Acceptance of dance training system based on augmented reality and technology acceptance model (TAM)
The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology,...
Saved in:
Published in | Virtual reality : the journal of the Virtual Reality Society Vol. 26; no. 1; pp. 33 - 54 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology, which means embedding virtual objects into the real-world environment. The primary focus of this research was to solve the long-term learning retention and poor learning efficiency for mastering a dance skill through the AR technology based on constructivism learning theory, Dreyfus model and Technology Acceptance Model (TAM). The problem analysis carried out in this research had major research findings, in which the retention and learning efficiency of a dance training system were predominantly determined through the type of learning theory adopted, learning environment, training tools, skill acquisition technology and type of AR technique. Therefore, the influential factors for the user acceptance of AR-based dance training system (ARDTS) were based on quantitative analysis. These influential factors were determined to address the problem of knowledge gap on acceptance of AR-based systems for dance education through self-learning. The evaluation and testing were conducted to validate the developed and implemented ARDTS system. The Technology Acceptance Model (TAM) as the evaluation model and quantitative analysis was done with a research instrument that encompassed external and internal variables. TAM consisted of 37 items, in which six factors were used to assess the new developed ARDTS by the authors and its acceptability among 86 subjects. The current study had investigated the potential use of AR-based dance training system to promote a particular dance skill among a sample population with various backgrounds and interests. The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill. |
---|---|
AbstractList | The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology, which means embedding virtual objects into the real-world environment. The primary focus of this research was to solve the long-term learning retention and poor learning efficiency for mastering a dance skill through the AR technology based on constructivism learning theory, Dreyfus model and Technology Acceptance Model (TAM). The problem analysis carried out in this research had major research findings, in which the retention and learning efficiency of a dance training system were predominantly determined through the type of learning theory adopted, learning environment, training tools, skill acquisition technology and type of AR technique. Therefore, the influential factors for the user acceptance of AR-based dance training system (ARDTS) were based on quantitative analysis. These influential factors were determined to address the problem of knowledge gap on acceptance of AR-based systems for dance education through self-learning. The evaluation and testing were conducted to validate the developed and implemented ARDTS system. The Technology Acceptance Model (TAM) as the evaluation model and quantitative analysis was done with a research instrument that encompassed external and internal variables. TAM consisted of 37 items, in which six factors were used to assess the new developed ARDTS by the authors and its acceptability among 86 subjects. The current study had investigated the potential use of AR-based dance training system to promote a particular dance skill among a sample population with various backgrounds and interests. The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill. |
Author | Sidhu, Manjit Singh Iqbal, Javid |
Author_xml | – sequence: 1 givenname: Javid orcidid: 0000-0002-9503-5446 surname: Iqbal fullname: Iqbal, Javid email: javid@ucsiuniversity.edu.my organization: Institute of Computer Science and Digital Innovation (ICSDI), UCSI University – sequence: 2 givenname: Manjit Singh surname: Sidhu fullname: Sidhu, Manjit Singh organization: Department of Informatics, College of Computing and Informatics (CCI), Universiti Tenaga Nasional (UNITEN) |
BookMark | eNp9kL1uwyAUhVGVSk3SvkAnpC7t4BYbbPAYRf2TUnVJZ4TxJXXkQApk8NuXJJUidcgC50rnOxfOBI2ss4DQbU4ec0L4U0hnWWakyLMkijobLtA4Z5RldV3yUdK0rDNGqbhCkxDWhNCCCTZG7Uxr2EZlNWBncHsQ0avOdnaFwxAibHCjArTYWax2qw3YmAYPqu_igJVtcQT9bV3vVmk8pW1cCz2-X84-Hq7RpVF9gJu_e4q-Xp6X87ds8fn6Pp8tMk1FGTNuiqapaM4Ubw0QQ4BXXHNRkIZWrAIqTNsoqHLF61qLKtlaqipmKBOkNppO0d0xd-vdzw5ClGu38zatlEXKpYJQXiSXOLq0dyF4MFJ3UcXO2f2_e5kTue9UHjuVqVN56FQOCS3-oVvfbZQfzkP0CIVktivwp1edoX4Blc2MuQ |
CitedBy_id | crossref_primary_10_1177_02762374241288701 crossref_primary_10_1016_j_daach_2023_e00257 crossref_primary_10_1155_2022_9032400 crossref_primary_10_1155_2022_1207485 crossref_primary_10_3389_frvir_2024_1322543 crossref_primary_10_1155_2022_4796937 crossref_primary_10_1016_j_tsep_2025_103241 crossref_primary_10_1016_j_procs_2024_09_025 crossref_primary_10_3390_app14145981 crossref_primary_10_1109_ACCESS_2023_3323949 crossref_primary_10_1016_j_ssaho_2024_100821 crossref_primary_10_1108_K_06_2023_1011 crossref_primary_10_1155_2023_4687465 crossref_primary_10_1155_2022_2797854 crossref_primary_10_1016_j_aej_2024_07_068 crossref_primary_10_1007_s11082_023_05924_0 crossref_primary_10_1016_j_ijhcs_2024_103410 crossref_primary_10_1080_14647893_2024_2369769 crossref_primary_10_1007_s10639_024_12834_5 crossref_primary_10_1162_pres_a_00383 crossref_primary_10_37467_revtechno_v11_4445 crossref_primary_10_1007_s40692_022_00256_6 crossref_primary_10_1007_s11082_023_05734_4 crossref_primary_10_1080_10447318_2024_2423338 crossref_primary_10_26710_sbsee_v6i3_3124 crossref_primary_10_1007_s44196_024_00510_y crossref_primary_10_1108_APJBA_07_2023_0292 crossref_primary_10_1155_2022_7133491 |
Cites_doi | 10.1109/TVCG.2011.73 10.1109/TLT.2011.31 10.1007/978-3-642-39241-2_20 10.1016/B978-0-12-805342-3.00010-2 10.1111/j.1365-2923.2009.03421.x 10.1109/T4E.2012.53 10.1109/SysEng.2015.7302757 10.1109/ICACCI.2016.7732321 10.1109/ICACSIS.2013.6761612 10.1016/j.robot.2016.10.006 10.1145/2968219.2971442 10.1145/217278.217291 10.1177/2055207616654578 10.1109/ICTAI.2012.102 10.1016/0305-0483(95)00035-6 10.1590/1984-0462/;2018;36;3;00004 10.17705/1CAIS.01250 10.1109/T4E.2013.34 10.1145/2501988.2502045 10.1109/IIAI-AAI.2013.28 10.1109/KCIC.2016.7883646 10.3390/s19173661 10.1109/IJCNN.2016.7727411 10.1109/TMM.2012.2199971 10.1109/TLT.2010.27 10.1109/ISCAIE.2016.7575066 10.1109/EPCGI.2016.7851195 10.3390/s16020161 10.1109/CICSYN.2013.11 10.4018/IJTHI.2019040102 10.1109/ICASSP.2013.6638091 10.1109/EHB.2015.7391465 10.3390/s17061261 10.5121/ijcsa.2015.5102 10.1007/s00138-014-05963 10.1109/NCVPRIPG.2011.16 10.21236/ADA084551 10.1109/TPAMI.2012.85 10.1109/TCYB.2013.2265378 10.1016/j.patcog.2016.08.022 10.1037/0033-295X.84.2.191 10.1109/CVPRW.2012.6238894 10.1109/T4E.2013.37 10.1109/ICMTMA.2018.00052 10.1109/tlt.2013.37 10.1080/14647893.2019.1566305 10.1109/TENCONSpring.2017.8070063 10.1109/CW.2015.26 10.2307/249008 10.1007/s10044-004-0228-z 10.1007/978-1-4614-0064-6 10.1109/CISP.2013.6745251 10.1109/ARSO.2014.7020983 10.1007/978-3-319-62212-53 10.1037//0021-9010.78.2.311 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Copyright Springer Nature B.V. Mar 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: Copyright Springer Nature B.V. Mar 2022 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10055-021-00529-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Dance |
EISSN | 1434-9957 |
EndPage | 54 |
ExternalDocumentID | 10_1007_s10055_021_00529_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_DOAJ GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAS LLZTM M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c385t-7f2bb6314a7dfe0f0e767c7820b3646e38fdbae61a799c86a7dd3a64f34809fc3 |
IEDL.DBID | BENPR |
ISSN | 1359-4338 |
IngestDate | Fri Aug 29 01:46:35 EDT 2025 Tue Jul 01 00:21:47 EDT 2025 Thu Apr 24 22:52:23 EDT 2025 Fri Feb 21 02:47:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Kinect V2 Dance learning Augmented reality User acceptance Interactive system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-7f2bb6314a7dfe0f0e767c7820b3646e38fdbae61a799c86a7dd3a64f34809fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9503-5446 |
PQID | 2631380372 |
PQPubID | 26864 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2631380372 crossref_citationtrail_10_1007_s10055_021_00529_y crossref_primary_10_1007_s10055_021_00529_y springer_journals_10_1007_s10055_021_00529_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Godalming, Surrey |
PublicationTitle | Virtual reality : the journal of the Virtual Reality Society |
PublicationTitleAbbrev | Virtual Reality |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | PremkumarGPotterMAdoption of Computer aided software engineering (CASE) technology: and innovation adoption perseptiveACM SIGMIS Database19952610512410.1145/217278.217291 Papert S, Harel I (1991) Constructionism: research reports and essays. In: Epistemelogy and learning research group, pp 1985–1990. Ablex Publishing Corporation Kuramoto I, Nishimura Y, Yamamoto K, Shibuya Y, Tsujino Y (2013) Visualizing velocity and acceleration on augmented practice mirror self-learning support system of physical motion. In: Proceedings of 2nd IIAI international conference on advanced applied informatics, IIAI-AAI 2013, pp 365–368. https://doi.org/10.1109/IIAI-AAI.2013.28 FanRXuSGengWExample-based automatic music-driven conventional dance motion synthesisIEEE Trans vis Comput Graph201218350151510.1109/TVCG.2011.73 Ioan CA, Velcin J, Trausan-Matu S (2012) Tagging choreographic data for data mining and classification. In: Proceedings of international conference on tools with artificial intelligence, ICTAI, vol 1, pp 719–726. https://doi.org/10.1109/ICTAI.2012.102 AndersonFGrossmanTMatejkaJFitzmauriceGYouMove: enhancing movement training with an augmented reality mirrorACM201310.1145/2501988.2502045 Guo T, Wu X (2013) 3D human gesture matching via graph cut. In: Proceedings of the 2013 6th international congress on image and signal processing, CISP 2013, vol 2, pp 675–679. https://doi.org/10.1109/CISP.2013.6745251 ReedeRMCollomosseJVisual sentences for pose retrieval over low resolution cross-media dance collectionsIEEE Trans Multimedia20121461652166110.1109/TMM.2012.2199971 AlharbiSDrewSUsing the Technology Acceptance Model in understanding academics' behavioural intention to use learning management systemsInt J Adv Comput Sci Appl201451143155 Kari T, Makkonen M (2014) Explaining the usage intentions of exergames. In: Proceedings of the 35th international conference on information systems, ICIS, pp 1–18 Vermun K, Senapaty M, Sankhla A, Patnaik P, Routray A (2013) Gesture-based affective and cognitive states recognition using kinect for effective feedback during e-learning. In: Proceedings of 2013 IEEE 5th international conference on technology for education, T4E 2013, pp 107–110. https://doi.org/10.1109/T4E.2013.34 Abiddin WZ, Jailani R, Omar AR, Yassin IM (2016) Development of MATLAB Kinect Skeletal Tracking System (MKSTS) for gait analysis. In: ISCAIE 2016–2016 IEEE symposium on computer applications and industrial electronics, pp 216–220. https://doi.org/10.1109/ISCAIE.2016.7575066 Venkatesh P, Babu JD (2016) Automatic expression recognition and expertise prediction in Bharatnatyam. In: 2016 International conference on advances in computing, communications and informatics, ICACCI 2016, pp 1864–1869. https://doi.org/10.1109/ICACCI.2016.7732321 Heryadi Y, Fanany MI, Arymurthy AM (2013) Stochastic regular grammar-based learning for basic dance motion recognition. In: 2013 International conference on advanced computer science and information systems, ICACSIS 2013, pp 419–424. https://doi.org/10.1109/ICACSIS.2013.6761612 IgbariaMIivariJThe effects of self-efficacy on computer usageOmega199523658760510.1016/0305-0483(95)00035-6 CarmignianiJFurhtBHandbook of augmented reality2011Springer10.1007/978-1-4614-0064-6 SahaSLahiriRKonarABanerjeeBNagarAKHuman skeleton matching for elearning of dance using a probabilistic neural networkProc Int Joint Conf Neural Netw201620161754176110.1109/IJCNN.2016.7727411 Kitsikidis A, Dimitropoulos K, Douka S, Grammalidis N (2014) Dance analysis using multiple Kinect sensors. In: 2014 International conference on computer vision theory and applications, vol 2, pp 789–795 Alabbasi H, Gradinaru A, Moldoveanu F, Moldoveanu A (2016) Human motion tracking & evaluation using Kinect V2 sensor. In: 2015 E-health and bioengineering conference, EHB 2015, pp 2–5. https://doi.org/10.1109/EHB.2015.7391465 Saraydem R, Enstitusu SB, Okulu KH (2016) Kinect sensor Taban I skelet takip sistemi kullanarak komut tan ma command recognition by using skeletal tracking based on Kinect Sensor. In: IEEE, pp 2–5 ChanJCPLeungHTangJKTKomuraTA virtual reality dance training system using motion capture technologyIEEE Trans Learn Technol20114218719510.1109/TLT.2010.27 Kuang H, Cai S, Ma X, Liu X (2018) An effective skeleton extraction method based on Kinect depth image. In: Proceedings of 10th international conference on measuring technology and mechatronics automation, ICMTMA 2018, pp 187–190. https://doi.org/10.1109/ICMTMA.2018.00052 AminDGovilkarSComparative study of augmented reality SDK'sInt J Comput Sci Appl201551112610.5121/ijcsa.2015.5102 HartsonRPylaPHartsonRPylaPChapter 10—UX design requirements: user stories and requirementsThe UX book20192Morgan Kaufmann22725010.1016/B978-0-12-805342-3.00010-2 Hassan E, Chaudhury S, Gopal M (2011) Annotating dance posture images using multi kernel feature combination. In: Proceedings 2011 3rd national conference on computer vision, pattern recognition, image processing and graphics, NCVPRIPG 2011, pp 41–45. https://doi.org/10.1109/NCVPRIPG.2011.16 TrajkovaMCafaroFE-ballet designing for remote ballet learningUBICOMP/ISWC ACM201610.1145/2968219.2971442 DiasJRPenhaRMorgadoLDa VeigaPACarvalhoESFernandes-MarcosATele-media-art: feasibility tests of web-based dance education for the blind using Kinect and sound synthesis of motionInt J Technol Human Interact2019152112810.4018/IJTHI.2019040102 Dos AnjosIDVCFerraroAAThe influence of educational dance on the motor development of childrenRevista Paulista De Pediatria201836333734410.1590/1984-0462/;2018;36;3;00004 Ho C, Tsai WT, Lin KS, Chen HH (2013) Extraction and alignment evaluation of motion beats for street. In: IEEE, pp 2429–2433 Jeffrey DA (2015) Testing the Technology Acceptance Model 3 (TAM 3) with the inclusion of change fatigue and overload, in the context of faculty from Seventh-day Adventist Universities: a revised model. (Doctoral dissertation). Andrews University, Michigan. https://digitalcommons.andrews.edu/dissertations/1581 HanJShaoLXuDShottonJEnhanced computer vision with Microsoft Kinect sensor: a reviewIEEE Trans Cybern20134351318133410.1109/TCYB.2013.2265378 ShanJAkellaS3D human action segmentation and recognition using pose kinetic energyProc IEEE Workshop Adv Robot Soc Impacts ARSO20152015697510.1109/ARSO.2014.7020983 ShiraziABehzadanAHContent delivery using augmented reality to enhance students’ performance in a building design and assembly projectAdv Eng Educ201543124 AnbarsantiNPrihatmantoASDance learning and recognition system based on hidden Markov model. A case study: Aceh traditional danceJurnal Teknologi2016782–27381 MiyazakiJKatoHChenAYamamotoGTaketomiTSantosMECAugmented reality learning experiences: survey of prototype design and evaluationIEEE Trans Learn Technol201471385610.1109/tlt.2013.37 Rogers EM (1983) Diffusion of innovations. Simon and Schuster. https://doi.org/citeulike-article-id:126680 Skinner B (1974) The causes of behavior. About behaviorism, p 1023. Vintage KohnBNowakowskaABelbachirANReal-time body motion analysis for dance pattern recognitionIEEE Comput Soc Conf Comput vis Pattern Recognit Workshops201210.1109/CVPRW.2012.6238894 BoukirSCheneviereFCompression and recognition of dance gestures using a deformable modelPattern Anal Applic200473308316211338510.1007/s10044-004-0228-z KimDKimDHKwakKCClassification of K-pop dance movements based on skeleton information obtained by a Kinect sensorSensors2017176126110.3390/s17061261 WulfGSheaCLewthwaiteRMotor skill learning and performance: a review of influential factorsMed Educ2010441758410.1111/j.1365-2923.2009.03421.x BanduraASelf-efficacy: toward a unifying theory of behavioral changePsychol Rev19778419121510.1037/0033-295X.84.2.191 EichnerMFerrariVHuman pose co-estimation and applicationsIEEE Trans Pattern Anal Mach Intell201234112282228810.1109/TPAMI.2012.85 GuyonIAthitsosVJangyodsukPEscalanteHJThe ChaLearn gesture dataset (CGD 2011)Mach vis Appl20142581929195110.1007/s00138-014-05963 Dreyfus SE, Dreyfus HL (1980) A five-stage model of the mental activities involved in directed skill acquisition. California Univ Berkeley Operations Research Center YangYLeungHYueLDengLAutomatic dance lesson generationIEEE Trans Learn Technol20125319119810.1109/TLT.2011.31 DavisFDPerceived usefulness, perceived ease of use, and user acceptance of information technologyMIS Q198913331934010.2307/249008 GhidoniSMunaroMA multi-viewpoint feature-based reidentification system driven by skeleton keypointsRobot Auton Syst201790455410.1016/j.robot.2016.10.006 Torres R, Clotet R, Gonzalez R, Pirrone J, Sagbay G, Rivas D, Soto A (2015) Analysis of corporal movement alterations using a 3D body tracking sensor. In: 1st IEEE international symposium on systems engineering, ISSE 2015—Proceedings, pp 202–205. https://doi.org/10.1109/SysEng.2015.7302757 IbanezRSoriaATeyseyreARodriguezGCampoMApproximate string matching: a lightweight approach to recognize gestures with KinectPattern Recogn201762738610.1016/j.patcog.2016.08.022 KonarASahaSFuzzy image matching based posture recognition in ballet danceStud Comput Intell20187246511510.1007/978-3-319-62212-53 BaptistaFLopesPFSantanaPMotionDesigner: augmented artistic performances with Kinect-based human body motion trackingEncontro Portugues De Computacao Graca e Interacao, EPCGI201720161710.1109/EPCGI.2016.7851195 Hergenhahn BR, Olson MH (1993) An introduction to theories of learning. In: An introduction to theories of learning, 4th ed. Prentice-Hall, Inc. Ramadijanti N, Fahrul HF, Pangestu DM (2017) Basic dance pose applications using Kinect technology. In: 2016 International conference on knowledge creation and intelligent computing, KCIC 2016, pp 194–200. https://doi.org/10.1109/KCIC.2016.7883646 Choensawat W, Sookhanaphibarn K, Kijkhun C, Hachimura K (2013) Desirability of a teaching and learning tool for Thai dance body motion. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8013 LNCS (Part 2), pp 171–17 J Han (529_CR27) 2013; 43 529_CR35 B Kohn (529_CR40) 2012 529_CR36 529_CR37 529_CR31 G Premkumar (529_CR51) 1995; 26 529_CR32 M Eichner (529_CR21) 2012; 34 529_CR39 S Saha (529_CR56) 2014; 2014 D Amin (529_CR5) 2015; 5 M Igbaria (529_CR34) 1995; 23 529_CR30 FD Davis (529_CR17) 1989; 13 529_CR68 529_CR25 529_CR20 529_CR64 R Hartson (529_CR28) 2019 529_CR65 S Alharbi (529_CR3) 2014; 5 S Boukir (529_CR12) 2004; 7 529_CR29 IDVC Dos Anjos (529_CR19) 2018; 36 R Ibanez (529_CR33) 2017; 62 D Kim (529_CR38) 2017; 17 S Ghidoni (529_CR23) 2017; 90 529_CR61 529_CR62 A Bandura (529_CR9) 1977; 84 I Guyon (529_CR26) 2014; 25 529_CR58 529_CR15 S Saha (529_CR57) 2016; 2016 JS Gianluca Romano (529_CR24) 2019 529_CR54 A Banerjee (529_CR8) 2014; 2014 529_CR11 529_CR55 G Wulf (529_CR66) 2010; 44 RM Reede (529_CR53) 2012; 14 K Kraiger (529_CR42) 1993; 78 J Shan (529_CR59) 2015; 2015 529_CR1 529_CR50 J Carmigniani (529_CR13) 2011 529_CR52 529_CR48 529_CR43 529_CR44 529_CR45 Y Lee (529_CR46) 2003; 12 J Miyazaki (529_CR49) 2014; 7 529_CR2 529_CR4 JR Dias (529_CR18) 2019; 15 R Fan (529_CR22) 2012; 18 RE Cisneros (529_CR16) 2019; 20 Y Yang (529_CR67) 2012; 5 A Shirazi (529_CR60) 2015; 4 J Li (529_CR47) 2016; 2 G Zhu (529_CR69) 2016; 16 JCP Chan (529_CR14) 2011; 4 A Konar (529_CR41) 2018; 724 F Anderson (529_CR7) 2013 F Baptista (529_CR10) 2017; 2016 M Trajkova (529_CR63) 2016 N Anbarsanti (529_CR6) 2016; 78 |
References_xml | – reference: BoukirSCheneviereFCompression and recognition of dance gestures using a deformable modelPattern Anal Applic200473308316211338510.1007/s10044-004-0228-z – reference: KohnBNowakowskaABelbachirANReal-time body motion analysis for dance pattern recognitionIEEE Comput Soc Conf Comput vis Pattern Recognit Workshops201210.1109/CVPRW.2012.6238894 – reference: Vermun K, Senapaty M, Sankhla A, Patnaik P, Routray A (2013) Gesture-based affective and cognitive states recognition using kinect for effective feedback during e-learning. In: Proceedings of 2013 IEEE 5th international conference on technology for education, T4E 2013, pp 107–110. https://doi.org/10.1109/T4E.2013.34 – reference: Guo T, Wu X (2013) 3D human gesture matching via graph cut. In: Proceedings of the 2013 6th international congress on image and signal processing, CISP 2013, vol 2, pp 675–679. https://doi.org/10.1109/CISP.2013.6745251 – reference: Abiddin WZ, Jailani R, Omar AR, Yassin IM (2016) Development of MATLAB Kinect Skeletal Tracking System (MKSTS) for gait analysis. In: ISCAIE 2016–2016 IEEE symposium on computer applications and industrial electronics, pp 216–220. https://doi.org/10.1109/ISCAIE.2016.7575066 – reference: HanJShaoLXuDShottonJEnhanced computer vision with Microsoft Kinect sensor: a reviewIEEE Trans Cybern20134351318133410.1109/TCYB.2013.2265378 – reference: Kuramoto I, Nishimura Y, Yamamoto K, Shibuya Y, Tsujino Y (2013) Visualizing velocity and acceleration on augmented practice mirror self-learning support system of physical motion. In: Proceedings of 2nd IIAI international conference on advanced applied informatics, IIAI-AAI 2013, pp 365–368. https://doi.org/10.1109/IIAI-AAI.2013.28 – reference: PremkumarGPotterMAdoption of Computer aided software engineering (CASE) technology: and innovation adoption perseptiveACM SIGMIS Database19952610512410.1145/217278.217291 – reference: IgbariaMIivariJThe effects of self-efficacy on computer usageOmega199523658760510.1016/0305-0483(95)00035-6 – reference: SahaSKonarAPosture recognition in ballet danceInt Conf Control Instrum Energy Commun CIEC20142014708711 – reference: IbanezRSoriaATeyseyreARodriguezGCampoMApproximate string matching: a lightweight approach to recognize gestures with KinectPattern Recogn201762738610.1016/j.patcog.2016.08.022 – reference: ZhuGZhangLShenPSongJAn online continuous human action recognition algorithm based on the Kinect sensorSensors201616216110.3390/s16020161 – reference: LiJThengYLCheongWLHooYFNgoMDExergames for the corporate wellness program in Singapore: an investigation of employees’ acceptance via watching Kinect videoDigital Health201621810.1177/2055207616654578 – reference: Kumar P, Saini R, Yadava M, Roy PP, Dogra DP, Balasubramanian R (2017) Virtual trainer with real-time feedback using Kinect sensor. In: TENSYMP 2017-IEEE international symposium on technologies for smart cities. https://doi.org/10.1109/TENCONSpring.2017.8070063 – reference: Rogers EM (1983) Diffusion of innovations. Simon and Schuster. https://doi.org/citeulike-article-id:126680 – reference: BanerjeeASahaSBasuSKonarAJanarthananRA novel approach to posture recognition of ballet danceIEEE CONECCT2014201415 – reference: Skinner B (1974) The causes of behavior. About behaviorism, p 1023. Vintage – reference: AminDGovilkarSComparative study of augmented reality SDK'sInt J Comput Sci Appl201551112610.5121/ijcsa.2015.5102 – reference: Majumdar R, Dinesan P (2012) Framework for teaching Bharatanatyam through digital medium. In: Proceedings of 2012 IEEE 4th international conference on technology for education, T4E 2012, pp 241–242. https://doi.org/10.1109/T4E.2012.53 – reference: HartsonRPylaPHartsonRPylaPChapter 10—UX design requirements: user stories and requirementsThe UX book20192Morgan Kaufmann22725010.1016/B978-0-12-805342-3.00010-2 – reference: Ramadijanti N, Fahrul HF, Pangestu DM (2017) Basic dance pose applications using Kinect technology. In: 2016 International conference on knowledge creation and intelligent computing, KCIC 2016, pp 194–200. https://doi.org/10.1109/KCIC.2016.7883646 – reference: TrajkovaMCafaroFE-ballet designing for remote ballet learningUBICOMP/ISWC ACM201610.1145/2968219.2971442 – reference: YangYLeungHYueLDengLAutomatic dance lesson generationIEEE Trans Learn Technol20125319119810.1109/TLT.2011.31 – reference: DavisFDPerceived usefulness, perceived ease of use, and user acceptance of information technologyMIS Q198913331934010.2307/249008 – reference: KraigerKFordJSalasEApplication of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluationJ Appl Psychol19937831132810.1037//0021-9010.78.2.311 – reference: Dreyfus SE, Dreyfus HL (1980) A five-stage model of the mental activities involved in directed skill acquisition. California Univ Berkeley Operations Research Center – reference: ChanJCPLeungHTangJKTKomuraTA virtual reality dance training system using motion capture technologyIEEE Trans Learn Technol20114218719510.1109/TLT.2010.27 – reference: Papert S, Harel I (1991) Constructionism: research reports and essays. In: Epistemelogy and learning research group, pp 1985–1990. Ablex Publishing Corporation – reference: ShiraziABehzadanAHContent delivery using augmented reality to enhance students’ performance in a building design and assembly projectAdv Eng Educ201543124 – reference: GhidoniSMunaroMA multi-viewpoint feature-based reidentification system driven by skeleton keypointsRobot Auton Syst201790455410.1016/j.robot.2016.10.006 – reference: Ioan CA, Velcin J, Trausan-Matu S (2012) Tagging choreographic data for data mining and classification. In: Proceedings of international conference on tools with artificial intelligence, ICTAI, vol 1, pp 719–726. https://doi.org/10.1109/ICTAI.2012.102 – reference: FanRXuSGengWExample-based automatic music-driven conventional dance motion synthesisIEEE Trans vis Comput Graph201218350151510.1109/TVCG.2011.73 – reference: KonarASahaSFuzzy image matching based posture recognition in ballet danceStud Comput Intell20187246511510.1007/978-3-319-62212-53 – reference: Saraydem R, Enstitusu SB, Okulu KH (2016) Kinect sensor Taban I skelet takip sistemi kullanarak komut tan ma command recognition by using skeletal tracking based on Kinect Sensor. In: IEEE, pp 2–5 – reference: Venkatesh P, Babu JD (2016) Automatic expression recognition and expertise prediction in Bharatnatyam. In: 2016 International conference on advances in computing, communications and informatics, ICACCI 2016, pp 1864–1869. https://doi.org/10.1109/ICACCI.2016.7732321 – reference: Yazaki Y, Soga A, Umino B, Hirayama M (2016) Automatic composition by body part motion synthesis for supporting dance creation. In: Proceedings of 2015 international conference on cyberworlds, CW 2015, pp 200–203. https://doi.org/10.1109/CW.2015.26 – reference: WulfGSheaCLewthwaiteRMotor skill learning and performance: a review of influential factorsMed Educ2010441758410.1111/j.1365-2923.2009.03421.x – reference: AnbarsantiNPrihatmantoASDance learning and recognition system based on hidden Markov model. A case study: Aceh traditional danceJurnal Teknologi2016782–27381 – reference: Choensawat W, Sookhanaphibarn K, Kijkhun C, Hachimura K (2013) Desirability of a teaching and learning tool for Thai dance body motion. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8013 LNCS (Part 2), pp 171–179 – reference: Kitsikidis A, Dimitropoulos K, Douka S, Grammalidis N (2014) Dance analysis using multiple Kinect sensors. In: 2014 International conference on computer vision theory and applications, vol 2, pp 789–795 – reference: KimDKimDHKwakKCClassification of K-pop dance movements based on skeleton information obtained by a Kinect sensorSensors2017176126110.3390/s17061261 – reference: Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR (1956) Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York: David McKay. – reference: Ambudkar B (2013) Introducing network design to students via a dance activity. In: Proceedings-2013 IEEE 5th international conference on technology for education, T4E 2013, pp 123–126. https://doi.org/10.1109/T4E.2013.37 – reference: SahaSLahiriRKonarABanerjeeBNagarAKHuman skeleton matching for elearning of dance using a probabilistic neural networkProc Int Joint Conf Neural Netw201620161754176110.1109/IJCNN.2016.7727411 – reference: CarmignianiJFurhtBHandbook of augmented reality2011Springer10.1007/978-1-4614-0064-6 – reference: Hergenhahn BR, Olson MH (1993) An introduction to theories of learning. In: An introduction to theories of learning, 4th ed. Prentice-Hall, Inc. – reference: EichnerMFerrariVHuman pose co-estimation and applicationsIEEE Trans Pattern Anal Mach Intell201234112282228810.1109/TPAMI.2012.85 – reference: Ho C, Tsai WT, Lin KS, Chen HH (2013) Extraction and alignment evaluation of motion beats for street. In: IEEE, pp 2429–2433 – reference: Torres R, Clotet R, Gonzalez R, Pirrone J, Sagbay G, Rivas D, Soto A (2015) Analysis of corporal movement alterations using a 3D body tracking sensor. In: 1st IEEE international symposium on systems engineering, ISSE 2015—Proceedings, pp 202–205. https://doi.org/10.1109/SysEng.2015.7302757 – reference: GuyonIAthitsosVJangyodsukPEscalanteHJThe ChaLearn gesture dataset (CGD 2011)Mach vis Appl20142581929195110.1007/s00138-014-05963 – reference: CisnerosREStampKWhatleySWoodKWhoLoDancE: digital tools and the dance learning environmentRes Dance Educ2019201547210.1080/14647893.2019.1566305 – reference: Gianluca RomanoJSDrachslerHDancing salsa with machines: filling the gap of dancing learning solutionsSensors201910.3390/s19173661 – reference: BaptistaFLopesPFSantanaPMotionDesigner: augmented artistic performances with Kinect-based human body motion trackingEncontro Portugues De Computacao Graca e Interacao, EPCGI201720161710.1109/EPCGI.2016.7851195 – reference: BanduraASelf-efficacy: toward a unifying theory of behavioral changePsychol Rev19778419121510.1037/0033-295X.84.2.191 – reference: Saha S, Ghosh S, Konar A, Nagar AK (2013) Gesture recognition from Indian classical dance using Kinect sensor. In: Proceedings of 5th international conference on computational intelligence, communication systems, and networks, CICSYN 2013, pp 3–8. https://doi.org/10.1109/CICSYN.2013.11 – reference: AlharbiSDrewSUsing the Technology Acceptance Model in understanding academics' behavioural intention to use learning management systemsInt J Adv Comput Sci Appl201451143155 – reference: Hassan E, Chaudhury S, Gopal M (2011) Annotating dance posture images using multi kernel feature combination. In: Proceedings 2011 3rd national conference on computer vision, pattern recognition, image processing and graphics, NCVPRIPG 2011, pp 41–45. https://doi.org/10.1109/NCVPRIPG.2011.16 – reference: Heryadi Y, Fanany MI, Arymurthy AM (2013) Stochastic regular grammar-based learning for basic dance motion recognition. In: 2013 International conference on advanced computer science and information systems, ICACSIS 2013, pp 419–424. https://doi.org/10.1109/ICACSIS.2013.6761612 – reference: ShanJAkellaS3D human action segmentation and recognition using pose kinetic energyProc IEEE Workshop Adv Robot Soc Impacts ARSO20152015697510.1109/ARSO.2014.7020983 – reference: DiasJRPenhaRMorgadoLDa VeigaPACarvalhoESFernandes-MarcosATele-media-art: feasibility tests of web-based dance education for the blind using Kinect and sound synthesis of motionInt J Technol Human Interact2019152112810.4018/IJTHI.2019040102 – reference: Alabbasi H, Gradinaru A, Moldoveanu F, Moldoveanu A (2016) Human motion tracking & evaluation using Kinect V2 sensor. In: 2015 E-health and bioengineering conference, EHB 2015, pp 2–5. https://doi.org/10.1109/EHB.2015.7391465 – reference: AndersonFGrossmanTMatejkaJFitzmauriceGYouMove: enhancing movement training with an augmented reality mirrorACM201310.1145/2501988.2502045 – reference: MiyazakiJKatoHChenAYamamotoGTaketomiTSantosMECAugmented reality learning experiences: survey of prototype design and evaluationIEEE Trans Learn Technol201471385610.1109/tlt.2013.37 – reference: Jeffrey DA (2015) Testing the Technology Acceptance Model 3 (TAM 3) with the inclusion of change fatigue and overload, in the context of faculty from Seventh-day Adventist Universities: a revised model. (Doctoral dissertation). Andrews University, Michigan. https://digitalcommons.andrews.edu/dissertations/1581 – reference: ReedeRMCollomosseJVisual sentences for pose retrieval over low resolution cross-media dance collectionsIEEE Trans Multimedia20121461652166110.1109/TMM.2012.2199971 – reference: LeeYThe technology acceptance model: past, present, and future the technology acceptance model: past, present, and futureCommun Assoc Inf Syst20031275278010.17705/1CAIS.01250 – reference: Dos AnjosIDVCFerraroAAThe influence of educational dance on the motor development of childrenRevista Paulista De Pediatria201836333734410.1590/1984-0462/;2018;36;3;00004 – reference: Kari T, Makkonen M (2014) Explaining the usage intentions of exergames. In: Proceedings of the 35th international conference on information systems, ICIS, pp 1–18 – reference: Kuang H, Cai S, Ma X, Liu X (2018) An effective skeleton extraction method based on Kinect depth image. In: Proceedings of 10th international conference on measuring technology and mechatronics automation, ICMTMA 2018, pp 187–190. https://doi.org/10.1109/ICMTMA.2018.00052 – volume: 18 start-page: 501 issue: 3 year: 2012 ident: 529_CR22 publication-title: IEEE Trans vis Comput Graph doi: 10.1109/TVCG.2011.73 – ident: 529_CR36 – ident: 529_CR61 – volume: 5 start-page: 191 issue: 3 year: 2012 ident: 529_CR67 publication-title: IEEE Trans Learn Technol doi: 10.1109/TLT.2011.31 – ident: 529_CR15 doi: 10.1007/978-3-642-39241-2_20 – volume: 2014 start-page: 1 year: 2014 ident: 529_CR8 publication-title: IEEE CONECCT – volume: 2014 start-page: 708 year: 2014 ident: 529_CR56 publication-title: Int Conf Control Instrum Energy Commun CIEC – start-page: 227 volume-title: The UX book year: 2019 ident: 529_CR28 doi: 10.1016/B978-0-12-805342-3.00010-2 – volume: 44 start-page: 75 issue: 1 year: 2010 ident: 529_CR66 publication-title: Med Educ doi: 10.1111/j.1365-2923.2009.03421.x – ident: 529_CR48 doi: 10.1109/T4E.2012.53 – ident: 529_CR62 doi: 10.1109/SysEng.2015.7302757 – volume: 5 start-page: 143 issue: 1 year: 2014 ident: 529_CR3 publication-title: Int J Adv Comput Sci Appl – ident: 529_CR64 doi: 10.1109/ICACCI.2016.7732321 – ident: 529_CR31 doi: 10.1109/ICACSIS.2013.6761612 – volume: 4 start-page: 1 issue: 3 year: 2015 ident: 529_CR60 publication-title: Adv Eng Educ – volume: 90 start-page: 45 year: 2017 ident: 529_CR23 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2016.10.006 – ident: 529_CR39 – volume: 78 start-page: 73 issue: 2–2 year: 2016 ident: 529_CR6 publication-title: Jurnal Teknologi – year: 2016 ident: 529_CR63 publication-title: UBICOMP/ISWC ACM doi: 10.1145/2968219.2971442 – volume: 26 start-page: 105 year: 1995 ident: 529_CR51 publication-title: ACM SIGMIS Database doi: 10.1145/217278.217291 – volume: 2 start-page: 1 year: 2016 ident: 529_CR47 publication-title: Digital Health doi: 10.1177/2055207616654578 – ident: 529_CR35 doi: 10.1109/ICTAI.2012.102 – volume: 23 start-page: 587 issue: 6 year: 1995 ident: 529_CR34 publication-title: Omega doi: 10.1016/0305-0483(95)00035-6 – volume: 36 start-page: 337 issue: 3 year: 2018 ident: 529_CR19 publication-title: Revista Paulista De Pediatria doi: 10.1590/1984-0462/;2018;36;3;00004 – volume: 12 start-page: 752 year: 2003 ident: 529_CR46 publication-title: Commun Assoc Inf Syst doi: 10.17705/1CAIS.01250 – ident: 529_CR65 doi: 10.1109/T4E.2013.34 – year: 2013 ident: 529_CR7 publication-title: ACM doi: 10.1145/2501988.2502045 – ident: 529_CR11 – ident: 529_CR45 doi: 10.1109/IIAI-AAI.2013.28 – ident: 529_CR52 doi: 10.1109/KCIC.2016.7883646 – year: 2019 ident: 529_CR24 publication-title: Sensors doi: 10.3390/s19173661 – ident: 529_CR30 – volume: 2016 start-page: 1754 year: 2016 ident: 529_CR57 publication-title: Proc Int Joint Conf Neural Netw doi: 10.1109/IJCNN.2016.7727411 – volume: 14 start-page: 1652 issue: 6 year: 2012 ident: 529_CR53 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2012.2199971 – volume: 4 start-page: 187 issue: 2 year: 2011 ident: 529_CR14 publication-title: IEEE Trans Learn Technol doi: 10.1109/TLT.2010.27 – ident: 529_CR1 doi: 10.1109/ISCAIE.2016.7575066 – volume: 2016 start-page: 1 year: 2017 ident: 529_CR10 publication-title: Encontro Portugues De Computacao Graca e Interacao, EPCGI doi: 10.1109/EPCGI.2016.7851195 – volume: 16 start-page: 161 issue: 2 year: 2016 ident: 529_CR69 publication-title: Sensors doi: 10.3390/s16020161 – ident: 529_CR55 doi: 10.1109/CICSYN.2013.11 – volume: 15 start-page: 11 issue: 2 year: 2019 ident: 529_CR18 publication-title: Int J Technol Human Interact doi: 10.4018/IJTHI.2019040102 – ident: 529_CR32 doi: 10.1109/ICASSP.2013.6638091 – ident: 529_CR50 – ident: 529_CR2 doi: 10.1109/EHB.2015.7391465 – volume: 17 start-page: 1261 issue: 6 year: 2017 ident: 529_CR38 publication-title: Sensors doi: 10.3390/s17061261 – volume: 5 start-page: 11 issue: 1 year: 2015 ident: 529_CR5 publication-title: Int J Comput Sci Appl doi: 10.5121/ijcsa.2015.5102 – volume: 25 start-page: 1929 issue: 8 year: 2014 ident: 529_CR26 publication-title: Mach vis Appl doi: 10.1007/s00138-014-05963 – ident: 529_CR29 doi: 10.1109/NCVPRIPG.2011.16 – ident: 529_CR58 – ident: 529_CR54 – ident: 529_CR20 doi: 10.21236/ADA084551 – volume: 34 start-page: 2282 issue: 11 year: 2012 ident: 529_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.85 – volume: 43 start-page: 1318 issue: 5 year: 2013 ident: 529_CR27 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2265378 – volume: 62 start-page: 73 year: 2017 ident: 529_CR33 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.08.022 – volume: 84 start-page: 191 year: 1977 ident: 529_CR9 publication-title: Psychol Rev doi: 10.1037/0033-295X.84.2.191 – ident: 529_CR37 – year: 2012 ident: 529_CR40 publication-title: IEEE Comput Soc Conf Comput vis Pattern Recognit Workshops doi: 10.1109/CVPRW.2012.6238894 – ident: 529_CR4 doi: 10.1109/T4E.2013.37 – ident: 529_CR43 doi: 10.1109/ICMTMA.2018.00052 – volume: 7 start-page: 38 issue: 1 year: 2014 ident: 529_CR49 publication-title: IEEE Trans Learn Technol doi: 10.1109/tlt.2013.37 – volume: 20 start-page: 54 issue: 1 year: 2019 ident: 529_CR16 publication-title: Res Dance Educ doi: 10.1080/14647893.2019.1566305 – ident: 529_CR44 doi: 10.1109/TENCONSpring.2017.8070063 – ident: 529_CR68 doi: 10.1109/CW.2015.26 – volume: 13 start-page: 319 issue: 3 year: 1989 ident: 529_CR17 publication-title: MIS Q doi: 10.2307/249008 – volume: 7 start-page: 308 issue: 3 year: 2004 ident: 529_CR12 publication-title: Pattern Anal Applic doi: 10.1007/s10044-004-0228-z – volume-title: Handbook of augmented reality year: 2011 ident: 529_CR13 doi: 10.1007/978-1-4614-0064-6 – ident: 529_CR25 doi: 10.1109/CISP.2013.6745251 – volume: 2015 start-page: 69 year: 2015 ident: 529_CR59 publication-title: Proc IEEE Workshop Adv Robot Soc Impacts ARSO doi: 10.1109/ARSO.2014.7020983 – volume: 724 start-page: 65 year: 2018 ident: 529_CR41 publication-title: Stud Comput Intell doi: 10.1007/978-3-319-62212-53 – volume: 78 start-page: 311 year: 1993 ident: 529_CR42 publication-title: J Appl Psychol doi: 10.1037//0021-9010.78.2.311 |
SSID | ssj0032484 |
Score | 2.4329586 |
Snippet | The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Acceptance Artificial Intelligence Augmented reality Computer Graphics Computer Science Computer vision Constructivism Dance Evaluation Image processing Image Processing and Computer Vision Learning Learning theory Object recognition Original Article Quantitative analysis Technology Acceptance Model Technology utilization Training User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCgaKHNd49DHEOYpw12K0mTeJFOXHfYf2-SNquKCt4KfQ3kvSTv95r3fg-Aa0stlj7Pz4HXPCHSc0BSixLElOFYqFQHnoLJMxvPyNOcztuisGXMdo9XkuGk_lTsllJfTezCX389lay3wQ71sbtbxTM0jOevQwiiaWVLc18PJNpSmZ_H-OqOOoz57Vo0eJvRAdhrYSIcNnY9BFumOgL7sQUDbHfkMdDD0ueleNPBhYU6PMS2D7ChaYbeU2m4qKBcvQQOTg0dVPT4G8pKw3rzdx3KbrTQIgfeTIeT2xMwGz1OH8ZJ2zghKbGgdcItUorhjEiurUltajjjpWfGU5gRZrCwWknDMsnzvBTMiWksGbGYiDS3JT4FvWpRmTMAMy5y6mSJsS5wxEhlMtUcm0zlRBNk-yCL-ivKllXcz_K16PiQvc4Lp_Mi6LxY98Hd5pu3hlPjT-lBNEvR7q9lgdzssEgxR31wH03Vvf59tPP_iV-AXeTrHULS2QD06veVuXQopFZXYdF9AFfb0vY priority: 102 providerName: Springer Nature |
Title | Acceptance of dance training system based on augmented reality and technology acceptance model (TAM) |
URI | https://link.springer.com/article/10.1007/s10055-021-00529-y https://www.proquest.com/docview/2631380372 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB0Be-ECLbRiKV350EMrGjWxHds5VWnZBdEuqlpWoqfIju1eqiwty4G_r8frEIFUTklkx5Jn7PGzPfMG4I0vPdPo5xfAa5VxjRyQpacZFcZJpkxuI0_B_EKcLfj5VXmVDtxukltlbxOjobbLFs_IP1DBCqZyJunH6z8ZZo3C29WUQmMTRsEEq7D5Gn2aXnz73tvigBbUOq1tWWFskEphMyl4Li8xOjlsp_G6K7t7uDQNePPRFWlceWbPYCdBRlKvdfwcNly3B7t9OgaSZucejKIG98HWLfqq4AdZemLjS58KgqypmwmuXpYsO6Jvf0VeTksCfERMTnRnyer-xJ3oobWYNoe8vazn717AYja9_HyWpWQKWctUucqkp8YEGXItrXe5z50UskW2PMMEF44pb412otCyqlolQjXLtOCecZVXvmUvYatbdu4ASCFVVYa63PmwmWTUFDq3krnCVNxy6sdQ9HJs2sQ0jr383QwcySj7Jsi-ibJv7sZwfP_P9Zpn48naR716mjTnbpphhIzhfa-yofj_rR0-3dor2KYY8xAdz45ga_X31r0OSGRlJrCpZqcTGNUn868_8Hn688t0kgZhKF3Q-h9FQN3Z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXHi2IhRZ8oFIRRE1sx3YOFVoVlu1je9pKvQU7trmgbKFbof1T_EY8TtwIpPbWW6I4I2U8Gc_YM98H8M6Xnmms8wvBa5VxjRiQpacZFcZJpkxuI07B7ExMz_nxRXmxBn9SLwyWVSafGB21XTS4R75PBSuYypmkny5_ZsgahaeriUKjM4sTt_odUrarg6PPYX53KZ18mR9Os55VIGuYKpeZ9NSYIIxrab3Lfe6kkA3CxhkmuHBMeWu0E4WWVdUoEYZZpgX3jKu88g0Lch_ABmeswj9KTb4mzx9iE9WR6JYVdiKpvkmnb9XLS-yFDsk7Hq5lq38XwiG6_e9ANq5zk6fwuA9QybizqGew5tpNeJLIH0jvCzZhI9rLFthxg5UxeEMWnth4kYgnSAcUTXCttGTREn39PaKAWhKCVcwAiG4tWd7s7xM9SIskPWRvPp69fw7n96LkF7DeLlr3EkghVVWGsdz5kLoyagqdW8lcYSpuOfUjKJIe66bHNcev_FEPiMyo-zrovo66r1cj-HDzzmWH6nHn6O00PXX_h1_Vgz2O4GOasuHx7dJe3S3tLTyczmen9enR2clreESx2yKWvG3D-vLXtdsJMdDSvImGR-DbfVv6X5LVFSc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ7gXUJ8UQQMp6B90ASDG3bbbtt9MOYULiByIQYS3pZ22_pi9lCOkPtr_DrbbssGE3njbTfbnWSn33Zm2plvAN7Z0hLp8_yc81plVHoOyNLiDDNlOBEq14Gn4HjKDs7ot_PyfAluUy2MT6tMa2JYqPWs8Xvku5iRgoiccLxrY1rEyd7k8-XvzHeQ8ietqZ1GB5Ejs7hx4dvVp8M9N9fvMZ7sn349yGKHgawhopxn3GKlnGAqubYmt7nhjDeeQk4RRpkhwmolDSskr6pGMDdME8moJVTklW2Ik_sEhtxFRfkAhl_2pyc_kh1wnoroWuqWla9LErFkJxbu5aWvjHahvD9qyxb3zWLv6_5zPBus3mQFnkV3FY07fL2AJdOuwvPUCgLFlWEVhgE9a6DHjc-T8TdoZpEOF6kNBepoo5G3nBrNWiSvfwZOUI2c6-rjASRbjeZ3u_1I9tJCyx60fTo-_rAOZ4-i5pcwaGet2QBUcFGVbiw11gWyBKtC5poTU6iKaortCIqkx7qJLOf-K3_VPT-z133tdF8H3deLEezcvXPZcXw8OHozTU8d__erukfnCD6mKesf_1_aq4elvYVlh_L6--H06DU8xb70IuS_bcJg_ufabDmHaK7eROQhuHhssP8FMkAauQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceptance+of+dance+training+system+based+on+augmented+reality+and+technology+acceptance+model+%28TAM%29&rft.jtitle=Virtual+reality+%3A+the+journal+of+the+Virtual+Reality+Society&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1359-4338&rft.eissn=1434-9957&rft.volume=26&rft.issue=1&rft.spage=33&rft.epage=54&rft_id=info:doi/10.1007%2Fs10055-021-00529-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4338&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4338&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4338&client=summon |