Modelling of chemical species of Al, Mn, Zn, and Pb in river body waters of industrial areas of West Rhodope Mountain, Bulgaria
The assessment of the ecological status of natural surface water, in terms of dominant trace metals, within an area subject to various sources of pollution including a non-ferrous metal ore mining, such as the West Rhodope Mountain, Bulgaria, is significant. The present study estimates the ecologica...
Saved in:
Published in | Environmental monitoring and assessment Vol. 193; no. 7; p. 430 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The assessment of the ecological status of natural surface water, in terms of dominant trace metals, within an area subject to various sources of pollution including a non-ferrous metal ore mining, such as the West Rhodope Mountain, Bulgaria, is significant. The present study estimates the ecological status of river body waters at industrial areas of the West Rhodope Mountain, Bulgaria, simultaneously evaluating the possibility of state forecasting, together with assessing the potential risks, through the study of scenarios focusing on (i) possible variations of physicochemical parameters such as pH, concentration levels of trace metals, sulphates, and dissolved organic carbon (DOC) of surface water and (ii) consideration of potential spontaneous precipitation reactions in the studied waters. The ecological status of river body waters was assessed through a combination of experimental field, laboratory, and computational techniques. Al, Mn, Zn, and Pb were found to be the dominant pollutants with a variety of chemical species and distribution. The most significant difference characterizing the chemical species distribution in light of total spontaneous crystallization in the systems was found for Pb, followed by Zn and Mn, with the differences being more significant at lower trace metal levels. The calculated species were discussed on the basis of HSAB (hard and soft acids and bases) principle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0167-6369 1573-2959 1573-2959 |
DOI: | 10.1007/s10661-021-09193-w |