Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction
Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active...
Saved in:
Published in | Nature energy Vol. 5; no. 11; pp. 881 - 890 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni
0.5
Co
0.5
-MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni
0.5
Co
0.5
OOH
0.75
, with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni
0.9
Fe
0.1
-MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm
−2
and 20 mA cm
−2
, respectively.
Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni0.5Co0.5-MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni0.5Co0.5OOH0.75, with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni0.9Fe0.1-MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm−2 and 20 mA cm−2, respectively.Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active. Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni 0.5 Co 0.5 -MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni 0.5 Co 0.5 OOH 0.75 , with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni 0.9 Fe 0.1 -MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm −2 and 20 mA cm −2 , respectively. Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active. |
Author | Tang, Zhiyong Zhang, Binwei Wu, Kuang-Hsu Chen, Yuan An, Pengfei Liu, Shaoqin He, Chun-Ting Tan, Chunhui Xie, Feng Zhang, Jing Jiang, Shuai Dong, Juncai Zhao, Shenlong Zhu, Yanfei Li, Haijing |
Author_xml | – sequence: 1 givenname: Shenlong surname: Zhao fullname: Zhao, Shenlong organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, School of Chemical and Biomolecular Engineering, The University of Sydney – sequence: 2 givenname: Chunhui surname: Tan fullname: Tan, Chunhui organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology – sequence: 3 givenname: Chun-Ting surname: He fullname: He, Chun-Ting organization: Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University – sequence: 4 givenname: Pengfei surname: An fullname: An, Pengfei organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 5 givenname: Feng surname: Xie fullname: Xie, Feng organization: Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology – sequence: 6 givenname: Shuai surname: Jiang fullname: Jiang, Shuai organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology – sequence: 7 givenname: Yanfei surname: Zhu fullname: Zhu, Yanfei organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology – sequence: 8 givenname: Kuang-Hsu surname: Wu fullname: Wu, Kuang-Hsu organization: School of Chemical and Biomolecular Engineering, The University of Sydney – sequence: 9 givenname: Binwei orcidid: 0000-0002-7023-5986 surname: Zhang fullname: Zhang, Binwei organization: School of Chemical and Biomolecular Engineering, The University of Sydney – sequence: 10 givenname: Haijing surname: Li fullname: Li, Haijing organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 11 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 12 givenname: Yuan orcidid: 0000-0001-9059-3839 surname: Chen fullname: Chen, Yuan organization: School of Chemical and Biomolecular Engineering, The University of Sydney – sequence: 13 givenname: Shaoqin surname: Liu fullname: Liu, Shaoqin email: shaoqinliu@hit.edu.cn organization: State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology – sequence: 14 givenname: Juncai orcidid: 0000-0001-8860-093X surname: Dong fullname: Dong, Juncai email: dongjc@ihep.ac.cn organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 15 givenname: Zhiyong orcidid: 0000-0003-0610-0064 surname: Tang fullname: Tang, Zhiyong email: zytang@nanoctr.cn organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology |
BookMark | eNp9kMFO3DAQhi1EpVLKC_RkqeeUsR0n8bFCQCshcaCcLa8z2Q1k7WXsANtT34E35EnI7iIVceBgjQ__94_9fWH7IQZk7JuAHwJUc5xKoSsoQE4HajCF2GMHEnRT1Lqs9t_cP7OjlG4AQBopdSMO2N-rTKPPI7mBZ3IhdZGWLvcx8NjxRT9fDGvufO7vkS8xu-H531OkuQu95x25JT5EuuU4oM8UvZsC65QTb0fqw5znBfL4uJ5j4Hgfh3HbS7jpi-Er-9S5IeHR6zxk12enf05-FReX579Pfl4UXjU6F3XtjJ9pNasVGF8pBVXlvJiZSrWmFA48ILpWKfSi8Ua3ZVsbiaXUfvpy6dQh-77rXVG8GzFlexNHCtNKK8taaG0AqikldylPMSXCzq6oXzpaWwF2o9nuNNtJs91qtmKCmneQ7_PW3uSyHz5G1Q5Nq40qpP-v-oB6AZYZl8M |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156553 crossref_primary_10_1016_j_jcis_2024_08_139 crossref_primary_10_1038_s41563_025_02128_7 crossref_primary_10_1021_acssuschemeng_2c03887 crossref_primary_10_1039_D4NJ01234H crossref_primary_10_1016_j_ccr_2024_216235 crossref_primary_10_1063_5_0090147 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1002_anie_202214707 crossref_primary_10_1039_D2QM00949H crossref_primary_10_1039_D1TA10440C crossref_primary_10_1002_ange_202415794 crossref_primary_10_1126_sciadv_abf3989 crossref_primary_10_1021_jacs_2c06216 crossref_primary_10_1002_cplu_202400423 crossref_primary_10_1007_s11581_022_04708_y crossref_primary_10_1021_acs_analchem_2c01607 crossref_primary_10_1038_s41467_024_49834_5 crossref_primary_10_1002_ange_202419913 crossref_primary_10_1016_j_ijhydene_2022_10_191 crossref_primary_10_1002_anie_202402176 crossref_primary_10_1021_acscatal_1c01447 crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1016_j_cej_2022_136961 crossref_primary_10_1016_j_matt_2021_05_015 crossref_primary_10_1039_D4CE00953C crossref_primary_10_1021_acs_jpclett_1c02665 crossref_primary_10_1016_j_chemosphere_2022_137330 crossref_primary_10_1016_j_nanoen_2021_106661 crossref_primary_10_1021_acsami_4c11560 crossref_primary_10_1016_j_cattod_2024_115049 crossref_primary_10_1002_EXP_20210182 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1039_D1SC05867C crossref_primary_10_1016_j_ccr_2025_216536 crossref_primary_10_1021_acssuschemeng_0c08811 crossref_primary_10_1039_D4DT03131H crossref_primary_10_1016_j_chempr_2023_09_009 crossref_primary_10_1039_D1TA02684D crossref_primary_10_1039_D1DT04359E crossref_primary_10_1002_anie_202201610 crossref_primary_10_1039_D2TA04857D crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1016_j_apsusc_2021_150227 crossref_primary_10_1021_acs_inorgchem_2c01367 crossref_primary_10_1039_D2CC02526D crossref_primary_10_1002_celc_202400076 crossref_primary_10_1002_smll_202401343 crossref_primary_10_1002_anie_202206085 crossref_primary_10_1016_j_ijhydene_2023_12_067 crossref_primary_10_1002_asia_202300317 crossref_primary_10_1021_acscatal_3c00625 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1007_s11426_022_1217_7 crossref_primary_10_1016_j_coco_2024_101933 crossref_primary_10_1021_jacs_2c10515 crossref_primary_10_1016_j_apsusc_2023_156991 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1039_D3NJ03483F crossref_primary_10_1016_j_seppur_2025_132213 crossref_primary_10_1002_ange_202108770 crossref_primary_10_1021_acsami_4c13769 crossref_primary_10_1021_acs_inorgchem_4c04771 crossref_primary_10_1088_2515_7639_ad6cf6 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1016_j_matre_2023_100212 crossref_primary_10_1002_adfm_202102772 crossref_primary_10_1016_j_jiec_2022_11_023 crossref_primary_10_1016_j_cej_2023_142865 crossref_primary_10_1016_j_pmatsci_2024_101294 crossref_primary_10_3390_molecules29245845 crossref_primary_10_2139_ssrn_3977364 crossref_primary_10_1002_anie_202423092 crossref_primary_10_1016_j_xcrp_2021_100729 crossref_primary_10_1080_24701556_2023_2264274 crossref_primary_10_1002_ange_202407509 crossref_primary_10_1039_D2TA09665J crossref_primary_10_1021_acsami_1c04282 crossref_primary_10_1002_adfm_202304380 crossref_primary_10_1002_ange_202501821 crossref_primary_10_1002_smll_202400042 crossref_primary_10_1016_j_jcis_2022_04_181 crossref_primary_10_1016_j_cej_2023_143707 crossref_primary_10_1016_j_jallcom_2022_167453 crossref_primary_10_1016_j_apcatb_2022_122167 crossref_primary_10_1016_j_matt_2021_05_025 crossref_primary_10_1016_j_apcatb_2022_122165 crossref_primary_10_1016_j_ijhydene_2023_04_296 crossref_primary_10_1002_adfm_202412406 crossref_primary_10_1016_j_ijhydene_2023_11_081 crossref_primary_10_1016_j_jallcom_2023_173183 crossref_primary_10_1021_acs_chemmater_4c00229 crossref_primary_10_1002_ange_202314833 crossref_primary_10_1002_smll_202206768 crossref_primary_10_1002_adma_202402184 crossref_primary_10_1002_ange_202101906 crossref_primary_10_1002_smll_202308598 crossref_primary_10_1021_acscatal_2c01090 crossref_primary_10_1002_admi_202100308 crossref_primary_10_1016_j_jssc_2025_125286 crossref_primary_10_1002_cssc_202100851 crossref_primary_10_1002_smll_202311356 crossref_primary_10_1016_j_apsusc_2023_157001 crossref_primary_10_1002_ange_202211585 crossref_primary_10_1002_anie_202401005 crossref_primary_10_1007_s12274_022_4563_4 crossref_primary_10_1016_j_mtener_2022_101024 crossref_primary_10_1016_j_ijhydene_2024_12_510 crossref_primary_10_1021_acs_energyfuels_3c00984 crossref_primary_10_1002_ejic_202200625 crossref_primary_10_1016_j_apcatb_2023_123524 crossref_primary_10_1002_cnma_202200305 crossref_primary_10_1016_j_jechem_2021_06_019 crossref_primary_10_1002_anie_202214794 crossref_primary_10_1002_anie_202300532 crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1016_j_chphma_2024_03_002 crossref_primary_10_1016_j_apcatb_2021_119906 crossref_primary_10_2139_ssrn_4049710 crossref_primary_10_2139_ssrn_4049711 crossref_primary_10_1016_j_colsurfa_2024_135497 crossref_primary_10_1002_ange_202219048 crossref_primary_10_1016_j_checat_2021_07_011 crossref_primary_10_1002_adma_202208904 crossref_primary_10_1016_j_checat_2021_07_012 crossref_primary_10_1021_acsami_4c01573 crossref_primary_10_1016_j_mtener_2022_101005 crossref_primary_10_1016_j_mtener_2022_101002 crossref_primary_10_1016_j_mtener_2022_101008 crossref_primary_10_1002_anie_202311909 crossref_primary_10_1002_anie_202112775 crossref_primary_10_1021_acssuschemeng_2c04543 crossref_primary_10_1039_D1CC06254A crossref_primary_10_1039_D2EE03749A crossref_primary_10_1039_D4DT01656D crossref_primary_10_1002_cssc_202401340 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1021_acsaem_2c01707 crossref_primary_10_1021_acsenergylett_3c01030 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1016_j_apcatb_2023_122891 crossref_primary_10_1016_j_checat_2023_100529 crossref_primary_10_1016_j_jece_2024_114552 crossref_primary_10_1016_j_xcrp_2022_100850 crossref_primary_10_1002_advs_202204151 crossref_primary_10_1016_j_seppur_2025_132291 crossref_primary_10_1016_j_apsusc_2023_157204 crossref_primary_10_1039_D3TA03473A crossref_primary_10_1002_anie_202117178 crossref_primary_10_1002_cssc_202100654 crossref_primary_10_1016_j_jechem_2021_04_049 crossref_primary_10_1002_cnma_202200127 crossref_primary_10_1002_anie_202300507 crossref_primary_10_1016_j_foodchem_2022_132607 crossref_primary_10_1016_j_apcatb_2024_124089 crossref_primary_10_1002_ange_202312239 crossref_primary_10_1021_acsenergylett_1c01350 crossref_primary_10_1002_advs_202104774 crossref_primary_10_1002_anie_202211094 crossref_primary_10_1016_j_ccr_2024_216263 crossref_primary_10_1016_j_elecom_2021_107024 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1016_j_esci_2023_100092 crossref_primary_10_1002_aenm_202301391 crossref_primary_10_1016_j_checat_2021_11_003 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1016_j_ijhydene_2024_07_109 crossref_primary_10_1021_acsnano_3c09482 crossref_primary_10_1016_j_checat_2021_06_017 crossref_primary_10_1016_j_checat_2021_12_005 crossref_primary_10_1016_j_jechem_2021_05_029 crossref_primary_10_1002_anie_202504148 crossref_primary_10_1016_j_ensm_2021_09_003 crossref_primary_10_1016_j_jcis_2024_06_194 crossref_primary_10_1002_adma_202311766 crossref_primary_10_1016_j_cej_2025_161533 crossref_primary_10_1016_j_molstruc_2024_140549 crossref_primary_10_1002_ange_202419550 crossref_primary_10_1007_s12274_022_4946_6 crossref_primary_10_2139_ssrn_4091646 crossref_primary_10_1039_D1DT03048E crossref_primary_10_1002_advs_202101000 crossref_primary_10_1016_j_matlet_2024_137727 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1021_jacs_2c11676 crossref_primary_10_1007_s12274_024_6424_9 crossref_primary_10_1021_acsaem_2c02835 crossref_primary_10_1002_anie_202317022 crossref_primary_10_1016_j_cclet_2021_10_090 crossref_primary_10_1016_j_jallcom_2023_173119 crossref_primary_10_1002_aenm_202303350 crossref_primary_10_1016_j_jssc_2024_125144 crossref_primary_10_1039_D2NJ00773H crossref_primary_10_1002_adma_202313931 crossref_primary_10_1016_j_jallcom_2021_159945 crossref_primary_10_1002_ange_202302220 crossref_primary_10_1002_adfm_202112517 crossref_primary_10_1002_smtd_202101070 crossref_primary_10_1016_j_apsusc_2022_156039 crossref_primary_10_1016_j_surfin_2024_104165 crossref_primary_10_1021_acsaem_1c02604 crossref_primary_10_1016_j_jelechem_2023_117987 crossref_primary_10_1016_j_mtener_2022_101216 crossref_primary_10_1021_acs_accounts_2c00212 crossref_primary_10_1021_acs_inorgchem_4c00921 crossref_primary_10_1016_j_mtener_2021_100846 crossref_primary_10_1002_cssc_202101666 crossref_primary_10_1039_D3RA04110G crossref_primary_10_1021_acs_nanolett_4c04815 crossref_primary_10_1021_acs_inorgchem_3c02332 crossref_primary_10_1016_j_mtener_2023_101264 crossref_primary_10_1016_j_nanoms_2022_04_002 crossref_primary_10_1002_slct_202203616 crossref_primary_10_1016_j_mtener_2021_100854 crossref_primary_10_1016_j_flatc_2024_100775 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1016_j_mtener_2021_100834 crossref_primary_10_1016_j_seppur_2023_124638 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1002_adma_202103218 crossref_primary_10_1002_slct_202201682 crossref_primary_10_1002_ange_202112775 crossref_primary_10_1080_21663831_2021_2023677 crossref_primary_10_3390_catal14050296 crossref_primary_10_1007_s12274_021_3885_y crossref_primary_10_1002_ange_202311909 crossref_primary_10_1021_acs_inorgchem_5c00334 crossref_primary_10_1016_j_joule_2021_08_003 crossref_primary_10_1021_acsami_3c00544 crossref_primary_10_1021_acs_jpcc_2c06019 crossref_primary_10_1021_jacs_4c03827 crossref_primary_10_1021_acs_accounts_2c00239 crossref_primary_10_1016_j_scib_2024_09_014 crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1016_j_electacta_2022_140279 crossref_primary_10_1002_smll_202407564 crossref_primary_10_1016_j_seppur_2024_128000 crossref_primary_10_1002_smll_202407328 crossref_primary_10_1039_D3QI01468A crossref_primary_10_1002_adma_202103004 crossref_primary_10_1016_j_mtener_2020_100597 crossref_primary_10_1016_j_jelechem_2024_118789 crossref_primary_10_1002_anie_202411683 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1002_ange_202420327 crossref_primary_10_1021_acscatal_3c02370 crossref_primary_10_1002_adfm_202100614 crossref_primary_10_1002_anie_202207845 crossref_primary_10_1002_anie_202213049 crossref_primary_10_1039_D3TA00015J crossref_primary_10_1002_cey2_265 crossref_primary_10_1016_j_jelechem_2023_117144 crossref_primary_10_2139_ssrn_4096622 crossref_primary_10_1021_acsnano_3c05583 crossref_primary_10_1039_D2GC03351H crossref_primary_10_1002_cctc_202300328 crossref_primary_10_1007_s12274_021_3358_3 crossref_primary_10_1021_acscatal_2c02775 crossref_primary_10_1039_D0CS00962H crossref_primary_10_1007_s12274_022_4467_3 crossref_primary_10_1016_j_cej_2024_157970 crossref_primary_10_1016_j_joule_2021_10_002 crossref_primary_10_1016_j_jcis_2022_07_136 crossref_primary_10_1021_acsnano_4c04847 crossref_primary_10_1021_acs_nanolett_2c03573 crossref_primary_10_1080_16583655_2022_2151298 crossref_primary_10_1002_smll_202207044 crossref_primary_10_1038_s41467_023_41517_x crossref_primary_10_1039_D1NR08377E crossref_primary_10_1021_acscatal_1c03260 crossref_primary_10_1021_acs_inorgchem_4c00712 crossref_primary_10_1016_j_cej_2021_131348 crossref_primary_10_1021_acs_jpclett_1c04136 crossref_primary_10_1038_s41467_024_53385_0 crossref_primary_10_1016_j_jechem_2021_08_055 crossref_primary_10_1002_aenm_202201934 crossref_primary_10_1016_j_jechem_2024_07_030 crossref_primary_10_1039_D3CP03937D crossref_primary_10_1002_anie_202309341 crossref_primary_10_1016_j_apcatb_2022_121526 crossref_primary_10_1002_ange_202411683 crossref_primary_10_1016_j_cej_2021_133518 crossref_primary_10_1002_adma_202302642 crossref_primary_10_1021_acs_accounts_2c00277 crossref_primary_10_1021_acsanm_4c05305 crossref_primary_10_1016_j_matt_2024_01_019 crossref_primary_10_1016_j_mtphys_2023_101112 crossref_primary_10_1360_SSC_2023_0104 crossref_primary_10_1002_smll_202201522 crossref_primary_10_1016_j_jcis_2022_11_091 crossref_primary_10_1002_ange_202102320 crossref_primary_10_1016_j_jssc_2021_122617 crossref_primary_10_1039_D1DT00302J crossref_primary_10_1002_ange_202110186 crossref_primary_10_1002_cey2_216 crossref_primary_10_1016_j_mtener_2023_101246 crossref_primary_10_1002_aenm_202302532 crossref_primary_10_1002_ange_202104747 crossref_primary_10_1007_s12274_022_5115_7 crossref_primary_10_1038_s41467_023_36718_3 crossref_primary_10_1021_acssuschemeng_2c03250 crossref_primary_10_1039_D4RA05191B crossref_primary_10_1039_D2QI01966C crossref_primary_10_1002_cssc_202100179 crossref_primary_10_1038_s41467_023_35913_6 crossref_primary_10_1002_ange_202311752 crossref_primary_10_1021_acs_jpclett_2c03685 crossref_primary_10_1038_s41467_023_37775_4 crossref_primary_10_1002_anie_202420327 crossref_primary_10_1021_acsanm_2c05302 crossref_primary_10_1002_advs_202204751 crossref_primary_10_1016_j_fuel_2023_129882 crossref_primary_10_1021_acsnano_2c06890 crossref_primary_10_1016_j_seppur_2024_131036 crossref_primary_10_1021_acs_inorgchem_2c03609 crossref_primary_10_1039_D5RA00286A crossref_primary_10_1021_acs_chemmater_3c00316 crossref_primary_10_1016_j_apcatb_2024_124561 crossref_primary_10_1016_j_mtener_2022_100975 crossref_primary_10_1021_acscatal_3c04731 crossref_primary_10_1021_acssuschemeng_4c05046 crossref_primary_10_1002_adfm_202209753 crossref_primary_10_1021_acs_jpclett_2c03433 crossref_primary_10_1002_ange_202117178 crossref_primary_10_1021_acscatal_4c03618 crossref_primary_10_1016_S1872_2067_24_60153_1 crossref_primary_10_1016_j_jcis_2021_06_094 crossref_primary_10_1039_D2CC03994J crossref_primary_10_1002_adfm_202310902 crossref_primary_10_1002_anie_202107731 crossref_primary_10_1016_j_mtener_2021_100683 crossref_primary_10_1016_j_mtener_2021_100682 crossref_primary_10_1039_D2EE01816K crossref_primary_10_1007_s40820_022_00997_0 crossref_primary_10_1016_j_apcatb_2024_124550 crossref_primary_10_1016_j_nanoen_2022_107297 crossref_primary_10_1016_j_mtener_2022_100987 crossref_primary_10_1016_j_nima_2022_167428 crossref_primary_10_1002_adma_202408114 crossref_primary_10_1016_j_jcis_2022_11_054 crossref_primary_10_1021_acscatal_4c01407 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1021_jacs_3c03214 crossref_primary_10_1002_anie_202313886 crossref_primary_10_1021_acsnano_3c11199 crossref_primary_10_1016_j_cej_2022_137789 crossref_primary_10_1021_acs_inorgchem_1c03665 crossref_primary_10_1002_adfm_202207116 crossref_primary_10_1002_anie_202114293 crossref_primary_10_1016_j_xcrp_2022_101059 crossref_primary_10_1021_acs_nanolett_5c00233 crossref_primary_10_1016_j_apsusc_2022_153252 crossref_primary_10_1002_smll_202303263 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1007_s11426_023_1649_y crossref_primary_10_1002_aenm_202401198 crossref_primary_10_1039_D1TA09921C crossref_primary_10_1016_j_ijhydene_2023_09_257 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1002_ifm2_19 crossref_primary_10_1039_D2CC02424A crossref_primary_10_1002_smll_202311713 crossref_primary_10_1016_j_biombioe_2023_106927 crossref_primary_10_1007_s12274_023_5576_3 crossref_primary_10_1016_j_jpowsour_2022_232310 crossref_primary_10_1016_j_jpowsour_2022_231461 crossref_primary_10_1002_adfm_202302014 crossref_primary_10_1002_ange_202317022 crossref_primary_10_1016_j_memsci_2024_123140 crossref_primary_10_1021_acsami_2c10760 crossref_primary_10_1002_adfm_202307947 crossref_primary_10_1021_acs_chemmater_4c00725 crossref_primary_10_1016_j_mtener_2021_100653 crossref_primary_10_1016_j_apcatb_2021_120727 crossref_primary_10_1021_acs_energyfuels_2c01144 crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1016_j_jelechem_2022_116805 crossref_primary_10_1002_adma_202104341 crossref_primary_10_1039_D4CC04919E crossref_primary_10_1002_ange_202401005 crossref_primary_10_1002_smll_202105150 crossref_primary_10_1039_D4TA05493H crossref_primary_10_1021_acsnano_3c08831 crossref_primary_10_1021_acsanm_0c03310 crossref_primary_10_1016_j_mtener_2021_100880 crossref_primary_10_1016_j_mtener_2021_100883 crossref_primary_10_1039_D1DT03437E crossref_primary_10_1002_adfm_202313375 crossref_primary_10_1002_anie_202419550 crossref_primary_10_1016_j_mtener_2021_100887 crossref_primary_10_1016_j_est_2022_106578 crossref_primary_10_1038_s44286_025_00179_w crossref_primary_10_1038_s41467_023_42756_8 crossref_primary_10_1039_D4NR01168F crossref_primary_10_1016_j_cej_2024_156469 crossref_primary_10_1016_j_jcis_2022_04_100 crossref_primary_10_1021_acs_jpcc_3c00131 crossref_primary_10_1016_j_jallcom_2024_177225 crossref_primary_10_1039_D3DT04263D crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_1002_adma_202301166 crossref_primary_10_1002_smll_202204864 crossref_primary_10_1002_cctc_202001868 crossref_primary_10_1007_s11426_023_1725_8 crossref_primary_10_1021_acs_inorgchem_2c00111 crossref_primary_10_1002_aenm_202102883 crossref_primary_10_1016_j_coelec_2021_100845 crossref_primary_10_1016_j_jcis_2022_06_173 crossref_primary_10_1016_j_cej_2022_136269 crossref_primary_10_1039_D3EY00113J crossref_primary_10_1021_acsami_1c20128 crossref_primary_10_1039_D1EE02606B crossref_primary_10_1016_j_apcatb_2023_123142 crossref_primary_10_1016_j_cej_2023_148301 crossref_primary_10_1002_anie_202101906 crossref_primary_10_1002_anie_202219048 crossref_primary_10_1016_j_jcis_2021_11_150 crossref_primary_10_1016_j_jallcom_2022_168400 crossref_primary_10_1002_celc_202200958 crossref_primary_10_1039_D0TA09077H crossref_primary_10_1021_acs_energyfuels_4c04009 crossref_primary_10_1016_j_seppur_2024_126641 crossref_primary_10_1039_D1CC02235K crossref_primary_10_1002_admi_202200098 crossref_primary_10_1002_anie_202407509 crossref_primary_10_1016_j_ccr_2021_214340 crossref_primary_10_1002_ange_202313886 crossref_primary_10_1016_j_jallcom_2022_164296 crossref_primary_10_1016_j_ijhydene_2022_03_095 crossref_primary_10_1021_acsnano_4c11909 crossref_primary_10_1016_j_apcatb_2023_123249 crossref_primary_10_1016_j_apcatb_2024_124838 crossref_primary_10_1038_s41467_024_51951_0 crossref_primary_10_1039_D1MA00747E crossref_primary_10_1021_jacs_0c12963 crossref_primary_10_1002_sstr_202200085 crossref_primary_10_1002_smtd_202200773 crossref_primary_10_1021_acscatal_2c02033 crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1021_acs_inorgchem_4c00021 crossref_primary_10_1007_s44405_025_00001_4 crossref_primary_10_1002_smll_202105763 crossref_primary_10_1016_j_chempr_2020_12_016 crossref_primary_10_1021_acs_nanolett_2c04087 crossref_primary_10_1021_acsanm_4c01898 crossref_primary_10_1021_jacs_4c02292 crossref_primary_10_1002_adfm_202202068 crossref_primary_10_1088_1361_6528_ac4f82 crossref_primary_10_1038_s41467_025_56070_y crossref_primary_10_1021_acsami_2c02861 crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1002_smll_202401226 crossref_primary_10_1039_D0CY02163F crossref_primary_10_1002_aenm_202202522 crossref_primary_10_1002_adfm_202304296 crossref_primary_10_1016_j_est_2024_114643 crossref_primary_10_1021_acsaem_2c02998 crossref_primary_10_1039_D0TA10835A crossref_primary_10_2139_ssrn_4053251 crossref_primary_10_1002_smll_202104205 crossref_primary_10_1088_1361_6528_acb716 crossref_primary_10_1016_j_jcis_2023_07_182 crossref_primary_10_1021_jacs_1c11241 crossref_primary_10_1002_ange_202114293 crossref_primary_10_1002_smll_202306085 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1002_adfm_202400767 crossref_primary_10_1016_j_fmre_2022_05_023 crossref_primary_10_1002_ange_202300532 crossref_primary_10_1039_D1EE03610F crossref_primary_10_1039_D2DT00463A crossref_primary_10_1039_D2QI02436E crossref_primary_10_1002_adfm_202110020 crossref_primary_10_1002_adma_202305573 crossref_primary_10_1021_acsaem_1c00955 crossref_primary_10_1002_smll_202309119 crossref_primary_10_1002_adma_202406682 crossref_primary_10_1039_D2NR05783B crossref_primary_10_1002_smtd_202300586 crossref_primary_10_1016_j_foodchem_2022_135144 crossref_primary_10_1039_D4QI01680G crossref_primary_10_1002_ange_202402176 crossref_primary_10_1002_adma_202203791 crossref_primary_10_1002_cmtd_202400066 crossref_primary_10_1016_j_ijoes_2023_100076 crossref_primary_10_1039_D2TA05607K crossref_primary_10_1002_anie_202419913 crossref_primary_10_1016_j_ijhydene_2023_03_127 crossref_primary_10_1002_chem_202302055 crossref_primary_10_1002_adma_202107488 crossref_primary_10_1016_j_ijhydene_2022_02_043 crossref_primary_10_1016_j_apcatb_2023_123659 crossref_primary_10_1002_ange_202423092 crossref_primary_10_1002_adma_202304022 crossref_primary_10_1002_adfm_202413856 crossref_primary_10_1002_celc_202300103 crossref_primary_10_1039_D1NR00987G crossref_primary_10_1002_anie_202501821 crossref_primary_10_1007_s12274_022_4832_2 crossref_primary_10_1016_j_apsusc_2022_154384 crossref_primary_10_1021_acs_inorgchem_2c03226 crossref_primary_10_1002_anie_202108770 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1021_acs_chemmater_2c03744 crossref_primary_10_1021_acsnano_4c09856 crossref_primary_10_1038_s41467_022_29875_4 crossref_primary_10_1039_D0CS01538E crossref_primary_10_1002_aoc_6371 crossref_primary_10_1021_acs_energyfuels_0c03836 crossref_primary_10_1002_anie_202211585 crossref_primary_10_1038_s41563_022_01199_0 crossref_primary_10_1016_j_apcatb_2021_120477 crossref_primary_10_1002_ange_202216008 crossref_primary_10_1002_anie_202112880 crossref_primary_10_1039_D1QI00857A crossref_primary_10_1016_j_mattod_2022_02_011 crossref_primary_10_1021_jacs_3c12820 crossref_primary_10_1002_advs_202403431 crossref_primary_10_1016_j_checat_2023_100601 crossref_primary_10_1007_s40820_023_01080_y crossref_primary_10_1002_adfm_202301884 crossref_primary_10_1002_anie_202100897 crossref_primary_10_1002_ange_202408508 crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1039_D1NJ02093E crossref_primary_10_1016_j_colsurfa_2022_128997 crossref_primary_10_1016_j_est_2024_112608 crossref_primary_10_1039_D3CY00802A crossref_primary_10_1016_j_apcata_2023_119359 crossref_primary_10_1039_D2TA02955C crossref_primary_10_1002_adsu_202100281 crossref_primary_10_26599_NR_2025_94907056 crossref_primary_10_1021_acs_inorgchem_3c01090 crossref_primary_10_1002_aenm_202400875 crossref_primary_10_1039_D3CE00407D crossref_primary_10_1021_acsami_5c00104 crossref_primary_10_1002_anie_202415794 crossref_primary_10_1016_j_scib_2025_02_024 crossref_primary_10_1016_j_jcis_2023_05_189 crossref_primary_10_1002_anie_202415755 crossref_primary_10_1002_adma_202308427 crossref_primary_10_1021_acsmaterialslett_3c00567 crossref_primary_10_1002_smll_202309371 crossref_primary_10_1016_j_est_2023_109164 crossref_primary_10_1016_j_mtener_2023_101442 crossref_primary_10_1039_D4CE01023J crossref_primary_10_1021_acscatal_4c01091 crossref_primary_10_1016_j_colsurfa_2021_127142 crossref_primary_10_12677_jocr_2024_124050 crossref_primary_10_1002_ange_202214707 crossref_primary_10_1016_j_jallcom_2022_166613 crossref_primary_10_1016_j_apsusc_2023_157590 crossref_primary_10_1038_s41467_023_38285_z crossref_primary_10_1002_admi_202101720 crossref_primary_10_1016_j_cej_2021_132122 crossref_primary_10_1021_acs_chemrev_2c00879 crossref_primary_10_1039_D3EE01723K crossref_primary_10_1016_j_ijhydene_2021_10_157 crossref_primary_10_1039_D3EE01856C crossref_primary_10_1002_cplu_202100278 crossref_primary_10_1016_j_electacta_2022_140293 crossref_primary_10_1016_j_checat_2023_100646 crossref_primary_10_1002_aenm_202103383 crossref_primary_10_1021_acscatal_4c01907 crossref_primary_10_1007_s42114_024_00981_9 crossref_primary_10_1016_j_cej_2021_134330 crossref_primary_10_1021_acs_inorgchem_4c05100 crossref_primary_10_1039_D2TA05387J crossref_primary_10_3389_fchem_2022_889470 crossref_primary_10_1002_adma_202402234 crossref_primary_10_59717_j_xinn_mater_2023_100013 crossref_primary_10_1002_ange_202206085 crossref_primary_10_1016_j_jechem_2022_12_032 crossref_primary_10_1016_j_mcat_2022_112568 crossref_primary_10_1039_D4CS00217B crossref_primary_10_1002_ange_202201610 crossref_primary_10_1002_smll_202104863 crossref_primary_10_1039_D2TA01293F crossref_primary_10_1002_smll_202302556 crossref_primary_10_1016_j_cclet_2022_04_012 crossref_primary_10_1002_aenm_202003759 crossref_primary_10_1016_j_scib_2024_07_003 crossref_primary_10_1039_D1TA02745J crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1016_j_jechem_2022_07_040 crossref_primary_10_1016_j_apcatb_2022_121591 crossref_primary_10_1016_j_cej_2022_137901 crossref_primary_10_1002_ange_202107731 crossref_primary_10_1021_acs_langmuir_3c00322 crossref_primary_10_1002_adfm_202111777 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1002_cjoc_202300388 crossref_primary_10_1039_D3NR05051C crossref_primary_10_1016_j_apcatb_2022_121355 crossref_primary_10_1002_ange_202212733 crossref_primary_10_1002_smtd_202101186 crossref_primary_10_1038_s41467_024_46708_8 crossref_primary_10_1002_aenm_202202964 crossref_primary_10_1021_acsaenm_3c00192 crossref_primary_10_1021_acsami_4c00185 crossref_primary_10_1039_D1TA09424F crossref_primary_10_1016_j_nantod_2023_101852 crossref_primary_10_1016_j_apcatb_2023_122976 crossref_primary_10_1039_D1QM00960E crossref_primary_10_1016_j_susmat_2023_e00665 crossref_primary_10_1002_sstr_202300555 crossref_primary_10_1007_s40242_023_2325_9 crossref_primary_10_1002_anie_202110186 crossref_primary_10_1021_acs_inorgchem_2c00862 crossref_primary_10_1007_s12678_024_00871_0 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1002_adfm_202301490 crossref_primary_10_1021_acs_chemrev_1c00234 crossref_primary_10_1016_j_nanoen_2023_108952 crossref_primary_10_1039_D4EE01912A crossref_primary_10_1016_j_chempr_2023_06_001 crossref_primary_10_1016_j_jallcom_2022_165823 crossref_primary_10_1016_j_jcis_2024_05_033 crossref_primary_10_1016_j_jhazmat_2022_129757 crossref_primary_10_1016_j_checat_2021_10_007 crossref_primary_10_1016_j_jallcom_2023_169448 crossref_primary_10_1016_j_trechm_2023_02_001 crossref_primary_10_1016_j_cej_2021_131662 crossref_primary_10_1016_j_electacta_2023_142844 crossref_primary_10_1016_j_jcis_2024_12_104 crossref_primary_10_1016_j_matt_2021_02_021 crossref_primary_10_1002_ange_202409449 crossref_primary_10_1021_acsami_4c03262 crossref_primary_10_1002_anie_202102320 crossref_primary_10_1002_anie_202104747 crossref_primary_10_1016_j_mtener_2021_100703 crossref_primary_10_1002_admi_202300279 crossref_primary_10_1021_jacs_1c10963 crossref_primary_10_1021_acs_nanolett_4c01442 crossref_primary_10_1002_smll_202500616 crossref_primary_10_1002_ange_202214794 crossref_primary_10_1002_ange_202413916 crossref_primary_10_1002_smll_202107268 crossref_primary_10_1021_acsami_3c10238 crossref_primary_10_6023_A24010040 crossref_primary_10_1002_aesr_202200036 crossref_primary_10_1080_21663831_2022_2095235 crossref_primary_10_1021_acs_inorgchem_1c03143 crossref_primary_10_1016_j_mtchem_2022_101359 crossref_primary_10_1002_smtd_202100573 crossref_primary_10_1021_acs_inorgchem_3c01599 crossref_primary_10_1007_s12613_022_2555_8 crossref_primary_10_1016_j_jechem_2022_12_051 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1039_D2QI00291D crossref_primary_10_1002_anie_202311752 crossref_primary_10_1021_acsnano_3c05224 crossref_primary_10_1016_j_jcat_2022_04_009 crossref_primary_10_1016_j_cej_2021_132762 crossref_primary_10_1039_D2TA01716D crossref_primary_10_2139_ssrn_4051632 crossref_primary_10_1007_s12274_023_6003_5 crossref_primary_10_1016_j_jallcom_2024_177377 crossref_primary_10_1021_acs_est_2c01388 crossref_primary_10_1039_D4EE02365J crossref_primary_10_1002_celc_202400525 crossref_primary_10_1021_acs_inorgchem_2c01756 crossref_primary_10_1063_5_0100999 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1021_acsanm_2c03049 crossref_primary_10_1039_D3CS00767G crossref_primary_10_1002_anie_202409449 crossref_primary_10_1021_acscatal_3c05344 crossref_primary_10_1002_cey2_315 crossref_primary_10_1021_jacs_3c07790 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1002_anie_202216008 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_2139_ssrn_4094537 crossref_primary_10_1016_j_checat_2022_05_020 crossref_primary_10_1016_j_ijhydene_2024_08_457 crossref_primary_10_1007_s40843_022_2234_5 crossref_primary_10_1002_adma_202200840 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1016_j_jssc_2021_122515 crossref_primary_10_1016_j_apmt_2021_101185 crossref_primary_10_1039_D3EE02946H crossref_primary_10_1016_j_esci_2025_100375 crossref_primary_10_1016_j_cej_2022_140464 crossref_primary_10_1016_j_fmre_2021_06_006 crossref_primary_10_1021_acs_jpcc_2c00671 crossref_primary_10_1021_acs_energyfuels_2c03833 crossref_primary_10_1016_j_mtener_2021_100902 crossref_primary_10_3390_nano14141168 crossref_primary_10_1016_j_mtener_2021_100906 crossref_primary_10_1021_acsnano_2c10170 crossref_primary_10_1016_j_checat_2022_05_010 crossref_primary_10_1021_acs_inorgchem_2c00403 crossref_primary_10_1002_adfm_202408823 crossref_primary_10_1016_j_jcis_2023_10_006 crossref_primary_10_1021_acsmaterialslett_3c00404 crossref_primary_10_1002_adma_202209876 crossref_primary_10_1002_chem_202401644 crossref_primary_10_1039_D2CC06879F crossref_primary_10_1016_j_nanoen_2022_107328 crossref_primary_10_1021_acssensors_1c02729 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1016_j_mtener_2022_101046 crossref_primary_10_1002_anie_202304007 crossref_primary_10_3390_ma16010076 crossref_primary_10_1021_acssuschemeng_1c06658 crossref_primary_10_1016_j_mtcata_2024_100068 crossref_primary_10_1002_smll_202200303 crossref_primary_10_1039_D3QM01062G crossref_primary_10_1016_j_electacta_2022_141437 crossref_primary_10_1016_j_electacta_2021_139068 crossref_primary_10_1002_cey2_344 crossref_primary_10_1002_asia_202300197 crossref_primary_10_1002_ange_202304007 crossref_primary_10_3390_inorganics11110424 crossref_primary_10_1021_acsenergylett_3c01626 crossref_primary_10_1016_j_pnsc_2024_02_004 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1016_j_ijhydene_2024_08_401 crossref_primary_10_1002_celc_202101476 crossref_primary_10_1002_anie_202314833 crossref_primary_10_1021_acscatal_1c03333 crossref_primary_10_1016_j_jcis_2024_05_205 crossref_primary_10_1002_anie_202413916 crossref_primary_10_1039_D1CE00350J crossref_primary_10_1002_sus2_3 crossref_primary_10_1016_j_ijhydene_2024_03_150 crossref_primary_10_1016_j_mtnano_2021_100144 crossref_primary_10_1149_1945_7111_adb7c7 crossref_primary_10_1016_j_jcis_2023_09_185 crossref_primary_10_1039_D0NR07508F crossref_primary_10_1016_j_ijhydene_2021_12_239 crossref_primary_10_1016_j_mtener_2020_100618 crossref_primary_10_1016_j_mtener_2020_100619 crossref_primary_10_1002_ange_202300507 crossref_primary_10_1002_advs_202404095 crossref_primary_10_1021_acs_chemmater_2c03723 crossref_primary_10_1002_adfm_202301075 crossref_primary_10_1002_chem_202102746 crossref_primary_10_1039_D1CC04770A crossref_primary_10_1016_j_apcatb_2023_123086 crossref_primary_10_1016_j_apcatb_2022_121602 crossref_primary_10_1016_j_jcis_2022_07_062 crossref_primary_10_1021_acs_inorgchem_1c00026 crossref_primary_10_1126_sciadv_abk0919 crossref_primary_10_1021_acs_jpcc_2c02611 crossref_primary_10_1016_j_chempr_2024_10_012 crossref_primary_10_1002_adfm_202102066 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1021_acscatal_1c05532 crossref_primary_10_1016_j_cej_2022_138515 crossref_primary_10_1016_j_cej_2022_135005 crossref_primary_10_1021_acsanm_2c03223 crossref_primary_10_1002_cnma_202100061 crossref_primary_10_1039_D3DT00516J crossref_primary_10_1016_j_jcis_2023_07_112 crossref_primary_10_1016_j_ijhydene_2024_10_003 crossref_primary_10_1021_acsaem_3c00395 crossref_primary_10_1002_smll_202206723 crossref_primary_10_1038_s41467_024_46140_y crossref_primary_10_54227_mlab_20220054 crossref_primary_10_1002_ange_202309341 crossref_primary_10_1016_j_cej_2021_130995 crossref_primary_10_1002_ppsc_202100119 crossref_primary_10_1007_s12274_021_3535_4 crossref_primary_10_1021_acs_inorgchem_2c03706 crossref_primary_10_1016_j_chempr_2023_05_044 crossref_primary_10_1002_adma_202420593 crossref_primary_10_1002_smll_202302055 crossref_primary_10_1016_j_mtener_2021_100781 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1002_ange_202207845 crossref_primary_10_1039_D3LF00193H crossref_primary_10_1021_acsami_4c07495 crossref_primary_10_1021_acsmaterialslett_4c00835 crossref_primary_10_1002_ange_202415755 crossref_primary_10_1002_ange_202213049 crossref_primary_10_1007_s40820_024_01382_9 crossref_primary_10_1021_acsnano_2c08919 crossref_primary_10_1002_smsc_202100017 crossref_primary_10_1021_acscatal_4c00269 crossref_primary_10_1002_ijch_202300017 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_cej_2021_130532 crossref_primary_10_1002_smsc_202100011 crossref_primary_10_3390_catal13101317 crossref_primary_10_1039_D2EE03015B crossref_primary_10_1039_D2IM00063F crossref_primary_10_1038_s41467_024_51034_0 crossref_primary_10_1002_ange_202211094 crossref_primary_10_1002_anie_202408508 crossref_primary_10_1039_D4EY00008K crossref_primary_10_1016_j_joule_2023_06_018 crossref_primary_10_1016_j_jenvman_2024_123991 crossref_primary_10_1002_smll_202100629 crossref_primary_10_1002_anie_202212733 crossref_primary_10_1021_acs_inorgchem_2c00241 crossref_primary_10_1002_anie_202312239 crossref_primary_10_2139_ssrn_4201271 crossref_primary_10_1021_acscatal_1c02465 crossref_primary_10_1021_acs_cgd_1c00581 crossref_primary_10_1002_smll_202205845 crossref_primary_10_1016_j_cattod_2024_115117 crossref_primary_10_1002_ange_202112880 crossref_primary_10_1002_anie_202302220 crossref_primary_10_1021_acs_inorgchem_1c01561 crossref_primary_10_1016_j_mtener_2021_100737 crossref_primary_10_1016_j_mtchem_2024_102397 crossref_primary_10_1002_ange_202504148 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1039_D4NR05426A crossref_primary_10_1016_j_cej_2022_140403 crossref_primary_10_1126_sciadv_adu5370 crossref_primary_10_1002_ange_202100897 crossref_primary_10_1007_s12274_021_3404_1 |
Cites_doi | 10.1038/nmat4852 10.1038/ncomms10942 10.1126/science.1257289 10.1039/C8CC06410E 10.1021/ja511559d 10.1021/jacs.6b00332 10.1103/PhysRev.140.A1133 10.1021/acscatal.7b00999 10.1038/nmat4938 10.1021/ja5096733 10.1038/nenergy.2016.189 10.1039/C9SC04141A 10.1073/pnas.0505207102 10.1126/science.1212858 10.1002/anie.201811241 10.1002/anie.201803587 10.1002/adfm.201707244 10.1021/nn503760c 10.1016/j.sab.2006.12.002 10.1021/jacs.6b12353 10.1002/adma.201900510 10.1021/ic500434a 10.1038/nmat1807 10.1021/acscatal.9b03790 10.1002/ange.201801029 10.1021/ja407115p 10.1038/s41929-019-0325-4 10.1126/science.aad4998 10.1039/C8EE01063C 10.1021/jacs.6b04663 10.1038/nchem.2695 10.1038/nmat4794 10.1021/ja301018q 10.1021/acsaem.8b02160 10.1103/PhysRevB.54.11169 10.1002/aenm.201700518 10.1021/ja502379c 10.1021/jacs.8b05294 10.1038/s41598-018-37307-x 10.1126/science.aaf5050 10.1021/acs.jctc.5b00327 10.1039/C6CS00328A 10.1021/ja405997s 10.1002/jcc.24300 10.1103/RevModPhys.72.621 10.1021/jacs.5b06814 10.1021/acscatal.5b01481 10.1039/C7CC08843D 10.1002/cctc.201000397 10.1021/acscatal.5b01638 10.1038/nenergy.2016.184 10.1016/0921-4526(94)00761-J 10.1103/PhysRevLett.77.3865 10.1021/jacs.6b12250 10.1088/0953-8984/21/34/345501 10.1021/acs.jpclett.9b01232 10.1107/S0909049505012719 10.1021/acsenergylett.7b00679 10.1103/PhysRevB.71.094110 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION 3V. 7SP 7SU 7TB 7XB 88I 8FD 8FK ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 GNUQQ HCIFZ L7M M2P PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U |
DOI | 10.1038/s41560-020-00709-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability ProQuest Central Korea Environmental Engineering Abstracts ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2058-7546 |
EndPage | 890 |
ExternalDocumentID | 10_1038_s41560_020_00709_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21890381, Z.T.; 21721002, Z.T. funderid: https://doi.org/10.13039/501100001809 – fundername: not applicable – fundername: Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000, Z.T.), National Key Basic Research Program of China (2016YFA0200700, Z.T.), Frontier Science Key Project of Chinese Academy of Sciences (QYZDJ-SSW-SLH038, Z.T.) and K.C.Wong Education Foundation (Z.T.). – fundername: “Young Elite Scientists Sponsorship Program” by CAST – fundername: FH Loxton fellowship of the USYD – fundername: Youth Innovation Promotion Association CAS |
GroupedDBID | 0R~ 3V. 88I AAEEF AARCD AAYZH AAZLF ABJNI ABLJU ABUWG ACBWK ACGFS ADBBV AEUYN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BKKNO BPHCQ CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P NNMJJ O9- ODYON PQQKQ PROAC RNT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7SP 7SU 7TB 7XB 8FD 8FK C1K FR3 L7M PKEHL PQEST PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c385t-77a9cb53b7309c633066ac1b963d941a0c0eead33ec18c95d4d792e425c7544a3 |
IEDL.DBID | BENPR |
ISSN | 2058-7546 |
IngestDate | Sat Aug 23 13:08:27 EDT 2025 Tue Jul 01 02:47:43 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri Feb 21 02:38:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-77a9cb53b7309c633066ac1b963d941a0c0eead33ec18c95d4d792e425c7544a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9059-3839 0000-0002-7023-5986 0000-0001-8860-093X 0000-0003-0610-0064 |
PQID | 2471559006 |
PQPubID | 2069617 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2471559006 crossref_primary_10_1038_s41560_020_00709_1 crossref_citationtrail_10_1038_s41560_020_00709_1 springer_journals_10_1038_s41560_020_00709_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature energy |
PublicationTitleAbbrev | Nat Energy |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Solé (CR55) 2007; 62 Jiang (CR24) 2018; 9 Guda (CR54) 2015; 11 Bajdich, García-Mota, Vojvodic, Nørskov, Bell (CR60) 2013; 135 Yang, Fei, Ruan, Xiang, Tour (CR40) 2014; 8 McCrory, Jung, Peters, Jaramillo (CR19) 2013; 135 Görlin (CR33) 2016; 138 Miner (CR45) 2016; 7 Görlin (CR46) 2019; 55 Liberman, He, Shimoni, Ifraemov, Hod (CR16) 2020; 11 Rehr, Albers (CR52) 2000; 72 Wang (CR17) 2014; 53 Drevon (CR28) 2019; 9 Kirshenbaum (CR25) 2015; 347 Mansour, Melendres (CR26) 1995; 208-209 Perdew, Burke, Ernzerhof (CR57) 1996; 77 Zhao (CR10) 2016; 1 Man (CR30) 2011; 3 Shan, Ling, Davey, Zheng, Qiao (CR41) 2019; 31 Yang (CR8) 2016; 16 Tkalych, Zhuang, Carter (CR59) 2017; 7 Wang (CR13) 2018; 57 Yano (CR21) 2005; 102 Trześniewski (CR27) 2015; 137 He, Ifraemov, Raslin, Hod (CR15) 2018; 28 Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR2) 2011; 334 Jin (CR9) 2017; 2 Zhu (CR32) 2017; 16 He, Gao, Shimoni, Lu, Hod (CR49) 2019; 2 Kresse, Furthmüller (CR56) 1996; 54 Song, Hu (CR20) 2014; 136 Wu (CR6) 2019; 2 Seitz (CR1) 2016; 353 Bunău, Joly (CR53) 2009; 21 Görlin (CR38) 2017; 139 Grimaud (CR3) 2016; 2 Bediako (CR23) 2012; 134 Funke, Scheinost, Chukalina (CR22) 2005; 71 Friebel (CR34) 2015; 137 Shi, Yu, Liang, Du, Zhang (CR43) 2018; 58 Grimaud (CR5) 2017; 9 CR51 Smith (CR35) 2018; 11 Suen (CR4) 2017; 46 Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (CR31) 2015; 5 Liu (CR39) 2018; 54 Wuttig (CR29) 2006; 6 Hadt (CR37) 2016; 138 Trotochaud, Young, Ranney, Boettcher (CR48) 2014; 136 Liu, Zhu, Guo, Vasileff, Qiao (CR14) 2017; 7 Kohn, Sham (CR58) 1965; 140 Shen (CR11) 2017; 139 Singh, Liberman, Shimoni, Ifaemov, Hod (CR47) 2019; 10 Ravel, Newville (CR50) 2005; 12 Zheng, Liu, Lee (CR44) 2020; 10 Maintz, Deringer, Tchougréeff, Dronskowski (CR61) 2016; 37 Fabbri (CR7) 2017; 16 Seh (CR18) 2017; 355 Bates, Jia, Doan, Liang, Mukerjee (CR36) 2016; 6 Su (CR42) 2018; 140 Huang (CR12) 2018; 130 709_CR51 RDL Smith (709_CR35) 2018; 11 L Trotochaud (709_CR48) 2014; 136 AJ Tkalych (709_CR59) 2017; 7 J Suntivich (709_CR2) 2011; 334 X Su (709_CR42) 2018; 140 E Fabbri (709_CR7) 2017; 16 Y Yang (709_CR40) 2014; 8 C Singh (709_CR47) 2019; 10 AN Mansour (709_CR26) 1995; 208-209 J Jiang (709_CR24) 2018; 9 CCL McCrory (709_CR19) 2013; 135 K Kirshenbaum (709_CR25) 2015; 347 M Bajdich (709_CR60) 2013; 135 VA Solé (709_CR55) 2007; 62 J Liu (709_CR39) 2018; 54 J Yano (709_CR21) 2005; 102 DK Bediako (709_CR23) 2012; 134 D Drevon (709_CR28) 2019; 9 H Funke (709_CR22) 2005; 71 A Grimaud (709_CR3) 2016; 2 Y Zhu (709_CR32) 2017; 16 X-L Wang (709_CR13) 2018; 57 M Görlin (709_CR33) 2016; 138 BJ Trześniewski (709_CR27) 2015; 137 M Görlin (709_CR46) 2019; 55 J Huang (709_CR12) 2018; 130 J Shan (709_CR41) 2019; 31 LC Seitz (709_CR1) 2016; 353 SA Guda (709_CR54) 2015; 11 S Zhao (709_CR10) 2016; 1 M Görlin (709_CR38) 2017; 139 A Grimaud (709_CR5) 2017; 9 D Friebel (709_CR34) 2015; 137 N-T Suen (709_CR4) 2017; 46 LJ Wang (709_CR17) 2014; 53 W He (709_CR49) 2019; 2 RG Hadt (709_CR37) 2016; 138 W He (709_CR15) 2018; 28 J-Q Shen (709_CR11) 2017; 139 Y Shi (709_CR43) 2018; 58 I Liberman (709_CR16) 2020; 11 B Ravel (709_CR50) 2005; 12 M Wuttig (709_CR29) 2006; 6 F Song (709_CR20) 2014; 136 J Yang (709_CR8) 2016; 16 IC Man (709_CR30) 2011; 3 O Diaz-Morales (709_CR31) 2015; 5 JP Perdew (709_CR57) 1996; 77 W Kohn (709_CR58) 1965; 140 S Maintz (709_CR61) 2016; 37 ZW Seh (709_CR18) 2017; 355 J Liu (709_CR14) 2017; 7 G Kresse (709_CR56) 1996; 54 S Jin (709_CR9) 2017; 2 MK Bates (709_CR36) 2016; 6 EM Miner (709_CR45) 2016; 7 JJ Rehr (709_CR52) 2000; 72 O Bunău (709_CR53) 2009; 21 W Zheng (709_CR44) 2020; 10 T Wu (709_CR6) 2019; 2 |
References_xml | – volume: 10 start-page: 81 year: 2020 end-page: 92 ident: CR44 article-title: Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites publication-title: ACS Catal. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR57 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – ident: CR51 – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR50 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. – volume: 347 start-page: 149 year: 2015 end-page: 154 ident: CR25 article-title: In situ visualization of Li/Ag VP O batteries revealing rate-dependent discharge mechanism publication-title: Science – volume: 58 start-page: 3769 year: 2018 end-page: 3773 ident: CR43 article-title: In site electrochemical conversion of ultrathin tannin-NiFe complex film as an efficient oxygen-evolution electrocatalyst publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 122 year: 2006 end-page: 128 ident: CR29 article-title: The role of vacancies and local distortions in the design of new phase-change materials publication-title: Nat. Mater. – volume: 139 start-page: 1778 year: 2017 end-page: 1781 ident: CR11 article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 094110 year: 2005 ident: CR22 article-title: Wavelet analysis of extended X-ray absorption fine structure data publication-title: Phys. Rev. B – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: CR19 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 11286 year: 2018 end-page: 11292 ident: CR42 article-title: Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 155 year: 2016 end-page: 161 ident: CR36 article-title: Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction publication-title: ACS Catal. – volume: 7 year: 2016 ident: CR45 article-title: Electrochemical oxygen reduction catalysed by Ni (hexaiminotriphenylene) publication-title: Nat. Commun. – volume: 31 start-page: 1900510 year: 2019 ident: CR41 article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments publication-title: Adv. Mater. – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: CR58 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – volume: 2 start-page: 16189 year: 2016 ident: CR3 article-title: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction publication-title: Nat. Energy – volume: 2 start-page: 1937 year: 2017 end-page: 1938 ident: CR9 article-title: Are metal chalcogenides, nitrides and phosphides oxygen evolution catalysts or bifunctional catalysts? publication-title: ACS Energy Lett. – volume: 134 start-page: 6801 year: 2012 end-page: 6809 ident: CR23 article-title: Structure–activity correlations in a nickel-borate oxygen evolution catalyst publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 13521 year: 2013 end-page: 13530 ident: CR60 article-title: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 12047 year: 2005 end-page: 12052 ident: CR21 article-title: X-ray damage to the Mn Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography publication-title: Proc. Natl Acad. Sci. USA – volume: 55 start-page: 818 year: 2019 end-page: 821 ident: CR46 article-title: Formation of unexpectedly active Ni–Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides publication-title: Chem. Commun. – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: CR34 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16184 year: 2016 ident: CR10 article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy – volume: 57 start-page: 9660 year: 2018 end-page: 9664 ident: CR13 article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system publication-title: Angew. Chem. Int. Ed. – volume: 130 start-page: 4722 year: 2018 end-page: 4726 ident: CR12 article-title: Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2019 ident: CR28 article-title: Uncovering the role of oxygen in Ni–Fe(O H ) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction publication-title: Sci. Rep. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: CR4 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: CR30 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem – volume: 16 start-page: 335 year: 2016 end-page: 341 ident: CR8 article-title: A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes publication-title: Nat. Mater. – volume: 72 start-page: 621 year: 2000 end-page: 654 ident: CR52 article-title: Theoretical approaches to X-ray absorption fine structure publication-title: Rev. Mod. Phys. – volume: 2 start-page: 2138 year: 2019 end-page: 2148 ident: CR49 article-title: Synergistic coupling of anionic ligands to optimize the electronic and catalytic properties of metal–organic framework-converted oxygen-evolving catalysts publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 1700518 year: 2017 ident: CR14 article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions publication-title: Adv. Energy Mater. – volume: 136 start-page: 6744 year: 2014 end-page: 6753 ident: CR48 article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2070 year: 2017 end-page: 2082 ident: CR38 article-title: Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4512 year: 2015 end-page: 4521 ident: CR54 article-title: Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal–ligand intersystem crossing transients publication-title: J. Chem. Theory Comput. – volume: 53 start-page: 5881 year: 2014 end-page: 5883 ident: CR17 article-title: Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8 and 10 different metals publication-title: Inorg. Chem. – volume: 62 start-page: 63 year: 2007 end-page: 68 ident: CR55 article-title: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra publication-title: Spectrochim. Acta B – volume: 5 start-page: 5380 year: 2015 end-page: 5387 ident: CR31 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal. – volume: 37 start-page: 1030 year: 2016 end-page: 1035 ident: CR61 article-title: LOBSTER: a tool to extract chemical bonding from plane‐wave based DFT publication-title: J. Comput. Chem. – volume: 138 start-page: 5603 year: 2016 end-page: 5614 ident: CR33 article-title: Oxygen evolution reaction dynamics, faradaic charge efficiency and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 457 year: 2017 end-page: 465 ident: CR5 article-title: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution publication-title: Nat. Chem. – volume: 208-209 start-page: 583 year: 1995 end-page: 584 ident: CR26 article-title: XAFS investigation of the structure and valency of nickel in some oxycompounds publication-title: Physica B – volume: 136 start-page: 16481 year: 2014 end-page: 16484 ident: CR20 article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 15112 year: 2015 end-page: 15121 ident: CR27 article-title: In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1707244 year: 2018 ident: CR15 article-title: Room-temperature electrochemical conversion of metal–organic frameworks into porous amorphous metal sulfides with tailored composition and hydrogen evolution activity publication-title: Adv. Funct. Mater. – volume: 9 year: 2018 ident: CR24 article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide publication-title: Nat. Commun. – volume: 16 start-page: 532 year: 2017 end-page: 536 ident: CR32 article-title: Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy publication-title: Nat. Mater. – volume: 16 start-page: 925 year: 2017 end-page: 931 ident: CR7 article-title: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting publication-title: Nat. Mater. – volume: 8 start-page: 9518 year: 2014 end-page: 9523 ident: CR40 article-title: Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers publication-title: ACS Nano – volume: 10 start-page: 3630 year: 2019 end-page: 3636 ident: CR47 article-title: Pristine versus pyrolyzed metal–organic framework-based oxygen evolution electrocatalysts: evaluation of intrinsic activity using electrochemical impedance spectroscopy publication-title: Phys. Chem. Lett. – volume: 11 start-page: 180 year: 2020 end-page: 185 ident: CR16 article-title: Spatially confined electrochemical conversion of metal–organic frameworks into metal-sulfides and their in-situ electrocatalytic investigation via scanning electrochemical microscopy publication-title: Chem. Sci. – volume: 334 start-page: 1383 year: 2011 end-page: 1385 ident: CR2 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science – volume: 2 start-page: 763 year: 2019 end-page: 772 ident: CR6 article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation publication-title: Nat. Catal. – volume: 11 start-page: 2476 year: 2018 end-page: 2485 ident: CR35 article-title: Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions publication-title: Energy Environ. Sci. – volume: 7 start-page: 5329 year: 2017 end-page: 5339 ident: CR59 article-title: A density functional + assessment of oxygen evolution reaction mechanisms on β-NiOOH publication-title: ACS Catal. – volume: 54 start-page: 463 year: 2018 end-page: 466 ident: CR39 article-title: Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution publication-title: Chem. Commun. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR56 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 353 start-page: 1011 year: 2016 end-page: 1014 ident: CR1 article-title: A highly active and stable IrO /SrIrO catalyst for the oxygen evolution reaction publication-title: Science – volume: 355 start-page: eaad4998 year: 2017 ident: CR18 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 138 start-page: 11017 year: 2016 end-page: 11030 ident: CR37 article-title: X-ray spectroscopic characterization of Co( ) and metal–metal interactions in Co O : electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 345501 year: 2009 end-page: 345510 ident: CR53 article-title: Self-consistent aspects of X-ray absorption calculations publication-title: J. Phys. Condens. Matter – volume: 16 start-page: 532 year: 2017 ident: 709_CR32 publication-title: Nat. Mater. doi: 10.1038/nmat4852 – volume: 7 year: 2016 ident: 709_CR45 publication-title: Nat. Commun. doi: 10.1038/ncomms10942 – volume: 347 start-page: 149 year: 2015 ident: 709_CR25 publication-title: Science doi: 10.1126/science.1257289 – volume: 55 start-page: 818 year: 2019 ident: 709_CR46 publication-title: Chem. Commun. doi: 10.1039/C8CC06410E – volume: 137 start-page: 1305 year: 2015 ident: 709_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 138 start-page: 5603 year: 2016 ident: 709_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00332 – volume: 140 start-page: A1133 year: 1965 ident: 709_CR58 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 7 start-page: 5329 year: 2017 ident: 709_CR59 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00999 – volume: 16 start-page: 925 year: 2017 ident: 709_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4938 – volume: 136 start-page: 16481 year: 2014 ident: 709_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 2 start-page: 16189 year: 2016 ident: 709_CR3 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.189 – volume: 11 start-page: 180 year: 2020 ident: 709_CR16 publication-title: Chem. Sci. doi: 10.1039/C9SC04141A – volume: 102 start-page: 12047 year: 2005 ident: 709_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0505207102 – volume: 334 start-page: 1383 year: 2011 ident: 709_CR2 publication-title: Science doi: 10.1126/science.1212858 – volume: 58 start-page: 3769 year: 2018 ident: 709_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811241 – volume: 9 year: 2018 ident: 709_CR24 publication-title: Nat. Commun. – volume: 57 start-page: 9660 year: 2018 ident: 709_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803587 – volume: 28 start-page: 1707244 year: 2018 ident: 709_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707244 – volume: 8 start-page: 9518 year: 2014 ident: 709_CR40 publication-title: ACS Nano doi: 10.1021/nn503760c – volume: 62 start-page: 63 year: 2007 ident: 709_CR55 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2006.12.002 – volume: 139 start-page: 1778 year: 2017 ident: 709_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 31 start-page: 1900510 year: 2019 ident: 709_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201900510 – volume: 53 start-page: 5881 year: 2014 ident: 709_CR17 publication-title: Inorg. Chem. doi: 10.1021/ic500434a – volume: 6 start-page: 122 year: 2006 ident: 709_CR29 publication-title: Nat. Mater. doi: 10.1038/nmat1807 – volume: 10 start-page: 81 year: 2020 ident: 709_CR44 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03790 – volume: 130 start-page: 4722 year: 2018 ident: 709_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201801029 – volume: 135 start-page: 16977 year: 2013 ident: 709_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 2 start-page: 763 year: 2019 ident: 709_CR6 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 355 start-page: eaad4998 year: 2017 ident: 709_CR18 publication-title: Science doi: 10.1126/science.aad4998 – volume: 11 start-page: 2476 year: 2018 ident: 709_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01063C – volume: 138 start-page: 11017 year: 2016 ident: 709_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04663 – volume: 9 start-page: 457 year: 2017 ident: 709_CR5 publication-title: Nat. Chem. doi: 10.1038/nchem.2695 – volume: 16 start-page: 335 year: 2016 ident: 709_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat4794 – volume: 134 start-page: 6801 year: 2012 ident: 709_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301018q – volume: 2 start-page: 2138 year: 2019 ident: 709_CR49 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02160 – volume: 54 start-page: 11169 year: 1996 ident: 709_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 1700518 year: 2017 ident: 709_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700518 – volume: 136 start-page: 6744 year: 2014 ident: 709_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502379c – volume: 140 start-page: 11286 year: 2018 ident: 709_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05294 – volume: 9 year: 2019 ident: 709_CR28 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37307-x – volume: 353 start-page: 1011 year: 2016 ident: 709_CR1 publication-title: Science doi: 10.1126/science.aaf5050 – volume: 11 start-page: 4512 year: 2015 ident: 709_CR54 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00327 – volume: 46 start-page: 337 year: 2017 ident: 709_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 135 start-page: 13521 year: 2013 ident: 709_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405997s – volume: 37 start-page: 1030 year: 2016 ident: 709_CR61 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 72 start-page: 621 year: 2000 ident: 709_CR52 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.621 – volume: 137 start-page: 15112 year: 2015 ident: 709_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06814 – volume: 6 start-page: 155 year: 2016 ident: 709_CR36 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01481 – volume: 54 start-page: 463 year: 2018 ident: 709_CR39 publication-title: Chem. Commun. doi: 10.1039/C7CC08843D – ident: 709_CR51 – volume: 3 start-page: 1159 year: 2011 ident: 709_CR30 publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 5 start-page: 5380 year: 2015 ident: 709_CR31 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01638 – volume: 1 start-page: 16184 year: 2016 ident: 709_CR10 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 208-209 start-page: 583 year: 1995 ident: 709_CR26 publication-title: Physica B doi: 10.1016/0921-4526(94)00761-J – volume: 77 start-page: 3865 year: 1996 ident: 709_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 139 start-page: 2070 year: 2017 ident: 709_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 21 start-page: 345501 year: 2009 ident: 709_CR53 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/34/345501 – volume: 10 start-page: 3630 year: 2019 ident: 709_CR47 publication-title: Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01232 – volume: 12 start-page: 537 year: 2005 ident: 709_CR50 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 2 start-page: 1937 year: 2017 ident: 709_CR9 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 71 start-page: 094110 year: 2005 ident: 709_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.094110 |
SSID | ssj0002922581 |
Score | 2.6402988 |
Snippet | Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 881 |
SubjectTerms | 639/301 639/301/299/886 639/4077/909/4086 639/4077/909/4101/4102 639/638/298/921 Absorption spectroscopy Bimetals Catalytic activity Economics and Management Electrocatalysts Electronic structure Energy Energy Policy Energy Storage Energy Systems Evolution High resolution electron microscopy Image resolution Metal-organic frameworks Metals Oxidation Oxygen Oxygen evolution reactions Renewable and Green Energy Transmission electron microscopy Water splitting X ray absorption X-ray absorption spectroscopy |
Title | Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction |
URI | https://link.springer.com/article/10.1038/s41560-020-00709-1 https://www.proquest.com/docview/2471559006 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCQR7YwGoSJ2k8IUCtEBIVAip1ixzHmUpSlApRJv4D_5Bfwp3jtAWJzkk85N2d35197wg5S0IVdRNXMTyzYti6yISfSBZJZCe-lpmDjcL3g_B26N-NgpEtuJX2WmUdE02gTguFNfKOB1E0wBGX4eXkleHUKDxdtSM01kkTQnAEyVfzujd4eJxXWTwB9hq5tlvG4VGnxIzFYZg1odSNYO7vHWlBM_-cjJoNp79NtixTpFcVtDtkTee7ZHNJP3CPfDwZ9VdUzqDTJQZa5LTIKCoRj2dUmohGXzTQ7O_Pr2qMk6JZfSuL2kk4ppAzK6clrVoXKVBDWrzPwMKofrMWSoFjmk6IfTLs955vbpkdpsAUj4IpsGgpVBLwBFxaqJBDqhBK5SbggKnwXekoR4NVca6VGykRpH7aFZ4Gl1aokSf5AWnkRa4PCYWMJ5MeyshAeigzLXk30L7oegC1lEHWIm79Q2NllcZx4MU4NifePIorEGIAITYgxG6LnM-_mVQ6Gyvfbtc4xdbnynhhIS1yUWO3ePz_akerVzsmGx6ai2lAbJMGIKtPgIlMk1Nrbj_pQt5D |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7B7gF6qGgBsRSoD_QEFkmcZOMDqoAuWv5WiB-Jm3G8zmnZUGVFuz31HXiPPhRPwoyTsBQJbpzj-OD5PP7G4_kGYD2NTdJOfcMpZ8WpdJHLMNU80cROQqszjwqFT3px9zI8vIqupuBfXQtDzyprn-gcdT83dEe-FaAXjajFZfz99ienrlGUXa1baJSwOLLjXxiyFdsHP9C-34Jgv3Ox1-VVVwFuRBKNkE5qadJIpIhtaWKM5-NYGz9FJPZl6GvPeBaXVwhr_MTIqB_22zKwiG1DYnFa4LzT0AwFhjINaO52eqdnT7c6gcT9kfhVdY4nkq2CIiSPU5RG0jqS-_-fgBNa-yIT6w64_Tn4WDFTtlNC6RNM2eFn-PBMr3Ae_pw7tVlS6mCjZ4w3H7I8Y6R8PBgz7Twou7FI6x_-3pdtowzL6ldgrOq84y6OxsWoYGWpJEMqyvLfY0Q0s3fVjmDIaV3lxQJcvssyL0JjmA_tEjCMsDIdkGwNhqM6s1q0IxvKdoDQ0jrKWuDXC6pMpWxODTYGymXYRaJKIyg0gnJGUH4LNp7-uS11Pd4cvVLbSVV7vFATRLZgs7bd5PPrsy2_PdtXmOlenByr44Pe0ReYDQg6rvhxBRpoZbuKLGiUrlXQY3D93mh_BCwhGpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+transformation+of+highly+active+metal%E2%80%93organic+framework+electrocatalysts+during+the+oxygen+evolution+reaction&rft.jtitle=Nature+energy&rft.au=Zhao+Shenlong&rft.au=Tan+Chunhui&rft.au=Chun-Ting%2C+He&rft.au=An+Pengfei&rft.date=2020-11-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7546&rft.volume=5&rft.issue=11&rft.spage=881&rft.epage=890&rft_id=info:doi/10.1038%2Fs41560-020-00709-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon |