Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction

Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active...

Full description

Saved in:
Bibliographic Details
Published inNature energy Vol. 5; no. 11; pp. 881 - 890
Main Authors Zhao, Shenlong, Tan, Chunhui, He, Chun-Ting, An, Pengfei, Xie, Feng, Jiang, Shuai, Zhu, Yanfei, Wu, Kuang-Hsu, Zhang, Binwei, Li, Haijing, Zhang, Jing, Chen, Yuan, Liu, Shaoqin, Dong, Juncai, Tang, Zhiyong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni 0.5 Co 0.5 -MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni 0.5 Co 0.5 OOH 0.75 , with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni 0.9 Fe 0.1 -MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm −2 and 20 mA cm −2 , respectively. Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active.
AbstractList Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni0.5Co0.5-MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni0.5Co0.5OOH0.75, with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni0.9Fe0.1-MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm−2 and 20 mA cm−2, respectively.Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active.
Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising catalytic activity, many fundamental questions concerning their structure−performance relationships—especially those regarding the roles of active species—remain to be answered. Here we show the structural transformation of a Ni 0.5 Co 0.5 -MOF-74 during the OER by operando X-ray absorption spectroscopy analysis and high-resolution transmission electron microscopy imaging. We suggest that Ni 0.5 Co 0.5 OOH 0.75 , with abundant oxygen vacancies and high oxidation states, forms in situ and is responsible for the high OER activity observed. The ratio of Ni to Co in the bimetallic centres alters the geometric and electronic structure of as-formed active species and in turn the catalytic activity. Based on our understanding of this system, we fabricate a Ni 0.9 Fe 0.1 -MOF that delivers low overpotentials of 198 mV and 231 mV at 10 mA cm −2 and 20 mA cm −2 , respectively. Metal–organic frameworks (MOFs) are increasingly being explored for electrocatalytic oxygen evolution, which is half of the water splitting reaction. Here the authors show that, under reaction conditions, mixed metal oxyhydroxides form at the nodes of bimetallic MOFs, which are highly catalytically active.
Author Tang, Zhiyong
Zhang, Binwei
Wu, Kuang-Hsu
Chen, Yuan
An, Pengfei
Liu, Shaoqin
He, Chun-Ting
Tan, Chunhui
Xie, Feng
Zhang, Jing
Jiang, Shuai
Dong, Juncai
Zhao, Shenlong
Zhu, Yanfei
Li, Haijing
Author_xml – sequence: 1
  givenname: Shenlong
  surname: Zhao
  fullname: Zhao, Shenlong
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, School of Chemical and Biomolecular Engineering, The University of Sydney
– sequence: 2
  givenname: Chunhui
  surname: Tan
  fullname: Tan, Chunhui
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
– sequence: 3
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  organization: Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University
– sequence: 4
  givenname: Pengfei
  surname: An
  fullname: An, Pengfei
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Feng
  surname: Xie
  fullname: Xie, Feng
  organization: Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
– sequence: 6
  givenname: Shuai
  surname: Jiang
  fullname: Jiang, Shuai
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
– sequence: 7
  givenname: Yanfei
  surname: Zhu
  fullname: Zhu, Yanfei
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
– sequence: 8
  givenname: Kuang-Hsu
  surname: Wu
  fullname: Wu, Kuang-Hsu
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney
– sequence: 9
  givenname: Binwei
  orcidid: 0000-0002-7023-5986
  surname: Zhang
  fullname: Zhang, Binwei
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney
– sequence: 10
  givenname: Haijing
  surname: Li
  fullname: Li, Haijing
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 11
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Yuan
  orcidid: 0000-0001-9059-3839
  surname: Chen
  fullname: Chen, Yuan
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney
– sequence: 13
  givenname: Shaoqin
  surname: Liu
  fullname: Liu, Shaoqin
  email: shaoqinliu@hit.edu.cn
  organization: State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
– sequence: 14
  givenname: Juncai
  orcidid: 0000-0001-8860-093X
  surname: Dong
  fullname: Dong, Juncai
  email: dongjc@ihep.ac.cn
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 15
  givenname: Zhiyong
  orcidid: 0000-0003-0610-0064
  surname: Tang
  fullname: Tang, Zhiyong
  email: zytang@nanoctr.cn
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
BookMark eNp9kMFO3DAQhi1EpVLKC_RkqeeUsR0n8bFCQCshcaCcLa8z2Q1k7WXsANtT34E35EnI7iIVceBgjQ__94_9fWH7IQZk7JuAHwJUc5xKoSsoQE4HajCF2GMHEnRT1Lqs9t_cP7OjlG4AQBopdSMO2N-rTKPPI7mBZ3IhdZGWLvcx8NjxRT9fDGvufO7vkS8xu-H531OkuQu95x25JT5EuuU4oM8UvZsC65QTb0fqw5znBfL4uJ5j4Hgfh3HbS7jpi-Er-9S5IeHR6zxk12enf05-FReX579Pfl4UXjU6F3XtjJ9pNasVGF8pBVXlvJiZSrWmFA48ILpWKfSi8Ua3ZVsbiaXUfvpy6dQh-77rXVG8GzFlexNHCtNKK8taaG0AqikldylPMSXCzq6oXzpaWwF2o9nuNNtJs91qtmKCmneQ7_PW3uSyHz5G1Q5Nq40qpP-v-oB6AZYZl8M
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156553
crossref_primary_10_1016_j_jcis_2024_08_139
crossref_primary_10_1038_s41563_025_02128_7
crossref_primary_10_1021_acssuschemeng_2c03887
crossref_primary_10_1039_D4NJ01234H
crossref_primary_10_1016_j_ccr_2024_216235
crossref_primary_10_1063_5_0090147
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1002_anie_202214707
crossref_primary_10_1039_D2QM00949H
crossref_primary_10_1039_D1TA10440C
crossref_primary_10_1002_ange_202415794
crossref_primary_10_1126_sciadv_abf3989
crossref_primary_10_1021_jacs_2c06216
crossref_primary_10_1002_cplu_202400423
crossref_primary_10_1007_s11581_022_04708_y
crossref_primary_10_1021_acs_analchem_2c01607
crossref_primary_10_1038_s41467_024_49834_5
crossref_primary_10_1002_ange_202419913
crossref_primary_10_1016_j_ijhydene_2022_10_191
crossref_primary_10_1002_anie_202402176
crossref_primary_10_1021_acscatal_1c01447
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1016_j_cej_2022_136961
crossref_primary_10_1016_j_matt_2021_05_015
crossref_primary_10_1039_D4CE00953C
crossref_primary_10_1021_acs_jpclett_1c02665
crossref_primary_10_1016_j_chemosphere_2022_137330
crossref_primary_10_1016_j_nanoen_2021_106661
crossref_primary_10_1021_acsami_4c11560
crossref_primary_10_1016_j_cattod_2024_115049
crossref_primary_10_1002_EXP_20210182
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1039_D1SC05867C
crossref_primary_10_1016_j_ccr_2025_216536
crossref_primary_10_1021_acssuschemeng_0c08811
crossref_primary_10_1039_D4DT03131H
crossref_primary_10_1016_j_chempr_2023_09_009
crossref_primary_10_1039_D1TA02684D
crossref_primary_10_1039_D1DT04359E
crossref_primary_10_1002_anie_202201610
crossref_primary_10_1039_D2TA04857D
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1016_j_apsusc_2021_150227
crossref_primary_10_1021_acs_inorgchem_2c01367
crossref_primary_10_1039_D2CC02526D
crossref_primary_10_1002_celc_202400076
crossref_primary_10_1002_smll_202401343
crossref_primary_10_1002_anie_202206085
crossref_primary_10_1016_j_ijhydene_2023_12_067
crossref_primary_10_1002_asia_202300317
crossref_primary_10_1021_acscatal_3c00625
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1007_s11426_022_1217_7
crossref_primary_10_1016_j_coco_2024_101933
crossref_primary_10_1021_jacs_2c10515
crossref_primary_10_1016_j_apsusc_2023_156991
crossref_primary_10_1002_chem_202100911
crossref_primary_10_1039_D3NJ03483F
crossref_primary_10_1016_j_seppur_2025_132213
crossref_primary_10_1002_ange_202108770
crossref_primary_10_1021_acsami_4c13769
crossref_primary_10_1021_acs_inorgchem_4c04771
crossref_primary_10_1088_2515_7639_ad6cf6
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1016_j_matre_2023_100212
crossref_primary_10_1002_adfm_202102772
crossref_primary_10_1016_j_jiec_2022_11_023
crossref_primary_10_1016_j_cej_2023_142865
crossref_primary_10_1016_j_pmatsci_2024_101294
crossref_primary_10_3390_molecules29245845
crossref_primary_10_2139_ssrn_3977364
crossref_primary_10_1002_anie_202423092
crossref_primary_10_1016_j_xcrp_2021_100729
crossref_primary_10_1080_24701556_2023_2264274
crossref_primary_10_1002_ange_202407509
crossref_primary_10_1039_D2TA09665J
crossref_primary_10_1021_acsami_1c04282
crossref_primary_10_1002_adfm_202304380
crossref_primary_10_1002_ange_202501821
crossref_primary_10_1002_smll_202400042
crossref_primary_10_1016_j_jcis_2022_04_181
crossref_primary_10_1016_j_cej_2023_143707
crossref_primary_10_1016_j_jallcom_2022_167453
crossref_primary_10_1016_j_apcatb_2022_122167
crossref_primary_10_1016_j_matt_2021_05_025
crossref_primary_10_1016_j_apcatb_2022_122165
crossref_primary_10_1016_j_ijhydene_2023_04_296
crossref_primary_10_1002_adfm_202412406
crossref_primary_10_1016_j_ijhydene_2023_11_081
crossref_primary_10_1016_j_jallcom_2023_173183
crossref_primary_10_1021_acs_chemmater_4c00229
crossref_primary_10_1002_ange_202314833
crossref_primary_10_1002_smll_202206768
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1002_ange_202101906
crossref_primary_10_1002_smll_202308598
crossref_primary_10_1021_acscatal_2c01090
crossref_primary_10_1002_admi_202100308
crossref_primary_10_1016_j_jssc_2025_125286
crossref_primary_10_1002_cssc_202100851
crossref_primary_10_1002_smll_202311356
crossref_primary_10_1016_j_apsusc_2023_157001
crossref_primary_10_1002_ange_202211585
crossref_primary_10_1002_anie_202401005
crossref_primary_10_1007_s12274_022_4563_4
crossref_primary_10_1016_j_mtener_2022_101024
crossref_primary_10_1016_j_ijhydene_2024_12_510
crossref_primary_10_1021_acs_energyfuels_3c00984
crossref_primary_10_1002_ejic_202200625
crossref_primary_10_1016_j_apcatb_2023_123524
crossref_primary_10_1002_cnma_202200305
crossref_primary_10_1016_j_jechem_2021_06_019
crossref_primary_10_1002_anie_202214794
crossref_primary_10_1002_anie_202300532
crossref_primary_10_1016_j_mtener_2022_101036
crossref_primary_10_1016_j_chphma_2024_03_002
crossref_primary_10_1016_j_apcatb_2021_119906
crossref_primary_10_2139_ssrn_4049710
crossref_primary_10_2139_ssrn_4049711
crossref_primary_10_1016_j_colsurfa_2024_135497
crossref_primary_10_1002_ange_202219048
crossref_primary_10_1016_j_checat_2021_07_011
crossref_primary_10_1002_adma_202208904
crossref_primary_10_1016_j_checat_2021_07_012
crossref_primary_10_1021_acsami_4c01573
crossref_primary_10_1016_j_mtener_2022_101005
crossref_primary_10_1016_j_mtener_2022_101002
crossref_primary_10_1016_j_mtener_2022_101008
crossref_primary_10_1002_anie_202311909
crossref_primary_10_1002_anie_202112775
crossref_primary_10_1021_acssuschemeng_2c04543
crossref_primary_10_1039_D1CC06254A
crossref_primary_10_1039_D2EE03749A
crossref_primary_10_1039_D4DT01656D
crossref_primary_10_1002_cssc_202401340
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1021_acsaem_2c01707
crossref_primary_10_1021_acsenergylett_3c01030
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1016_j_apcatb_2023_122891
crossref_primary_10_1016_j_checat_2023_100529
crossref_primary_10_1016_j_jece_2024_114552
crossref_primary_10_1016_j_xcrp_2022_100850
crossref_primary_10_1002_advs_202204151
crossref_primary_10_1016_j_seppur_2025_132291
crossref_primary_10_1016_j_apsusc_2023_157204
crossref_primary_10_1039_D3TA03473A
crossref_primary_10_1002_anie_202117178
crossref_primary_10_1002_cssc_202100654
crossref_primary_10_1016_j_jechem_2021_04_049
crossref_primary_10_1002_cnma_202200127
crossref_primary_10_1002_anie_202300507
crossref_primary_10_1016_j_foodchem_2022_132607
crossref_primary_10_1016_j_apcatb_2024_124089
crossref_primary_10_1002_ange_202312239
crossref_primary_10_1021_acsenergylett_1c01350
crossref_primary_10_1002_advs_202104774
crossref_primary_10_1002_anie_202211094
crossref_primary_10_1016_j_ccr_2024_216263
crossref_primary_10_1016_j_elecom_2021_107024
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1016_j_esci_2023_100092
crossref_primary_10_1002_aenm_202301391
crossref_primary_10_1016_j_checat_2021_11_003
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1016_j_ijhydene_2024_07_109
crossref_primary_10_1021_acsnano_3c09482
crossref_primary_10_1016_j_checat_2021_06_017
crossref_primary_10_1016_j_checat_2021_12_005
crossref_primary_10_1016_j_jechem_2021_05_029
crossref_primary_10_1002_anie_202504148
crossref_primary_10_1016_j_ensm_2021_09_003
crossref_primary_10_1016_j_jcis_2024_06_194
crossref_primary_10_1002_adma_202311766
crossref_primary_10_1016_j_cej_2025_161533
crossref_primary_10_1016_j_molstruc_2024_140549
crossref_primary_10_1002_ange_202419550
crossref_primary_10_1007_s12274_022_4946_6
crossref_primary_10_2139_ssrn_4091646
crossref_primary_10_1039_D1DT03048E
crossref_primary_10_1002_advs_202101000
crossref_primary_10_1016_j_matlet_2024_137727
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1021_jacs_2c11676
crossref_primary_10_1007_s12274_024_6424_9
crossref_primary_10_1021_acsaem_2c02835
crossref_primary_10_1002_anie_202317022
crossref_primary_10_1016_j_cclet_2021_10_090
crossref_primary_10_1016_j_jallcom_2023_173119
crossref_primary_10_1002_aenm_202303350
crossref_primary_10_1016_j_jssc_2024_125144
crossref_primary_10_1039_D2NJ00773H
crossref_primary_10_1002_adma_202313931
crossref_primary_10_1016_j_jallcom_2021_159945
crossref_primary_10_1002_ange_202302220
crossref_primary_10_1002_adfm_202112517
crossref_primary_10_1002_smtd_202101070
crossref_primary_10_1016_j_apsusc_2022_156039
crossref_primary_10_1016_j_surfin_2024_104165
crossref_primary_10_1021_acsaem_1c02604
crossref_primary_10_1016_j_jelechem_2023_117987
crossref_primary_10_1016_j_mtener_2022_101216
crossref_primary_10_1021_acs_accounts_2c00212
crossref_primary_10_1021_acs_inorgchem_4c00921
crossref_primary_10_1016_j_mtener_2021_100846
crossref_primary_10_1002_cssc_202101666
crossref_primary_10_1039_D3RA04110G
crossref_primary_10_1021_acs_nanolett_4c04815
crossref_primary_10_1021_acs_inorgchem_3c02332
crossref_primary_10_1016_j_mtener_2023_101264
crossref_primary_10_1016_j_nanoms_2022_04_002
crossref_primary_10_1002_slct_202203616
crossref_primary_10_1016_j_mtener_2021_100854
crossref_primary_10_1016_j_flatc_2024_100775
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1016_j_mtener_2021_100834
crossref_primary_10_1016_j_seppur_2023_124638
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1002_adma_202103218
crossref_primary_10_1002_slct_202201682
crossref_primary_10_1002_ange_202112775
crossref_primary_10_1080_21663831_2021_2023677
crossref_primary_10_3390_catal14050296
crossref_primary_10_1007_s12274_021_3885_y
crossref_primary_10_1002_ange_202311909
crossref_primary_10_1021_acs_inorgchem_5c00334
crossref_primary_10_1016_j_joule_2021_08_003
crossref_primary_10_1021_acsami_3c00544
crossref_primary_10_1021_acs_jpcc_2c06019
crossref_primary_10_1021_jacs_4c03827
crossref_primary_10_1021_acs_accounts_2c00239
crossref_primary_10_1016_j_scib_2024_09_014
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1016_j_electacta_2022_140279
crossref_primary_10_1002_smll_202407564
crossref_primary_10_1016_j_seppur_2024_128000
crossref_primary_10_1002_smll_202407328
crossref_primary_10_1039_D3QI01468A
crossref_primary_10_1002_adma_202103004
crossref_primary_10_1016_j_mtener_2020_100597
crossref_primary_10_1016_j_jelechem_2024_118789
crossref_primary_10_1002_anie_202411683
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1002_ange_202420327
crossref_primary_10_1021_acscatal_3c02370
crossref_primary_10_1002_adfm_202100614
crossref_primary_10_1002_anie_202207845
crossref_primary_10_1002_anie_202213049
crossref_primary_10_1039_D3TA00015J
crossref_primary_10_1002_cey2_265
crossref_primary_10_1016_j_jelechem_2023_117144
crossref_primary_10_2139_ssrn_4096622
crossref_primary_10_1021_acsnano_3c05583
crossref_primary_10_1039_D2GC03351H
crossref_primary_10_1002_cctc_202300328
crossref_primary_10_1007_s12274_021_3358_3
crossref_primary_10_1021_acscatal_2c02775
crossref_primary_10_1039_D0CS00962H
crossref_primary_10_1007_s12274_022_4467_3
crossref_primary_10_1016_j_cej_2024_157970
crossref_primary_10_1016_j_joule_2021_10_002
crossref_primary_10_1016_j_jcis_2022_07_136
crossref_primary_10_1021_acsnano_4c04847
crossref_primary_10_1021_acs_nanolett_2c03573
crossref_primary_10_1080_16583655_2022_2151298
crossref_primary_10_1002_smll_202207044
crossref_primary_10_1038_s41467_023_41517_x
crossref_primary_10_1039_D1NR08377E
crossref_primary_10_1021_acscatal_1c03260
crossref_primary_10_1021_acs_inorgchem_4c00712
crossref_primary_10_1016_j_cej_2021_131348
crossref_primary_10_1021_acs_jpclett_1c04136
crossref_primary_10_1038_s41467_024_53385_0
crossref_primary_10_1016_j_jechem_2021_08_055
crossref_primary_10_1002_aenm_202201934
crossref_primary_10_1016_j_jechem_2024_07_030
crossref_primary_10_1039_D3CP03937D
crossref_primary_10_1002_anie_202309341
crossref_primary_10_1016_j_apcatb_2022_121526
crossref_primary_10_1002_ange_202411683
crossref_primary_10_1016_j_cej_2021_133518
crossref_primary_10_1002_adma_202302642
crossref_primary_10_1021_acs_accounts_2c00277
crossref_primary_10_1021_acsanm_4c05305
crossref_primary_10_1016_j_matt_2024_01_019
crossref_primary_10_1016_j_mtphys_2023_101112
crossref_primary_10_1360_SSC_2023_0104
crossref_primary_10_1002_smll_202201522
crossref_primary_10_1016_j_jcis_2022_11_091
crossref_primary_10_1002_ange_202102320
crossref_primary_10_1016_j_jssc_2021_122617
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_1002_ange_202110186
crossref_primary_10_1002_cey2_216
crossref_primary_10_1016_j_mtener_2023_101246
crossref_primary_10_1002_aenm_202302532
crossref_primary_10_1002_ange_202104747
crossref_primary_10_1007_s12274_022_5115_7
crossref_primary_10_1038_s41467_023_36718_3
crossref_primary_10_1021_acssuschemeng_2c03250
crossref_primary_10_1039_D4RA05191B
crossref_primary_10_1039_D2QI01966C
crossref_primary_10_1002_cssc_202100179
crossref_primary_10_1038_s41467_023_35913_6
crossref_primary_10_1002_ange_202311752
crossref_primary_10_1021_acs_jpclett_2c03685
crossref_primary_10_1038_s41467_023_37775_4
crossref_primary_10_1002_anie_202420327
crossref_primary_10_1021_acsanm_2c05302
crossref_primary_10_1002_advs_202204751
crossref_primary_10_1016_j_fuel_2023_129882
crossref_primary_10_1021_acsnano_2c06890
crossref_primary_10_1016_j_seppur_2024_131036
crossref_primary_10_1021_acs_inorgchem_2c03609
crossref_primary_10_1039_D5RA00286A
crossref_primary_10_1021_acs_chemmater_3c00316
crossref_primary_10_1016_j_apcatb_2024_124561
crossref_primary_10_1016_j_mtener_2022_100975
crossref_primary_10_1021_acscatal_3c04731
crossref_primary_10_1021_acssuschemeng_4c05046
crossref_primary_10_1002_adfm_202209753
crossref_primary_10_1021_acs_jpclett_2c03433
crossref_primary_10_1002_ange_202117178
crossref_primary_10_1021_acscatal_4c03618
crossref_primary_10_1016_S1872_2067_24_60153_1
crossref_primary_10_1016_j_jcis_2021_06_094
crossref_primary_10_1039_D2CC03994J
crossref_primary_10_1002_adfm_202310902
crossref_primary_10_1002_anie_202107731
crossref_primary_10_1016_j_mtener_2021_100683
crossref_primary_10_1016_j_mtener_2021_100682
crossref_primary_10_1039_D2EE01816K
crossref_primary_10_1007_s40820_022_00997_0
crossref_primary_10_1016_j_apcatb_2024_124550
crossref_primary_10_1016_j_nanoen_2022_107297
crossref_primary_10_1016_j_mtener_2022_100987
crossref_primary_10_1016_j_nima_2022_167428
crossref_primary_10_1002_adma_202408114
crossref_primary_10_1016_j_jcis_2022_11_054
crossref_primary_10_1021_acscatal_4c01407
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1021_jacs_3c03214
crossref_primary_10_1002_anie_202313886
crossref_primary_10_1021_acsnano_3c11199
crossref_primary_10_1016_j_cej_2022_137789
crossref_primary_10_1021_acs_inorgchem_1c03665
crossref_primary_10_1002_adfm_202207116
crossref_primary_10_1002_anie_202114293
crossref_primary_10_1016_j_xcrp_2022_101059
crossref_primary_10_1021_acs_nanolett_5c00233
crossref_primary_10_1016_j_apsusc_2022_153252
crossref_primary_10_1002_smll_202303263
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1007_s11426_023_1649_y
crossref_primary_10_1002_aenm_202401198
crossref_primary_10_1039_D1TA09921C
crossref_primary_10_1016_j_ijhydene_2023_09_257
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1039_D2CC02424A
crossref_primary_10_1002_smll_202311713
crossref_primary_10_1016_j_biombioe_2023_106927
crossref_primary_10_1007_s12274_023_5576_3
crossref_primary_10_1016_j_jpowsour_2022_232310
crossref_primary_10_1016_j_jpowsour_2022_231461
crossref_primary_10_1002_adfm_202302014
crossref_primary_10_1002_ange_202317022
crossref_primary_10_1016_j_memsci_2024_123140
crossref_primary_10_1021_acsami_2c10760
crossref_primary_10_1002_adfm_202307947
crossref_primary_10_1021_acs_chemmater_4c00725
crossref_primary_10_1016_j_mtener_2021_100653
crossref_primary_10_1016_j_apcatb_2021_120727
crossref_primary_10_1021_acs_energyfuels_2c01144
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1016_j_jelechem_2022_116805
crossref_primary_10_1002_adma_202104341
crossref_primary_10_1039_D4CC04919E
crossref_primary_10_1002_ange_202401005
crossref_primary_10_1002_smll_202105150
crossref_primary_10_1039_D4TA05493H
crossref_primary_10_1021_acsnano_3c08831
crossref_primary_10_1021_acsanm_0c03310
crossref_primary_10_1016_j_mtener_2021_100880
crossref_primary_10_1016_j_mtener_2021_100883
crossref_primary_10_1039_D1DT03437E
crossref_primary_10_1002_adfm_202313375
crossref_primary_10_1002_anie_202419550
crossref_primary_10_1016_j_mtener_2021_100887
crossref_primary_10_1016_j_est_2022_106578
crossref_primary_10_1038_s44286_025_00179_w
crossref_primary_10_1038_s41467_023_42756_8
crossref_primary_10_1039_D4NR01168F
crossref_primary_10_1016_j_cej_2024_156469
crossref_primary_10_1016_j_jcis_2022_04_100
crossref_primary_10_1021_acs_jpcc_3c00131
crossref_primary_10_1016_j_jallcom_2024_177225
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1002_adma_202301166
crossref_primary_10_1002_smll_202204864
crossref_primary_10_1002_cctc_202001868
crossref_primary_10_1007_s11426_023_1725_8
crossref_primary_10_1021_acs_inorgchem_2c00111
crossref_primary_10_1002_aenm_202102883
crossref_primary_10_1016_j_coelec_2021_100845
crossref_primary_10_1016_j_jcis_2022_06_173
crossref_primary_10_1016_j_cej_2022_136269
crossref_primary_10_1039_D3EY00113J
crossref_primary_10_1021_acsami_1c20128
crossref_primary_10_1039_D1EE02606B
crossref_primary_10_1016_j_apcatb_2023_123142
crossref_primary_10_1016_j_cej_2023_148301
crossref_primary_10_1002_anie_202101906
crossref_primary_10_1002_anie_202219048
crossref_primary_10_1016_j_jcis_2021_11_150
crossref_primary_10_1016_j_jallcom_2022_168400
crossref_primary_10_1002_celc_202200958
crossref_primary_10_1039_D0TA09077H
crossref_primary_10_1021_acs_energyfuels_4c04009
crossref_primary_10_1016_j_seppur_2024_126641
crossref_primary_10_1039_D1CC02235K
crossref_primary_10_1002_admi_202200098
crossref_primary_10_1002_anie_202407509
crossref_primary_10_1016_j_ccr_2021_214340
crossref_primary_10_1002_ange_202313886
crossref_primary_10_1016_j_jallcom_2022_164296
crossref_primary_10_1016_j_ijhydene_2022_03_095
crossref_primary_10_1021_acsnano_4c11909
crossref_primary_10_1016_j_apcatb_2023_123249
crossref_primary_10_1016_j_apcatb_2024_124838
crossref_primary_10_1038_s41467_024_51951_0
crossref_primary_10_1039_D1MA00747E
crossref_primary_10_1021_jacs_0c12963
crossref_primary_10_1002_sstr_202200085
crossref_primary_10_1002_smtd_202200773
crossref_primary_10_1021_acscatal_2c02033
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1021_acs_inorgchem_4c00021
crossref_primary_10_1007_s44405_025_00001_4
crossref_primary_10_1002_smll_202105763
crossref_primary_10_1016_j_chempr_2020_12_016
crossref_primary_10_1021_acs_nanolett_2c04087
crossref_primary_10_1021_acsanm_4c01898
crossref_primary_10_1021_jacs_4c02292
crossref_primary_10_1002_adfm_202202068
crossref_primary_10_1088_1361_6528_ac4f82
crossref_primary_10_1038_s41467_025_56070_y
crossref_primary_10_1021_acsami_2c02861
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1002_smll_202401226
crossref_primary_10_1039_D0CY02163F
crossref_primary_10_1002_aenm_202202522
crossref_primary_10_1002_adfm_202304296
crossref_primary_10_1016_j_est_2024_114643
crossref_primary_10_1021_acsaem_2c02998
crossref_primary_10_1039_D0TA10835A
crossref_primary_10_2139_ssrn_4053251
crossref_primary_10_1002_smll_202104205
crossref_primary_10_1088_1361_6528_acb716
crossref_primary_10_1016_j_jcis_2023_07_182
crossref_primary_10_1021_jacs_1c11241
crossref_primary_10_1002_ange_202114293
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1002_adfm_202400767
crossref_primary_10_1016_j_fmre_2022_05_023
crossref_primary_10_1002_ange_202300532
crossref_primary_10_1039_D1EE03610F
crossref_primary_10_1039_D2DT00463A
crossref_primary_10_1039_D2QI02436E
crossref_primary_10_1002_adfm_202110020
crossref_primary_10_1002_adma_202305573
crossref_primary_10_1021_acsaem_1c00955
crossref_primary_10_1002_smll_202309119
crossref_primary_10_1002_adma_202406682
crossref_primary_10_1039_D2NR05783B
crossref_primary_10_1002_smtd_202300586
crossref_primary_10_1016_j_foodchem_2022_135144
crossref_primary_10_1039_D4QI01680G
crossref_primary_10_1002_ange_202402176
crossref_primary_10_1002_adma_202203791
crossref_primary_10_1002_cmtd_202400066
crossref_primary_10_1016_j_ijoes_2023_100076
crossref_primary_10_1039_D2TA05607K
crossref_primary_10_1002_anie_202419913
crossref_primary_10_1016_j_ijhydene_2023_03_127
crossref_primary_10_1002_chem_202302055
crossref_primary_10_1002_adma_202107488
crossref_primary_10_1016_j_ijhydene_2022_02_043
crossref_primary_10_1016_j_apcatb_2023_123659
crossref_primary_10_1002_ange_202423092
crossref_primary_10_1002_adma_202304022
crossref_primary_10_1002_adfm_202413856
crossref_primary_10_1002_celc_202300103
crossref_primary_10_1039_D1NR00987G
crossref_primary_10_1002_anie_202501821
crossref_primary_10_1007_s12274_022_4832_2
crossref_primary_10_1016_j_apsusc_2022_154384
crossref_primary_10_1021_acs_inorgchem_2c03226
crossref_primary_10_1002_anie_202108770
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1021_acs_chemmater_2c03744
crossref_primary_10_1021_acsnano_4c09856
crossref_primary_10_1038_s41467_022_29875_4
crossref_primary_10_1039_D0CS01538E
crossref_primary_10_1002_aoc_6371
crossref_primary_10_1021_acs_energyfuels_0c03836
crossref_primary_10_1002_anie_202211585
crossref_primary_10_1038_s41563_022_01199_0
crossref_primary_10_1016_j_apcatb_2021_120477
crossref_primary_10_1002_ange_202216008
crossref_primary_10_1002_anie_202112880
crossref_primary_10_1039_D1QI00857A
crossref_primary_10_1016_j_mattod_2022_02_011
crossref_primary_10_1021_jacs_3c12820
crossref_primary_10_1002_advs_202403431
crossref_primary_10_1016_j_checat_2023_100601
crossref_primary_10_1007_s40820_023_01080_y
crossref_primary_10_1002_adfm_202301884
crossref_primary_10_1002_anie_202100897
crossref_primary_10_1002_ange_202408508
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1039_D1NJ02093E
crossref_primary_10_1016_j_colsurfa_2022_128997
crossref_primary_10_1016_j_est_2024_112608
crossref_primary_10_1039_D3CY00802A
crossref_primary_10_1016_j_apcata_2023_119359
crossref_primary_10_1039_D2TA02955C
crossref_primary_10_1002_adsu_202100281
crossref_primary_10_26599_NR_2025_94907056
crossref_primary_10_1021_acs_inorgchem_3c01090
crossref_primary_10_1002_aenm_202400875
crossref_primary_10_1039_D3CE00407D
crossref_primary_10_1021_acsami_5c00104
crossref_primary_10_1002_anie_202415794
crossref_primary_10_1016_j_scib_2025_02_024
crossref_primary_10_1016_j_jcis_2023_05_189
crossref_primary_10_1002_anie_202415755
crossref_primary_10_1002_adma_202308427
crossref_primary_10_1021_acsmaterialslett_3c00567
crossref_primary_10_1002_smll_202309371
crossref_primary_10_1016_j_est_2023_109164
crossref_primary_10_1016_j_mtener_2023_101442
crossref_primary_10_1039_D4CE01023J
crossref_primary_10_1021_acscatal_4c01091
crossref_primary_10_1016_j_colsurfa_2021_127142
crossref_primary_10_12677_jocr_2024_124050
crossref_primary_10_1002_ange_202214707
crossref_primary_10_1016_j_jallcom_2022_166613
crossref_primary_10_1016_j_apsusc_2023_157590
crossref_primary_10_1038_s41467_023_38285_z
crossref_primary_10_1002_admi_202101720
crossref_primary_10_1016_j_cej_2021_132122
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_1039_D3EE01723K
crossref_primary_10_1016_j_ijhydene_2021_10_157
crossref_primary_10_1039_D3EE01856C
crossref_primary_10_1002_cplu_202100278
crossref_primary_10_1016_j_electacta_2022_140293
crossref_primary_10_1016_j_checat_2023_100646
crossref_primary_10_1002_aenm_202103383
crossref_primary_10_1021_acscatal_4c01907
crossref_primary_10_1007_s42114_024_00981_9
crossref_primary_10_1016_j_cej_2021_134330
crossref_primary_10_1021_acs_inorgchem_4c05100
crossref_primary_10_1039_D2TA05387J
crossref_primary_10_3389_fchem_2022_889470
crossref_primary_10_1002_adma_202402234
crossref_primary_10_59717_j_xinn_mater_2023_100013
crossref_primary_10_1002_ange_202206085
crossref_primary_10_1016_j_jechem_2022_12_032
crossref_primary_10_1016_j_mcat_2022_112568
crossref_primary_10_1039_D4CS00217B
crossref_primary_10_1002_ange_202201610
crossref_primary_10_1002_smll_202104863
crossref_primary_10_1039_D2TA01293F
crossref_primary_10_1002_smll_202302556
crossref_primary_10_1016_j_cclet_2022_04_012
crossref_primary_10_1002_aenm_202003759
crossref_primary_10_1016_j_scib_2024_07_003
crossref_primary_10_1039_D1TA02745J
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1016_j_jechem_2022_07_040
crossref_primary_10_1016_j_apcatb_2022_121591
crossref_primary_10_1016_j_cej_2022_137901
crossref_primary_10_1002_ange_202107731
crossref_primary_10_1021_acs_langmuir_3c00322
crossref_primary_10_1002_adfm_202111777
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1002_cjoc_202300388
crossref_primary_10_1039_D3NR05051C
crossref_primary_10_1016_j_apcatb_2022_121355
crossref_primary_10_1002_ange_202212733
crossref_primary_10_1002_smtd_202101186
crossref_primary_10_1038_s41467_024_46708_8
crossref_primary_10_1002_aenm_202202964
crossref_primary_10_1021_acsaenm_3c00192
crossref_primary_10_1021_acsami_4c00185
crossref_primary_10_1039_D1TA09424F
crossref_primary_10_1016_j_nantod_2023_101852
crossref_primary_10_1016_j_apcatb_2023_122976
crossref_primary_10_1039_D1QM00960E
crossref_primary_10_1016_j_susmat_2023_e00665
crossref_primary_10_1002_sstr_202300555
crossref_primary_10_1007_s40242_023_2325_9
crossref_primary_10_1002_anie_202110186
crossref_primary_10_1021_acs_inorgchem_2c00862
crossref_primary_10_1007_s12678_024_00871_0
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1002_adfm_202301490
crossref_primary_10_1021_acs_chemrev_1c00234
crossref_primary_10_1016_j_nanoen_2023_108952
crossref_primary_10_1039_D4EE01912A
crossref_primary_10_1016_j_chempr_2023_06_001
crossref_primary_10_1016_j_jallcom_2022_165823
crossref_primary_10_1016_j_jcis_2024_05_033
crossref_primary_10_1016_j_jhazmat_2022_129757
crossref_primary_10_1016_j_checat_2021_10_007
crossref_primary_10_1016_j_jallcom_2023_169448
crossref_primary_10_1016_j_trechm_2023_02_001
crossref_primary_10_1016_j_cej_2021_131662
crossref_primary_10_1016_j_electacta_2023_142844
crossref_primary_10_1016_j_jcis_2024_12_104
crossref_primary_10_1016_j_matt_2021_02_021
crossref_primary_10_1002_ange_202409449
crossref_primary_10_1021_acsami_4c03262
crossref_primary_10_1002_anie_202102320
crossref_primary_10_1002_anie_202104747
crossref_primary_10_1016_j_mtener_2021_100703
crossref_primary_10_1002_admi_202300279
crossref_primary_10_1021_jacs_1c10963
crossref_primary_10_1021_acs_nanolett_4c01442
crossref_primary_10_1002_smll_202500616
crossref_primary_10_1002_ange_202214794
crossref_primary_10_1002_ange_202413916
crossref_primary_10_1002_smll_202107268
crossref_primary_10_1021_acsami_3c10238
crossref_primary_10_6023_A24010040
crossref_primary_10_1002_aesr_202200036
crossref_primary_10_1080_21663831_2022_2095235
crossref_primary_10_1021_acs_inorgchem_1c03143
crossref_primary_10_1016_j_mtchem_2022_101359
crossref_primary_10_1002_smtd_202100573
crossref_primary_10_1021_acs_inorgchem_3c01599
crossref_primary_10_1007_s12613_022_2555_8
crossref_primary_10_1016_j_jechem_2022_12_051
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1039_D2QI00291D
crossref_primary_10_1002_anie_202311752
crossref_primary_10_1021_acsnano_3c05224
crossref_primary_10_1016_j_jcat_2022_04_009
crossref_primary_10_1016_j_cej_2021_132762
crossref_primary_10_1039_D2TA01716D
crossref_primary_10_2139_ssrn_4051632
crossref_primary_10_1007_s12274_023_6003_5
crossref_primary_10_1016_j_jallcom_2024_177377
crossref_primary_10_1021_acs_est_2c01388
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1002_celc_202400525
crossref_primary_10_1021_acs_inorgchem_2c01756
crossref_primary_10_1063_5_0100999
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1021_acsanm_2c03049
crossref_primary_10_1039_D3CS00767G
crossref_primary_10_1002_anie_202409449
crossref_primary_10_1021_acscatal_3c05344
crossref_primary_10_1002_cey2_315
crossref_primary_10_1021_jacs_3c07790
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1002_anie_202216008
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_2139_ssrn_4094537
crossref_primary_10_1016_j_checat_2022_05_020
crossref_primary_10_1016_j_ijhydene_2024_08_457
crossref_primary_10_1007_s40843_022_2234_5
crossref_primary_10_1002_adma_202200840
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1016_j_jssc_2021_122515
crossref_primary_10_1016_j_apmt_2021_101185
crossref_primary_10_1039_D3EE02946H
crossref_primary_10_1016_j_esci_2025_100375
crossref_primary_10_1016_j_cej_2022_140464
crossref_primary_10_1016_j_fmre_2021_06_006
crossref_primary_10_1021_acs_jpcc_2c00671
crossref_primary_10_1021_acs_energyfuels_2c03833
crossref_primary_10_1016_j_mtener_2021_100902
crossref_primary_10_3390_nano14141168
crossref_primary_10_1016_j_mtener_2021_100906
crossref_primary_10_1021_acsnano_2c10170
crossref_primary_10_1016_j_checat_2022_05_010
crossref_primary_10_1021_acs_inorgchem_2c00403
crossref_primary_10_1002_adfm_202408823
crossref_primary_10_1016_j_jcis_2023_10_006
crossref_primary_10_1021_acsmaterialslett_3c00404
crossref_primary_10_1002_adma_202209876
crossref_primary_10_1002_chem_202401644
crossref_primary_10_1039_D2CC06879F
crossref_primary_10_1016_j_nanoen_2022_107328
crossref_primary_10_1021_acssensors_1c02729
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1016_j_mtener_2022_101046
crossref_primary_10_1002_anie_202304007
crossref_primary_10_3390_ma16010076
crossref_primary_10_1021_acssuschemeng_1c06658
crossref_primary_10_1016_j_mtcata_2024_100068
crossref_primary_10_1002_smll_202200303
crossref_primary_10_1039_D3QM01062G
crossref_primary_10_1016_j_electacta_2022_141437
crossref_primary_10_1016_j_electacta_2021_139068
crossref_primary_10_1002_cey2_344
crossref_primary_10_1002_asia_202300197
crossref_primary_10_1002_ange_202304007
crossref_primary_10_3390_inorganics11110424
crossref_primary_10_1021_acsenergylett_3c01626
crossref_primary_10_1016_j_pnsc_2024_02_004
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1016_j_ijhydene_2024_08_401
crossref_primary_10_1002_celc_202101476
crossref_primary_10_1002_anie_202314833
crossref_primary_10_1021_acscatal_1c03333
crossref_primary_10_1016_j_jcis_2024_05_205
crossref_primary_10_1002_anie_202413916
crossref_primary_10_1039_D1CE00350J
crossref_primary_10_1002_sus2_3
crossref_primary_10_1016_j_ijhydene_2024_03_150
crossref_primary_10_1016_j_mtnano_2021_100144
crossref_primary_10_1149_1945_7111_adb7c7
crossref_primary_10_1016_j_jcis_2023_09_185
crossref_primary_10_1039_D0NR07508F
crossref_primary_10_1016_j_ijhydene_2021_12_239
crossref_primary_10_1016_j_mtener_2020_100618
crossref_primary_10_1016_j_mtener_2020_100619
crossref_primary_10_1002_ange_202300507
crossref_primary_10_1002_advs_202404095
crossref_primary_10_1021_acs_chemmater_2c03723
crossref_primary_10_1002_adfm_202301075
crossref_primary_10_1002_chem_202102746
crossref_primary_10_1039_D1CC04770A
crossref_primary_10_1016_j_apcatb_2023_123086
crossref_primary_10_1016_j_apcatb_2022_121602
crossref_primary_10_1016_j_jcis_2022_07_062
crossref_primary_10_1021_acs_inorgchem_1c00026
crossref_primary_10_1126_sciadv_abk0919
crossref_primary_10_1021_acs_jpcc_2c02611
crossref_primary_10_1016_j_chempr_2024_10_012
crossref_primary_10_1002_adfm_202102066
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1021_acscatal_1c05532
crossref_primary_10_1016_j_cej_2022_138515
crossref_primary_10_1016_j_cej_2022_135005
crossref_primary_10_1021_acsanm_2c03223
crossref_primary_10_1002_cnma_202100061
crossref_primary_10_1039_D3DT00516J
crossref_primary_10_1016_j_jcis_2023_07_112
crossref_primary_10_1016_j_ijhydene_2024_10_003
crossref_primary_10_1021_acsaem_3c00395
crossref_primary_10_1002_smll_202206723
crossref_primary_10_1038_s41467_024_46140_y
crossref_primary_10_54227_mlab_20220054
crossref_primary_10_1002_ange_202309341
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1002_ppsc_202100119
crossref_primary_10_1007_s12274_021_3535_4
crossref_primary_10_1021_acs_inorgchem_2c03706
crossref_primary_10_1016_j_chempr_2023_05_044
crossref_primary_10_1002_adma_202420593
crossref_primary_10_1002_smll_202302055
crossref_primary_10_1016_j_mtener_2021_100781
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1002_ange_202207845
crossref_primary_10_1039_D3LF00193H
crossref_primary_10_1021_acsami_4c07495
crossref_primary_10_1021_acsmaterialslett_4c00835
crossref_primary_10_1002_ange_202415755
crossref_primary_10_1002_ange_202213049
crossref_primary_10_1007_s40820_024_01382_9
crossref_primary_10_1021_acsnano_2c08919
crossref_primary_10_1002_smsc_202100017
crossref_primary_10_1021_acscatal_4c00269
crossref_primary_10_1002_ijch_202300017
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_cej_2021_130532
crossref_primary_10_1002_smsc_202100011
crossref_primary_10_3390_catal13101317
crossref_primary_10_1039_D2EE03015B
crossref_primary_10_1039_D2IM00063F
crossref_primary_10_1038_s41467_024_51034_0
crossref_primary_10_1002_ange_202211094
crossref_primary_10_1002_anie_202408508
crossref_primary_10_1039_D4EY00008K
crossref_primary_10_1016_j_joule_2023_06_018
crossref_primary_10_1016_j_jenvman_2024_123991
crossref_primary_10_1002_smll_202100629
crossref_primary_10_1002_anie_202212733
crossref_primary_10_1021_acs_inorgchem_2c00241
crossref_primary_10_1002_anie_202312239
crossref_primary_10_2139_ssrn_4201271
crossref_primary_10_1021_acscatal_1c02465
crossref_primary_10_1021_acs_cgd_1c00581
crossref_primary_10_1002_smll_202205845
crossref_primary_10_1016_j_cattod_2024_115117
crossref_primary_10_1002_ange_202112880
crossref_primary_10_1002_anie_202302220
crossref_primary_10_1021_acs_inorgchem_1c01561
crossref_primary_10_1016_j_mtener_2021_100737
crossref_primary_10_1016_j_mtchem_2024_102397
crossref_primary_10_1002_ange_202504148
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1039_D4NR05426A
crossref_primary_10_1016_j_cej_2022_140403
crossref_primary_10_1126_sciadv_adu5370
crossref_primary_10_1002_ange_202100897
crossref_primary_10_1007_s12274_021_3404_1
Cites_doi 10.1038/nmat4852
10.1038/ncomms10942
10.1126/science.1257289
10.1039/C8CC06410E
10.1021/ja511559d
10.1021/jacs.6b00332
10.1103/PhysRev.140.A1133
10.1021/acscatal.7b00999
10.1038/nmat4938
10.1021/ja5096733
10.1038/nenergy.2016.189
10.1039/C9SC04141A
10.1073/pnas.0505207102
10.1126/science.1212858
10.1002/anie.201811241
10.1002/anie.201803587
10.1002/adfm.201707244
10.1021/nn503760c
10.1016/j.sab.2006.12.002
10.1021/jacs.6b12353
10.1002/adma.201900510
10.1021/ic500434a
10.1038/nmat1807
10.1021/acscatal.9b03790
10.1002/ange.201801029
10.1021/ja407115p
10.1038/s41929-019-0325-4
10.1126/science.aad4998
10.1039/C8EE01063C
10.1021/jacs.6b04663
10.1038/nchem.2695
10.1038/nmat4794
10.1021/ja301018q
10.1021/acsaem.8b02160
10.1103/PhysRevB.54.11169
10.1002/aenm.201700518
10.1021/ja502379c
10.1021/jacs.8b05294
10.1038/s41598-018-37307-x
10.1126/science.aaf5050
10.1021/acs.jctc.5b00327
10.1039/C6CS00328A
10.1021/ja405997s
10.1002/jcc.24300
10.1103/RevModPhys.72.621
10.1021/jacs.5b06814
10.1021/acscatal.5b01481
10.1039/C7CC08843D
10.1002/cctc.201000397
10.1021/acscatal.5b01638
10.1038/nenergy.2016.184
10.1016/0921-4526(94)00761-J
10.1103/PhysRevLett.77.3865
10.1021/jacs.6b12250
10.1088/0953-8984/21/34/345501
10.1021/acs.jpclett.9b01232
10.1107/S0909049505012719
10.1021/acsenergylett.7b00679
10.1103/PhysRevB.71.094110
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
3V.
7SP
7SU
7TB
7XB
88I
8FD
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L7M
M2P
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41560-020-00709-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Central Korea
Environmental Engineering Abstracts
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-7546
EndPage 890
ExternalDocumentID 10_1038_s41560_020_00709_1
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21890381, Z.T.; 21721002, Z.T.
  funderid: https://doi.org/10.13039/501100001809
– fundername: not applicable
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000, Z.T.), National Key Basic Research Program of China (2016YFA0200700, Z.T.), Frontier Science Key Project of Chinese Academy of Sciences (QYZDJ-SSW-SLH038, Z.T.) and K.C.Wong Education Foundation (Z.T.).
– fundername: “Young Elite Scientists Sponsorship Program” by CAST
– fundername: FH Loxton fellowship of the USYD
– fundername: Youth Innovation Promotion Association CAS
GroupedDBID 0R~
3V.
88I
AAEEF
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BKKNO
BPHCQ
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
M2P
NNMJJ
O9-
ODYON
PQQKQ
PROAC
RNT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7SP
7SU
7TB
7XB
8FD
8FK
C1K
FR3
L7M
PKEHL
PQEST
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c385t-77a9cb53b7309c633066ac1b963d941a0c0eead33ec18c95d4d792e425c7544a3
IEDL.DBID BENPR
ISSN 2058-7546
IngestDate Sat Aug 23 13:08:27 EDT 2025
Tue Jul 01 02:47:43 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri Feb 21 02:38:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-77a9cb53b7309c633066ac1b963d941a0c0eead33ec18c95d4d792e425c7544a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9059-3839
0000-0002-7023-5986
0000-0001-8860-093X
0000-0003-0610-0064
PQID 2471559006
PQPubID 2069617
PageCount 10
ParticipantIDs proquest_journals_2471559006
crossref_primary_10_1038_s41560_020_00709_1
crossref_citationtrail_10_1038_s41560_020_00709_1
springer_journals_10_1038_s41560_020_00709_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature energy
PublicationTitleAbbrev Nat Energy
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Solé (CR55) 2007; 62
Jiang (CR24) 2018; 9
Guda (CR54) 2015; 11
Bajdich, García-Mota, Vojvodic, Nørskov, Bell (CR60) 2013; 135
Yang, Fei, Ruan, Xiang, Tour (CR40) 2014; 8
McCrory, Jung, Peters, Jaramillo (CR19) 2013; 135
Görlin (CR33) 2016; 138
Miner (CR45) 2016; 7
Görlin (CR46) 2019; 55
Liberman, He, Shimoni, Ifraemov, Hod (CR16) 2020; 11
Rehr, Albers (CR52) 2000; 72
Wang (CR17) 2014; 53
Drevon (CR28) 2019; 9
Kirshenbaum (CR25) 2015; 347
Mansour, Melendres (CR26) 1995; 208-209
Perdew, Burke, Ernzerhof (CR57) 1996; 77
Zhao (CR10) 2016; 1
Man (CR30) 2011; 3
Shan, Ling, Davey, Zheng, Qiao (CR41) 2019; 31
Yang (CR8) 2016; 16
Tkalych, Zhuang, Carter (CR59) 2017; 7
Wang (CR13) 2018; 57
Yano (CR21) 2005; 102
Trześniewski (CR27) 2015; 137
He, Ifraemov, Raslin, Hod (CR15) 2018; 28
Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR2) 2011; 334
Jin (CR9) 2017; 2
Zhu (CR32) 2017; 16
He, Gao, Shimoni, Lu, Hod (CR49) 2019; 2
Kresse, Furthmüller (CR56) 1996; 54
Song, Hu (CR20) 2014; 136
Wu (CR6) 2019; 2
Seitz (CR1) 2016; 353
Bunău, Joly (CR53) 2009; 21
Görlin (CR38) 2017; 139
Grimaud (CR3) 2016; 2
Bediako (CR23) 2012; 134
Funke, Scheinost, Chukalina (CR22) 2005; 71
Friebel (CR34) 2015; 137
Shi, Yu, Liang, Du, Zhang (CR43) 2018; 58
Grimaud (CR5) 2017; 9
CR51
Smith (CR35) 2018; 11
Suen (CR4) 2017; 46
Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (CR31) 2015; 5
Liu (CR39) 2018; 54
Wuttig (CR29) 2006; 6
Hadt (CR37) 2016; 138
Trotochaud, Young, Ranney, Boettcher (CR48) 2014; 136
Liu, Zhu, Guo, Vasileff, Qiao (CR14) 2017; 7
Kohn, Sham (CR58) 1965; 140
Shen (CR11) 2017; 139
Singh, Liberman, Shimoni, Ifaemov, Hod (CR47) 2019; 10
Ravel, Newville (CR50) 2005; 12
Zheng, Liu, Lee (CR44) 2020; 10
Maintz, Deringer, Tchougréeff, Dronskowski (CR61) 2016; 37
Fabbri (CR7) 2017; 16
Seh (CR18) 2017; 355
Bates, Jia, Doan, Liang, Mukerjee (CR36) 2016; 6
Su (CR42) 2018; 140
Huang (CR12) 2018; 130
709_CR51
RDL Smith (709_CR35) 2018; 11
L Trotochaud (709_CR48) 2014; 136
AJ Tkalych (709_CR59) 2017; 7
J Suntivich (709_CR2) 2011; 334
X Su (709_CR42) 2018; 140
E Fabbri (709_CR7) 2017; 16
Y Yang (709_CR40) 2014; 8
C Singh (709_CR47) 2019; 10
AN Mansour (709_CR26) 1995; 208-209
J Jiang (709_CR24) 2018; 9
CCL McCrory (709_CR19) 2013; 135
K Kirshenbaum (709_CR25) 2015; 347
M Bajdich (709_CR60) 2013; 135
VA Solé (709_CR55) 2007; 62
J Liu (709_CR39) 2018; 54
J Yano (709_CR21) 2005; 102
DK Bediako (709_CR23) 2012; 134
D Drevon (709_CR28) 2019; 9
H Funke (709_CR22) 2005; 71
A Grimaud (709_CR3) 2016; 2
Y Zhu (709_CR32) 2017; 16
X-L Wang (709_CR13) 2018; 57
M Görlin (709_CR33) 2016; 138
BJ Trześniewski (709_CR27) 2015; 137
M Görlin (709_CR46) 2019; 55
J Huang (709_CR12) 2018; 130
J Shan (709_CR41) 2019; 31
LC Seitz (709_CR1) 2016; 353
SA Guda (709_CR54) 2015; 11
S Zhao (709_CR10) 2016; 1
M Görlin (709_CR38) 2017; 139
A Grimaud (709_CR5) 2017; 9
D Friebel (709_CR34) 2015; 137
N-T Suen (709_CR4) 2017; 46
LJ Wang (709_CR17) 2014; 53
W He (709_CR49) 2019; 2
RG Hadt (709_CR37) 2016; 138
W He (709_CR15) 2018; 28
J-Q Shen (709_CR11) 2017; 139
Y Shi (709_CR43) 2018; 58
I Liberman (709_CR16) 2020; 11
B Ravel (709_CR50) 2005; 12
M Wuttig (709_CR29) 2006; 6
F Song (709_CR20) 2014; 136
J Yang (709_CR8) 2016; 16
IC Man (709_CR30) 2011; 3
O Diaz-Morales (709_CR31) 2015; 5
JP Perdew (709_CR57) 1996; 77
W Kohn (709_CR58) 1965; 140
S Maintz (709_CR61) 2016; 37
ZW Seh (709_CR18) 2017; 355
J Liu (709_CR14) 2017; 7
G Kresse (709_CR56) 1996; 54
S Jin (709_CR9) 2017; 2
MK Bates (709_CR36) 2016; 6
EM Miner (709_CR45) 2016; 7
JJ Rehr (709_CR52) 2000; 72
O Bunău (709_CR53) 2009; 21
W Zheng (709_CR44) 2020; 10
T Wu (709_CR6) 2019; 2
References_xml – volume: 10
  start-page: 81
  year: 2020
  end-page: 92
  ident: CR44
  article-title: Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites
  publication-title: ACS Catal.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR57
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– ident: CR51
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR50
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
– volume: 347
  start-page: 149
  year: 2015
  end-page: 154
  ident: CR25
  article-title: In situ visualization of Li/Ag VP O batteries revealing rate-dependent discharge mechanism
  publication-title: Science
– volume: 58
  start-page: 3769
  year: 2018
  end-page: 3773
  ident: CR43
  article-title: In site electrochemical conversion of ultrathin tannin-NiFe complex film as an efficient oxygen-evolution electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 122
  year: 2006
  end-page: 128
  ident: CR29
  article-title: The role of vacancies and local distortions in the design of new phase-change materials
  publication-title: Nat. Mater.
– volume: 139
  start-page: 1778
  year: 2017
  end-page: 1781
  ident: CR11
  article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 094110
  year: 2005
  ident: CR22
  article-title: Wavelet analysis of extended X-ray absorption fine structure data
  publication-title: Phys. Rev. B
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: CR19
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 11286
  year: 2018
  end-page: 11292
  ident: CR42
  article-title: Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 155
  year: 2016
  end-page: 161
  ident: CR36
  article-title: Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 7
  year: 2016
  ident: CR45
  article-title: Electrochemical oxygen reduction catalysed by Ni (hexaiminotriphenylene)
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1900510
  year: 2019
  ident: CR41
  article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments
  publication-title: Adv. Mater.
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: CR58
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– volume: 2
  start-page: 16189
  year: 2016
  ident: CR3
  article-title: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction
  publication-title: Nat. Energy
– volume: 2
  start-page: 1937
  year: 2017
  end-page: 1938
  ident: CR9
  article-title: Are metal chalcogenides, nitrides and phosphides oxygen evolution catalysts or bifunctional catalysts?
  publication-title: ACS Energy Lett.
– volume: 134
  start-page: 6801
  year: 2012
  end-page: 6809
  ident: CR23
  article-title: Structure–activity correlations in a nickel-borate oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  ident: CR60
  article-title: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 12047
  year: 2005
  end-page: 12052
  ident: CR21
  article-title: X-ray damage to the Mn Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 55
  start-page: 818
  year: 2019
  end-page: 821
  ident: CR46
  article-title: Formation of unexpectedly active Ni–Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides
  publication-title: Chem. Commun.
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: CR34
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 16184
  year: 2016
  ident: CR10
  article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
– volume: 57
  start-page: 9660
  year: 2018
  end-page: 9664
  ident: CR13
  article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system
  publication-title: Angew. Chem. Int. Ed.
– volume: 130
  start-page: 4722
  year: 2018
  end-page: 4726
  ident: CR12
  article-title: Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2019
  ident: CR28
  article-title: Uncovering the role of oxygen in Ni–Fe(O H ) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction
  publication-title: Sci. Rep.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: CR4
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: CR30
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
– volume: 16
  start-page: 335
  year: 2016
  end-page: 341
  ident: CR8
  article-title: A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
  publication-title: Nat. Mater.
– volume: 72
  start-page: 621
  year: 2000
  end-page: 654
  ident: CR52
  article-title: Theoretical approaches to X-ray absorption fine structure
  publication-title: Rev. Mod. Phys.
– volume: 2
  start-page: 2138
  year: 2019
  end-page: 2148
  ident: CR49
  article-title: Synergistic coupling of anionic ligands to optimize the electronic and catalytic properties of metal–organic framework-converted oxygen-evolving catalysts
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 1700518
  year: 2017
  ident: CR14
  article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  ident: CR48
  article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 2070
  year: 2017
  end-page: 2082
  ident: CR38
  article-title: Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4512
  year: 2015
  end-page: 4521
  ident: CR54
  article-title: Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal–ligand intersystem crossing transients
  publication-title: J. Chem. Theory Comput.
– volume: 53
  start-page: 5881
  year: 2014
  end-page: 5883
  ident: CR17
  article-title: Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8 and 10 different metals
  publication-title: Inorg. Chem.
– volume: 62
  start-page: 63
  year: 2007
  end-page: 68
  ident: CR55
  article-title: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra
  publication-title: Spectrochim. Acta B
– volume: 5
  start-page: 5380
  year: 2015
  end-page: 5387
  ident: CR31
  article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 37
  start-page: 1030
  year: 2016
  end-page: 1035
  ident: CR61
  article-title: LOBSTER: a tool to extract chemical bonding from plane‐wave based DFT
  publication-title: J. Comput. Chem.
– volume: 138
  start-page: 5603
  year: 2016
  end-page: 5614
  ident: CR33
  article-title: Oxygen evolution reaction dynamics, faradaic charge efficiency and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 457
  year: 2017
  end-page: 465
  ident: CR5
  article-title: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
  publication-title: Nat. Chem.
– volume: 208-209
  start-page: 583
  year: 1995
  end-page: 584
  ident: CR26
  article-title: XAFS investigation of the structure and valency of nickel in some oxycompounds
  publication-title: Physica B
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  ident: CR20
  article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 15112
  year: 2015
  end-page: 15121
  ident: CR27
  article-title: In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1707244
  year: 2018
  ident: CR15
  article-title: Room-temperature electrochemical conversion of metal–organic frameworks into porous amorphous metal sulfides with tailored composition and hydrogen evolution activity
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2018
  ident: CR24
  article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide
  publication-title: Nat. Commun.
– volume: 16
  start-page: 532
  year: 2017
  end-page: 536
  ident: CR32
  article-title: Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy
  publication-title: Nat. Mater.
– volume: 16
  start-page: 925
  year: 2017
  end-page: 931
  ident: CR7
  article-title: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
  publication-title: Nat. Mater.
– volume: 8
  start-page: 9518
  year: 2014
  end-page: 9523
  ident: CR40
  article-title: Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers
  publication-title: ACS Nano
– volume: 10
  start-page: 3630
  year: 2019
  end-page: 3636
  ident: CR47
  article-title: Pristine versus pyrolyzed metal–organic framework-based oxygen evolution electrocatalysts: evaluation of intrinsic activity using electrochemical impedance spectroscopy
  publication-title: Phys. Chem. Lett.
– volume: 11
  start-page: 180
  year: 2020
  end-page: 185
  ident: CR16
  article-title: Spatially confined electrochemical conversion of metal–organic frameworks into metal-sulfides and their in-situ electrocatalytic investigation via scanning electrochemical microscopy
  publication-title: Chem. Sci.
– volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  ident: CR2
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
– volume: 2
  start-page: 763
  year: 2019
  end-page: 772
  ident: CR6
  article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation
  publication-title: Nat. Catal.
– volume: 11
  start-page: 2476
  year: 2018
  end-page: 2485
  ident: CR35
  article-title: Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 5329
  year: 2017
  end-page: 5339
  ident: CR59
  article-title: A density functional +  assessment of oxygen evolution reaction mechanisms on β-NiOOH
  publication-title: ACS Catal.
– volume: 54
  start-page: 463
  year: 2018
  end-page: 466
  ident: CR39
  article-title: Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution
  publication-title: Chem. Commun.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR56
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 353
  start-page: 1011
  year: 2016
  end-page: 1014
  ident: CR1
  article-title: A highly active and stable IrO /SrIrO catalyst for the oxygen evolution reaction
  publication-title: Science
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: CR18
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 138
  start-page: 11017
  year: 2016
  end-page: 11030
  ident: CR37
  article-title: X-ray spectroscopic characterization of Co( ) and metal–metal interactions in Co O : electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 345501
  year: 2009
  end-page: 345510
  ident: CR53
  article-title: Self-consistent aspects of X-ray absorption calculations
  publication-title: J. Phys. Condens. Matter
– volume: 16
  start-page: 532
  year: 2017
  ident: 709_CR32
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4852
– volume: 7
  year: 2016
  ident: 709_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10942
– volume: 347
  start-page: 149
  year: 2015
  ident: 709_CR25
  publication-title: Science
  doi: 10.1126/science.1257289
– volume: 55
  start-page: 818
  year: 2019
  ident: 709_CR46
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06410E
– volume: 137
  start-page: 1305
  year: 2015
  ident: 709_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 138
  start-page: 5603
  year: 2016
  ident: 709_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00332
– volume: 140
  start-page: A1133
  year: 1965
  ident: 709_CR58
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 7
  start-page: 5329
  year: 2017
  ident: 709_CR59
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00999
– volume: 16
  start-page: 925
  year: 2017
  ident: 709_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4938
– volume: 136
  start-page: 16481
  year: 2014
  ident: 709_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 2
  start-page: 16189
  year: 2016
  ident: 709_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.189
– volume: 11
  start-page: 180
  year: 2020
  ident: 709_CR16
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04141A
– volume: 102
  start-page: 12047
  year: 2005
  ident: 709_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0505207102
– volume: 334
  start-page: 1383
  year: 2011
  ident: 709_CR2
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 58
  start-page: 3769
  year: 2018
  ident: 709_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811241
– volume: 9
  year: 2018
  ident: 709_CR24
  publication-title: Nat. Commun.
– volume: 57
  start-page: 9660
  year: 2018
  ident: 709_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803587
– volume: 28
  start-page: 1707244
  year: 2018
  ident: 709_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707244
– volume: 8
  start-page: 9518
  year: 2014
  ident: 709_CR40
  publication-title: ACS Nano
  doi: 10.1021/nn503760c
– volume: 62
  start-page: 63
  year: 2007
  ident: 709_CR55
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2006.12.002
– volume: 139
  start-page: 1778
  year: 2017
  ident: 709_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12353
– volume: 31
  start-page: 1900510
  year: 2019
  ident: 709_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900510
– volume: 53
  start-page: 5881
  year: 2014
  ident: 709_CR17
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500434a
– volume: 6
  start-page: 122
  year: 2006
  ident: 709_CR29
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1807
– volume: 10
  start-page: 81
  year: 2020
  ident: 709_CR44
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03790
– volume: 130
  start-page: 4722
  year: 2018
  ident: 709_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201801029
– volume: 135
  start-page: 16977
  year: 2013
  ident: 709_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 2
  start-page: 763
  year: 2019
  ident: 709_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: 709_CR18
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 11
  start-page: 2476
  year: 2018
  ident: 709_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01063C
– volume: 138
  start-page: 11017
  year: 2016
  ident: 709_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04663
– volume: 9
  start-page: 457
  year: 2017
  ident: 709_CR5
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2695
– volume: 16
  start-page: 335
  year: 2016
  ident: 709_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4794
– volume: 134
  start-page: 6801
  year: 2012
  ident: 709_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301018q
– volume: 2
  start-page: 2138
  year: 2019
  ident: 709_CR49
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02160
– volume: 54
  start-page: 11169
  year: 1996
  ident: 709_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  start-page: 1700518
  year: 2017
  ident: 709_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700518
– volume: 136
  start-page: 6744
  year: 2014
  ident: 709_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502379c
– volume: 140
  start-page: 11286
  year: 2018
  ident: 709_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05294
– volume: 9
  year: 2019
  ident: 709_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37307-x
– volume: 353
  start-page: 1011
  year: 2016
  ident: 709_CR1
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 11
  start-page: 4512
  year: 2015
  ident: 709_CR54
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00327
– volume: 46
  start-page: 337
  year: 2017
  ident: 709_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 135
  start-page: 13521
  year: 2013
  ident: 709_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405997s
– volume: 37
  start-page: 1030
  year: 2016
  ident: 709_CR61
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 72
  start-page: 621
  year: 2000
  ident: 709_CR52
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.72.621
– volume: 137
  start-page: 15112
  year: 2015
  ident: 709_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06814
– volume: 6
  start-page: 155
  year: 2016
  ident: 709_CR36
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01481
– volume: 54
  start-page: 463
  year: 2018
  ident: 709_CR39
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08843D
– ident: 709_CR51
– volume: 3
  start-page: 1159
  year: 2011
  ident: 709_CR30
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 5
  start-page: 5380
  year: 2015
  ident: 709_CR31
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01638
– volume: 1
  start-page: 16184
  year: 2016
  ident: 709_CR10
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 208-209
  start-page: 583
  year: 1995
  ident: 709_CR26
  publication-title: Physica B
  doi: 10.1016/0921-4526(94)00761-J
– volume: 77
  start-page: 3865
  year: 1996
  ident: 709_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 139
  start-page: 2070
  year: 2017
  ident: 709_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 21
  start-page: 345501
  year: 2009
  ident: 709_CR53
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/34/345501
– volume: 10
  start-page: 3630
  year: 2019
  ident: 709_CR47
  publication-title: Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01232
– volume: 12
  start-page: 537
  year: 2005
  ident: 709_CR50
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 2
  start-page: 1937
  year: 2017
  ident: 709_CR9
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 71
  start-page: 094110
  year: 2005
  ident: 709_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.094110
SSID ssj0002922581
Score 2.6402988
Snippet Metal–organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER). Despite their promising...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 881
SubjectTerms 639/301
639/301/299/886
639/4077/909/4086
639/4077/909/4101/4102
639/638/298/921
Absorption spectroscopy
Bimetals
Catalytic activity
Economics and Management
Electrocatalysts
Electronic structure
Energy
Energy Policy
Energy Storage
Energy Systems
Evolution
High resolution electron microscopy
Image resolution
Metal-organic frameworks
Metals
Oxidation
Oxygen
Oxygen evolution reactions
Renewable and Green Energy
Transmission electron microscopy
Water splitting
X ray absorption
X-ray absorption spectroscopy
Title Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction
URI https://link.springer.com/article/10.1038/s41560-020-00709-1
https://www.proquest.com/docview/2471559006
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCQR7YwGoSJ2k8IUCtEBIVAip1ixzHmUpSlApRJv4D_5Bfwp3jtAWJzkk85N2d35197wg5S0IVdRNXMTyzYti6yISfSBZJZCe-lpmDjcL3g_B26N-NgpEtuJX2WmUdE02gTguFNfKOB1E0wBGX4eXkleHUKDxdtSM01kkTQnAEyVfzujd4eJxXWTwB9hq5tlvG4VGnxIzFYZg1odSNYO7vHWlBM_-cjJoNp79NtixTpFcVtDtkTee7ZHNJP3CPfDwZ9VdUzqDTJQZa5LTIKCoRj2dUmohGXzTQ7O_Pr2qMk6JZfSuL2kk4ppAzK6clrVoXKVBDWrzPwMKofrMWSoFjmk6IfTLs955vbpkdpsAUj4IpsGgpVBLwBFxaqJBDqhBK5SbggKnwXekoR4NVca6VGykRpH7aFZ4Gl1aokSf5AWnkRa4PCYWMJ5MeyshAeigzLXk30L7oegC1lEHWIm79Q2NllcZx4MU4NifePIorEGIAITYgxG6LnM-_mVQ6Gyvfbtc4xdbnynhhIS1yUWO3ePz_akerVzsmGx6ai2lAbJMGIKtPgIlMk1Nrbj_pQt5D
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7B7gF6qGgBsRSoD_QEFkmcZOMDqoAuWv5WiB-Jm3G8zmnZUGVFuz31HXiPPhRPwoyTsBQJbpzj-OD5PP7G4_kGYD2NTdJOfcMpZ8WpdJHLMNU80cROQqszjwqFT3px9zI8vIqupuBfXQtDzyprn-gcdT83dEe-FaAXjajFZfz99ienrlGUXa1baJSwOLLjXxiyFdsHP9C-34Jgv3Ox1-VVVwFuRBKNkE5qadJIpIhtaWKM5-NYGz9FJPZl6GvPeBaXVwhr_MTIqB_22zKwiG1DYnFa4LzT0AwFhjINaO52eqdnT7c6gcT9kfhVdY4nkq2CIiSPU5RG0jqS-_-fgBNa-yIT6w64_Tn4WDFTtlNC6RNM2eFn-PBMr3Ae_pw7tVlS6mCjZ4w3H7I8Y6R8PBgz7Twou7FI6x_-3pdtowzL6ldgrOq84y6OxsWoYGWpJEMqyvLfY0Q0s3fVjmDIaV3lxQJcvssyL0JjmA_tEjCMsDIdkGwNhqM6s1q0IxvKdoDQ0jrKWuDXC6pMpWxODTYGymXYRaJKIyg0gnJGUH4LNp7-uS11Pd4cvVLbSVV7vFATRLZgs7bd5PPrsy2_PdtXmOlenByr44Pe0ReYDQg6rvhxBRpoZbuKLGiUrlXQY3D93mh_BCwhGpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+transformation+of+highly+active+metal%E2%80%93organic+framework+electrocatalysts+during+the+oxygen+evolution+reaction&rft.jtitle=Nature+energy&rft.au=Zhao+Shenlong&rft.au=Tan+Chunhui&rft.au=Chun-Ting%2C+He&rft.au=An+Pengfei&rft.date=2020-11-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7546&rft.volume=5&rft.issue=11&rft.spage=881&rft.epage=890&rft_id=info:doi/10.1038%2Fs41560-020-00709-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7546&client=summon