Acceptance of dance training system based on augmented reality and technology acceptance model (TAM)

The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology,...

Full description

Saved in:
Bibliographic Details
Published inVirtual reality : the journal of the Virtual Reality Society Vol. 26; no. 1; pp. 33 - 54
Main Authors Iqbal, Javid, Sidhu, Manjit Singh
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology, which means embedding virtual objects into the real-world environment. The primary focus of this research was to solve the long-term learning retention and poor learning efficiency for mastering a dance skill through the AR technology based on constructivism learning theory, Dreyfus model and Technology Acceptance Model (TAM). The problem analysis carried out in this research had major research findings, in which the retention and learning efficiency of a dance training system were predominantly determined through the type of learning theory adopted, learning environment, training tools, skill acquisition technology and type of AR technique. Therefore, the influential factors for the user acceptance of AR-based dance training system (ARDTS) were based on quantitative analysis. These influential factors were determined to address the problem of knowledge gap on acceptance of AR-based systems for dance education through self-learning. The evaluation and testing were conducted to validate the developed and implemented ARDTS system. The Technology Acceptance Model (TAM) as the evaluation model and quantitative analysis was done with a research instrument that encompassed external and internal variables. TAM consisted of 37 items, in which six factors were used to assess the new developed ARDTS by the authors and its acceptability among 86 subjects. The current study had investigated the potential use of AR-based dance training system to promote a particular dance skill among a sample population with various backgrounds and interests. The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill.
AbstractList The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images, three-dimensional (3D) pose recognition, and emotion analysis. These advancements have eventually led to the birth of Augmented Reality (AR) technology, which means embedding virtual objects into the real-world environment. The primary focus of this research was to solve the long-term learning retention and poor learning efficiency for mastering a dance skill through the AR technology based on constructivism learning theory, Dreyfus model and Technology Acceptance Model (TAM). The problem analysis carried out in this research had major research findings, in which the retention and learning efficiency of a dance training system were predominantly determined through the type of learning theory adopted, learning environment, training tools, skill acquisition technology and type of AR technique. Therefore, the influential factors for the user acceptance of AR-based dance training system (ARDTS) were based on quantitative analysis. These influential factors were determined to address the problem of knowledge gap on acceptance of AR-based systems for dance education through self-learning. The evaluation and testing were conducted to validate the developed and implemented ARDTS system. The Technology Acceptance Model (TAM) as the evaluation model and quantitative analysis was done with a research instrument that encompassed external and internal variables. TAM consisted of 37 items, in which six factors were used to assess the new developed ARDTS by the authors and its acceptability among 86 subjects. The current study had investigated the potential use of AR-based dance training system to promote a particular dance skill among a sample population with various backgrounds and interests. The obtained results support a general acceptance towards ARDTS among the users who are interested in exploring the cutting-edge technology of AR for gaining expertise in a dance skill.
Author Sidhu, Manjit Singh
Iqbal, Javid
Author_xml – sequence: 1
  givenname: Javid
  orcidid: 0000-0002-9503-5446
  surname: Iqbal
  fullname: Iqbal, Javid
  email: javid@ucsiuniversity.edu.my
  organization: Institute of Computer Science and Digital Innovation (ICSDI), UCSI University
– sequence: 2
  givenname: Manjit Singh
  surname: Sidhu
  fullname: Sidhu, Manjit Singh
  organization: Department of Informatics, College of Computing and Informatics (CCI), Universiti Tenaga Nasional (UNITEN)
BookMark eNp9kL1uwyAUhVGVSk3SvkAnpC7t4BYbbPAYRf2TUnVJZ4TxJXXkQApk8NuXJJUidcgC50rnOxfOBI2ss4DQbU4ec0L4U0hnWWakyLMkijobLtA4Z5RldV3yUdK0rDNGqbhCkxDWhNCCCTZG7Uxr2EZlNWBncHsQ0avOdnaFwxAibHCjArTYWax2qw3YmAYPqu_igJVtcQT9bV3vVmk8pW1cCz2-X84-Hq7RpVF9gJu_e4q-Xp6X87ds8fn6Pp8tMk1FGTNuiqapaM4Ubw0QQ4BXXHNRkIZWrAIqTNsoqHLF61qLKtlaqipmKBOkNppO0d0xd-vdzw5ClGu38zatlEXKpYJQXiSXOLq0dyF4MFJ3UcXO2f2_e5kTue9UHjuVqVN56FQOCS3-oVvfbZQfzkP0CIVktivwp1edoX4Blc2MuQ
CitedBy_id crossref_primary_10_1177_02762374241288701
crossref_primary_10_1016_j_daach_2023_e00257
crossref_primary_10_1155_2022_9032400
crossref_primary_10_1155_2022_1207485
crossref_primary_10_3389_frvir_2024_1322543
crossref_primary_10_1155_2022_4796937
crossref_primary_10_1016_j_tsep_2025_103241
crossref_primary_10_1016_j_procs_2024_09_025
crossref_primary_10_3390_app14145981
crossref_primary_10_1109_ACCESS_2023_3323949
crossref_primary_10_1016_j_ssaho_2024_100821
crossref_primary_10_1108_K_06_2023_1011
crossref_primary_10_1155_2023_4687465
crossref_primary_10_1155_2022_2797854
crossref_primary_10_1016_j_aej_2024_07_068
crossref_primary_10_1007_s11082_023_05924_0
crossref_primary_10_1016_j_ijhcs_2024_103410
crossref_primary_10_1080_14647893_2024_2369769
crossref_primary_10_1007_s10639_024_12834_5
crossref_primary_10_1162_pres_a_00383
crossref_primary_10_37467_revtechno_v11_4445
crossref_primary_10_1007_s40692_022_00256_6
crossref_primary_10_1007_s11082_023_05734_4
crossref_primary_10_1080_10447318_2024_2423338
crossref_primary_10_26710_sbsee_v6i3_3124
crossref_primary_10_1007_s44196_024_00510_y
crossref_primary_10_1108_APJBA_07_2023_0292
crossref_primary_10_1155_2022_7133491
Cites_doi 10.1109/TVCG.2011.73
10.1109/TLT.2011.31
10.1007/978-3-642-39241-2_20
10.1016/B978-0-12-805342-3.00010-2
10.1111/j.1365-2923.2009.03421.x
10.1109/T4E.2012.53
10.1109/SysEng.2015.7302757
10.1109/ICACCI.2016.7732321
10.1109/ICACSIS.2013.6761612
10.1016/j.robot.2016.10.006
10.1145/2968219.2971442
10.1145/217278.217291
10.1177/2055207616654578
10.1109/ICTAI.2012.102
10.1016/0305-0483(95)00035-6
10.1590/1984-0462/;2018;36;3;00004
10.17705/1CAIS.01250
10.1109/T4E.2013.34
10.1145/2501988.2502045
10.1109/IIAI-AAI.2013.28
10.1109/KCIC.2016.7883646
10.3390/s19173661
10.1109/IJCNN.2016.7727411
10.1109/TMM.2012.2199971
10.1109/TLT.2010.27
10.1109/ISCAIE.2016.7575066
10.1109/EPCGI.2016.7851195
10.3390/s16020161
10.1109/CICSYN.2013.11
10.4018/IJTHI.2019040102
10.1109/ICASSP.2013.6638091
10.1109/EHB.2015.7391465
10.3390/s17061261
10.5121/ijcsa.2015.5102
10.1007/s00138-014-05963
10.1109/NCVPRIPG.2011.16
10.21236/ADA084551
10.1109/TPAMI.2012.85
10.1109/TCYB.2013.2265378
10.1016/j.patcog.2016.08.022
10.1037/0033-295X.84.2.191
10.1109/CVPRW.2012.6238894
10.1109/T4E.2013.37
10.1109/ICMTMA.2018.00052
10.1109/tlt.2013.37
10.1080/14647893.2019.1566305
10.1109/TENCONSpring.2017.8070063
10.1109/CW.2015.26
10.2307/249008
10.1007/s10044-004-0228-z
10.1007/978-1-4614-0064-6
10.1109/CISP.2013.6745251
10.1109/ARSO.2014.7020983
10.1007/978-3-319-62212-53
10.1037//0021-9010.78.2.311
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
Copyright Springer Nature B.V. Mar 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: Copyright Springer Nature B.V. Mar 2022
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10055-021-00529-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Dance
EISSN 1434-9957
EndPage 54
ExternalDocumentID 10_1007_s10055_021_00529_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_DOAJ
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAS
LLZTM
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c385t-7f2bb6314a7dfe0f0e767c7820b3646e38fdbae61a799c86a7dd3a64f34809fc3
IEDL.DBID BENPR
ISSN 1359-4338
IngestDate Fri Aug 29 01:46:35 EDT 2025
Tue Jul 01 00:21:47 EDT 2025
Thu Apr 24 22:52:23 EDT 2025
Fri Feb 21 02:47:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Kinect V2
Dance learning
Augmented reality
User acceptance
Interactive system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-7f2bb6314a7dfe0f0e767c7820b3646e38fdbae61a799c86a7dd3a64f34809fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9503-5446
PQID 2631380372
PQPubID 26864
PageCount 22
ParticipantIDs proquest_journals_2631380372
crossref_citationtrail_10_1007_s10055_021_00529_y
crossref_primary_10_1007_s10055_021_00529_y
springer_journals_10_1007_s10055_021_00529_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Godalming, Surrey
PublicationTitle Virtual reality : the journal of the Virtual Reality Society
PublicationTitleAbbrev Virtual Reality
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References PremkumarGPotterMAdoption of Computer aided software engineering (CASE) technology: and innovation adoption perseptiveACM SIGMIS Database19952610512410.1145/217278.217291
Papert S, Harel I (1991) Constructionism: research reports and essays. In: Epistemelogy and learning research group, pp 1985–1990. Ablex Publishing Corporation
Kuramoto I, Nishimura Y, Yamamoto K, Shibuya Y, Tsujino Y (2013) Visualizing velocity and acceleration on augmented practice mirror self-learning support system of physical motion. In: Proceedings of 2nd IIAI international conference on advanced applied informatics, IIAI-AAI 2013, pp 365–368. https://doi.org/10.1109/IIAI-AAI.2013.28
FanRXuSGengWExample-based automatic music-driven conventional dance motion synthesisIEEE Trans vis Comput Graph201218350151510.1109/TVCG.2011.73
Ioan CA, Velcin J, Trausan-Matu S (2012) Tagging choreographic data for data mining and classification. In: Proceedings of international conference on tools with artificial intelligence, ICTAI, vol 1, pp 719–726. https://doi.org/10.1109/ICTAI.2012.102
AndersonFGrossmanTMatejkaJFitzmauriceGYouMove: enhancing movement training with an augmented reality mirrorACM201310.1145/2501988.2502045
Guo T, Wu X (2013) 3D human gesture matching via graph cut. In: Proceedings of the 2013 6th international congress on image and signal processing, CISP 2013, vol 2, pp 675–679. https://doi.org/10.1109/CISP.2013.6745251
ReedeRMCollomosseJVisual sentences for pose retrieval over low resolution cross-media dance collectionsIEEE Trans Multimedia20121461652166110.1109/TMM.2012.2199971
AlharbiSDrewSUsing the Technology Acceptance Model in understanding academics' behavioural intention to use learning management systemsInt J Adv Comput Sci Appl201451143155
Kari T, Makkonen M (2014) Explaining the usage intentions of exergames. In: Proceedings of the 35th international conference on information systems, ICIS, pp 1–18
Vermun K, Senapaty M, Sankhla A, Patnaik P, Routray A (2013) Gesture-based affective and cognitive states recognition using kinect for effective feedback during e-learning. In: Proceedings of 2013 IEEE 5th international conference on technology for education, T4E 2013, pp 107–110. https://doi.org/10.1109/T4E.2013.34
Abiddin WZ, Jailani R, Omar AR, Yassin IM (2016) Development of MATLAB Kinect Skeletal Tracking System (MKSTS) for gait analysis. In: ISCAIE 2016–2016 IEEE symposium on computer applications and industrial electronics, pp 216–220. https://doi.org/10.1109/ISCAIE.2016.7575066
Venkatesh P, Babu JD (2016) Automatic expression recognition and expertise prediction in Bharatnatyam. In: 2016 International conference on advances in computing, communications and informatics, ICACCI 2016, pp 1864–1869. https://doi.org/10.1109/ICACCI.2016.7732321
Heryadi Y, Fanany MI, Arymurthy AM (2013) Stochastic regular grammar-based learning for basic dance motion recognition. In: 2013 International conference on advanced computer science and information systems, ICACSIS 2013, pp 419–424. https://doi.org/10.1109/ICACSIS.2013.6761612
IgbariaMIivariJThe effects of self-efficacy on computer usageOmega199523658760510.1016/0305-0483(95)00035-6
CarmignianiJFurhtBHandbook of augmented reality2011Springer10.1007/978-1-4614-0064-6
SahaSLahiriRKonarABanerjeeBNagarAKHuman skeleton matching for elearning of dance using a probabilistic neural networkProc Int Joint Conf Neural Netw201620161754176110.1109/IJCNN.2016.7727411
Kitsikidis A, Dimitropoulos K, Douka S, Grammalidis N (2014) Dance analysis using multiple Kinect sensors. In: 2014 International conference on computer vision theory and applications, vol 2, pp 789–795
Alabbasi H, Gradinaru A, Moldoveanu F, Moldoveanu A (2016) Human motion tracking & evaluation using Kinect V2 sensor. In: 2015 E-health and bioengineering conference, EHB 2015, pp 2–5. https://doi.org/10.1109/EHB.2015.7391465
Saraydem R, Enstitusu SB, Okulu KH (2016) Kinect sensor Taban I skelet takip sistemi kullanarak komut tan ma command recognition by using skeletal tracking based on Kinect Sensor. In: IEEE, pp 2–5
ChanJCPLeungHTangJKTKomuraTA virtual reality dance training system using motion capture technologyIEEE Trans Learn Technol20114218719510.1109/TLT.2010.27
Kuang H, Cai S, Ma X, Liu X (2018) An effective skeleton extraction method based on Kinect depth image. In: Proceedings of 10th international conference on measuring technology and mechatronics automation, ICMTMA 2018, pp 187–190. https://doi.org/10.1109/ICMTMA.2018.00052
AminDGovilkarSComparative study of augmented reality SDK'sInt J Comput Sci Appl201551112610.5121/ijcsa.2015.5102
HartsonRPylaPHartsonRPylaPChapter 10—UX design requirements: user stories and requirementsThe UX book20192Morgan Kaufmann22725010.1016/B978-0-12-805342-3.00010-2
Hassan E, Chaudhury S, Gopal M (2011) Annotating dance posture images using multi kernel feature combination. In: Proceedings 2011 3rd national conference on computer vision, pattern recognition, image processing and graphics, NCVPRIPG 2011, pp 41–45. https://doi.org/10.1109/NCVPRIPG.2011.16
TrajkovaMCafaroFE-ballet designing for remote ballet learningUBICOMP/ISWC ACM201610.1145/2968219.2971442
DiasJRPenhaRMorgadoLDa VeigaPACarvalhoESFernandes-MarcosATele-media-art: feasibility tests of web-based dance education for the blind using Kinect and sound synthesis of motionInt J Technol Human Interact2019152112810.4018/IJTHI.2019040102
Dos AnjosIDVCFerraroAAThe influence of educational dance on the motor development of childrenRevista Paulista De Pediatria201836333734410.1590/1984-0462/;2018;36;3;00004
Ho C, Tsai WT, Lin KS, Chen HH (2013) Extraction and alignment evaluation of motion beats for street. In: IEEE, pp 2429–2433
Jeffrey DA (2015) Testing the Technology Acceptance Model 3 (TAM 3) with the inclusion of change fatigue and overload, in the context of faculty from Seventh-day Adventist Universities: a revised model. (Doctoral dissertation). Andrews University, Michigan. https://digitalcommons.andrews.edu/dissertations/1581
HanJShaoLXuDShottonJEnhanced computer vision with Microsoft Kinect sensor: a reviewIEEE Trans Cybern20134351318133410.1109/TCYB.2013.2265378
ShanJAkellaS3D human action segmentation and recognition using pose kinetic energyProc IEEE Workshop Adv Robot Soc Impacts ARSO20152015697510.1109/ARSO.2014.7020983
ShiraziABehzadanAHContent delivery using augmented reality to enhance students’ performance in a building design and assembly projectAdv Eng Educ201543124
AnbarsantiNPrihatmantoASDance learning and recognition system based on hidden Markov model. A case study: Aceh traditional danceJurnal Teknologi2016782–27381
MiyazakiJKatoHChenAYamamotoGTaketomiTSantosMECAugmented reality learning experiences: survey of prototype design and evaluationIEEE Trans Learn Technol201471385610.1109/tlt.2013.37
Rogers EM (1983) Diffusion of innovations. Simon and Schuster. https://doi.org/citeulike-article-id:126680
Skinner B (1974) The causes of behavior. About behaviorism, p 1023. Vintage
KohnBNowakowskaABelbachirANReal-time body motion analysis for dance pattern recognitionIEEE Comput Soc Conf Comput vis Pattern Recognit Workshops201210.1109/CVPRW.2012.6238894
BoukirSCheneviereFCompression and recognition of dance gestures using a deformable modelPattern Anal Applic200473308316211338510.1007/s10044-004-0228-z
KimDKimDHKwakKCClassification of K-pop dance movements based on skeleton information obtained by a Kinect sensorSensors2017176126110.3390/s17061261
WulfGSheaCLewthwaiteRMotor skill learning and performance: a review of influential factorsMed Educ2010441758410.1111/j.1365-2923.2009.03421.x
BanduraASelf-efficacy: toward a unifying theory of behavioral changePsychol Rev19778419121510.1037/0033-295X.84.2.191
EichnerMFerrariVHuman pose co-estimation and applicationsIEEE Trans Pattern Anal Mach Intell201234112282228810.1109/TPAMI.2012.85
GuyonIAthitsosVJangyodsukPEscalanteHJThe ChaLearn gesture dataset (CGD 2011)Mach vis Appl20142581929195110.1007/s00138-014-05963
Dreyfus SE, Dreyfus HL (1980) A five-stage model of the mental activities involved in directed skill acquisition. California Univ Berkeley Operations Research Center
YangYLeungHYueLDengLAutomatic dance lesson generationIEEE Trans Learn Technol20125319119810.1109/TLT.2011.31
DavisFDPerceived usefulness, perceived ease of use, and user acceptance of information technologyMIS Q198913331934010.2307/249008
GhidoniSMunaroMA multi-viewpoint feature-based reidentification system driven by skeleton keypointsRobot Auton Syst201790455410.1016/j.robot.2016.10.006
Torres R, Clotet R, Gonzalez R, Pirrone J, Sagbay G, Rivas D, Soto A (2015) Analysis of corporal movement alterations using a 3D body tracking sensor. In: 1st IEEE international symposium on systems engineering, ISSE 2015—Proceedings, pp 202–205. https://doi.org/10.1109/SysEng.2015.7302757
IbanezRSoriaATeyseyreARodriguezGCampoMApproximate string matching: a lightweight approach to recognize gestures with KinectPattern Recogn201762738610.1016/j.patcog.2016.08.022
KonarASahaSFuzzy image matching based posture recognition in ballet danceStud Comput Intell20187246511510.1007/978-3-319-62212-53
BaptistaFLopesPFSantanaPMotionDesigner: augmented artistic performances with Kinect-based human body motion trackingEncontro Portugues De Computacao Graca e Interacao, EPCGI201720161710.1109/EPCGI.2016.7851195
Hergenhahn BR, Olson MH (1993) An introduction to theories of learning. In: An introduction to theories of learning, 4th ed. Prentice-Hall, Inc.
Ramadijanti N, Fahrul HF, Pangestu DM (2017) Basic dance pose applications using Kinect technology. In: 2016 International conference on knowledge creation and intelligent computing, KCIC 2016, pp 194–200. https://doi.org/10.1109/KCIC.2016.7883646
Choensawat W, Sookhanaphibarn K, Kijkhun C, Hachimura K (2013) Desirability of a teaching and learning tool for Thai dance body motion. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8013 LNCS (Part 2), pp 171–17
J Han (529_CR27) 2013; 43
529_CR35
B Kohn (529_CR40) 2012
529_CR36
529_CR37
529_CR31
G Premkumar (529_CR51) 1995; 26
529_CR32
M Eichner (529_CR21) 2012; 34
529_CR39
S Saha (529_CR56) 2014; 2014
D Amin (529_CR5) 2015; 5
M Igbaria (529_CR34) 1995; 23
529_CR30
FD Davis (529_CR17) 1989; 13
529_CR68
529_CR25
529_CR20
529_CR64
R Hartson (529_CR28) 2019
529_CR65
S Alharbi (529_CR3) 2014; 5
S Boukir (529_CR12) 2004; 7
529_CR29
IDVC Dos Anjos (529_CR19) 2018; 36
R Ibanez (529_CR33) 2017; 62
D Kim (529_CR38) 2017; 17
S Ghidoni (529_CR23) 2017; 90
529_CR61
529_CR62
A Bandura (529_CR9) 1977; 84
I Guyon (529_CR26) 2014; 25
529_CR58
529_CR15
S Saha (529_CR57) 2016; 2016
JS Gianluca Romano (529_CR24) 2019
529_CR54
A Banerjee (529_CR8) 2014; 2014
529_CR11
529_CR55
G Wulf (529_CR66) 2010; 44
RM Reede (529_CR53) 2012; 14
K Kraiger (529_CR42) 1993; 78
J Shan (529_CR59) 2015; 2015
529_CR1
529_CR50
J Carmigniani (529_CR13) 2011
529_CR52
529_CR48
529_CR43
529_CR44
529_CR45
Y Lee (529_CR46) 2003; 12
J Miyazaki (529_CR49) 2014; 7
529_CR2
529_CR4
JR Dias (529_CR18) 2019; 15
R Fan (529_CR22) 2012; 18
RE Cisneros (529_CR16) 2019; 20
Y Yang (529_CR67) 2012; 5
A Shirazi (529_CR60) 2015; 4
J Li (529_CR47) 2016; 2
G Zhu (529_CR69) 2016; 16
JCP Chan (529_CR14) 2011; 4
A Konar (529_CR41) 2018; 724
F Anderson (529_CR7) 2013
F Baptista (529_CR10) 2017; 2016
M Trajkova (529_CR63) 2016
N Anbarsanti (529_CR6) 2016; 78
References_xml – reference: BoukirSCheneviereFCompression and recognition of dance gestures using a deformable modelPattern Anal Applic200473308316211338510.1007/s10044-004-0228-z
– reference: KohnBNowakowskaABelbachirANReal-time body motion analysis for dance pattern recognitionIEEE Comput Soc Conf Comput vis Pattern Recognit Workshops201210.1109/CVPRW.2012.6238894
– reference: Vermun K, Senapaty M, Sankhla A, Patnaik P, Routray A (2013) Gesture-based affective and cognitive states recognition using kinect for effective feedback during e-learning. In: Proceedings of 2013 IEEE 5th international conference on technology for education, T4E 2013, pp 107–110. https://doi.org/10.1109/T4E.2013.34
– reference: Guo T, Wu X (2013) 3D human gesture matching via graph cut. In: Proceedings of the 2013 6th international congress on image and signal processing, CISP 2013, vol 2, pp 675–679. https://doi.org/10.1109/CISP.2013.6745251
– reference: Abiddin WZ, Jailani R, Omar AR, Yassin IM (2016) Development of MATLAB Kinect Skeletal Tracking System (MKSTS) for gait analysis. In: ISCAIE 2016–2016 IEEE symposium on computer applications and industrial electronics, pp 216–220. https://doi.org/10.1109/ISCAIE.2016.7575066
– reference: HanJShaoLXuDShottonJEnhanced computer vision with Microsoft Kinect sensor: a reviewIEEE Trans Cybern20134351318133410.1109/TCYB.2013.2265378
– reference: Kuramoto I, Nishimura Y, Yamamoto K, Shibuya Y, Tsujino Y (2013) Visualizing velocity and acceleration on augmented practice mirror self-learning support system of physical motion. In: Proceedings of 2nd IIAI international conference on advanced applied informatics, IIAI-AAI 2013, pp 365–368. https://doi.org/10.1109/IIAI-AAI.2013.28
– reference: PremkumarGPotterMAdoption of Computer aided software engineering (CASE) technology: and innovation adoption perseptiveACM SIGMIS Database19952610512410.1145/217278.217291
– reference: IgbariaMIivariJThe effects of self-efficacy on computer usageOmega199523658760510.1016/0305-0483(95)00035-6
– reference: SahaSKonarAPosture recognition in ballet danceInt Conf Control Instrum Energy Commun CIEC20142014708711
– reference: IbanezRSoriaATeyseyreARodriguezGCampoMApproximate string matching: a lightweight approach to recognize gestures with KinectPattern Recogn201762738610.1016/j.patcog.2016.08.022
– reference: ZhuGZhangLShenPSongJAn online continuous human action recognition algorithm based on the Kinect sensorSensors201616216110.3390/s16020161
– reference: LiJThengYLCheongWLHooYFNgoMDExergames for the corporate wellness program in Singapore: an investigation of employees’ acceptance via watching Kinect videoDigital Health201621810.1177/2055207616654578
– reference: Kumar P, Saini R, Yadava M, Roy PP, Dogra DP, Balasubramanian R (2017) Virtual trainer with real-time feedback using Kinect sensor. In: TENSYMP 2017-IEEE international symposium on technologies for smart cities. https://doi.org/10.1109/TENCONSpring.2017.8070063
– reference: Rogers EM (1983) Diffusion of innovations. Simon and Schuster. https://doi.org/citeulike-article-id:126680
– reference: BanerjeeASahaSBasuSKonarAJanarthananRA novel approach to posture recognition of ballet danceIEEE CONECCT2014201415
– reference: Skinner B (1974) The causes of behavior. About behaviorism, p 1023. Vintage
– reference: AminDGovilkarSComparative study of augmented reality SDK'sInt J Comput Sci Appl201551112610.5121/ijcsa.2015.5102
– reference: Majumdar R, Dinesan P (2012) Framework for teaching Bharatanatyam through digital medium. In: Proceedings of 2012 IEEE 4th international conference on technology for education, T4E 2012, pp 241–242. https://doi.org/10.1109/T4E.2012.53
– reference: HartsonRPylaPHartsonRPylaPChapter 10—UX design requirements: user stories and requirementsThe UX book20192Morgan Kaufmann22725010.1016/B978-0-12-805342-3.00010-2
– reference: Ramadijanti N, Fahrul HF, Pangestu DM (2017) Basic dance pose applications using Kinect technology. In: 2016 International conference on knowledge creation and intelligent computing, KCIC 2016, pp 194–200. https://doi.org/10.1109/KCIC.2016.7883646
– reference: TrajkovaMCafaroFE-ballet designing for remote ballet learningUBICOMP/ISWC ACM201610.1145/2968219.2971442
– reference: YangYLeungHYueLDengLAutomatic dance lesson generationIEEE Trans Learn Technol20125319119810.1109/TLT.2011.31
– reference: DavisFDPerceived usefulness, perceived ease of use, and user acceptance of information technologyMIS Q198913331934010.2307/249008
– reference: KraigerKFordJSalasEApplication of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluationJ Appl Psychol19937831132810.1037//0021-9010.78.2.311
– reference: Dreyfus SE, Dreyfus HL (1980) A five-stage model of the mental activities involved in directed skill acquisition. California Univ Berkeley Operations Research Center
– reference: ChanJCPLeungHTangJKTKomuraTA virtual reality dance training system using motion capture technologyIEEE Trans Learn Technol20114218719510.1109/TLT.2010.27
– reference: Papert S, Harel I (1991) Constructionism: research reports and essays. In: Epistemelogy and learning research group, pp 1985–1990. Ablex Publishing Corporation
– reference: ShiraziABehzadanAHContent delivery using augmented reality to enhance students’ performance in a building design and assembly projectAdv Eng Educ201543124
– reference: GhidoniSMunaroMA multi-viewpoint feature-based reidentification system driven by skeleton keypointsRobot Auton Syst201790455410.1016/j.robot.2016.10.006
– reference: Ioan CA, Velcin J, Trausan-Matu S (2012) Tagging choreographic data for data mining and classification. In: Proceedings of international conference on tools with artificial intelligence, ICTAI, vol 1, pp 719–726. https://doi.org/10.1109/ICTAI.2012.102
– reference: FanRXuSGengWExample-based automatic music-driven conventional dance motion synthesisIEEE Trans vis Comput Graph201218350151510.1109/TVCG.2011.73
– reference: KonarASahaSFuzzy image matching based posture recognition in ballet danceStud Comput Intell20187246511510.1007/978-3-319-62212-53
– reference: Saraydem R, Enstitusu SB, Okulu KH (2016) Kinect sensor Taban I skelet takip sistemi kullanarak komut tan ma command recognition by using skeletal tracking based on Kinect Sensor. In: IEEE, pp 2–5
– reference: Venkatesh P, Babu JD (2016) Automatic expression recognition and expertise prediction in Bharatnatyam. In: 2016 International conference on advances in computing, communications and informatics, ICACCI 2016, pp 1864–1869. https://doi.org/10.1109/ICACCI.2016.7732321
– reference: Yazaki Y, Soga A, Umino B, Hirayama M (2016) Automatic composition by body part motion synthesis for supporting dance creation. In: Proceedings of 2015 international conference on cyberworlds, CW 2015, pp 200–203. https://doi.org/10.1109/CW.2015.26
– reference: WulfGSheaCLewthwaiteRMotor skill learning and performance: a review of influential factorsMed Educ2010441758410.1111/j.1365-2923.2009.03421.x
– reference: AnbarsantiNPrihatmantoASDance learning and recognition system based on hidden Markov model. A case study: Aceh traditional danceJurnal Teknologi2016782–27381
– reference: Choensawat W, Sookhanaphibarn K, Kijkhun C, Hachimura K (2013) Desirability of a teaching and learning tool for Thai dance body motion. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8013 LNCS (Part 2), pp 171–179
– reference: Kitsikidis A, Dimitropoulos K, Douka S, Grammalidis N (2014) Dance analysis using multiple Kinect sensors. In: 2014 International conference on computer vision theory and applications, vol 2, pp 789–795
– reference: KimDKimDHKwakKCClassification of K-pop dance movements based on skeleton information obtained by a Kinect sensorSensors2017176126110.3390/s17061261
– reference: Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR (1956) Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York: David McKay.
– reference: Ambudkar B (2013) Introducing network design to students via a dance activity. In: Proceedings-2013 IEEE 5th international conference on technology for education, T4E 2013, pp 123–126. https://doi.org/10.1109/T4E.2013.37
– reference: SahaSLahiriRKonarABanerjeeBNagarAKHuman skeleton matching for elearning of dance using a probabilistic neural networkProc Int Joint Conf Neural Netw201620161754176110.1109/IJCNN.2016.7727411
– reference: CarmignianiJFurhtBHandbook of augmented reality2011Springer10.1007/978-1-4614-0064-6
– reference: Hergenhahn BR, Olson MH (1993) An introduction to theories of learning. In: An introduction to theories of learning, 4th ed. Prentice-Hall, Inc.
– reference: EichnerMFerrariVHuman pose co-estimation and applicationsIEEE Trans Pattern Anal Mach Intell201234112282228810.1109/TPAMI.2012.85
– reference: Ho C, Tsai WT, Lin KS, Chen HH (2013) Extraction and alignment evaluation of motion beats for street. In: IEEE, pp 2429–2433
– reference: Torres R, Clotet R, Gonzalez R, Pirrone J, Sagbay G, Rivas D, Soto A (2015) Analysis of corporal movement alterations using a 3D body tracking sensor. In: 1st IEEE international symposium on systems engineering, ISSE 2015—Proceedings, pp 202–205. https://doi.org/10.1109/SysEng.2015.7302757
– reference: GuyonIAthitsosVJangyodsukPEscalanteHJThe ChaLearn gesture dataset (CGD 2011)Mach vis Appl20142581929195110.1007/s00138-014-05963
– reference: CisnerosREStampKWhatleySWoodKWhoLoDancE: digital tools and the dance learning environmentRes Dance Educ2019201547210.1080/14647893.2019.1566305
– reference: Gianluca RomanoJSDrachslerHDancing salsa with machines: filling the gap of dancing learning solutionsSensors201910.3390/s19173661
– reference: BaptistaFLopesPFSantanaPMotionDesigner: augmented artistic performances with Kinect-based human body motion trackingEncontro Portugues De Computacao Graca e Interacao, EPCGI201720161710.1109/EPCGI.2016.7851195
– reference: BanduraASelf-efficacy: toward a unifying theory of behavioral changePsychol Rev19778419121510.1037/0033-295X.84.2.191
– reference: Saha S, Ghosh S, Konar A, Nagar AK (2013) Gesture recognition from Indian classical dance using Kinect sensor. In: Proceedings of 5th international conference on computational intelligence, communication systems, and networks, CICSYN 2013, pp 3–8. https://doi.org/10.1109/CICSYN.2013.11
– reference: AlharbiSDrewSUsing the Technology Acceptance Model in understanding academics' behavioural intention to use learning management systemsInt J Adv Comput Sci Appl201451143155
– reference: Hassan E, Chaudhury S, Gopal M (2011) Annotating dance posture images using multi kernel feature combination. In: Proceedings 2011 3rd national conference on computer vision, pattern recognition, image processing and graphics, NCVPRIPG 2011, pp 41–45. https://doi.org/10.1109/NCVPRIPG.2011.16
– reference: Heryadi Y, Fanany MI, Arymurthy AM (2013) Stochastic regular grammar-based learning for basic dance motion recognition. In: 2013 International conference on advanced computer science and information systems, ICACSIS 2013, pp 419–424. https://doi.org/10.1109/ICACSIS.2013.6761612
– reference: ShanJAkellaS3D human action segmentation and recognition using pose kinetic energyProc IEEE Workshop Adv Robot Soc Impacts ARSO20152015697510.1109/ARSO.2014.7020983
– reference: DiasJRPenhaRMorgadoLDa VeigaPACarvalhoESFernandes-MarcosATele-media-art: feasibility tests of web-based dance education for the blind using Kinect and sound synthesis of motionInt J Technol Human Interact2019152112810.4018/IJTHI.2019040102
– reference: Alabbasi H, Gradinaru A, Moldoveanu F, Moldoveanu A (2016) Human motion tracking & evaluation using Kinect V2 sensor. In: 2015 E-health and bioengineering conference, EHB 2015, pp 2–5. https://doi.org/10.1109/EHB.2015.7391465
– reference: AndersonFGrossmanTMatejkaJFitzmauriceGYouMove: enhancing movement training with an augmented reality mirrorACM201310.1145/2501988.2502045
– reference: MiyazakiJKatoHChenAYamamotoGTaketomiTSantosMECAugmented reality learning experiences: survey of prototype design and evaluationIEEE Trans Learn Technol201471385610.1109/tlt.2013.37
– reference: Jeffrey DA (2015) Testing the Technology Acceptance Model 3 (TAM 3) with the inclusion of change fatigue and overload, in the context of faculty from Seventh-day Adventist Universities: a revised model. (Doctoral dissertation). Andrews University, Michigan. https://digitalcommons.andrews.edu/dissertations/1581
– reference: ReedeRMCollomosseJVisual sentences for pose retrieval over low resolution cross-media dance collectionsIEEE Trans Multimedia20121461652166110.1109/TMM.2012.2199971
– reference: LeeYThe technology acceptance model: past, present, and future the technology acceptance model: past, present, and futureCommun Assoc Inf Syst20031275278010.17705/1CAIS.01250
– reference: Dos AnjosIDVCFerraroAAThe influence of educational dance on the motor development of childrenRevista Paulista De Pediatria201836333734410.1590/1984-0462/;2018;36;3;00004
– reference: Kari T, Makkonen M (2014) Explaining the usage intentions of exergames. In: Proceedings of the 35th international conference on information systems, ICIS, pp 1–18
– reference: Kuang H, Cai S, Ma X, Liu X (2018) An effective skeleton extraction method based on Kinect depth image. In: Proceedings of 10th international conference on measuring technology and mechatronics automation, ICMTMA 2018, pp 187–190. https://doi.org/10.1109/ICMTMA.2018.00052
– volume: 18
  start-page: 501
  issue: 3
  year: 2012
  ident: 529_CR22
  publication-title: IEEE Trans vis Comput Graph
  doi: 10.1109/TVCG.2011.73
– ident: 529_CR36
– ident: 529_CR61
– volume: 5
  start-page: 191
  issue: 3
  year: 2012
  ident: 529_CR67
  publication-title: IEEE Trans Learn Technol
  doi: 10.1109/TLT.2011.31
– ident: 529_CR15
  doi: 10.1007/978-3-642-39241-2_20
– volume: 2014
  start-page: 1
  year: 2014
  ident: 529_CR8
  publication-title: IEEE CONECCT
– volume: 2014
  start-page: 708
  year: 2014
  ident: 529_CR56
  publication-title: Int Conf Control Instrum Energy Commun CIEC
– start-page: 227
  volume-title: The UX book
  year: 2019
  ident: 529_CR28
  doi: 10.1016/B978-0-12-805342-3.00010-2
– volume: 44
  start-page: 75
  issue: 1
  year: 2010
  ident: 529_CR66
  publication-title: Med Educ
  doi: 10.1111/j.1365-2923.2009.03421.x
– ident: 529_CR48
  doi: 10.1109/T4E.2012.53
– ident: 529_CR62
  doi: 10.1109/SysEng.2015.7302757
– volume: 5
  start-page: 143
  issue: 1
  year: 2014
  ident: 529_CR3
  publication-title: Int J Adv Comput Sci Appl
– ident: 529_CR64
  doi: 10.1109/ICACCI.2016.7732321
– ident: 529_CR31
  doi: 10.1109/ICACSIS.2013.6761612
– volume: 4
  start-page: 1
  issue: 3
  year: 2015
  ident: 529_CR60
  publication-title: Adv Eng Educ
– volume: 90
  start-page: 45
  year: 2017
  ident: 529_CR23
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2016.10.006
– ident: 529_CR39
– volume: 78
  start-page: 73
  issue: 2–2
  year: 2016
  ident: 529_CR6
  publication-title: Jurnal Teknologi
– year: 2016
  ident: 529_CR63
  publication-title: UBICOMP/ISWC ACM
  doi: 10.1145/2968219.2971442
– volume: 26
  start-page: 105
  year: 1995
  ident: 529_CR51
  publication-title: ACM SIGMIS Database
  doi: 10.1145/217278.217291
– volume: 2
  start-page: 1
  year: 2016
  ident: 529_CR47
  publication-title: Digital Health
  doi: 10.1177/2055207616654578
– ident: 529_CR35
  doi: 10.1109/ICTAI.2012.102
– volume: 23
  start-page: 587
  issue: 6
  year: 1995
  ident: 529_CR34
  publication-title: Omega
  doi: 10.1016/0305-0483(95)00035-6
– volume: 36
  start-page: 337
  issue: 3
  year: 2018
  ident: 529_CR19
  publication-title: Revista Paulista De Pediatria
  doi: 10.1590/1984-0462/;2018;36;3;00004
– volume: 12
  start-page: 752
  year: 2003
  ident: 529_CR46
  publication-title: Commun Assoc Inf Syst
  doi: 10.17705/1CAIS.01250
– ident: 529_CR65
  doi: 10.1109/T4E.2013.34
– year: 2013
  ident: 529_CR7
  publication-title: ACM
  doi: 10.1145/2501988.2502045
– ident: 529_CR11
– ident: 529_CR45
  doi: 10.1109/IIAI-AAI.2013.28
– ident: 529_CR52
  doi: 10.1109/KCIC.2016.7883646
– year: 2019
  ident: 529_CR24
  publication-title: Sensors
  doi: 10.3390/s19173661
– ident: 529_CR30
– volume: 2016
  start-page: 1754
  year: 2016
  ident: 529_CR57
  publication-title: Proc Int Joint Conf Neural Netw
  doi: 10.1109/IJCNN.2016.7727411
– volume: 14
  start-page: 1652
  issue: 6
  year: 2012
  ident: 529_CR53
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2012.2199971
– volume: 4
  start-page: 187
  issue: 2
  year: 2011
  ident: 529_CR14
  publication-title: IEEE Trans Learn Technol
  doi: 10.1109/TLT.2010.27
– ident: 529_CR1
  doi: 10.1109/ISCAIE.2016.7575066
– volume: 2016
  start-page: 1
  year: 2017
  ident: 529_CR10
  publication-title: Encontro Portugues De Computacao Graca e Interacao, EPCGI
  doi: 10.1109/EPCGI.2016.7851195
– volume: 16
  start-page: 161
  issue: 2
  year: 2016
  ident: 529_CR69
  publication-title: Sensors
  doi: 10.3390/s16020161
– ident: 529_CR55
  doi: 10.1109/CICSYN.2013.11
– volume: 15
  start-page: 11
  issue: 2
  year: 2019
  ident: 529_CR18
  publication-title: Int J Technol Human Interact
  doi: 10.4018/IJTHI.2019040102
– ident: 529_CR32
  doi: 10.1109/ICASSP.2013.6638091
– ident: 529_CR50
– ident: 529_CR2
  doi: 10.1109/EHB.2015.7391465
– volume: 17
  start-page: 1261
  issue: 6
  year: 2017
  ident: 529_CR38
  publication-title: Sensors
  doi: 10.3390/s17061261
– volume: 5
  start-page: 11
  issue: 1
  year: 2015
  ident: 529_CR5
  publication-title: Int J Comput Sci Appl
  doi: 10.5121/ijcsa.2015.5102
– volume: 25
  start-page: 1929
  issue: 8
  year: 2014
  ident: 529_CR26
  publication-title: Mach vis Appl
  doi: 10.1007/s00138-014-05963
– ident: 529_CR29
  doi: 10.1109/NCVPRIPG.2011.16
– ident: 529_CR58
– ident: 529_CR54
– ident: 529_CR20
  doi: 10.21236/ADA084551
– volume: 34
  start-page: 2282
  issue: 11
  year: 2012
  ident: 529_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.85
– volume: 43
  start-page: 1318
  issue: 5
  year: 2013
  ident: 529_CR27
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2265378
– volume: 62
  start-page: 73
  year: 2017
  ident: 529_CR33
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.08.022
– volume: 84
  start-page: 191
  year: 1977
  ident: 529_CR9
  publication-title: Psychol Rev
  doi: 10.1037/0033-295X.84.2.191
– ident: 529_CR37
– year: 2012
  ident: 529_CR40
  publication-title: IEEE Comput Soc Conf Comput vis Pattern Recognit Workshops
  doi: 10.1109/CVPRW.2012.6238894
– ident: 529_CR4
  doi: 10.1109/T4E.2013.37
– ident: 529_CR43
  doi: 10.1109/ICMTMA.2018.00052
– volume: 7
  start-page: 38
  issue: 1
  year: 2014
  ident: 529_CR49
  publication-title: IEEE Trans Learn Technol
  doi: 10.1109/tlt.2013.37
– volume: 20
  start-page: 54
  issue: 1
  year: 2019
  ident: 529_CR16
  publication-title: Res Dance Educ
  doi: 10.1080/14647893.2019.1566305
– ident: 529_CR44
  doi: 10.1109/TENCONSpring.2017.8070063
– ident: 529_CR68
  doi: 10.1109/CW.2015.26
– volume: 13
  start-page: 319
  issue: 3
  year: 1989
  ident: 529_CR17
  publication-title: MIS Q
  doi: 10.2307/249008
– volume: 7
  start-page: 308
  issue: 3
  year: 2004
  ident: 529_CR12
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-004-0228-z
– volume-title: Handbook of augmented reality
  year: 2011
  ident: 529_CR13
  doi: 10.1007/978-1-4614-0064-6
– ident: 529_CR25
  doi: 10.1109/CISP.2013.6745251
– volume: 2015
  start-page: 69
  year: 2015
  ident: 529_CR59
  publication-title: Proc IEEE Workshop Adv Robot Soc Impacts ARSO
  doi: 10.1109/ARSO.2014.7020983
– volume: 724
  start-page: 65
  year: 2018
  ident: 529_CR41
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-319-62212-53
– volume: 78
  start-page: 311
  year: 1993
  ident: 529_CR42
  publication-title: J Appl Psychol
  doi: 10.1037//0021-9010.78.2.311
SSID ssj0032484
Score 2.4329586
Snippet The advancement in Computer Vision (CV) has evolved drastically from image processing to object recognition, tracking video, restoration of images,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Acceptance
Artificial Intelligence
Augmented reality
Computer Graphics
Computer Science
Computer vision
Constructivism
Dance
Evaluation
Image processing
Image Processing and Computer Vision
Learning
Learning theory
Object recognition
Original Article
Quantitative analysis
Technology Acceptance Model
Technology utilization
Training
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCgaKHNd49DHEOYpw12K0mTeJFOXHfYf2-SNquKCt4KfQ3kvSTv95r3fg-Aa0stlj7Pz4HXPCHSc0BSixLElOFYqFQHnoLJMxvPyNOcztuisGXMdo9XkuGk_lTsllJfTezCX389lay3wQ71sbtbxTM0jOevQwiiaWVLc18PJNpSmZ_H-OqOOoz57Vo0eJvRAdhrYSIcNnY9BFumOgL7sQUDbHfkMdDD0ueleNPBhYU6PMS2D7ChaYbeU2m4qKBcvQQOTg0dVPT4G8pKw3rzdx3KbrTQIgfeTIeT2xMwGz1OH8ZJ2zghKbGgdcItUorhjEiurUltajjjpWfGU5gRZrCwWknDMsnzvBTMiWksGbGYiDS3JT4FvWpRmTMAMy5y6mSJsS5wxEhlMtUcm0zlRBNk-yCL-ivKllXcz_K16PiQvc4Lp_Mi6LxY98Hd5pu3hlPjT-lBNEvR7q9lgdzssEgxR31wH03Vvf59tPP_iV-AXeTrHULS2QD06veVuXQopFZXYdF9AFfb0vY
  priority: 102
  providerName: Springer Nature
Title Acceptance of dance training system based on augmented reality and technology acceptance model (TAM)
URI https://link.springer.com/article/10.1007/s10055-021-00529-y
https://www.proquest.com/docview/2631380372
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB0Be-ECLbRiKV350EMrGjWxHds5VWnZBdEuqlpWoqfIju1eqiwty4G_r8frEIFUTklkx5Jn7PGzPfMG4I0vPdPo5xfAa5VxjRyQpacZFcZJpkxuI0_B_EKcLfj5VXmVDtxukltlbxOjobbLFs_IP1DBCqZyJunH6z8ZZo3C29WUQmMTRsEEq7D5Gn2aXnz73tvigBbUOq1tWWFskEphMyl4Li8xOjlsp_G6K7t7uDQNePPRFWlceWbPYCdBRlKvdfwcNly3B7t9OgaSZucejKIG98HWLfqq4AdZemLjS58KgqypmwmuXpYsO6Jvf0VeTksCfERMTnRnyer-xJ3oobWYNoe8vazn717AYja9_HyWpWQKWctUucqkp8YEGXItrXe5z50UskW2PMMEF44pb412otCyqlolQjXLtOCecZVXvmUvYatbdu4ASCFVVYa63PmwmWTUFDq3krnCVNxy6sdQ9HJs2sQ0jr383QwcySj7Jsi-ibJv7sZwfP_P9Zpn48naR716mjTnbpphhIzhfa-yofj_rR0-3dor2KYY8xAdz45ga_X31r0OSGRlJrCpZqcTGNUn868_8Hn688t0kgZhKF3Q-h9FQN3Z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXHi2IhRZ8oFIRRE1sx3YOFVoVlu1je9pKvQU7trmgbKFbof1T_EY8TtwIpPbWW6I4I2U8Gc_YM98H8M6Xnmms8wvBa5VxjRiQpacZFcZJpkxuI07B7ExMz_nxRXmxBn9SLwyWVSafGB21XTS4R75PBSuYypmkny5_ZsgahaeriUKjM4sTt_odUrarg6PPYX53KZ18mR9Os55VIGuYKpeZ9NSYIIxrab3Lfe6kkA3CxhkmuHBMeWu0E4WWVdUoEYZZpgX3jKu88g0Lch_ABmeswj9KTb4mzx9iE9WR6JYVdiKpvkmnb9XLS-yFDsk7Hq5lq38XwiG6_e9ANq5zk6fwuA9QybizqGew5tpNeJLIH0jvCzZhI9rLFthxg5UxeEMWnth4kYgnSAcUTXCttGTREn39PaKAWhKCVcwAiG4tWd7s7xM9SIskPWRvPp69fw7n96LkF7DeLlr3EkghVVWGsdz5kLoyagqdW8lcYSpuOfUjKJIe66bHNcev_FEPiMyo-zrovo66r1cj-HDzzmWH6nHn6O00PXX_h1_Vgz2O4GOasuHx7dJe3S3tLTyczmen9enR2clreESx2yKWvG3D-vLXtdsJMdDSvImGR-DbfVv6X5LVFSc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RTxQxEJ7gXUJ8UQQMp6B90ASDG3bbbtt9MOYULiByIQYS3pZ22_pi9lCOkPtr_DrbbssGE3njbTfbnWSn33Zm2plvAN7Z0hLp8_yc81plVHoOyNLiDDNlOBEq14Gn4HjKDs7ot_PyfAluUy2MT6tMa2JYqPWs8Xvku5iRgoiccLxrY1rEyd7k8-XvzHeQ8ietqZ1GB5Ejs7hx4dvVp8M9N9fvMZ7sn349yGKHgawhopxn3GKlnGAqubYmt7nhjDeeQk4RRpkhwmolDSskr6pGMDdME8moJVTklW2Ik_sEhtxFRfkAhl_2pyc_kh1wnoroWuqWla9LErFkJxbu5aWvjHahvD9qyxb3zWLv6_5zPBus3mQFnkV3FY07fL2AJdOuwvPUCgLFlWEVhgE9a6DHjc-T8TdoZpEOF6kNBepoo5G3nBrNWiSvfwZOUI2c6-rjASRbjeZ3u_1I9tJCyx60fTo-_rAOZ4-i5pcwaGet2QBUcFGVbiw11gWyBKtC5poTU6iKaortCIqkx7qJLOf-K3_VPT-z133tdF8H3deLEezcvXPZcXw8OHozTU8d__erukfnCD6mKesf_1_aq4elvYVlh_L6--H06DU8xb70IuS_bcJg_ufabDmHaK7eROQhuHhssP8FMkAauQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceptance+of+dance+training+system+based+on+augmented+reality+and+technology+acceptance+model+%28TAM%29&rft.jtitle=Virtual+reality+%3A+the+journal+of+the+Virtual+Reality+Society&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1359-4338&rft.eissn=1434-9957&rft.volume=26&rft.issue=1&rft.spage=33&rft.epage=54&rft_id=info:doi/10.1007%2Fs10055-021-00529-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4338&client=summon