ASFGNN: Automated separated-federated graph neural network
Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of graph data. The success of GNN models always depends on rich features and adjacent relationships. However, in practice, such data are usually isolated by different data owners (clients) and thus are likely to be...
Saved in:
Published in | Peer-to-peer networking and applications Vol. 14; no. 3; pp. 1692 - 1704 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of graph data. The success of GNN models always depends on rich features and adjacent relationships. However, in practice, such data are usually isolated by different data owners (clients) and thus are likely to be Non-Independent and Identically Distributed (Non-IID). Meanwhile, considering the limited network status of data owners, hyper-parameters optimization for collaborative learning approaches is time-consuming in data isolation scenarios. To address these problems, we propose an Automated Separated-Federated Graph Neural Network (ASFGNN) learning paradigm. ASFGNN consists of two main components, i.e., the training of GNN and the tuning of hyper-parameters. Specifically, to solve the data Non-IID problem, we first propose a separated-federated GNN learning model, which decouples the training of GNN into two parts: the message passing part that is done by clients separately, and the loss computing part that is learnt by clients federally. To handle the time-consuming parameter tuning problem, we leverage Bayesian optimization technique to automatically tune the hyper-parameters of all the clients. We conduct experiments on benchmark datasets and the results demonstrate that ASFGNN significantly outperforms the naive federated GNN, in terms of both accuracy and parameter-tuning efficiency. |
---|---|
AbstractList | Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of graph data. The success of GNN models always depends on rich features and adjacent relationships. However, in practice, such data are usually isolated by different data owners (clients) and thus are likely to be Non-Independent and Identically Distributed (Non-IID). Meanwhile, considering the limited network status of data owners, hyper-parameters optimization for collaborative learning approaches is time-consuming in data isolation scenarios. To address these problems, we propose an Automated Separated-Federated Graph Neural Network (ASFGNN) learning paradigm. ASFGNN consists of two main components, i.e., the training of GNN and the tuning of hyper-parameters. Specifically, to solve the data Non-IID problem, we first propose a separated-federated GNN learning model, which decouples the training of GNN into two parts: the message passing part that is done by clients separately, and the loss computing part that is learnt by clients federally. To handle the time-consuming parameter tuning problem, we leverage Bayesian optimization technique to automatically tune the hyper-parameters of all the clients. We conduct experiments on benchmark datasets and the results demonstrate that ASFGNN significantly outperforms the naive federated GNN, in terms of both accuracy and parameter-tuning efficiency. |
Author | Wang, Li Zhou, Jun Wu, Bingzhe Chen, Chaochao Zhang, Benyu Zheng, Longfei |
Author_xml | – sequence: 1 givenname: Longfei surname: Zheng fullname: Zheng, Longfei organization: Ant Group – sequence: 2 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Ant Group – sequence: 3 givenname: Chaochao orcidid: 0000-0003-1419-964X surname: Chen fullname: Chen, Chaochao email: chaochao.ccc@antgroup.com organization: Ant Group – sequence: 4 givenname: Bingzhe surname: Wu fullname: Wu, Bingzhe organization: Ant Group – sequence: 5 givenname: Li surname: Wang fullname: Wang, Li organization: Ant Group – sequence: 6 givenname: Benyu surname: Zhang fullname: Zhang, Benyu organization: Ant Group |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxGzwZ-x0qypakKoyALNlnHNJaZNgJ6r496QNAomh073D-9ydnhEalFUJCF1TcksJUXeRMqI5JoxiQokSeH-GhjTjKU6FJIPfLNgFGsW4ISSlXLIhmkyf54vVapJM26ba2QbyJEJtwyFhDzkcU7IOtn5PSmiD3Xaj2Vfh4xKde7uNcPUzx-h1fv8ye8DLp8XjbLrEjmvZYKWkEN5KLZ1wmQfBMilzpQVo75wEkdmMWcG1f8sJMOuEsgBgIVfeArV8jG76vXWoPluIjdlUbSi7k4ZJyrhOFUm7lu5bLlQxBvDGFY1tiqpsgi22hhJzMGV6U6YzZY6mzL5D2T-0DsXOhq_TEO-h2JXLNYS_r05Q313Tfjc |
CitedBy_id | crossref_primary_10_1145_3575637_3575644 crossref_primary_10_1109_TBDATA_2024_3356388 crossref_primary_10_1109_TITS_2022_3210559 crossref_primary_10_1109_TPDS_2021_3125565 crossref_primary_10_1007_s10115_022_01664_x crossref_primary_10_1080_09540091_2021_1936455 crossref_primary_10_1145_3560485 crossref_primary_10_1109_TMI_2022_3225083 crossref_primary_10_1016_j_knosys_2022_108609 crossref_primary_10_1109_JPROC_2024_3369017 crossref_primary_10_1109_ACCESS_2024_3476920 crossref_primary_10_1109_TKDE_2022_3178211 crossref_primary_10_1109_JSAC_2022_3229422 crossref_primary_10_1109_TNNLS_2024_3360429 crossref_primary_10_1007_s13042_024_02106_6 crossref_primary_10_1002_widm_1486 crossref_primary_10_1109_TPDS_2023_3240527 crossref_primary_10_1007_s12083_023_01584_9 crossref_primary_10_1016_j_inffus_2024_102876 crossref_primary_10_1016_j_ins_2023_119552 crossref_primary_10_1109_TMC_2024_3437468 crossref_primary_10_1109_JIOT_2022_3228727 crossref_primary_10_1007_s11633_024_1510_8 crossref_primary_10_1007_s12083_023_01472_2 crossref_primary_10_1109_ACCESS_2023_3261266 |
Cites_doi | 10.1145/3269206.3272010 10.1145/1188913.1188915 10.1145/3219819.3219890 10.1080/03081079008935097 10.1145/359168.359176 10.1145/2623330.2623732 10.1109/SRDS51746.2020.00017 10.11989/JEST.1674-862X.80904120 10.1145/3067695.3084211 10.1016/j.jnca.2018.05.003 10.1109/BigData47090.2019.9005983 10.1145/2857705.2857731 10.1109/TNN.2008.2005605 10.1609/aaai.v33i01.33014424 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O M2P MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s12083-021-01074-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-6450 |
EndPage | 1704 |
ExternalDocumentID | 10_1007_s12083_021_01074_w |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 1N0 203 29O 29~ 2JN 2JY 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 5VS 67Z 6NX 875 88I 8AO 8FE 8FG 8G5 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARCSS AUKKA AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV LLZTM M0N M2O M2P M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9P PQQKQ PROAC PT4 Q2X QOS R89 RIG RLLFE RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TH9 TSG TSK TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-77544fa585c4c9fe42955d784e8fcc5e49a92a438fbd0e2ac47aeeeaed7fae1a3 |
IEDL.DBID | U2A |
ISSN | 1936-6442 |
IngestDate | Fri Jul 25 23:03:29 EDT 2025 Tue Jul 01 01:29:13 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Fri Feb 21 02:48:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Federated learning Privacy preserving Bayesian optimization Graph neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-77544fa585c4c9fe42955d784e8fcc5e49a92a438fbd0e2ac47aeeeaed7fae1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1419-964X |
PQID | 2512386706 |
PQPubID | 54523 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2512386706 crossref_citationtrail_10_1007_s12083_021_01074_w crossref_primary_10_1007_s12083_021_01074_w springer_journals_10_1007_s12083_021_01074_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Norwell |
PublicationTitle | Peer-to-peer networking and applications |
PublicationTitleAbbrev | Peer-to-Peer Netw. Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks using model averaging. ArXiv:1602.05629 Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks Zhou J, Chen C, Zheng L, Zheng X, Wu B, Liu Z, Wang L (2020) Privacy-preserving graph neural network for node classification. arXiv:2005.11903 Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019) Hyperparameter optimization for machine learning models based on bayesian optimizationb. J Electron Sci Technol 17(1):26–40. https://doi.org/10.11989/JEST.1674-862X.80904120, http://www.sciencedirect.com/science/article/pii/S1674862X19300047 Chen YW, Song Q, Hu X (2019) Techniques for automated machine learning Lorenzo PR, Nalepa J, Ramos LS, Pastor JR (2017) Hyper-parameter selection in deep neural networks using parallel particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17. Association for Computing Machinery, New York, pp 1864–1871. https://doi.org/10.1145/3067695.3084211 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 Wang T, Zhu JY, Torralba A, Efros AA (2018) Dataset distillation Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80 Abril PS, Plant R (2007) A comprehensive survey on graph neural networks. Commun ACM 50(1), 36–44. https://doi.org/10.1145/1188913.1188915 Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional neural networks for web-scale recommender systems. In: SIGKDD. ACM, pp 974–983 Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable and secure logistic regression via homomorphic encryption. In: CODASPY. ACM, pp 142–144 Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data Lindauer M, Eggensperger K, Feurer M, Falkner S, Biedenkapp A, Hutter F (2017) Smac v3: Algorithm configuration in python. https://github.com/automl/SMAC3 Gu Z, Huang H, Zhang J, Su D, Lamba A, Pendarakis D, Molloy I (2019) Securing input data of deep learning inference systems via partitioned enclave execution. CoRR arXiv:1807.00969 Mei G, Guo Z, Liu S, Pan L (2019) Sgnn: A graph neural network based federated learning approach by hiding structure. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE, pp 2560–2568 Bojchevski A, Günnemann S (2017) Deep gaussian embedding of attributed graphs: Unsupervised inductive learning via ranking. arXiv:1707.03815 Liu Z, Chen C, Li L, Zhou J, Li X, Song L, Qi Y (2018) Geniepath: Graph neural networks with adaptive receptive paths Yu T, Zhu H (2020) Hyper-parameter optimization: A review of algorithms and applications. arXiv:2003.05689 Chen C, Zhou J, Wang L, Wu X, Fang W, Tan J, Wang L, Ji X, Liu A, Wang H (2020) When homomorphic encryption marries secret sharing: Secure large-scale sparse logistic regression and applications in risk control. arXiv:2008.08753 Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, Kim H, Nepal S (2020) Can we use split learning on 1d cnn models for privacy preserving training? arXiv:2003.12365 Lin J, Wong SKM (1990) A new directed divergence measure and its characterization. Int J Gen Syst 17(1)L73–81. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2018) Dynamic graph cnn for learning on point clouds. arXiv:1801.07829 McMahan HB, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: AISTATS Thakkar O, Andrew G, McMahan HB (2019) Differentially private learning with adaptive clipping Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NeurIPS, pp 1024–1034 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14. Association for Computing Machinery, New York, pp 701–710. https://doi.org/10.1145/2623330.2623732 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. CoRR arXiv:1609.02907 Swersky K, Snoek J, Adams RP (2013) Multi-task bayesian optimization. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13. Curran Associates Inc, Red Hook, pp 2004–2012 Kairouz P, McMahan H.B, Avent B, Bellet A, Bennis M, Bhagoji A.N, Bonawitz K, Charles Z, Cormode G, Cummings R, D’Oliveira RGL, Rouayheb SE, Evans D, Gardner J, Garrett Z, Gascón A, Ghazi B, Gibbons PB, Gruteser M, Harchaoui Z, He C, He L, Huo Z, Hutchinson B, Hsu J, Jaggi M, Javidi T, Joshi G, Khodak M, Konečný J, Korolova A, Koushanfar F, Koyejo S, Lepoint T, Liu Y, Mittal P, Mohri M, Nock R, Özgür A, Pagh R, Raykova M, Qi H, Ramage D, Raskar R, Song D, Song W, Stich SU, Sun Z, Suresh AT, Tramèr F, Vepakomma P, Wang J, Xiong L, Xu Z, Yang Q, Yu FX, Yu H, Zhao S (2019) Advances and open problems in federated learning Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018) Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18. Association for Computing Machinery, New York, pp 2077–2085. https://doi.org/10.1145/3269206.3272010 Gupta O, Raskar R (2018) Distributed learning of deep neural network over multiple agents. J Netw Comput Appl 116:1–8 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org Gao Y, Kim M, Abuadbba S, Kim Y, Thapa C, Kim K, Camtepe SA, Kim H, Nepal S (2020) End-to-end evaluation of federated learning and split learning for internet of things. arXiv:2003.13376 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2017) Graph attention networks 1074_CR28 1074_CR29 1074_CR2 1074_CR26 1074_CR3 1074_CR27 1074_CR4 1074_CR24 1074_CR5 1074_CR25 1074_CR6 1074_CR22 1074_CR7 1074_CR23 1074_CR8 1074_CR20 1074_CR9 1074_CR21 1074_CR19 1074_CR17 1074_CR18 1074_CR15 1074_CR16 1074_CR13 1074_CR35 1074_CR14 1074_CR36 1074_CR11 1074_CR33 1074_CR12 1074_CR34 1074_CR31 1074_CR10 1074_CR32 1074_CR30 1074_CR1 |
References_xml | – reference: Chen YW, Song Q, Hu X (2019) Techniques for automated machine learning – reference: McMahan HB, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: AISTATS – reference: Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613 – reference: Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks – reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. CoRR arXiv:1609.02907 – reference: Abril PS, Plant R (2007) A comprehensive survey on graph neural networks. Commun ACM 50(1), 36–44. https://doi.org/10.1145/1188913.1188915 – reference: Lindauer M, Eggensperger K, Feurer M, Falkner S, Biedenkapp A, Hutter F (2017) Smac v3: Algorithm configuration in python. https://github.com/automl/SMAC3 – reference: Liu Z, Chen C, Li L, Zhou J, Li X, Song L, Qi Y (2018) Geniepath: Graph neural networks with adaptive receptive paths – reference: Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019) Hyperparameter optimization for machine learning models based on bayesian optimizationb. J Electron Sci Technol 17(1):26–40. https://doi.org/10.11989/JEST.1674-862X.80904120, http://www.sciencedirect.com/science/article/pii/S1674862X19300047 – reference: Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional neural networks for web-scale recommender systems. In: SIGKDD. ACM, pp 974–983 – reference: Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018) Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18. Association for Computing Machinery, New York, pp 2077–2085. https://doi.org/10.1145/3269206.3272010 – reference: Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NeurIPS, pp 1024–1034 – reference: Lin J, Wong SKM (1990) A new directed divergence measure and its characterization. Int J Gen Syst 17(1)L73–81. – reference: Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80 – reference: Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2017) Graph attention networks – reference: Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data – reference: McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks using model averaging. ArXiv:1602.05629 – reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org – reference: Bojchevski A, Günnemann S (2017) Deep gaussian embedding of attributed graphs: Unsupervised inductive learning via ranking. arXiv:1707.03815 – reference: Chen C, Zhou J, Wang L, Wu X, Fang W, Tan J, Wang L, Ji X, Liu A, Wang H (2020) When homomorphic encryption marries secret sharing: Secure large-scale sparse logistic regression and applications in risk control. arXiv:2008.08753 – reference: Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2018) Dynamic graph cnn for learning on point clouds. arXiv:1801.07829 – reference: Swersky K, Snoek J, Adams RP (2013) Multi-task bayesian optimization. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13. Curran Associates Inc, Red Hook, pp 2004–2012 – reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 – reference: Lorenzo PR, Nalepa J, Ramos LS, Pastor JR (2017) Hyper-parameter selection in deep neural networks using parallel particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17. Association for Computing Machinery, New York, pp 1864–1871. https://doi.org/10.1145/3067695.3084211 – reference: Zhou J, Chen C, Zheng L, Zheng X, Wu B, Liu Z, Wang L (2020) Privacy-preserving graph neural network for node classification. arXiv:2005.11903 – reference: Kairouz P, McMahan H.B, Avent B, Bellet A, Bennis M, Bhagoji A.N, Bonawitz K, Charles Z, Cormode G, Cummings R, D’Oliveira RGL, Rouayheb SE, Evans D, Gardner J, Garrett Z, Gascón A, Ghazi B, Gibbons PB, Gruteser M, Harchaoui Z, He C, He L, Huo Z, Hutchinson B, Hsu J, Jaggi M, Javidi T, Joshi G, Khodak M, Konečný J, Korolova A, Koushanfar F, Koyejo S, Lepoint T, Liu Y, Mittal P, Mohri M, Nock R, Özgür A, Pagh R, Raykova M, Qi H, Ramage D, Raskar R, Song D, Song W, Stich SU, Sun Z, Suresh AT, Tramèr F, Vepakomma P, Wang J, Xiong L, Xu Z, Yang Q, Yu FX, Yu H, Zhao S (2019) Advances and open problems in federated learning – reference: Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, Kim H, Nepal S (2020) Can we use split learning on 1d cnn models for privacy preserving training? arXiv:2003.12365 – reference: Mei G, Guo Z, Liu S, Pan L (2019) Sgnn: A graph neural network based federated learning approach by hiding structure. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE, pp 2560–2568 – reference: Gao Y, Kim M, Abuadbba S, Kim Y, Thapa C, Kim K, Camtepe SA, Kim H, Nepal S (2020) End-to-end evaluation of federated learning and split learning for internet of things. arXiv:2003.13376 – reference: Wang T, Zhu JY, Torralba A, Efros AA (2018) Dataset distillation – reference: Thakkar O, Andrew G, McMahan HB (2019) Differentially private learning with adaptive clipping – reference: Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable and secure logistic regression via homomorphic encryption. In: CODASPY. ACM, pp 142–144 – reference: Gu Z, Huang H, Zhang J, Su D, Lamba A, Pendarakis D, Molloy I (2019) Securing input data of deep learning inference systems via partitioned enclave execution. CoRR arXiv:1807.00969 – reference: Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14. Association for Computing Machinery, New York, pp 701–710. https://doi.org/10.1145/2623330.2623732 – reference: Gupta O, Raskar R (2018) Distributed learning of deep neural network over multiple agents. J Netw Comput Appl 116:1–8 – reference: Yu T, Zhu H (2020) Hyper-parameter optimization: A review of algorithms and applications. arXiv:2003.05689 – ident: 1074_CR7 – ident: 1074_CR19 doi: 10.1145/3269206.3272010 – ident: 1074_CR2 doi: 10.1145/1188913.1188915 – ident: 1074_CR22 – ident: 1074_CR3 – ident: 1074_CR1 – ident: 1074_CR5 – ident: 1074_CR29 – ident: 1074_CR27 – ident: 1074_CR33 doi: 10.1145/3219819.3219890 – ident: 1074_CR16 doi: 10.1080/03081079008935097 – ident: 1074_CR26 doi: 10.1145/359168.359176 – ident: 1074_CR34 – ident: 1074_CR36 – ident: 1074_CR13 – ident: 1074_CR30 – ident: 1074_CR6 – ident: 1074_CR15 – ident: 1074_CR17 – ident: 1074_CR24 doi: 10.1145/2623330.2623732 – ident: 1074_CR9 doi: 10.1109/SRDS51746.2020.00017 – ident: 1074_CR32 doi: 10.11989/JEST.1674-862X.80904120 – ident: 1074_CR20 doi: 10.1145/3067695.3084211 – ident: 1074_CR8 – ident: 1074_CR11 doi: 10.1016/j.jnca.2018.05.003 – ident: 1074_CR21 – ident: 1074_CR23 doi: 10.1109/BigData47090.2019.9005983 – ident: 1074_CR28 – ident: 1074_CR4 doi: 10.1145/2857705.2857731 – ident: 1074_CR25 doi: 10.1109/TNN.2008.2005605 – ident: 1074_CR10 – ident: 1074_CR18 doi: 10.1609/aaai.v33i01.33014424 – ident: 1074_CR35 – ident: 1074_CR31 – ident: 1074_CR14 – ident: 1074_CR12 |
SSID | ssj0061352 |
Score | 2.4796464 |
Snippet | Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of graph data. The success of GNN models always depends on rich features... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1692 |
SubjectTerms | Automation Clients Communications Engineering Computer Communication Networks Engineering Graph neural networks Information Systems and Communication Service Learning Mathematical models Message passing Networks Neural networks Optimization Optimization techniques Parameters Signal,Image and Speech Processing Special Issue on Privacy-Preserving Computing Training Tuning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1Bu8CA-BSFgjKwgUWaOInTBRXUUiERIaBSt8ixzxNKC03Vv4_tOBSQYM3HDc_JvSf77h3ARSx9X8hQES4wJDRBRQrOFAkiFksqk0gK0-_8mMXjCX2YRlO34bZwZZVNTrSJWs6E2SO_Njwcsjjx45v5OzFTo8zpqhuhsQltnYIZa0H7dpg9PTe5WHOVnbmjVUpMNPMHrm2mbp4LtPwgpkTBt1WJq5_UtNabv45ILfOMdmHHSUZvUK_xHmxguQ_b34wED6A_eBndZ1nfGyyrmdagKL0FWldvlEQZvwh7zbpTe8bCUscr6wLwQ5iMhq93Y-KmIhARsqgi1rJOcS3zBRWpQk0oUSQTRpEpISKkKU8DTkOmCuljwAVNOCJylIni2OPhEbTKWYnH4FGGimGR8JQp2hPI_TDQctDHouhxrRs70GsAyYWzDDeTK97ytdmxATHXIOYWxHzVgcuvd-a1Yca_T3cbnHP38yzy9VJ34KrBfn3772gn_0c7ha3ALrcpV-xCq_pY4pmWFFVx7r6bT_a4yGI priority: 102 providerName: ProQuest |
Title | ASFGNN: Automated separated-federated graph neural network |
URI | https://link.springer.com/article/10.1007/s12083-021-01074-w https://www.proquest.com/docview/2512386706 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA26XfQg_sTpHD1400B_pG26W9V1Q10R52CeSpp8OUknrmP_vknWWhUVPAXa9KO8pPleyfteEDoPhG1z4UnMOHiYhCBxzqjErk8DQUToC67rncdpMJqS25k_q4rCFrXavd6SNCt1U-zmKrqAtaTANirC1SZq--rfXQu5pm5cr78qP5lzdhQzCbDK9m5VKvNzjK_pqOGY37ZFTbZJdtFORROteD2ue2gDin20_ck88AD140kyTNO-FS_LueKdIKwFGCdvEFhqjwhzzThSW9q2UsUr1qLvQzRNBk_XI1ydhIC5R_0SG5s6yRS154RHElQS8X0RUgJUcu4DiVjkMuJRmQsbXMZJyACAgQglA4d5R6hVzAs4RhahICnkIYuoJA4HZnuuooA25LnDFFfsIKcGJOOVTbg-reIlawyONYiZAjEzIGarDrr4eOZ1bZLxZ-9ujXNWfTCLTNMsjwahrV7gssa-uf17tJP_dT9FW64Zfi1Z7KJW-baEM0UryryHNmky7KF2fDO-n-h2-Hw3UO3VIH147Jk59g61IcoB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzQFOYJE6TuIiIVQBXYD2Aki9Bccen1BbaKuKn-IbsZ2EAhK99ZplDs_jmZd45g3AcaR8X6pAEyExICxGTVLBNaEhjxRTcaik7XdutaPGM7vrhJ05-Cx6YWxZZRETXaBWPWn_kZ_bPBzwKPajq_4bsVOj7OlqMUIjc4t7_BibT7bBZfPGrO8JpbXbp-sGyacKEBnwcEic5JsWhiZLJisaTUAOQxVzhlxLGSKriAoVLOA6VT5SIVksEFGgirXAsgiM3XlYZIHJ5LYzvVYvIr_JjG7Cj-FEETE8g-ZNOlmrHjVkh9iCCN_VQI5_J8IJu_1zIOvyXG0NVnOC6lUzj1qHOexuwMoP2cJNuKg-1urt9oVXHQ17hvGi8gboNMRREW3VKdw1p4XtWcFMY6-blZtvwfNM0NqGhW6vizvgMY6aYxqLCtesLFH4ATXk08c0LQvDUktQLgBJZC5QbudkvCYTaWULYmJATByIybgEp9_v9DN5jqlP7xc4J_lWHSQTxyrBWYH95Pb_1nanWzuCpcZT6yF5aLbv92CZuqW3hZL7sDB8H-GBITPD9NB5kAcvs3bZL51DBpM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKsoaw5wAovUcRIXCaGylD1CLBK34NjjE2oLLar4Nb4O20koINFbr1nm8DyZeY5n3gBsRcr3pQo0ERIDwmLUJBNcExrySDEVh0rafuebJDp_ZJdP4dMYfJa9MLassoyJLlCrtrT_yPdsHg54FPvRni7KIm5PmoedV2InSNmT1nKcRu4iV_jRN9u37sHFiVnrbUqbpw_H56SYMEBkwMMecfJvWhjKLJmsazTBOQxVzBlyLWWIrC7qVLCA60z5SIVksUBEgSrWAmsiMHbHYSK2u6IKTBydJrd3ZR4wedLN-zEMKSKGddCiZSdv3KOG-hBbHuG7isj-77Q44Lp_jmdd1mvOwkxBV71G7l9zMIateZj-IWK4APuN--ZZkux7jfde2_BfVF4XnaI4KqKtVoW75pSxPSufaey18uLzRXgcCV5LUGm1W7gMHuOoOWaxqHPNahKFH1BDRX3MspownLUKtRKQVBZy5XZqxks6EFq2IKYGxNSBmParsPP9TicX6xj69FqJc1p8uN104GZV2C2xH9z-39rKcGubMGncNb2-SK5WYYq6lbdVk2tQ6b2947phNr1so3AhD55H7bVfI9gMJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASFGNN%3A+Automated+separated-federated+graph+neural+network&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Zheng%2C+Longfei&rft.au=Zhou%2C+Jun&rft.au=Chen%2C+Chaochao&rft.au=Wu%2C+Bingzhe&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=14&rft.issue=3&rft.spage=1692&rft.epage=1704&rft_id=info:doi/10.1007%2Fs12083-021-01074-w&rft.externalDocID=10_1007_s12083_021_01074_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon |