Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite

Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work i...

Full description

Saved in:
Bibliographic Details
Published inMechanics of time-dependent materials Vol. 25; no. 3; pp. 353 - 363
Main Authors Cao, Dongyang, Malakooti, Sadeq, Kulkarni, Vijay N., Ren, Yao, Lu, Hongbing
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s −1 was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.
AbstractList Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s−1 was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.
Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s −1 was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.
Author Malakooti, Sadeq
Lu, Hongbing
Kulkarni, Vijay N.
Ren, Yao
Cao, Dongyang
Author_xml – sequence: 1
  givenname: Dongyang
  surname: Cao
  fullname: Cao, Dongyang
  organization: Department of Mechanical Engineering, The University of Texas at Dallas
– sequence: 2
  givenname: Sadeq
  surname: Malakooti
  fullname: Malakooti, Sadeq
  organization: Department of Mechanical Engineering, The University of Texas at Dallas
– sequence: 3
  givenname: Vijay N.
  surname: Kulkarni
  fullname: Kulkarni, Vijay N.
  organization: Department of Mechanical Engineering, The University of Texas at Dallas
– sequence: 4
  givenname: Yao
  surname: Ren
  fullname: Ren, Yao
  organization: Department of Mechanical Engineering, The University of Texas at Dallas
– sequence: 5
  givenname: Hongbing
  surname: Lu
  fullname: Lu, Hongbing
  email: hongbing.lu@utdallas.edu
  organization: Department of Mechanical Engineering, The University of Texas at Dallas
BookMark eNp9kM1KxTAQhYMo-PsCrgKuq0nTNu1SxD-46EbXIU0n3ui9Sc3kKnfnO_iGPonRCoILVzMM3zlzOLtk0wcPhBxydswZkyfIOatEwUpWsK6q2mK9QXZ4LUVRStFu5l20dVEyxrbJLuJjXmTH2h3ydKN9cH4An3RywdMlaFxFWOYDDZaaEOHj7R2fnKfOJ4jjXCPQF4cmwEJjcoaOMYwQkwPMCNUUtR9enZnThwxgtliOAV2CfbJl9QLh4GfukfuL87uzq2J2e3l9djorTA6ZCtmUfd0IEL2QzILsWgvClAyawVQSDPC2Zo21tpGyqo3sa9sPVd82WlQDcC72yNHkm4M9rwCTegyr6PNLVday6bKt6DLVTpSJATGCVcZNHaSo3UJxpr6qVVO1KlervqtV6ywt_0jH6JY6rv8XiUmEGfYPEH9T_aP6BIS9kok
CitedBy_id crossref_primary_10_1007_s00170_023_11621_9
crossref_primary_10_1007_s10853_023_08906_5
crossref_primary_10_1016_j_engfracmech_2022_108886
crossref_primary_10_1007_s00170_023_11124_7
crossref_primary_10_1016_j_nxmate_2024_100120
crossref_primary_10_1007_s00170_023_12135_0
crossref_primary_10_1016_j_jobe_2023_107244
crossref_primary_10_1007_s00707_023_03608_0
crossref_primary_10_1016_j_conbuildmat_2023_130971
crossref_primary_10_1016_j_compstruct_2022_115667
crossref_primary_10_1007_s10853_024_10089_6
crossref_primary_10_1016_j_conbuildmat_2023_130579
crossref_primary_10_1016_j_jics_2024_101239
crossref_primary_10_1016_j_chemosphere_2023_139504
crossref_primary_10_1016_j_jeurceramsoc_2024_116956
crossref_primary_10_1002_pc_27136
crossref_primary_10_1515_secm_2022_0219
crossref_primary_10_1007_s10853_023_08877_7
crossref_primary_10_1007_s00170_023_12309_w
crossref_primary_10_1007_s10853_023_08643_9
crossref_primary_10_1016_j_jclepro_2023_138479
crossref_primary_10_1016_j_commatsci_2023_112023
crossref_primary_10_1016_j_jclepro_2023_138472
crossref_primary_10_1088_1757_899X_1293_1_012002
crossref_primary_10_1007_s00170_023_12202_6
crossref_primary_10_1016_j_dt_2023_08_007
crossref_primary_10_1080_15376494_2022_2092919
crossref_primary_10_1007_s00707_022_03383_4
crossref_primary_10_1016_j_polymertesting_2022_107896
crossref_primary_10_3390_buildings12060772
crossref_primary_10_1016_j_chemosphere_2023_139292
crossref_primary_10_1016_j_istruc_2023_02_050
crossref_primary_10_1007_s10853_023_08952_z
crossref_primary_10_1016_j_conbuildmat_2023_133316
crossref_primary_10_1007_s10853_023_08684_0
crossref_primary_10_1016_j_jmapro_2022_11_026
crossref_primary_10_1016_j_mtcomm_2023_106948
crossref_primary_10_1016_j_jma_2024_03_011
crossref_primary_10_1007_s10853_023_08756_1
crossref_primary_10_1016_j_cemconcomp_2023_105169
crossref_primary_10_1016_j_conbuildmat_2023_133288
crossref_primary_10_1016_j_mtcomm_2023_107113
crossref_primary_10_1007_s10853_023_08274_0
crossref_primary_10_1007_s10853_023_08791_y
crossref_primary_10_1177_10996362221139573
crossref_primary_10_1007_s00170_023_11553_4
crossref_primary_10_1016_j_chemosphere_2023_139213
crossref_primary_10_1016_j_chemosphere_2023_138005
crossref_primary_10_1016_j_mtcomm_2023_106144
crossref_primary_10_1002_pc_27641
crossref_primary_10_1007_s10853_023_08540_1
crossref_primary_10_1016_j_jobe_2023_106930
crossref_primary_10_1016_j_measurement_2025_117352
crossref_primary_10_1002_eng2_13060
crossref_primary_10_1016_j_matdes_2022_111443
crossref_primary_10_1177_09673911231158999
crossref_primary_10_1108_RPJ_09_2023_0319
crossref_primary_10_1016_j_jclepro_2023_140502
crossref_primary_10_1007_s10853_023_09014_0
crossref_primary_10_1007_s10853_023_08672_4
crossref_primary_10_1016_j_jmapro_2022_11_057
crossref_primary_10_1016_j_conbuildmat_2023_132854
crossref_primary_10_1007_s00170_023_11065_1
crossref_primary_10_1007_s40799_023_00655_z
crossref_primary_10_1016_j_conbuildmat_2023_131008
crossref_primary_10_1080_25740881_2023_2192290
crossref_primary_10_1007_s00170_023_12115_4
crossref_primary_10_1007_s00170_023_12592_7
crossref_primary_10_1007_s00170_023_12349_2
crossref_primary_10_1016_j_mtcomm_2023_106734
crossref_primary_10_1016_j_conbuildmat_2023_131133
crossref_primary_10_1007_s00170_023_11985_y
crossref_primary_10_1016_j_jobe_2023_106522
crossref_primary_10_1016_j_mtcomm_2023_106171
crossref_primary_10_1016_j_mtcomm_2023_107020
crossref_primary_10_1016_j_ntm_2024_100057
crossref_primary_10_1080_25740881_2023_2190799
crossref_primary_10_1007_s00170_023_11571_2
crossref_primary_10_1177_13694332231174252
crossref_primary_10_1007_s00707_022_03380_7
crossref_primary_10_1016_j_matdes_2023_112217
crossref_primary_10_1016_j_conbuildmat_2023_134347
crossref_primary_10_1016_j_istruc_2023_01_066
crossref_primary_10_1016_j_compstruct_2023_116801
crossref_primary_10_1007_s00170_022_10486_8
crossref_primary_10_1007_s00170_023_12100_x
crossref_primary_10_1016_j_matdes_2023_112173
crossref_primary_10_1007_s10853_023_08309_6
crossref_primary_10_1016_j_clet_2023_100636
crossref_primary_10_1007_s10853_023_08790_z
crossref_primary_10_1016_j_jclepro_2023_138205
crossref_primary_10_1177_10996362231191140
crossref_primary_10_1016_j_compstruct_2023_117580
crossref_primary_10_1016_j_jclepro_2023_137755
crossref_primary_10_1016_j_polymertesting_2022_107905
crossref_primary_10_1177_26349833231176838
crossref_primary_10_1016_j_matdes_2023_112176
crossref_primary_10_1080_19648189_2023_2194942
crossref_primary_10_1007_s00170_022_10429_3
crossref_primary_10_1016_j_conbuildmat_2023_132717
crossref_primary_10_1177_07316844221136065
crossref_primary_10_1007_s10853_023_09222_8
crossref_primary_10_1007_s10853_023_09226_4
crossref_primary_10_1016_j_jclepro_2023_138682
crossref_primary_10_1007_s40799_021_00505_w
crossref_primary_10_1016_j_jmapro_2022_11_078
crossref_primary_10_1016_j_jobe_2024_108491
crossref_primary_10_1016_j_measurement_2023_113857
crossref_primary_10_1016_j_jmapro_2023_03_070
crossref_primary_10_1016_j_conbuildmat_2023_133527
crossref_primary_10_1016_j_ymssp_2021_107873
crossref_primary_10_1016_j_jenvman_2023_119892
crossref_primary_10_1016_j_conbuildmat_2023_131229
crossref_primary_10_1016_j_compstruct_2023_117415
crossref_primary_10_1016_j_mtcomm_2023_106634
crossref_primary_10_1007_s00170_023_12887_9
crossref_primary_10_1007_s40964_023_00508_6
crossref_primary_10_1016_j_conbuildmat_2024_136641
crossref_primary_10_1080_15376494_2021_2018740
crossref_primary_10_1016_j_conbuildmat_2022_130262
crossref_primary_10_1002_pc_27212
crossref_primary_10_1016_j_mtcomm_2023_105660
crossref_primary_10_1007_s00707_022_03367_4
crossref_primary_10_1016_j_matdes_2023_112064
crossref_primary_10_3390_ma17133277
crossref_primary_10_1007_s00170_023_11638_0
crossref_primary_10_1016_j_jclepro_2023_138032
crossref_primary_10_1177_07316844241247896
crossref_primary_10_1016_j_measurement_2022_112356
crossref_primary_10_1016_j_jobe_2023_106222
crossref_primary_10_1007_s10118_023_2928_0
crossref_primary_10_1016_j_cherd_2023_07_024
crossref_primary_10_1016_j_jmapro_2023_11_005
crossref_primary_10_1016_j_jmapro_2022_11_065
crossref_primary_10_1016_j_istruc_2023_105168
crossref_primary_10_1016_j_conbuildmat_2023_132275
crossref_primary_10_1016_j_istruc_2023_02_120
crossref_primary_10_1016_j_istruc_2023_105045
crossref_primary_10_1016_j_conbuildmat_2023_130892
crossref_primary_10_1007_s00170_023_11202_w
crossref_primary_10_1177_10567895231157436
crossref_primary_10_1016_j_cscm_2022_e01221
crossref_primary_10_1016_j_mtcomm_2023_106187
crossref_primary_10_1177_09673911221112414
crossref_primary_10_1007_s00707_022_03352_x
crossref_primary_10_1002_pc_27600
crossref_primary_10_1016_j_jclepro_2023_138301
crossref_primary_10_1016_j_jclepro_2023_139114
crossref_primary_10_1016_j_jobe_2023_107265
crossref_primary_10_1016_j_jpcs_2024_112053
crossref_primary_10_1007_s10853_023_08195_y
crossref_primary_10_1016_j_commatsci_2023_112213
crossref_primary_10_1016_j_cherd_2023_07_035
crossref_primary_10_1016_j_conbuildmat_2023_130599
crossref_primary_10_1016_j_mtcomm_2022_105129
crossref_primary_10_1007_s00170_023_11810_6
crossref_primary_10_1007_s40799_022_00580_7
crossref_primary_10_1016_j_mtcomm_2022_105124
crossref_primary_10_1016_j_clet_2023_100606
crossref_primary_10_1016_j_jmapro_2023_02_012
crossref_primary_10_1177_10812865221138514
crossref_primary_10_1007_s00170_023_11256_w
crossref_primary_10_1016_j_mtcomm_2023_106772
crossref_primary_10_3390_ma15124193
crossref_primary_10_1016_j_matdes_2023_111670
crossref_primary_10_1016_j_jobe_2023_106445
crossref_primary_10_1016_j_mtcomm_2023_106253
crossref_primary_10_1007_s00170_023_11237_z
crossref_primary_10_1016_j_matdes_2023_111794
crossref_primary_10_20935_AcadMatSci7281
crossref_primary_10_1007_s00170_023_11849_5
crossref_primary_10_1016_j_conbuildmat_2023_133338
crossref_primary_10_1016_j_matdes_2023_111607
crossref_primary_10_1007_s00707_023_03614_2
crossref_primary_10_1007_s00170_023_12014_8
crossref_primary_10_1016_j_mtcomm_2022_104727
crossref_primary_10_1177_26349833231158395
crossref_primary_10_1016_j_mtcomm_2023_106529
crossref_primary_10_1007_s10853_023_08254_4
crossref_primary_10_1016_j_istruc_2024_106016
crossref_primary_10_1007_s00170_023_11221_7
crossref_primary_10_1016_j_mtcomm_2023_105673
crossref_primary_10_1016_j_eurpolymj_2024_113581
crossref_primary_10_1016_j_jobe_2023_106712
crossref_primary_10_1016_j_jobe_2023_107404
crossref_primary_10_1007_s10853_023_08825_5
crossref_primary_10_1016_j_commatsci_2022_111982
crossref_primary_10_1016_j_conbuildmat_2022_129905
crossref_primary_10_1016_j_conbuildmat_2023_132490
Cites_doi 10.1016/j.compositesb.2011.02.013
10.1007/BF00434195
10.1557/jmr.2011.363
10.1016/S0263-8223(03)00040-0
10.1007/s11043-006-9020-3
10.1557/JMR.2002.0094
10.1088/0022-3727/31/19/006
10.1016/j.compositesa.2009.04.004
10.1557/JMR.1992.1564
10.1007/s11043-007-9035-4
10.1016/0020-7225(65)90019-4
10.1557/JMR.2002.0377
10.1016/j.compstruct.2004.05.013
10.1007/s11340-012-9695-0
10.1023/B:MTDM.0000007217.07156.9b
10.1016/j.compscitech.2013.04.014
10.1007/s11340-006-8277-4
10.1016/j.compscitech.2014.09.016
10.1016/j.compscitech.2017.03.033
10.1080/00914039208034818
10.1016/0263-8223(92)90007-Y
10.1016/j.ijsolstr.2004.07.018
10.1016/S0034-3617(09)70112-2
10.1007/BF01332922
10.1146/annurev.matsci.35.100303.110641
10.1063/1.2220649
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11043-020-09448-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2738
EndPage 363
ExternalDocumentID 10_1007_s11043_020_09448_y
GrantInformation_xml – fundername: National Science Foundation
  grantid: WindStar I/UCRC-1362033; CMMI-1661246; CMMI-1636306; CMMI-1726435
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9N
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c385t-762b563e3b370fe798fe3c20e6dc47ece18506fff67745c7b5fbd4b86a34de113
IEDL.DBID U2A
ISSN 1385-2000
IngestDate Fri Jul 25 10:59:23 EDT 2025
Tue Jul 01 03:16:41 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Fri Feb 21 02:48:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Berkovich tip
Viscoelastic nanoindentation
Core–skin interphase
Sandwich composite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-762b563e3b370fe798fe3c20e6dc47ece18506fff67745c7b5fbd4b86a34de113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576937039
PQPubID 2043841
PageCount 11
ParticipantIDs proquest_journals_2576937039
crossref_citationtrail_10_1007_s11043_020_09448_y
crossref_primary_10_1007_s11043_020_09448_y
springer_journals_10_1007_s11043_020_09448_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Time-Dependent Behaviour of Materials and Structures
PublicationTitle Mechanics of time-dependent materials
PublicationTitleAbbrev Mech Time-Depend Mater
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ngan, Tang (CR22) 2002; 17
Lu, Wang, Ma, Huang, Viswanathan (CR21) 2003; 7
Du, Jiao (CR7) 2009; 40
Huang, Lu (CR16) 2007; 47
Tschoegl, Emri, Emrl (CR28) 1992; 18
Brøndsted, Lilholt, Lystrup (CR3) 2005; 35
Kucuk, Mollamahmutoglu, Wang, Lu (CR19) 2013; 53
Gibson (CR13) 2014; 105
Emri, Tschoegl (CR8) 1993; 32
Rizov, Shipsha, Zenkert (CR25) 2005; 69
Sneddon (CR26) 1965; 3
Flores-Johnson, Li (CR11) 2011; 42
Knauss, Zhao (CR18) 2007; 11
Ferry (CR10) 1980
Huang (CR14) 2007
Dai, Hahn (CR6) 2003; 61
Feng, Ngan (CR9) 2002; 17
Oliver, Pharr (CR24) 1992; 7
Briscoe, Fiori, Pelillo (CR2) 1998; 31
Chen, Linghu, Gao, Wang, Liu, Du, Zhao (CR5) 2017; 144
Baumgaertel, Winter (CR1) 1989; 28
CR20
Frostig (CR12) 1992; 20
Stewart (CR27) 2009; 53
Huang, Lu (CR15) 2006; 10
Jakes, Lakes, Stone (CR17) 2012; 27
Ngan, Wang, Tang, Sze (CR23) 2005; 42
Cech, Palesch, Lukes (CR4) 2013; 83
W.C. Oliver (9448_CR24) 1992; 7
J.E. Jakes (9448_CR17) 2012; 27
H. Lu (9448_CR21) 2003; 7
Y. Frostig (9448_CR12) 1992; 20
P. Brøndsted (9448_CR3) 2005; 35
A.H.W. Ngan (9448_CR22) 2002; 17
G. Huang (9448_CR16) 2007; 47
G. Feng (9448_CR9) 2002; 17
M. Baumgaertel (9448_CR1) 1989; 28
J. Dai (9448_CR6) 2003; 61
R. Stewart (9448_CR27) 2009; 53
G. Huang (9448_CR15) 2006; 10
V. Rizov (9448_CR25) 2005; 69
Y. Kucuk (9448_CR19) 2013; 53
W.G. Knauss (9448_CR18) 2007; 11
N.W. Tschoegl (9448_CR28) 1992; 18
G. Huang (9448_CR14) 2007
L. Du (9448_CR7) 2009; 40
I. Emri (9448_CR8) 1993; 32
I.N. Sneddon (9448_CR26) 1965; 3
9448_CR20
J.D. Ferry (9448_CR10) 1980
A.H.W. Ngan (9448_CR23) 2005; 42
Q. Chen (9448_CR5) 2017; 144
E.A. Flores-Johnson (9448_CR11) 2011; 42
R.F. Gibson (9448_CR13) 2014; 105
B.J. Briscoe (9448_CR2) 1998; 31
V. Cech (9448_CR4) 2013; 83
References_xml – volume: 42
  start-page: 1212
  year: 2011
  end-page: 1219
  ident: CR11
  article-title: Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core
  publication-title: Composites, Part B, Eng.
  doi: 10.1016/j.compositesb.2011.02.013
– volume: 32
  start-page: 311
  year: 1993
  end-page: 322
  ident: CR8
  article-title: Generating line spectra from experimental responses. Part I: relaxation modulus and creep compliance
  publication-title: Rheol. Acta
  doi: 10.1007/BF00434195
– volume: 27
  start-page: 463
  year: 2012
  end-page: 474
  ident: CR17
  article-title: Broadband nanoindentation of glassy polymers: part I. Viscoelasticity
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.363
– year: 1980
  ident: CR10
  publication-title: Viscoelastic Properties of Polymers
– volume: 61
  start-page: 247
  year: 2003
  end-page: 253
  ident: CR6
  article-title: Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(03)00040-0
– volume: 10
  start-page: 229
  year: 2006
  end-page: 243
  ident: CR15
  article-title: Measurement of Young’s relaxation modulus using nanoindentation
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-006-9020-3
– volume: 17
  start-page: 660
  year: 2002
  end-page: 668
  ident: CR9
  article-title: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0094
– volume: 31
  start-page: 2395
  year: 1998
  end-page: 2405
  ident: CR2
  article-title: Nano-indentation of polymeric surfaces
  publication-title: J. Phys. D, Appl. Phys.
  doi: 10.1088/0022-3727/31/19/006
– volume: 40
  start-page: 822
  year: 2009
  end-page: 829
  ident: CR7
  article-title: Indentation study of Z-pin reinforced polymer foam core sandwich structures
  publication-title: Composites, Part A, Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2009.04.004
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: CR24
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– year: 2007
  ident: CR14
  publication-title: Measurements of Viscoelastic Properties by Nanoindentation
– volume: 11
  start-page: 199
  year: 2007
  end-page: 216
  ident: CR18
  article-title: Improved relaxation time coverage in ramp–strain histories
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-007-9035-4
– volume: 3
  start-page: 47
  year: 1965
  end-page: 57
  ident: CR26
  article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(65)90019-4
– volume: 17
  start-page: 2604
  year: 2002
  end-page: 2610
  ident: CR22
  article-title: Viscoelastic effects during unloading in depth-sensing indentation
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0377
– volume: 69
  start-page: 95
  year: 2005
  end-page: 102
  ident: CR25
  article-title: Indentation study of foam core sandwich composite panels
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2004.05.013
– volume: 53
  start-page: 731
  year: 2013
  end-page: 742
  ident: CR19
  article-title: Nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9695-0
– volume: 7
  start-page: 189
  year: 2003
  end-page: 207
  ident: CR21
  article-title: Measurement of creep compliance of solid polymers by nanoindentation
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1023/B:MTDM.0000007217.07156.9b
– volume: 83
  start-page: 22
  year: 2013
  end-page: 26
  ident: CR4
  article-title: The glass fiber-polymer matrix interface/interphase characterized by nanoscale imaging techniques
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.04.014
– volume: 47
  start-page: 87
  year: 2007
  end-page: 98
  ident: CR16
  article-title: Measurements of two independent viscoelastic functions by nanoindentation
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-006-8277-4
– volume: 105
  start-page: 51
  year: 2014
  end-page: 65
  ident: CR13
  article-title: A review of recent research on nanoindentation of polymer composites and their constituents
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2014.09.016
– volume: 144
  start-page: 202
  year: 2017
  end-page: 207
  ident: CR5
  article-title: Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.03.033
– volume: 18
  start-page: 117
  year: 1992
  end-page: 127
  ident: CR28
  article-title: Generating line spectra from experimental responses. III. Interconversion between relaxation and retardation behavior
  publication-title: Int. J. Polym. Mater.
  doi: 10.1080/00914039208034818
– volume: 20
  start-page: 1
  year: 1992
  end-page: 16
  ident: CR12
  article-title: Behavior of delaminated sandwich beam with transversely flexible core—high order theory
  publication-title: Compos. Struct.
  doi: 10.1016/0263-8223(92)90007-Y
– volume: 42
  start-page: 1831
  year: 2005
  end-page: 1846
  ident: CR23
  article-title: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.07.018
– volume: 53
  start-page: 30
  year: 2009
  end-page: 35
  ident: CR27
  article-title: At the core of lightweight composites
  publication-title: Reinf. Plast.
  doi: 10.1016/S0034-3617(09)70112-2
– volume: 28
  start-page: 511
  year: 1989
  end-page: 519
  ident: CR1
  article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
  publication-title: Rheol. Acta
  doi: 10.1007/BF01332922
– ident: CR20
– volume: 35
  start-page: 505
  year: 2005
  end-page: 538
  ident: CR3
  article-title: Composite materials for wind power turbine blades
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.35.100303.110641
– volume: 83
  start-page: 22
  year: 2013
  ident: 9448_CR4
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.04.014
– volume: 31
  start-page: 2395
  year: 1998
  ident: 9448_CR2
  publication-title: J. Phys. D, Appl. Phys.
  doi: 10.1088/0022-3727/31/19/006
– volume: 144
  start-page: 202
  year: 2017
  ident: 9448_CR5
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.03.033
– volume: 47
  start-page: 87
  year: 2007
  ident: 9448_CR16
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-006-8277-4
– volume: 7
  start-page: 1564
  year: 1992
  ident: 9448_CR24
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 32
  start-page: 311
  year: 1993
  ident: 9448_CR8
  publication-title: Rheol. Acta
  doi: 10.1007/BF00434195
– volume: 53
  start-page: 731
  year: 2013
  ident: 9448_CR19
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9695-0
– volume: 28
  start-page: 511
  year: 1989
  ident: 9448_CR1
  publication-title: Rheol. Acta
  doi: 10.1007/BF01332922
– volume: 18
  start-page: 117
  year: 1992
  ident: 9448_CR28
  publication-title: Int. J. Polym. Mater.
  doi: 10.1080/00914039208034818
– volume: 27
  start-page: 463
  year: 2012
  ident: 9448_CR17
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.363
– volume: 17
  start-page: 2604
  year: 2002
  ident: 9448_CR22
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0377
– volume-title: Viscoelastic Properties of Polymers
  year: 1980
  ident: 9448_CR10
– volume: 53
  start-page: 30
  year: 2009
  ident: 9448_CR27
  publication-title: Reinf. Plast.
  doi: 10.1016/S0034-3617(09)70112-2
– volume: 42
  start-page: 1212
  year: 2011
  ident: 9448_CR11
  publication-title: Composites, Part B, Eng.
  doi: 10.1016/j.compositesb.2011.02.013
– volume: 61
  start-page: 247
  year: 2003
  ident: 9448_CR6
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(03)00040-0
– volume: 69
  start-page: 95
  year: 2005
  ident: 9448_CR25
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2004.05.013
– volume: 17
  start-page: 660
  year: 2002
  ident: 9448_CR9
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0094
– volume: 35
  start-page: 505
  year: 2005
  ident: 9448_CR3
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.35.100303.110641
– volume: 7
  start-page: 189
  year: 2003
  ident: 9448_CR21
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1023/B:MTDM.0000007217.07156.9b
– volume: 40
  start-page: 822
  year: 2009
  ident: 9448_CR7
  publication-title: Composites, Part A, Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2009.04.004
– volume: 11
  start-page: 199
  year: 2007
  ident: 9448_CR18
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-007-9035-4
– volume: 3
  start-page: 47
  year: 1965
  ident: 9448_CR26
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(65)90019-4
– volume: 105
  start-page: 51
  year: 2014
  ident: 9448_CR13
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2014.09.016
– volume: 42
  start-page: 1831
  year: 2005
  ident: 9448_CR23
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.07.018
– volume: 20
  start-page: 1
  year: 1992
  ident: 9448_CR12
  publication-title: Compos. Struct.
  doi: 10.1016/0263-8223(92)90007-Y
– volume-title: Measurements of Viscoelastic Properties by Nanoindentation
  year: 2007
  ident: 9448_CR14
– volume: 10
  start-page: 229
  year: 2006
  ident: 9448_CR15
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-006-9020-3
– ident: 9448_CR20
  doi: 10.1063/1.2220649
SSID ssj0007908
Score 2.6140275
Snippet Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms Characterization and Evaluation of Materials
Classical Mechanics
Composite materials
Creep (materials)
Design analysis
Engineering
Failure modes
Fiber composites
Glass fiber reinforced plastics
Loading rate
Mechanical properties
Modulus of elasticity
Nanoindentation
Nanoindenters
Polymer Sciences
Polyvinyl chloride
Resin transfer molding
Shear creep
Solid Mechanics
Strain rate
Stress distribution
Viscoelasticity
Title Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite
URI https://link.springer.com/article/10.1007/s11043-020-09448-y
https://www.proquest.com/docview/2576937039
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXOCAWEVZKh-4QSS7juPkWKFCBYITlcop8qpWhaRqCogb_8Af8iXYbtIAAiTOcUbK2Bm_sd-8AeCYIkkZ4lEQMpMEocIm4EyggCvGoygxMfe9CK5vol4_vBzQQVkUVlRs9-pK0kfqutgNu5til-7YlCSMg5dlsEJt7u6IXP12ZxF_WeL70GESU7cGUFkq87ONr9tRjTG_XYv63eZ8A6yXMBF25vO6CZZ0tgXWPokHboOxDYy5EzucFw9l8KE-7oO5gU6f8v31rRiPMjjy1MKh3bHg06iQubaY2VqGE3cUP3WaqnYI5LDgmXoeySH0oBo6vrkjdekd0D_v3p71grJ1QiDtZ88CG-IEjYgmgjBkNEtio4lsIx0pGTItNXZKdcaYyMI_KpmgRqhQxBEnodIYk13QyPJM7wGYcCQwVzymvB0Sm9FiyhVSMSEaCRshmgBXHkxlqSvu2lvcp7UisvN6ar2eeq-nL01wsnhnMlfV-HP0YTUxafmHFalLlCy0QiRpgtNqsurHv1vb_9_wA7DadjQWTys7BI3Z9FEfWRwyEy2w0rm4u-q2_PL7AKpZ2OA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQ9VKU_6lJafGhPbSQ7juPkwAHRouX3xErcUv-KFW0WkaVob30HXoEn40kYexPSIlqpB85xnGhmPP7GnvkG4IOgRkiq8iSTvkwyy3yipKaJslLleekLFXsR7B_kw1G2cySOFuCqq4WJ2e7dlWT01H2xGws3xSHcwZAkK5JZm0q562YXGKg169tfUKsf03Tr6-HmMGl7CSSGF2Ka4JrXIueOay6pd7IsvOMmpS63JpPOOBao27z3OeIhYaQWXttMF7nimXWMcZz3ESwh-CjC2hmlG7f-Xpax7x3D7wSbo21pzv3__Of212PaO9ewcXfbeg7PWlhKNuZ2tAwLrn4BT38jK3wJJ-iIJ4FccV6sVJMf_fEimXgS-DCvf102J-OajGMq4zHukOTnuDEThxgdZyan4ej_LHC44hCiSKNqezE2xySCeBLy20MSmXsFowcR72tYrCe1ewOkVFQzZVUhVJpxjKCZUJbagnNHNXqkAbBOgpVpecxDO43vVc_AHKReodSrKPVqNoBPt--czlk8_jl6tVNM1a7opgqBGUI5yssBfO6U1T_--2wr_zd8DR4PD_f3qr3tg9238CQNKTQxpW0VFqdn5-4dYqCpfh9NkMC3h7b5G4NfFRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7VhQI-wAmi2rEdJwcOFWXVUqg4sFJvwb_qqpBdNdtWe-MdeBGeiSdh7E0aQIDEoef1OtF4bH-T-eYbgKeSWqmoLjKhQpUJx0KmlaGZdkoXRRVKnXoRvDsodifizaE8XINvfS1MYrv3KclVTUNUaWoWW3MXtobCNxazxjH0wfBElNmyo1Xu--U5Bm3ty70dXOFneT5-_eHVbtb1FcgsL-Uiw_1vZME9N1zR4FVVBs9tTn3hrFDeehZl3EIIBWIjaZWRwThhykJz4TxjHOe9AldFrD7GHTTJty_OflWlHngMnxP9j3ZlOn9-51-vwgHf_paSTTfd-Bbc7CAq2V751G1Y880duPGTcOFdOMZDeRaFFleFSw35PHxqJLNAojbm9y9f2-NpQ6aJ1niEtyU5m7Z25hGv48xkHtMAJ1HPFYcQTVrduPOpPSIJ0JPIdY-EMn8PJpdi3vuw3swavwGk0tQw7XQpdS44RtNMakddybmnBk-nEbDegrXtNM1ja41P9aDGHK1eo9XrZPV6OYLnF_-ZrxQ9_jl6s1-YutvdbR2DNIR1lFcjeNEv1vDz32d78H_Dn8C19zvj-u3ewf5DuJ5HNk1it23C-uLk1D9COLQwj5MHEvh42S7_A4MBGUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoindentation+measurement+of+core%E2%80%93skin+interphase+viscoelastic+properties+in+a+sandwich+glass+composite&rft.jtitle=Mechanics+of+time-dependent+materials&rft.au=Cao%2C+Dongyang&rft.au=Malakooti%2C+Sadeq&rft.au=Kulkarni%2C+Vijay+N.&rft.au=Ren%2C+Yao&rft.date=2021-09-01&rft.issn=1385-2000&rft.eissn=1573-2738&rft.volume=25&rft.issue=3&rft.spage=353&rft.epage=363&rft_id=info:doi/10.1007%2Fs11043-020-09448-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11043_020_09448_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2000&client=summon