Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes
Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been ex...
Saved in:
Published in | Biointerphases Vol. 3; no. 2; pp. FA59 - FA67 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2008
|
Online Access | Get full text |
Cover
Loading…
Abstract | Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with < or = 40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with < or = 40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 degrees C. |
---|---|
AbstractList | Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with < or = 40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with < or = 40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 degrees C. Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal microbalance (QCM-D), atomic force microscopy (AFM), attenuated total internal-reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and fluorescence recovery after photobleaching (FRAP). QCM-D studies reveal that SBLM formation from vesicle mixtures ranging between 0% and 100% IM can be divided into two regimes. Samples with ≤40% IM form SBLMs, while samples of greater IM fractions are dominated by vesicle adsorption. FRAP experiments showed that the bilayers formed from mixed vesicles with ≤40% IM were fluid, and comprised a mixture of both egg PC and IM. ATR-FTIR measurements on SBLMs membranes formed with 30% IM confirm that protein is present. SBLM formation was also explored as a function of temperature by QCM-D and FRAP. For samples of 30% IM, QCM-D data show a decreased mass and viscoelasticity at elevated temperatures, and an increased fluidity is observed by FRAP measurements. These results suggest improved biomimetic characteristics can be obtained by forming and maintaining the system at, or close to, 37 °C. |
Author | Evans, Stephen D Dodd, Charlotte E Johnson, Benjamin R G Bugg, Timothy D H Bushby, Richard J Jeuken, Lars J C |
Author_xml | – sequence: 1 givenname: Charlotte E surname: Dodd fullname: Dodd, Charlotte E organization: School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom – sequence: 2 givenname: Benjamin R G surname: Johnson fullname: Johnson, Benjamin R G – sequence: 3 givenname: Lars J C surname: Jeuken fullname: Jeuken, Lars J C – sequence: 4 givenname: Timothy D H surname: Bugg fullname: Bugg, Timothy D H – sequence: 5 givenname: Richard J surname: Bushby fullname: Bushby, Richard J – sequence: 6 givenname: Stephen D surname: Evans fullname: Evans, Stephen D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20408670$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEtLAzEUhYNU7EMX_gGZnbiYmttMkslSSn1A0Y26HfK4A5F5mUyF_nsjreLq3nP57uFw5mTS9R0Scgl0CQDiFparUgkAdkJmwLnKC6BiknbFirwUjE7JPMYPSgvOBTsj0xUtaCkknZH3Zz36L8w2y8z2jc9812HIWmxN0B0mafsw9CFBfZdUFhPk8rgb0nFElzV-8C4zvtH7f3_xnJzWuol4cZwL8na_eV0_5tuXh6f13Ta3rORjLtGgdfXKYmlBIpO6EBJqVdeCO11Ka5wCMMJpByhcqbWxnEphldCUK8MW5PrgO4T-c4dxrFofLTZNCtHvYiUZU5QDk4m8OZA29DEGrKsh-FaHfQW0-mmxgurYYmKvjq4706L7I39rY99jDG-v |
CitedBy_id | crossref_primary_10_1007_s12551_021_00913_7 crossref_primary_10_1042_BJ20081345 crossref_primary_10_1038_srep32715 crossref_primary_10_1021_acsinfecdis_7b00270 crossref_primary_10_1002_smll_201403469 crossref_primary_10_1021_acs_analchem_5b01449 crossref_primary_10_1021_la400861u crossref_primary_10_1146_annurev_anchem_061010_114048 crossref_primary_10_1038_s41598_017_15103_3 crossref_primary_10_3389_fmats_2018_00048 crossref_primary_10_1039_b903252e crossref_primary_10_1116_1_4963188 crossref_primary_10_1021_ja204589a crossref_primary_10_1016_j_ab_2018_03_006 crossref_primary_10_1016_j_bpj_2019_05_014 crossref_primary_10_1016_j_bcp_2011_11_029 crossref_primary_10_1039_C7CC01023K crossref_primary_10_1021_acsami_6b11556 crossref_primary_10_1021_la500897x crossref_primary_10_1021_acs_langmuir_0c00613 crossref_primary_10_1039_C4AN00059E crossref_primary_10_1021_ja205274g crossref_primary_10_1021_la4046622 crossref_primary_10_3390_polym12040745 crossref_primary_10_1039_b819869a crossref_primary_10_1039_c0sm00030b crossref_primary_10_3390_membranes12060558 crossref_primary_10_1038_s41596_019_0174_2 crossref_primary_10_1371_journal_pone_0085033 crossref_primary_10_1371_journal_pone_0144671 crossref_primary_10_7567_1347_4065_ab1b5f crossref_primary_10_1042_BST0370707 crossref_primary_10_1116_1_4944830 crossref_primary_10_1021_ja2007615 crossref_primary_10_3390_molecules15031932 crossref_primary_10_1021_acs_analchem_8b04110 |
Cites_doi | 10.1021/la026231w 10.1021/la053163f 10.1016/S0006-3495(76)85755-4 10.1007/s002490050146 10.1073/pnas.90.14.6420 10.1021/jp0676181 10.1016/S0006-3495(83)84410-5 10.1002/pro.5560070420 10.1021/la047732f 10.1016/S0040-4020(97)00698-4 10.1021/la0519554 10.1038/nrd892 10.1021/la046973k 10.1016/S0166-2236(96)01030-2 10.1529/biophysj.105.065482 10.1111/j.1574-6976.1998.tb00371.x 10.1038/320179a0 10.1111/j.1742-4658.2005.05021.x 10.1021/la9903043 10.1016/j.snb.2007.01.014 10.1038/343278a0 10.1016/S0021-9258(19)85768-X 10.1529/biophysj.106.092999 10.1111/j.1600-0854.2004.00215.x 10.1016/0014-5793(87)81546-6 10.1016/S0006-3495(98)74057-3 10.1146/annurev.cellbio.13.1.395 10.1021/jp0636423 10.1016/S0006-3495(96)79224-X 10.1021/ja056972u 10.1038/374517a0 10.1529/biophysj.105.076521 10.1529/biophysj.106.084590 10.1016/S0032-9592(00)00223-5 10.1002/ange.200504035 10.1016/0003-2697(85)90442-7 10.1073/pnas.81.23.7564 10.1016/j.colsurfb.2006.03.010 10.1038/nbt0503-508 10.1063/1.1147494 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1116/1.2896113 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1559-4106 |
EndPage | FA67 |
ExternalDocumentID | 10_1116_1_2896113 20408670 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D00943X/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D011574/1 |
GroupedDBID | --- -A0 .DC 23N 2VQ 2WC 4.4 40G 53G 5GY 6J9 AAAAW AAEUA AAJMC AAKKN AAPUP AAYIH AAYZJ ABEEZ ABFTF ABJNI ABNAN ACACY ACBRY ACGFS ACIWK ACULB ADBBV ADCOW ADCTM ADINQ ADLOM AECCQ AEGXH AEILP AENEX AFGXO AFHCQ AFRAH AGKCL AGLKD AGMXG AGTJO AHBXF AHBYD AHSBF AHSDT ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AQWKA ASPBG AVWKF AZFZN BAPOH BAUXJ BAWUL C1A C24 C6C CS3 DIK DU5 EBS EJD EMOBN F5P GX1 HH5 HZ~ KQ8 M71 M~E NPM OK1 PQQKQ RAW RIP RNS RQS RSV SCM SOJ TR2 U2A VAS AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c385t-7ebecdf2ce8c17e37a4671f9ff65da87cbd911b6dad1e6d8aabc5076c96a059b3 |
ISSN | 1934-8630 |
IngestDate | Fri Oct 25 09:08:22 EDT 2024 Thu Nov 21 21:40:53 EST 2024 Sat Sep 28 08:16:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-7ebecdf2ce8c17e37a4671f9ff65da87cbd911b6dad1e6d8aabc5076c96a059b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://avs.scitation.org/doi/pdf/10.1116/1.2896113 |
PMID | 20408670 |
PQID | 733905137 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_733905137 crossref_primary_10_1116_1_2896113 pubmed_primary_20408670 |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biointerphases |
PublicationTitleAlternate | Biointerphases |
PublicationYear | 2008 |
References | (2023062418084665500_c38) 2000; 36 (2023062418084665500_c5) 1998; 7 (2023062418084665500_c37) 2005; 21 (2023062418084665500_c22) 2005; 89 (2023062418084665500_c1) 2000 (2023062418084665500_c2) 1998; 22 Ratledge (2023062418084665500_c31) 1988 (2023062418084665500_c39) 1985; 150 (2023062418084665500_c4) 2003; 21 (2023062418084665500_c11) 1997; 20 (2023062418084665500_c40) 1996; 67 (2023062418084665500_c43) 2006; 50 (2023062418084665500_c33) 2003; 19 (2023062418084665500_c18) 2000; 16 (2023062418084665500_c44) 1998; 27 (2023062418084665500_c12) 2005; 272 (2023062418084665500_c35) 2007; 124 (2023062418084665500_c45) 2004; 5 (2023062418084665500_c13) 2002; 1 (2023062418084665500_c17) 2007; 111 (2023062418084665500_c8) 1997; 13 (2023062418084665500_c10) 2000; 60 (2023062418084665500_c41) 1983; 41 (2023062418084665500_c21) 2006; 22 (2023062418084665500_c30) 2006; 118 Haseth (2023062418084665500_c27) 1997 (2023062418084665500_c6) 1987; 212 (2023062418084665500_c26) 2007; 111 (2023062418084665500_c14) 1984; 81 (2023062418084665500_c19) 2006; 128 (2023062418084665500_c25) 1976; 16 (2023062418084665500_c23) 2006; 90 (2023062418084665500_c42) 2006; 91 (2023062418084665500_c24) 2006; 22 (2023062418084665500_c32) 2005; 21 (2023062418084665500_c34) 2006; 128 (2023062418084665500_c28) 1996; 71 (2023062418084665500_c9) 1990; 343 (2023062418084665500_c3) 2006; 91 (2023062418084665500_c15) 1986; 320 (2023062418084665500_c20) 1998; 75 (2023062418084665500_c7) 2002; 374 (2023062418084665500_c29) 1993; 90 (2023062418084665500_c36) 1980; 255 (2023062418084665500_c16) 1997; 53 |
References_xml | – volume-title: Microbial Lipids year: 1988 ident: 2023062418084665500_c31 contributor: fullname: Ratledge – volume: 19 start-page: 842 year: 2003 ident: 2023062418084665500_c33 publication-title: Langmuir doi: 10.1021/la026231w – volume: 22 start-page: 3477 year: 2006 ident: 2023062418084665500_c21 publication-title: Langmuir doi: 10.1021/la053163f – volume: 16 start-page: 1055 year: 1976 ident: 2023062418084665500_c25 publication-title: Biophys. J. doi: 10.1016/S0006-3495(76)85755-4 – volume: 27 start-page: 391 year: 1998 ident: 2023062418084665500_c44 publication-title: Eur. Biophys. J. doi: 10.1007/s002490050146 – volume: 90 start-page: 6420 year: 1993 ident: 2023062418084665500_c29 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.90.14.6420 – volume: 111 start-page: 3515 year: 2007 ident: 2023062418084665500_c26 publication-title: J. Phys. Chem. B doi: 10.1021/jp0676181 – volume: 41 start-page: 95 year: 1983 ident: 2023062418084665500_c41 publication-title: Biophys. J. doi: 10.1016/S0006-3495(83)84410-5 – volume: 7 start-page: 1029 year: 1998 ident: 2023062418084665500_c5 publication-title: Protein Sci. doi: 10.1002/pro.5560070420 – volume: 21 start-page: 1481 year: 2005 ident: 2023062418084665500_c32 publication-title: Langmuir doi: 10.1021/la047732f – volume: 53 start-page: 10939 year: 1997 ident: 2023062418084665500_c16 publication-title: Tetrahedron doi: 10.1016/S0040-4020(97)00698-4 – volume: 22 start-page: 3313 year: 2006 ident: 2023062418084665500_c24 publication-title: Langmuir doi: 10.1021/la0519554 – volume: 1 start-page: 727 year: 2002 ident: 2023062418084665500_c13 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd892 – volume: 21 start-page: 4661 year: 2005 ident: 2023062418084665500_c37 publication-title: Langmuir doi: 10.1021/la046973k – volume: 20 start-page: 154 year: 1997 ident: 2023062418084665500_c11 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(96)01030-2 – volume: 89 start-page: 2750 year: 2005 ident: 2023062418084665500_c22 publication-title: Biophys. J. doi: 10.1529/biophysj.105.065482 – volume: 22 start-page: 277 year: 1998 ident: 2023062418084665500_c2 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1998.tb00371.x – volume: 320 start-page: 179 year: 1986 ident: 2023062418084665500_c15 publication-title: Nature (London) doi: 10.1038/320179a0 – volume: 272 start-page: 5962 year: 2005 ident: 2023062418084665500_c12 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.05021.x – volume: 16 start-page: 1806 year: 2000 ident: 2023062418084665500_c18 publication-title: Langmuir doi: 10.1021/la9903043 – volume: 124 start-page: 501 year: 2007 ident: 2023062418084665500_c35 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2007.01.014 – volume: 343 start-page: 278 year: 1990 ident: 2023062418084665500_c9 publication-title: Nature (London) doi: 10.1038/343278a0 – volume: 60 start-page: 2589 year: 2000 ident: 2023062418084665500_c10 publication-title: Cancer Res. – volume: 255 start-page: 3748 year: 1980 ident: 2023062418084665500_c36 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85768-X – volume: 91 start-page: 3133 year: 2006 ident: 2023062418084665500_c3 publication-title: Biophys. J. doi: 10.1529/biophysj.106.092999 – volume: 5 start-page: 662 year: 2004 ident: 2023062418084665500_c45 publication-title: Traffic doi: 10.1111/j.1600-0854.2004.00215.x – volume: 212 start-page: 1 year: 1987 ident: 2023062418084665500_c6 publication-title: FEBS Lett. doi: 10.1016/0014-5793(87)81546-6 – volume-title: Structural Investigations of Oriented Membrane Assemblies by FTIR-ATR Spectroscopy year: 1997 ident: 2023062418084665500_c27 contributor: fullname: Haseth – volume: 75 start-page: 1397 year: 1998 ident: 2023062418084665500_c20 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)74057-3 – volume: 13 start-page: 395 year: 1997 ident: 2023062418084665500_c8 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.13.1.395 – volume: 111 start-page: 379 year: 2007 ident: 2023062418084665500_c17 publication-title: J. Phys. Chem. B doi: 10.1021/jp0636423 – volume: 71 start-page: 283 year: 1996 ident: 2023062418084665500_c28 publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79224-X – volume: 128 start-page: 1711 year: 2006 ident: 2023062418084665500_c19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056972u – volume: 374 start-page: 517 year: 2002 ident: 2023062418084665500_c7 publication-title: Nature (London) doi: 10.1038/374517a0 – volume: 90 start-page: L21 year: 2006 ident: 2023062418084665500_c23 publication-title: Biophys. J. doi: 10.1529/biophysj.105.076521 – volume: 128 start-page: 1711 year: 2006 ident: 2023062418084665500_c34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056972u – volume: 91 start-page: 3727 year: 2006 ident: 2023062418084665500_c42 publication-title: Biophys. J. doi: 10.1529/biophysj.106.084590 – volume: 36 start-page: 415 year: 2000 ident: 2023062418084665500_c38 publication-title: Process Biochem. doi: 10.1016/S0032-9592(00)00223-5 – volume: 118 start-page: 2165 year: 2006 ident: 2023062418084665500_c30 publication-title: Angew. Chem. doi: 10.1002/ange.200504035 – volume: 150 start-page: 76 year: 1985 ident: 2023062418084665500_c39 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(85)90442-7 – volume: 81 start-page: 7564 year: 1984 ident: 2023062418084665500_c14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.81.23.7564 – volume-title: Molecular Biology of the Cell year: 2000 ident: 2023062418084665500_c1 – volume: 50 start-page: 76 year: 2006 ident: 2023062418084665500_c43 publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2006.03.010 – volume: 21 start-page: 508 year: 2003 ident: 2023062418084665500_c4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0503-508 – volume: 67 start-page: 3238 year: 1996 ident: 2023062418084665500_c40 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1147494 |
SSID | ssj0045563 |
Score | 1.9778918 |
Snippet | Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | FA59 |
Title | Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20408670 https://search.proquest.com/docview/733905137 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagXOBQsVM2WYhblDDZbOdYYEo1gh5Qi-YWeUsJdCajTnKAX8_zkmWqVgIu0SSR7cjfN8_vefkeQm8zsIaKkyokTM9CGG91WFCZwy0D5zxT4KSb-Y4vJ-T4LFss8-W4f96eLmlFJH9fe67kf1CFZ4CrOSX7D8gOlcID-A34whUQhutfYXziVLvnUQBw1oFNoxWs9AoiYCsGIr1Msd_PCB9Tq3DbbayYuQou6k0N_md9wX9Nym131nnrprbbEr_DaDfmoG-UGtbqm7bV43kGn3HL0kavf_AVtPt1TOC10N1PZ-g-Q0QdLMZJ2vfd-fmEPMFHf2yin5Fg486pSHsrmpvl5RmZmtl0wqZkYjKPDp0k-DW23E4rRBASktgdWJ1gullZUBMwQoy43CNXhLP7V7fRHaOSaBIrfFoO-38yo4zmpaagpXdDO0Ye2pfc9VVuCECsI3J6H-37CAIfOjo8QLf0-iG6N9GVfIS-OWLgeYQNMbAlBu4BxjvEgDt8hRjYEgN7Ygzlto_R2dH89MNx6BNohDJleRtS8w9VVSI1kzHVKeUwLMZVUVUkV5xRKRSMdYIormJNFONcSIgPiCwIB7dbpE_Q3rpZ62cIV0QImglGK2VWYtNCzhJJJa0KohOo9QC96buq3DidlNLFl6SMS9-1Bwj3nViCFTNLU_D1TbctKdQIw0MK9Tx1nTvU0oPx_MY3L9DdkYYv0V572elX4Cq24rWF_A8Jy2n7 |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Native+E.+coli+inner+membrane+incorporation+in+solid-supported+lipid+bilayer+membranes&rft.jtitle=Biointerphases&rft.au=Dodd%2C+Charlotte+E&rft.au=Johnson%2C+Benjamin+R+G&rft.au=Jeuken%2C+Lars+J+C&rft.au=Bugg%2C+Timothy+D+H&rft.date=2008-06-01&rft.eissn=1559-4106&rft.volume=3&rft.issue=2&rft.spage=FA59&rft_id=info:doi/10.1116%2F1.2896113&rft_id=info%3Apmid%2F20408670&rft.externalDocID=20408670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-8630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-8630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-8630&client=summon |