Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes

Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been ex...

Full description

Saved in:
Bibliographic Details
Published inBiointerphases Vol. 3; no. 2; pp. FA59 - FA67
Main Authors Dodd, Charlotte E, Johnson, Benjamin R G, Jeuken, Lars J C, Bugg, Timothy D H, Bushby, Richard J, Evans, Stephen D
Format Journal Article
LanguageEnglish
Published United States 01.06.2008
Online AccessGet full text

Cover

Loading…
Abstract Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with < or = 40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with < or = 40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 degrees C.
AbstractList Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with < or = 40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with < or = 40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 degrees C.
Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with ≤40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with ≤40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 °C.
Author Evans, Stephen D
Dodd, Charlotte E
Johnson, Benjamin R G
Bugg, Timothy D H
Bushby, Richard J
Jeuken, Lars J C
Author_xml – sequence: 1
  givenname: Charlotte E
  surname: Dodd
  fullname: Dodd, Charlotte E
  organization: School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
– sequence: 2
  givenname: Benjamin R G
  surname: Johnson
  fullname: Johnson, Benjamin R G
– sequence: 3
  givenname: Lars J C
  surname: Jeuken
  fullname: Jeuken, Lars J C
– sequence: 4
  givenname: Timothy D H
  surname: Bugg
  fullname: Bugg, Timothy D H
– sequence: 5
  givenname: Richard J
  surname: Bushby
  fullname: Bushby, Richard J
– sequence: 6
  givenname: Stephen D
  surname: Evans
  fullname: Evans, Stephen D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20408670$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EMX_gGZnbiYmttMkslSSn1A0Y26HfK4A5F5mUyF_nsjreLq3nP57uFw5mTS9R0Scgl0CQDiFparUgkAdkJmwLnKC6BiknbFirwUjE7JPMYPSgvOBTsj0xUtaCkknZH3Zz36L8w2y8z2jc9812HIWmxN0B0mafsw9CFBfZdUFhPk8rgb0nFElzV-8C4zvtH7f3_xnJzWuol4cZwL8na_eV0_5tuXh6f13Ta3rORjLtGgdfXKYmlBIpO6EBJqVdeCO11Ka5wCMMJpByhcqbWxnEphldCUK8MW5PrgO4T-c4dxrFofLTZNCtHvYiUZU5QDk4m8OZA29DEGrKsh-FaHfQW0-mmxgurYYmKvjq4706L7I39rY99jDG-v
CitedBy_id crossref_primary_10_1007_s12551_021_00913_7
crossref_primary_10_1042_BJ20081345
crossref_primary_10_1038_srep32715
crossref_primary_10_1021_acsinfecdis_7b00270
crossref_primary_10_1002_smll_201403469
crossref_primary_10_1021_acs_analchem_5b01449
crossref_primary_10_1021_la400861u
crossref_primary_10_1146_annurev_anchem_061010_114048
crossref_primary_10_1038_s41598_017_15103_3
crossref_primary_10_3389_fmats_2018_00048
crossref_primary_10_1039_b903252e
crossref_primary_10_1116_1_4963188
crossref_primary_10_1021_ja204589a
crossref_primary_10_1016_j_ab_2018_03_006
crossref_primary_10_1016_j_bpj_2019_05_014
crossref_primary_10_1016_j_bcp_2011_11_029
crossref_primary_10_1039_C7CC01023K
crossref_primary_10_1021_acsami_6b11556
crossref_primary_10_1021_la500897x
crossref_primary_10_1021_acs_langmuir_0c00613
crossref_primary_10_1039_C4AN00059E
crossref_primary_10_1021_ja205274g
crossref_primary_10_1021_la4046622
crossref_primary_10_3390_polym12040745
crossref_primary_10_1039_b819869a
crossref_primary_10_1039_c0sm00030b
crossref_primary_10_3390_membranes12060558
crossref_primary_10_1038_s41596_019_0174_2
crossref_primary_10_1371_journal_pone_0085033
crossref_primary_10_1371_journal_pone_0144671
crossref_primary_10_7567_1347_4065_ab1b5f
crossref_primary_10_1042_BST0370707
crossref_primary_10_1116_1_4944830
crossref_primary_10_1021_ja2007615
crossref_primary_10_3390_molecules15031932
crossref_primary_10_1021_acs_analchem_8b04110
Cites_doi 10.1021/la026231w
10.1021/la053163f
10.1016/S0006-3495(76)85755-4
10.1007/s002490050146
10.1073/pnas.90.14.6420
10.1021/jp0676181
10.1016/S0006-3495(83)84410-5
10.1002/pro.5560070420
10.1021/la047732f
10.1016/S0040-4020(97)00698-4
10.1021/la0519554
10.1038/nrd892
10.1021/la046973k
10.1016/S0166-2236(96)01030-2
10.1529/biophysj.105.065482
10.1111/j.1574-6976.1998.tb00371.x
10.1038/320179a0
10.1111/j.1742-4658.2005.05021.x
10.1021/la9903043
10.1016/j.snb.2007.01.014
10.1038/343278a0
10.1016/S0021-9258(19)85768-X
10.1529/biophysj.106.092999
10.1111/j.1600-0854.2004.00215.x
10.1016/0014-5793(87)81546-6
10.1016/S0006-3495(98)74057-3
10.1146/annurev.cellbio.13.1.395
10.1021/jp0636423
10.1016/S0006-3495(96)79224-X
10.1021/ja056972u
10.1038/374517a0
10.1529/biophysj.105.076521
10.1529/biophysj.106.084590
10.1016/S0032-9592(00)00223-5
10.1002/ange.200504035
10.1016/0003-2697(85)90442-7
10.1073/pnas.81.23.7564
10.1016/j.colsurfb.2006.03.010
10.1038/nbt0503-508
10.1063/1.1147494
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1116/1.2896113
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1559-4106
EndPage FA67
ExternalDocumentID 10_1116_1_2896113
20408670
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D00943X/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D011574/1
GroupedDBID ---
-A0
.DC
23N
2VQ
2WC
4.4
40G
53G
5GY
6J9
AAAAW
AAEUA
AAJMC
AAKKN
AAPUP
AAYIH
AAYZJ
ABEEZ
ABFTF
ABJNI
ABNAN
ACACY
ACBRY
ACGFS
ACIWK
ACULB
ADBBV
ADCOW
ADCTM
ADINQ
ADLOM
AECCQ
AEGXH
AEILP
AENEX
AFGXO
AFHCQ
AFRAH
AGKCL
AGLKD
AGMXG
AGTJO
AHBXF
AHBYD
AHSBF
AHSDT
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AQWKA
ASPBG
AVWKF
AZFZN
BAPOH
BAUXJ
BAWUL
C1A
C24
C6C
CS3
DIK
DU5
EBS
EJD
EMOBN
F5P
GX1
HH5
HZ~
KQ8
M71
M~E
NPM
OK1
PQQKQ
RAW
RIP
RNS
RQS
RSV
SCM
SOJ
TR2
U2A
VAS
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c385t-7ebecdf2ce8c17e37a4671f9ff65da87cbd911b6dad1e6d8aabc5076c96a059b3
ISSN 1934-8630
IngestDate Fri Oct 25 09:08:22 EDT 2024
Thu Nov 21 21:40:53 EST 2024
Sat Sep 28 08:16:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-7ebecdf2ce8c17e37a4671f9ff65da87cbd911b6dad1e6d8aabc5076c96a059b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://avs.scitation.org/doi/pdf/10.1116/1.2896113
PMID 20408670
PQID 733905137
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733905137
crossref_primary_10_1116_1_2896113
pubmed_primary_20408670
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biointerphases
PublicationTitleAlternate Biointerphases
PublicationYear 2008
References (2023062418084665500_c38) 2000; 36
(2023062418084665500_c5) 1998; 7
(2023062418084665500_c37) 2005; 21
(2023062418084665500_c22) 2005; 89
(2023062418084665500_c1) 2000
(2023062418084665500_c2) 1998; 22
Ratledge (2023062418084665500_c31) 1988
(2023062418084665500_c39) 1985; 150
(2023062418084665500_c4) 2003; 21
(2023062418084665500_c11) 1997; 20
(2023062418084665500_c40) 1996; 67
(2023062418084665500_c43) 2006; 50
(2023062418084665500_c33) 2003; 19
(2023062418084665500_c18) 2000; 16
(2023062418084665500_c44) 1998; 27
(2023062418084665500_c12) 2005; 272
(2023062418084665500_c35) 2007; 124
(2023062418084665500_c45) 2004; 5
(2023062418084665500_c13) 2002; 1
(2023062418084665500_c17) 2007; 111
(2023062418084665500_c8) 1997; 13
(2023062418084665500_c10) 2000; 60
(2023062418084665500_c41) 1983; 41
(2023062418084665500_c21) 2006; 22
(2023062418084665500_c30) 2006; 118
Haseth (2023062418084665500_c27) 1997
(2023062418084665500_c6) 1987; 212
(2023062418084665500_c26) 2007; 111
(2023062418084665500_c14) 1984; 81
(2023062418084665500_c19) 2006; 128
(2023062418084665500_c25) 1976; 16
(2023062418084665500_c23) 2006; 90
(2023062418084665500_c42) 2006; 91
(2023062418084665500_c24) 2006; 22
(2023062418084665500_c32) 2005; 21
(2023062418084665500_c34) 2006; 128
(2023062418084665500_c28) 1996; 71
(2023062418084665500_c9) 1990; 343
(2023062418084665500_c3) 2006; 91
(2023062418084665500_c15) 1986; 320
(2023062418084665500_c20) 1998; 75
(2023062418084665500_c7) 2002; 374
(2023062418084665500_c29) 1993; 90
(2023062418084665500_c36) 1980; 255
(2023062418084665500_c16) 1997; 53
References_xml – volume-title: Microbial Lipids
  year: 1988
  ident: 2023062418084665500_c31
  contributor:
    fullname: Ratledge
– volume: 19
  start-page: 842
  year: 2003
  ident: 2023062418084665500_c33
  publication-title: Langmuir
  doi: 10.1021/la026231w
– volume: 22
  start-page: 3477
  year: 2006
  ident: 2023062418084665500_c21
  publication-title: Langmuir
  doi: 10.1021/la053163f
– volume: 16
  start-page: 1055
  year: 1976
  ident: 2023062418084665500_c25
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(76)85755-4
– volume: 27
  start-page: 391
  year: 1998
  ident: 2023062418084665500_c44
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s002490050146
– volume: 90
  start-page: 6420
  year: 1993
  ident: 2023062418084665500_c29
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.90.14.6420
– volume: 111
  start-page: 3515
  year: 2007
  ident: 2023062418084665500_c26
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0676181
– volume: 41
  start-page: 95
  year: 1983
  ident: 2023062418084665500_c41
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(83)84410-5
– volume: 7
  start-page: 1029
  year: 1998
  ident: 2023062418084665500_c5
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070420
– volume: 21
  start-page: 1481
  year: 2005
  ident: 2023062418084665500_c32
  publication-title: Langmuir
  doi: 10.1021/la047732f
– volume: 53
  start-page: 10939
  year: 1997
  ident: 2023062418084665500_c16
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(97)00698-4
– volume: 22
  start-page: 3313
  year: 2006
  ident: 2023062418084665500_c24
  publication-title: Langmuir
  doi: 10.1021/la0519554
– volume: 1
  start-page: 727
  year: 2002
  ident: 2023062418084665500_c13
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd892
– volume: 21
  start-page: 4661
  year: 2005
  ident: 2023062418084665500_c37
  publication-title: Langmuir
  doi: 10.1021/la046973k
– volume: 20
  start-page: 154
  year: 1997
  ident: 2023062418084665500_c11
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)01030-2
– volume: 89
  start-page: 2750
  year: 2005
  ident: 2023062418084665500_c22
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.065482
– volume: 22
  start-page: 277
  year: 1998
  ident: 2023062418084665500_c2
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1998.tb00371.x
– volume: 320
  start-page: 179
  year: 1986
  ident: 2023062418084665500_c15
  publication-title: Nature (London)
  doi: 10.1038/320179a0
– volume: 272
  start-page: 5962
  year: 2005
  ident: 2023062418084665500_c12
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.05021.x
– volume: 16
  start-page: 1806
  year: 2000
  ident: 2023062418084665500_c18
  publication-title: Langmuir
  doi: 10.1021/la9903043
– volume: 124
  start-page: 501
  year: 2007
  ident: 2023062418084665500_c35
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.01.014
– volume: 343
  start-page: 278
  year: 1990
  ident: 2023062418084665500_c9
  publication-title: Nature (London)
  doi: 10.1038/343278a0
– volume: 60
  start-page: 2589
  year: 2000
  ident: 2023062418084665500_c10
  publication-title: Cancer Res.
– volume: 255
  start-page: 3748
  year: 1980
  ident: 2023062418084665500_c36
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85768-X
– volume: 91
  start-page: 3133
  year: 2006
  ident: 2023062418084665500_c3
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.092999
– volume: 5
  start-page: 662
  year: 2004
  ident: 2023062418084665500_c45
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2004.00215.x
– volume: 212
  start-page: 1
  year: 1987
  ident: 2023062418084665500_c6
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(87)81546-6
– volume-title: Structural Investigations of Oriented Membrane Assemblies by FTIR-ATR Spectroscopy
  year: 1997
  ident: 2023062418084665500_c27
  contributor:
    fullname: Haseth
– volume: 75
  start-page: 1397
  year: 1998
  ident: 2023062418084665500_c20
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)74057-3
– volume: 13
  start-page: 395
  year: 1997
  ident: 2023062418084665500_c8
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.13.1.395
– volume: 111
  start-page: 379
  year: 2007
  ident: 2023062418084665500_c17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0636423
– volume: 71
  start-page: 283
  year: 1996
  ident: 2023062418084665500_c28
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(96)79224-X
– volume: 128
  start-page: 1711
  year: 2006
  ident: 2023062418084665500_c19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056972u
– volume: 374
  start-page: 517
  year: 2002
  ident: 2023062418084665500_c7
  publication-title: Nature (London)
  doi: 10.1038/374517a0
– volume: 90
  start-page: L21
  year: 2006
  ident: 2023062418084665500_c23
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.076521
– volume: 128
  start-page: 1711
  year: 2006
  ident: 2023062418084665500_c34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056972u
– volume: 91
  start-page: 3727
  year: 2006
  ident: 2023062418084665500_c42
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.084590
– volume: 36
  start-page: 415
  year: 2000
  ident: 2023062418084665500_c38
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(00)00223-5
– volume: 118
  start-page: 2165
  year: 2006
  ident: 2023062418084665500_c30
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200504035
– volume: 150
  start-page: 76
  year: 1985
  ident: 2023062418084665500_c39
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(85)90442-7
– volume: 81
  start-page: 7564
  year: 1984
  ident: 2023062418084665500_c14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.81.23.7564
– volume-title: Molecular Biology of the Cell
  year: 2000
  ident: 2023062418084665500_c1
– volume: 50
  start-page: 76
  year: 2006
  ident: 2023062418084665500_c43
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2006.03.010
– volume: 21
  start-page: 508
  year: 2003
  ident: 2023062418084665500_c4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0503-508
– volume: 67
  start-page: 3238
  year: 1996
  ident: 2023062418084665500_c40
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1147494
SSID ssj0045563
Score 1.9778918
Snippet Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage FA59
Title Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes
URI https://www.ncbi.nlm.nih.gov/pubmed/20408670
https://search.proquest.com/docview/733905137
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagXOBQsVM2WYhblDDZbOdYYEo1gh5Qi-YWeUsJdCajTnKAX8_zkmWqVgIu0SSR7cjfN8_vefkeQm8zsIaKkyokTM9CGG91WFCZwy0D5zxT4KSb-Y4vJ-T4LFss8-W4f96eLmlFJH9fe67kf1CFZ4CrOSX7D8gOlcID-A34whUQhutfYXziVLvnUQBw1oFNoxWs9AoiYCsGIr1Msd_PCB9Tq3DbbayYuQou6k0N_md9wX9Nym131nnrprbbEr_DaDfmoG-UGtbqm7bV43kGn3HL0kavf_AVtPt1TOC10N1PZ-g-Q0QdLMZJ2vfd-fmEPMFHf2yin5Fg486pSHsrmpvl5RmZmtl0wqZkYjKPDp0k-DW23E4rRBASktgdWJ1gullZUBMwQoy43CNXhLP7V7fRHaOSaBIrfFoO-38yo4zmpaagpXdDO0Ye2pfc9VVuCECsI3J6H-37CAIfOjo8QLf0-iG6N9GVfIS-OWLgeYQNMbAlBu4BxjvEgDt8hRjYEgN7Ygzlto_R2dH89MNx6BNohDJleRtS8w9VVSI1kzHVKeUwLMZVUVUkV5xRKRSMdYIormJNFONcSIgPiCwIB7dbpE_Q3rpZ62cIV0QImglGK2VWYtNCzhJJJa0KohOo9QC96buq3DidlNLFl6SMS9-1Bwj3nViCFTNLU_D1TbctKdQIw0MK9Tx1nTvU0oPx_MY3L9DdkYYv0V572elX4Cq24rWF_A8Jy2n7
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+E.+coli+inner+membrane+incorporation+in+solid-supported+lipid+bilayer+membranes&rft.jtitle=Biointerphases&rft.au=Dodd%2C+Charlotte+E&rft.au=Johnson%2C+Benjamin+R+G&rft.au=Jeuken%2C+Lars+J+C&rft.au=Bugg%2C+Timothy+D+H&rft.date=2008-06-01&rft.eissn=1559-4106&rft.volume=3&rft.issue=2&rft.spage=FA59&rft_id=info:doi/10.1116%2F1.2896113&rft_id=info%3Apmid%2F20408670&rft.externalDocID=20408670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-8630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-8630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-8630&client=summon