fullname: Megrant, A.
– sequence: 11
  givenname: B.
  surname: Burkett
  fullname: Burkett, B.
– sequence: 12
  givenname: B. L. T.
  orcidid: 0000-0001-9890-8532
  surname: Plourde
  fullname: Plourde, B. L. T.
– sequence: 13
  givenname: R.
  surname: McDermott
  fullname: McDermott, R.
BookMark eNpNUU1LAzEQDVLBqv0DngKeV_O92aMUq4VK60fBkyG7m21T2qQmWaX_3q1VcS4z7zG8mcc7BT3nnQHgAqMrjBG9ni138cl8vHboCnUMyY9An2CBMkqR7P2bT8AgxhXqSiDM8rwP3u7tYpmNbG3WNu3gg9GxDWZjXIK-gRo-t1sTKu_qtkrWLeBjW9oE53E_awenLhsu7RY-2Cr4T_1h4Gzpk3dw6FuXTDgHx41eRzP46WdgPrp9Gd5nk-ndeHgzySoqecqkFCSvGa6ZyCVmNRcaF0RynmtTybLhEmHNKaUGiRJjVjApOg8VkQ3BZZnTMzA-6NZer9Q22I0OO-W1Vd-EDwulQ7LV2ijCaMkpR0iKhuValIgjynlTUE4ZKkSndXnQ2gb_3pqY1Mq3wXXvK8I5EowXZL9FDlud8RiDaf6uYqT2sajfWDqkDrHQL9AYgEA
CitedBy_id crossref_primary_10_1103_PhysRevA_105_032450
crossref_primary_10_1063_10_0023896
crossref_primary_10_1103_PhysRevA_103_042404
crossref_primary_10_1103_PhysRevA_108_063710
crossref_primary_10_1103_PRXQuantum_4_030310
crossref_primary_10_1103_PRXQuantum_2_040360
crossref_primary_10_1109_TASC_2024_3354681
crossref_primary_10_1103_PhysRevLett_126_090503
crossref_primary_10_22331_q_2023_05_04_994
crossref_primary_10_1103_PhysRevApplied_19_064025
crossref_primary_10_1109_LCA_2023_3322700
crossref_primary_10_1140_epja_s10050_023_01006_7
crossref_primary_10_1103_PhysRevLett_131_126301
Cites_doi 10.1103/PhysRevA.76.042319
10.1088/2058-9565/aaa3a0
10.1063/1.4962172
10.1103/PhysRevA.94.012347
10.1038/s41567-020-0920-y
10.1103/PhysRevApplied.10.034040
10.1038/nature05461
10.1103/PhysRevLett.109.050506
10.1103/PhysRevLett.94.123602
10.1038/s41586-019-1666-5
10.1063/1.4886408
10.1103/PhysRevA.82.042339
10.1103/PhysRevLett.103.110501
10.1103/PhysRevX.7.041043
10.1126/science.aal2469
10.1103/PhysRevLett.93.180401
10.1103/PhysRevApplied.11.014009
10.1103/PhysRevX.9.011004
10.1088/0953-2048/20/11/S29
10.1103/PhysRevB.96.220501
10.1103/PhysRevB.100.144514
10.1063/1.89690
10.1103/PhysRevApplied.7.024028
10.1103/PhysRevApplied.8.054007
10.1103/PhysRevB.86.180504
10.1126/science.aat4625
10.1103/PhysRevLett.109.080505
10.1103/PhysRevLett.111.080502
10.1103/PhysRevX.8.041018
10.1038/s41565-019-0488-9
10.1103/PhysRevX.5.041020
10.1103/PhysRevA.76.012325
10.1103/PhysRevLett.95.060501
10.1103/PhysRevLett.101.080502
10.1103/PhysRevA.96.013833
10.1126/science.aaa8525
10.1002/352760278X
10.1103/PhysRevApplied.2.014007
10.1103/PhysRevLett.116.020501
10.1126/science.1107572
10.1103/PhysRevLett.112.190504
10.1103/PhysRevA.69.062320
10.1103/PhysRevApplied.8.044003
10.1103/PhysRevB.84.024501
10.1103/PhysRevApplied.7.054020
10.1103/PhysRevB.67.094510
10.1038/s41467-019-11101-3
10.1103/PhysRevLett.120.260504
10.1103/PhysRevLett.110.150502
10.1038/nature07136
10.1103/PhysRevLett.112.160502
10.1103/PhysRevA.96.043839
10.1103/PhysRevLett.107.217401
10.1038/nphys1994
10.1063/5.0016248
10.1103/PhysRevA.86.032324
10.1038/ncomms12964
10.1103/PhysRevA.90.062307
10.1038/s41534-019-0185-4
10.1109/TASC.2019.2908884
10.1103/PhysRevLett.109.050507
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.11.011027
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Science Journals
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_243b5350086f47a6b050355f93534096
10_1103_PhysRevX_11_011027
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-88627d41d467814d56a1928557aec8bf5801a5333e06b1149486006c28f21bb73
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Tue Oct 22 15:15:43 EDT 2024
Thu Oct 10 19:22:44 EDT 2024
Fri Aug 23 02:43:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-88627d41d467814d56a1928557aec8bf5801a5333e06b1149486006c28f21bb73
ORCID 0000-0002-3198-2460
0000-0001-9890-8532
0000-0001-5887-1077
OpenAccessLink https://doaj.org/article/243b5350086f47a6b050355f93534096
PQID 2550645926
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_243b5350086f47a6b050355f93534096
proquest_journals_2550645926
crossref_primary_10_1103_PhysRevX_11_011027
PublicationCentury 2000
PublicationDate 2021-02-10
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-10
  day: 10
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References A. Barone (PhysRevX.11.011027Cc18R1) 1982
PhysRevX.11.011027Cc17R1
PhysRevX.11.011027Cc19R1
PhysRevX.11.011027Cc38R1
PhysRevX.11.011027Cc13R1
PhysRevX.11.011027Cc36R1
PhysRevX.11.011027Cc59R1
PhysRevX.11.011027Cc3R1
PhysRevX.11.011027Cc15R1
PhysRevX.11.011027Cc34R1
PhysRevX.11.011027Cc57R1
PhysRevX.11.011027Cc1R1
PhysRevX.11.011027Cc32R1
PhysRevX.11.011027Cc55R1
PhysRevX.11.011027Cc11R1
PhysRevX.11.011027Cc30R1
PhysRevX.11.011027Cc53R1
PhysRevX.11.011027Cc51R1
PhysRevX.11.011027Cc9R1
PhysRevX.11.011027Cc7R1
PhysRevX.11.011027Cc5R1
PhysRevX.11.011027Cc27R1
PhysRevX.11.011027Cc29R1
PhysRevX.11.011027Cc23R1
PhysRevX.11.011027Cc48R1
PhysRevX.11.011027Cc25R1
PhysRevX.11.011027Cc46R1
PhysRevX.11.011027Cc21R1
PhysRevX.11.011027Cc42R1
PhysRevX.11.011027Cc40R1
PhysRevX.11.011027Cc61R1
PhysRevX.11.011027Cc16R1
PhysRevX.11.011027Cc39R1
PhysRevX.11.011027Cc4R1
PhysRevX.11.011027Cc12R1
PhysRevX.11.011027Cc37R1
PhysRevX.11.011027Cc58R1
PhysRevX.11.011027Cc2R1
PhysRevX.11.011027Cc14R1
PhysRevX.11.011027Cc35R1
PhysRevX.11.011027Cc56R1
PhysRevX.11.011027Cc54R1
PhysRevX.11.011027Cc33R1
PhysRevX.11.011027Cc52R1
PhysRevX.11.011027Cc10R1
PhysRevX.11.011027Cc31R1
PhysRevX.11.011027Cc50R1
PhysRevX.11.011027Cc8R1
PhysRevX.11.011027Cc6R1
PhysRevX.11.011027Cc28R1
PhysRevX.11.011027Cc49R1
PhysRevX.11.011027Cc24R1
PhysRevX.11.011027Cc47R1
PhysRevX.11.011027Cc26R1
PhysRevX.11.011027Cc45R1
PhysRevX.11.011027Cc20R1
PhysRevX.11.011027Cc43R1
PhysRevX.11.011027Cc22R1
PhysRevX.11.011027Cc41R1
PhysRevX.11.011027Cc62R1
PhysRevX.11.011027Cc60R1
References_xml – ident: PhysRevX.11.011027Cc26R1
  doi: 10.1103/PhysRevA.76.042319
– ident: PhysRevX.11.011027Cc2R1
  doi: 10.1088/2058-9565/aaa3a0
– ident: PhysRevX.11.011027Cc24R1
  doi: 10.1063/1.4962172
– ident: PhysRevX.11.011027Cc34R1
  doi: 10.1103/PhysRevA.94.012347
– ident: PhysRevX.11.011027Cc49R1
  doi: 10.1038/s41567-020-0920-y
– ident: PhysRevX.11.011027Cc5R1
  doi: 10.1103/PhysRevApplied.10.034040
– ident: PhysRevX.11.011027Cc62R1
  doi: 10.1038/nature05461
– ident: PhysRevX.11.011027Cc39R1
  doi: 10.1103/PhysRevLett.109.050506
– ident: PhysRevX.11.011027Cc61R1
  doi: 10.1103/PhysRevLett.94.123602
– ident: PhysRevX.11.011027Cc54R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevX.11.011027Cc6R1
  doi: 10.1063/1.4886408
– ident: PhysRevX.11.011027Cc30R1
  doi: 10.1103/PhysRevA.82.042339
– ident: PhysRevX.11.011027Cc29R1
  doi: 10.1103/PhysRevLett.103.110501
– ident: PhysRevX.11.011027Cc10R1
  doi: 10.1103/PhysRevX.7.041043
– ident: PhysRevX.11.011027Cc19R1
  doi: 10.1126/science.aal2469
– ident: PhysRevX.11.011027Cc33R1
  doi: 10.1103/PhysRevLett.93.180401
– ident: PhysRevX.11.011027Cc59R1
  doi: 10.1103/PhysRevApplied.11.014009
– ident: PhysRevX.11.011027Cc13R1
  doi: 10.1103/PhysRevX.9.011004
– ident: PhysRevX.11.011027Cc55R1
  doi: 10.1088/0953-2048/20/11/S29
– ident: PhysRevX.11.011027Cc52R1
  doi: 10.1103/PhysRevB.96.220501
– ident: PhysRevX.11.011027Cc53R1
  doi: 10.1103/PhysRevB.100.144514
– ident: PhysRevX.11.011027Cc60R1
  doi: 10.1063/1.89690
– ident: PhysRevX.11.011027Cc9R1
  doi: 10.1103/PhysRevApplied.7.024028
– ident: PhysRevX.11.011027Cc11R1
  doi: 10.1103/PhysRevApplied.8.054007
– ident: PhysRevX.11.011027Cc45R1
  doi: 10.1103/PhysRevB.86.180504
– ident: PhysRevX.11.011027Cc17R1
  doi: 10.1126/science.aat4625
– ident: PhysRevX.11.011027Cc37R1
  doi: 10.1103/PhysRevLett.109.080505
– ident: PhysRevX.11.011027Cc27R1
  doi: 10.1103/PhysRevLett.111.080502
– ident: PhysRevX.11.011027Cc20R1
  doi: 10.1103/PhysRevX.8.041018
– ident: PhysRevX.11.011027Cc21R1
  doi: 10.1038/s41565-019-0488-9
– ident: PhysRevX.11.011027Cc8R1
  doi: 10.1103/PhysRevX.5.041020
– ident: PhysRevX.11.011027Cc36R1
  doi: 10.1103/PhysRevA.76.012325
– ident: PhysRevX.11.011027Cc25R1
  doi: 10.1103/PhysRevLett.95.060501
– ident: PhysRevX.11.011027Cc28R1
  doi: 10.1103/PhysRevLett.101.080502
– ident: PhysRevX.11.011027Cc23R1
  doi: 10.1103/PhysRevA.96.013833
– ident: PhysRevX.11.011027Cc7R1
  doi: 10.1126/science.aaa8525
– volume-title: Physics and Applications of the Josephson Effect
  year: 1982
  ident: PhysRevX.11.011027Cc18R1
  doi: 10.1002/352760278X
  contributor:
    fullname: A. Barone
– ident: PhysRevX.11.011027Cc58R1
  doi: 10.1103/PhysRevApplied.2.014007
– ident: PhysRevX.11.011027Cc31R1
  doi: 10.1103/PhysRevLett.116.020501
– ident: PhysRevX.11.011027Cc38R1
  doi: 10.1126/science.1107572
– ident: PhysRevX.11.011027Cc3R1
  doi: 10.1103/PhysRevLett.112.190504
– ident: PhysRevX.11.011027Cc14R1
  doi: 10.1103/PhysRevA.69.062320
– ident: PhysRevX.11.011027Cc43R1
  doi: 10.1103/PhysRevApplied.8.044003
– ident: PhysRevX.11.011027Cc50R1
  doi: 10.1103/PhysRevB.84.024501
– ident: PhysRevX.11.011027Cc4R1
  doi: 10.1103/PhysRevApplied.7.054020
– ident: PhysRevX.11.011027Cc41R1
  doi: 10.1103/PhysRevB.67.094510
– ident: PhysRevX.11.011027Cc12R1
  doi: 10.1038/s41467-019-11101-3
– ident: PhysRevX.11.011027Cc47R1
  doi: 10.1103/PhysRevLett.120.260504
– ident: PhysRevX.11.011027Cc51R1
  doi: 10.1103/PhysRevLett.110.150502
– ident: PhysRevX.11.011027Cc32R1
  doi: 10.1038/nature07136
– ident: PhysRevX.11.011027Cc56R1
  doi: 10.1103/PhysRevLett.112.160502
– ident: PhysRevX.11.011027Cc35R1
  doi: 10.1103/PhysRevA.96.043839
– ident: PhysRevX.11.011027Cc16R1
  doi: 10.1103/PhysRevLett.107.217401
– ident: PhysRevX.11.011027Cc42R1
  doi: 10.1038/nphys1994
– ident: PhysRevX.11.011027Cc22R1
  doi: 10.1063/5.0016248
– ident: PhysRevX.11.011027Cc1R1
  doi: 10.1103/PhysRevA.86.032324
– ident: PhysRevX.11.011027Cc46R1
  doi: 10.1038/ncomms12964
– ident: PhysRevX.11.011027Cc15R1
  doi: 10.1103/PhysRevA.90.062307
– ident: PhysRevX.11.011027Cc48R1
  doi: 10.1038/s41534-019-0185-4
– ident: PhysRevX.11.011027Cc57R1
  doi: 10.1109/TASC.2019.2908884
– ident: PhysRevX.11.011027Cc40R1
  doi: 10.1103/PhysRevLett.109.050507
SSID ssj0000601477
Score 2.4593408
Snippet We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 011027
SubjectTerms Accuracy
Arrays
Crosstalk
Damping
Error correction
Fault tolerance
Photomultiplier tubes
Photon counters
Photons
Quantum computers
Qubits (quantum computing)
Resonators
Robustness
Room temperature
Superconductivity
Transient response
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgCIkLYhVlkw_ckGniNT0hWrWqkFp2qSciO3GAS1K6wO8zkyaAhMQxjk9je-bN-PkNIWcygbjtrWcB6s5Kbzmz2nDmpWzbMLXel9cFw5EePMnrsRpXBbdZRausfWLpqNMiwRp5C6AvSqu1ub6cvDPsGoW3q1ULjVWyxiFT4A2y1umNbu-_qyyoNiKNqV_LBKKFxMp7_zG-QO1OGMF2Mr8iUinc_8cvl8Gmv0U2K5RIr5bLuk1WfL5D1ku2ZjLbJc_IzmB9VKgCEE2HP3U-WmTU0ofFxE8h0UUtVwhN9G7h3ua0ZAdQm9ObnHVf3yZ0iGS8T_vh6e1rARiQ4gN1sPMeeer3HrsDVjVKYImI1JxFkJaYVIYpeL0olKnSFoBbpJSxPolcpiAMWcB1wgfaQQLUxs5TgU54lPHQOSP2SSMvcn9AaGCcTrSBKWkoM-GsSUyKNQ9nEav5JjmvjRVPlnoYcZlHBCKuTQtf8dK0TdJBe37PRC3rcqCYvsTV0Yi5FE4JhclVJo3VDiVqlMraQgnIPnWTHNerEVcHbBb_bIfD_38fkQ2ONBTs4RIck8Z8uvAngCPm7rTaLF-HnsXe
  priority: 102
  providerName: ProQuest
Title High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
URI https://www.proquest.com/docview/2550645926
https://doaj.org/article/243b5350086f47a6b050355f93534096
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0oxsSL8TOiSPbgzVTa7ld7FAISExBREk42u-02cCkECv59Z1pQEg9ePHazSZuZdue97ds3hNzxGOq21dZx0XeWW-07WirfsZyH2ku0tcXvgl5fdkf8eSzGO62-UBNW2gOXgWv4nBnBBELvlCstDRqYCJGGTDDgJqXZthvukKlyDQbor9T2lIzLGiioHNr1-AE9O2EE28jsVKLCsP_XelwUmc4JOd6gQ_pYPtUp2bPZGTksVJrx8px8oCrD6aAzFYBn2vvZ36OzlGr6tprbBRBc9HCFkkRfV2aa00IVQHVGXzKnNZnOaQ9FeJ96belgMgPsR_FgOsT3gow67fdW19k0SHBiFojcCYCOqIR7Cax2gccTITUAtkAIpW0cmFRA-dGA55h1pQHiE2LHKVfGfpD6njGKXZJKNsvsFaGuMjKWCqYkHk-Z0SpWCe51GI0YzVbJ_TZY0bz0wYgK_uCyaBtauIrK0FZJE-P5PRM9rIsByGy0yWz0V2arpLbNRrT5sJYRMCB02At9ef0f97ghRz6KVLDDi1sjlXyxsreAMnJTJ_tB56lODprt_mBYL16vL15dzPI
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKCNEL4im2POoDN-SSxK_sqWoRyxZ2eZRdaU-17MQpXJLtvvr3O-NNoBISxzg-je2Zb8afvyHkVGQQt731LELdWeFtwqzSCfNCtG2cW-_DdUH_VnWH4nokR3XBbVrTKhufGBx1XmVYIz8H6IvSau1EfR3_Ydg1Cm9X6xYaK2RNcAg0-FK8c_VSY0GtEaF181Ym4udIq_zpF6MvqNwJI9hM5r94FGT733jlEGo6W2Szxoj023JRt8kHX-6Q9cDVzKa75BdyM1gH9akAQtP-a5WPVgW19HE-9hNIc1HJFQITfZi75xkN3ABqS3pXsoun5zHtIxXvr114ev9UAQKk-DwdrLxHhp3LwUWX1W0SWMZTOWMpJCU6F3EOPi-NRS6VBdiWSqmtz1JXSAhCFlAd95FykP60se9UpLIkLZLYOc33yWpZlf6A0Eg7lSkNU_JYFNxZnekcKx7OIlLzLXLWGMuMl2oYJmQRETeNaeHLLE3bIt_Rni8zUck6DFST36Y-GCYR3EkuMbUqhLbKoUCNlEWbSw65p2qRo2Y1TH28puZ1M3x6__dnstEd9Hum9-P25pB8TJCQgt1coiOyOpvM_TEgipk7CdvmH5cTx2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Fidelity+Measurement+of+a+Superconducting+Qubit+Using+an+On-Chip+Microwave+Photon+Counter&rft.jtitle=Physical+review.+X&rft.au=A.+Opremcak&rft.au=C.%E2%80%89H.+Liu&rft.au=C.+Wilen&rft.au=K.+Okubo&rft.date=2021-02-10&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=1&rft.spage=011027&rft_id=info:doi/10.1103%2FPhysRevX.11.011027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_243b5350086f47a6b050355f93534096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon