Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite
Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work i...
Saved in:
Published in | Mechanics of time-dependent materials Vol. 25; no. 3; pp. 353 - 363 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s
−1
was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites. |
---|---|
AbstractList | Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s−1 was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites. Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN s −1 was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites. |
Author | Malakooti, Sadeq Lu, Hongbing Kulkarni, Vijay N. Ren, Yao Cao, Dongyang |
Author_xml | – sequence: 1 givenname: Dongyang surname: Cao fullname: Cao, Dongyang organization: Department of Mechanical Engineering, The University of Texas at Dallas – sequence: 2 givenname: Sadeq surname: Malakooti fullname: Malakooti, Sadeq organization: Department of Mechanical Engineering, The University of Texas at Dallas – sequence: 3 givenname: Vijay N. surname: Kulkarni fullname: Kulkarni, Vijay N. organization: Department of Mechanical Engineering, The University of Texas at Dallas – sequence: 4 givenname: Yao surname: Ren fullname: Ren, Yao organization: Department of Mechanical Engineering, The University of Texas at Dallas – sequence: 5 givenname: Hongbing surname: Lu fullname: Lu, Hongbing email: hongbing.lu@utdallas.edu organization: Department of Mechanical Engineering, The University of Texas at Dallas |
BookMark | eNp9kM1KxTAQhYMo-PsCrgKuq0nTNu1SxD-46EbXIU0n3ui9Sc3kKnfnO_iGPonRCoILVzMM3zlzOLtk0wcPhBxydswZkyfIOatEwUpWsK6q2mK9QXZ4LUVRStFu5l20dVEyxrbJLuJjXmTH2h3ydKN9cH4An3RywdMlaFxFWOYDDZaaEOHj7R2fnKfOJ4jjXCPQF4cmwEJjcoaOMYwQkwPMCNUUtR9enZnThwxgtliOAV2CfbJl9QLh4GfukfuL87uzq2J2e3l9djorTA6ZCtmUfd0IEL2QzILsWgvClAyawVQSDPC2Zo21tpGyqo3sa9sPVd82WlQDcC72yNHkm4M9rwCTegyr6PNLVday6bKt6DLVTpSJATGCVcZNHaSo3UJxpr6qVVO1KlervqtV6ywt_0jH6JY6rv8XiUmEGfYPEH9T_aP6BIS9kok |
CitedBy_id | crossref_primary_10_1007_s00170_023_11621_9 crossref_primary_10_1007_s10853_023_08906_5 crossref_primary_10_1016_j_engfracmech_2022_108886 crossref_primary_10_1007_s00170_023_11124_7 crossref_primary_10_1016_j_nxmate_2024_100120 crossref_primary_10_1007_s00170_023_12135_0 crossref_primary_10_1016_j_jobe_2023_107244 crossref_primary_10_1007_s00707_023_03608_0 crossref_primary_10_1016_j_conbuildmat_2023_130971 crossref_primary_10_1016_j_compstruct_2022_115667 crossref_primary_10_1007_s10853_024_10089_6 crossref_primary_10_1016_j_conbuildmat_2023_130579 crossref_primary_10_1016_j_jics_2024_101239 crossref_primary_10_1016_j_chemosphere_2023_139504 crossref_primary_10_1016_j_jeurceramsoc_2024_116956 crossref_primary_10_1002_pc_27136 crossref_primary_10_1515_secm_2022_0219 crossref_primary_10_1007_s10853_023_08877_7 crossref_primary_10_1007_s00170_023_12309_w crossref_primary_10_1007_s10853_023_08643_9 crossref_primary_10_1016_j_jclepro_2023_138479 crossref_primary_10_1016_j_commatsci_2023_112023 crossref_primary_10_1016_j_jclepro_2023_138472 crossref_primary_10_1088_1757_899X_1293_1_012002 crossref_primary_10_1007_s00170_023_12202_6 crossref_primary_10_1016_j_dt_2023_08_007 crossref_primary_10_1080_15376494_2022_2092919 crossref_primary_10_1007_s00707_022_03383_4 crossref_primary_10_1016_j_polymertesting_2022_107896 crossref_primary_10_3390_buildings12060772 crossref_primary_10_1016_j_chemosphere_2023_139292 crossref_primary_10_1016_j_istruc_2023_02_050 crossref_primary_10_1007_s10853_023_08952_z crossref_primary_10_1016_j_conbuildmat_2023_133316 crossref_primary_10_1007_s10853_023_08684_0 crossref_primary_10_1016_j_jmapro_2022_11_026 crossref_primary_10_1016_j_mtcomm_2023_106948 crossref_primary_10_1016_j_jma_2024_03_011 crossref_primary_10_1007_s10853_023_08756_1 crossref_primary_10_1016_j_cemconcomp_2023_105169 crossref_primary_10_1016_j_conbuildmat_2023_133288 crossref_primary_10_1016_j_mtcomm_2023_107113 crossref_primary_10_1007_s10853_023_08274_0 crossref_primary_10_1007_s10853_023_08791_y crossref_primary_10_1177_10996362221139573 crossref_primary_10_1007_s00170_023_11553_4 crossref_primary_10_1016_j_chemosphere_2023_139213 crossref_primary_10_1016_j_chemosphere_2023_138005 crossref_primary_10_1016_j_mtcomm_2023_106144 crossref_primary_10_1002_pc_27641 crossref_primary_10_1007_s10853_023_08540_1 crossref_primary_10_1016_j_jobe_2023_106930 crossref_primary_10_1016_j_measurement_2025_117352 crossref_primary_10_1002_eng2_13060 crossref_primary_10_1016_j_matdes_2022_111443 crossref_primary_10_1177_09673911231158999 crossref_primary_10_1108_RPJ_09_2023_0319 crossref_primary_10_1016_j_jclepro_2023_140502 crossref_primary_10_1007_s10853_023_09014_0 crossref_primary_10_1007_s10853_023_08672_4 crossref_primary_10_1016_j_jmapro_2022_11_057 crossref_primary_10_1016_j_conbuildmat_2023_132854 crossref_primary_10_1007_s00170_023_11065_1 crossref_primary_10_1007_s40799_023_00655_z crossref_primary_10_1016_j_conbuildmat_2023_131008 crossref_primary_10_1080_25740881_2023_2192290 crossref_primary_10_1007_s00170_023_12115_4 crossref_primary_10_1007_s00170_023_12592_7 crossref_primary_10_1007_s00170_023_12349_2 crossref_primary_10_1016_j_mtcomm_2023_106734 crossref_primary_10_1016_j_conbuildmat_2023_131133 crossref_primary_10_1007_s00170_023_11985_y crossref_primary_10_1016_j_jobe_2023_106522 crossref_primary_10_1016_j_mtcomm_2023_106171 crossref_primary_10_1016_j_mtcomm_2023_107020 crossref_primary_10_1016_j_ntm_2024_100057 crossref_primary_10_1080_25740881_2023_2190799 crossref_primary_10_1007_s00170_023_11571_2 crossref_primary_10_1177_13694332231174252 crossref_primary_10_1007_s00707_022_03380_7 crossref_primary_10_1016_j_matdes_2023_112217 crossref_primary_10_1016_j_conbuildmat_2023_134347 crossref_primary_10_1016_j_istruc_2023_01_066 crossref_primary_10_1016_j_compstruct_2023_116801 crossref_primary_10_1007_s00170_022_10486_8 crossref_primary_10_1007_s00170_023_12100_x crossref_primary_10_1016_j_matdes_2023_112173 crossref_primary_10_1007_s10853_023_08309_6 crossref_primary_10_1016_j_clet_2023_100636 crossref_primary_10_1007_s10853_023_08790_z crossref_primary_10_1016_j_jclepro_2023_138205 crossref_primary_10_1177_10996362231191140 crossref_primary_10_1016_j_compstruct_2023_117580 crossref_primary_10_1016_j_jclepro_2023_137755 crossref_primary_10_1016_j_polymertesting_2022_107905 crossref_primary_10_1177_26349833231176838 crossref_primary_10_1016_j_matdes_2023_112176 crossref_primary_10_1080_19648189_2023_2194942 crossref_primary_10_1007_s00170_022_10429_3 crossref_primary_10_1016_j_conbuildmat_2023_132717 crossref_primary_10_1177_07316844221136065 crossref_primary_10_1007_s10853_023_09222_8 crossref_primary_10_1007_s10853_023_09226_4 crossref_primary_10_1016_j_jclepro_2023_138682 crossref_primary_10_1007_s40799_021_00505_w crossref_primary_10_1016_j_jmapro_2022_11_078 crossref_primary_10_1016_j_jobe_2024_108491 crossref_primary_10_1016_j_measurement_2023_113857 crossref_primary_10_1016_j_jmapro_2023_03_070 crossref_primary_10_1016_j_conbuildmat_2023_133527 crossref_primary_10_1016_j_ymssp_2021_107873 crossref_primary_10_1016_j_jenvman_2023_119892 crossref_primary_10_1016_j_conbuildmat_2023_131229 crossref_primary_10_1016_j_compstruct_2023_117415 crossref_primary_10_1016_j_mtcomm_2023_106634 crossref_primary_10_1007_s00170_023_12887_9 crossref_primary_10_1007_s40964_023_00508_6 crossref_primary_10_1016_j_conbuildmat_2024_136641 crossref_primary_10_1080_15376494_2021_2018740 crossref_primary_10_1016_j_conbuildmat_2022_130262 crossref_primary_10_1002_pc_27212 crossref_primary_10_1016_j_mtcomm_2023_105660 crossref_primary_10_1007_s00707_022_03367_4 crossref_primary_10_1016_j_matdes_2023_112064 crossref_primary_10_3390_ma17133277 crossref_primary_10_1007_s00170_023_11638_0 crossref_primary_10_1016_j_jclepro_2023_138032 crossref_primary_10_1177_07316844241247896 crossref_primary_10_1016_j_measurement_2022_112356 crossref_primary_10_1016_j_jobe_2023_106222 crossref_primary_10_1007_s10118_023_2928_0 crossref_primary_10_1016_j_cherd_2023_07_024 crossref_primary_10_1016_j_jmapro_2023_11_005 crossref_primary_10_1016_j_jmapro_2022_11_065 crossref_primary_10_1016_j_istruc_2023_105168 crossref_primary_10_1016_j_conbuildmat_2023_132275 crossref_primary_10_1016_j_istruc_2023_02_120 crossref_primary_10_1016_j_istruc_2023_105045 crossref_primary_10_1016_j_conbuildmat_2023_130892 crossref_primary_10_1007_s00170_023_11202_w crossref_primary_10_1177_10567895231157436 crossref_primary_10_1016_j_cscm_2022_e01221 crossref_primary_10_1016_j_mtcomm_2023_106187 crossref_primary_10_1177_09673911221112414 crossref_primary_10_1007_s00707_022_03352_x crossref_primary_10_1002_pc_27600 crossref_primary_10_1016_j_jclepro_2023_138301 crossref_primary_10_1016_j_jclepro_2023_139114 crossref_primary_10_1016_j_jobe_2023_107265 crossref_primary_10_1016_j_jpcs_2024_112053 crossref_primary_10_1007_s10853_023_08195_y crossref_primary_10_1016_j_commatsci_2023_112213 crossref_primary_10_1016_j_cherd_2023_07_035 crossref_primary_10_1016_j_conbuildmat_2023_130599 crossref_primary_10_1016_j_mtcomm_2022_105129 crossref_primary_10_1007_s00170_023_11810_6 crossref_primary_10_1007_s40799_022_00580_7 crossref_primary_10_1016_j_mtcomm_2022_105124 crossref_primary_10_1016_j_clet_2023_100606 crossref_primary_10_1016_j_jmapro_2023_02_012 crossref_primary_10_1177_10812865221138514 crossref_primary_10_1007_s00170_023_11256_w crossref_primary_10_1016_j_mtcomm_2023_106772 crossref_primary_10_3390_ma15124193 crossref_primary_10_1016_j_matdes_2023_111670 crossref_primary_10_1016_j_jobe_2023_106445 crossref_primary_10_1016_j_mtcomm_2023_106253 crossref_primary_10_1007_s00170_023_11237_z crossref_primary_10_1016_j_matdes_2023_111794 crossref_primary_10_20935_AcadMatSci7281 crossref_primary_10_1007_s00170_023_11849_5 crossref_primary_10_1016_j_conbuildmat_2023_133338 crossref_primary_10_1016_j_matdes_2023_111607 crossref_primary_10_1007_s00707_023_03614_2 crossref_primary_10_1007_s00170_023_12014_8 crossref_primary_10_1016_j_mtcomm_2022_104727 crossref_primary_10_1177_26349833231158395 crossref_primary_10_1016_j_mtcomm_2023_106529 crossref_primary_10_1007_s10853_023_08254_4 crossref_primary_10_1016_j_istruc_2024_106016 crossref_primary_10_1007_s00170_023_11221_7 crossref_primary_10_1016_j_mtcomm_2023_105673 crossref_primary_10_1016_j_eurpolymj_2024_113581 crossref_primary_10_1016_j_jobe_2023_106712 crossref_primary_10_1016_j_jobe_2023_107404 crossref_primary_10_1007_s10853_023_08825_5 crossref_primary_10_1016_j_commatsci_2022_111982 crossref_primary_10_1016_j_conbuildmat_2022_129905 crossref_primary_10_1016_j_conbuildmat_2023_132490 |
Cites_doi | 10.1016/j.compositesb.2011.02.013 10.1007/BF00434195 10.1557/jmr.2011.363 10.1016/S0263-8223(03)00040-0 10.1007/s11043-006-9020-3 10.1557/JMR.2002.0094 10.1088/0022-3727/31/19/006 10.1016/j.compositesa.2009.04.004 10.1557/JMR.1992.1564 10.1007/s11043-007-9035-4 10.1016/0020-7225(65)90019-4 10.1557/JMR.2002.0377 10.1016/j.compstruct.2004.05.013 10.1007/s11340-012-9695-0 10.1023/B:MTDM.0000007217.07156.9b 10.1016/j.compscitech.2013.04.014 10.1007/s11340-006-8277-4 10.1016/j.compscitech.2014.09.016 10.1016/j.compscitech.2017.03.033 10.1080/00914039208034818 10.1016/0263-8223(92)90007-Y 10.1016/j.ijsolstr.2004.07.018 10.1016/S0034-3617(09)70112-2 10.1007/BF01332922 10.1146/annurev.matsci.35.100303.110641 10.1063/1.2220649 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11043-020-09448-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2738 |
EndPage | 363 |
ExternalDocumentID | 10_1007_s11043_020_09448_y |
GrantInformation_xml | – fundername: National Science Foundation grantid: WindStar I/UCRC-1362033; CMMI-1661246; CMMI-1636306; CMMI-1726435 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c385t-762b563e3b370fe798fe3c20e6dc47ece18506fff67745c7b5fbd4b86a34de113 |
IEDL.DBID | U2A |
ISSN | 1385-2000 |
IngestDate | Fri Jul 25 10:59:23 EDT 2025 Tue Jul 01 03:16:41 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Fri Feb 21 02:48:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Berkovich tip Viscoelastic nanoindentation Core–skin interphase Sandwich composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-762b563e3b370fe798fe3c20e6dc47ece18506fff67745c7b5fbd4b86a34de113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2576937039 |
PQPubID | 2043841 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2576937039 crossref_citationtrail_10_1007_s11043_020_09448_y crossref_primary_10_1007_s11043_020_09448_y springer_journals_10_1007_s11043_020_09448_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Time-Dependent Behaviour of Materials and Structures |
PublicationTitle | Mechanics of time-dependent materials |
PublicationTitleAbbrev | Mech Time-Depend Mater |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Ngan, Tang (CR22) 2002; 17 Lu, Wang, Ma, Huang, Viswanathan (CR21) 2003; 7 Du, Jiao (CR7) 2009; 40 Huang, Lu (CR16) 2007; 47 Tschoegl, Emri, Emrl (CR28) 1992; 18 Brøndsted, Lilholt, Lystrup (CR3) 2005; 35 Kucuk, Mollamahmutoglu, Wang, Lu (CR19) 2013; 53 Gibson (CR13) 2014; 105 Emri, Tschoegl (CR8) 1993; 32 Rizov, Shipsha, Zenkert (CR25) 2005; 69 Sneddon (CR26) 1965; 3 Flores-Johnson, Li (CR11) 2011; 42 Knauss, Zhao (CR18) 2007; 11 Ferry (CR10) 1980 Huang (CR14) 2007 Dai, Hahn (CR6) 2003; 61 Feng, Ngan (CR9) 2002; 17 Oliver, Pharr (CR24) 1992; 7 Briscoe, Fiori, Pelillo (CR2) 1998; 31 Chen, Linghu, Gao, Wang, Liu, Du, Zhao (CR5) 2017; 144 Baumgaertel, Winter (CR1) 1989; 28 CR20 Frostig (CR12) 1992; 20 Stewart (CR27) 2009; 53 Huang, Lu (CR15) 2006; 10 Jakes, Lakes, Stone (CR17) 2012; 27 Ngan, Wang, Tang, Sze (CR23) 2005; 42 Cech, Palesch, Lukes (CR4) 2013; 83 W.C. Oliver (9448_CR24) 1992; 7 J.E. Jakes (9448_CR17) 2012; 27 H. Lu (9448_CR21) 2003; 7 Y. Frostig (9448_CR12) 1992; 20 P. Brøndsted (9448_CR3) 2005; 35 A.H.W. Ngan (9448_CR22) 2002; 17 G. Huang (9448_CR16) 2007; 47 G. Feng (9448_CR9) 2002; 17 M. Baumgaertel (9448_CR1) 1989; 28 J. Dai (9448_CR6) 2003; 61 R. Stewart (9448_CR27) 2009; 53 G. Huang (9448_CR15) 2006; 10 V. Rizov (9448_CR25) 2005; 69 Y. Kucuk (9448_CR19) 2013; 53 W.G. Knauss (9448_CR18) 2007; 11 N.W. Tschoegl (9448_CR28) 1992; 18 G. Huang (9448_CR14) 2007 L. Du (9448_CR7) 2009; 40 I. Emri (9448_CR8) 1993; 32 I.N. Sneddon (9448_CR26) 1965; 3 9448_CR20 J.D. Ferry (9448_CR10) 1980 A.H.W. Ngan (9448_CR23) 2005; 42 Q. Chen (9448_CR5) 2017; 144 E.A. Flores-Johnson (9448_CR11) 2011; 42 R.F. Gibson (9448_CR13) 2014; 105 B.J. Briscoe (9448_CR2) 1998; 31 V. Cech (9448_CR4) 2013; 83 |
References_xml | – volume: 42 start-page: 1212 year: 2011 end-page: 1219 ident: CR11 article-title: Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core publication-title: Composites, Part B, Eng. doi: 10.1016/j.compositesb.2011.02.013 – volume: 32 start-page: 311 year: 1993 end-page: 322 ident: CR8 article-title: Generating line spectra from experimental responses. Part I: relaxation modulus and creep compliance publication-title: Rheol. Acta doi: 10.1007/BF00434195 – volume: 27 start-page: 463 year: 2012 end-page: 474 ident: CR17 article-title: Broadband nanoindentation of glassy polymers: part I. Viscoelasticity publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.363 – year: 1980 ident: CR10 publication-title: Viscoelastic Properties of Polymers – volume: 61 start-page: 247 year: 2003 end-page: 253 ident: CR6 article-title: Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding publication-title: Compos. Struct. doi: 10.1016/S0263-8223(03)00040-0 – volume: 10 start-page: 229 year: 2006 end-page: 243 ident: CR15 article-title: Measurement of Young’s relaxation modulus using nanoindentation publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-006-9020-3 – volume: 17 start-page: 660 year: 2002 end-page: 668 ident: CR9 article-title: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0094 – volume: 31 start-page: 2395 year: 1998 end-page: 2405 ident: CR2 article-title: Nano-indentation of polymeric surfaces publication-title: J. Phys. D, Appl. Phys. doi: 10.1088/0022-3727/31/19/006 – volume: 40 start-page: 822 year: 2009 end-page: 829 ident: CR7 article-title: Indentation study of Z-pin reinforced polymer foam core sandwich structures publication-title: Composites, Part A, Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.04.004 – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: CR24 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – year: 2007 ident: CR14 publication-title: Measurements of Viscoelastic Properties by Nanoindentation – volume: 11 start-page: 199 year: 2007 end-page: 216 ident: CR18 article-title: Improved relaxation time coverage in ramp–strain histories publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-007-9035-4 – volume: 3 start-page: 47 year: 1965 end-page: 57 ident: CR26 article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(65)90019-4 – volume: 17 start-page: 2604 year: 2002 end-page: 2610 ident: CR22 article-title: Viscoelastic effects during unloading in depth-sensing indentation publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0377 – volume: 69 start-page: 95 year: 2005 end-page: 102 ident: CR25 article-title: Indentation study of foam core sandwich composite panels publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2004.05.013 – volume: 53 start-page: 731 year: 2013 end-page: 742 ident: CR19 article-title: Nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip publication-title: Exp. Mech. doi: 10.1007/s11340-012-9695-0 – volume: 7 start-page: 189 year: 2003 end-page: 207 ident: CR21 article-title: Measurement of creep compliance of solid polymers by nanoindentation publication-title: Mech. Time-Depend. Mater. doi: 10.1023/B:MTDM.0000007217.07156.9b – volume: 83 start-page: 22 year: 2013 end-page: 26 ident: CR4 article-title: The glass fiber-polymer matrix interface/interphase characterized by nanoscale imaging techniques publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.04.014 – volume: 47 start-page: 87 year: 2007 end-page: 98 ident: CR16 article-title: Measurements of two independent viscoelastic functions by nanoindentation publication-title: Exp. Mech. doi: 10.1007/s11340-006-8277-4 – volume: 105 start-page: 51 year: 2014 end-page: 65 ident: CR13 article-title: A review of recent research on nanoindentation of polymer composites and their constituents publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2014.09.016 – volume: 144 start-page: 202 year: 2017 end-page: 207 ident: CR5 article-title: Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.03.033 – volume: 18 start-page: 117 year: 1992 end-page: 127 ident: CR28 article-title: Generating line spectra from experimental responses. III. Interconversion between relaxation and retardation behavior publication-title: Int. J. Polym. Mater. doi: 10.1080/00914039208034818 – volume: 20 start-page: 1 year: 1992 end-page: 16 ident: CR12 article-title: Behavior of delaminated sandwich beam with transversely flexible core—high order theory publication-title: Compos. Struct. doi: 10.1016/0263-8223(92)90007-Y – volume: 42 start-page: 1831 year: 2005 end-page: 1846 ident: CR23 article-title: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.07.018 – volume: 53 start-page: 30 year: 2009 end-page: 35 ident: CR27 article-title: At the core of lightweight composites publication-title: Reinf. Plast. doi: 10.1016/S0034-3617(09)70112-2 – volume: 28 start-page: 511 year: 1989 end-page: 519 ident: CR1 article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data publication-title: Rheol. Acta doi: 10.1007/BF01332922 – ident: CR20 – volume: 35 start-page: 505 year: 2005 end-page: 538 ident: CR3 article-title: Composite materials for wind power turbine blades publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.35.100303.110641 – volume: 83 start-page: 22 year: 2013 ident: 9448_CR4 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.04.014 – volume: 31 start-page: 2395 year: 1998 ident: 9448_CR2 publication-title: J. Phys. D, Appl. Phys. doi: 10.1088/0022-3727/31/19/006 – volume: 144 start-page: 202 year: 2017 ident: 9448_CR5 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.03.033 – volume: 47 start-page: 87 year: 2007 ident: 9448_CR16 publication-title: Exp. Mech. doi: 10.1007/s11340-006-8277-4 – volume: 7 start-page: 1564 year: 1992 ident: 9448_CR24 publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 32 start-page: 311 year: 1993 ident: 9448_CR8 publication-title: Rheol. Acta doi: 10.1007/BF00434195 – volume: 53 start-page: 731 year: 2013 ident: 9448_CR19 publication-title: Exp. Mech. doi: 10.1007/s11340-012-9695-0 – volume: 28 start-page: 511 year: 1989 ident: 9448_CR1 publication-title: Rheol. Acta doi: 10.1007/BF01332922 – volume: 18 start-page: 117 year: 1992 ident: 9448_CR28 publication-title: Int. J. Polym. Mater. doi: 10.1080/00914039208034818 – volume: 27 start-page: 463 year: 2012 ident: 9448_CR17 publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.363 – volume: 17 start-page: 2604 year: 2002 ident: 9448_CR22 publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0377 – volume-title: Viscoelastic Properties of Polymers year: 1980 ident: 9448_CR10 – volume: 53 start-page: 30 year: 2009 ident: 9448_CR27 publication-title: Reinf. Plast. doi: 10.1016/S0034-3617(09)70112-2 – volume: 42 start-page: 1212 year: 2011 ident: 9448_CR11 publication-title: Composites, Part B, Eng. doi: 10.1016/j.compositesb.2011.02.013 – volume: 61 start-page: 247 year: 2003 ident: 9448_CR6 publication-title: Compos. Struct. doi: 10.1016/S0263-8223(03)00040-0 – volume: 69 start-page: 95 year: 2005 ident: 9448_CR25 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2004.05.013 – volume: 17 start-page: 660 year: 2002 ident: 9448_CR9 publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0094 – volume: 35 start-page: 505 year: 2005 ident: 9448_CR3 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.35.100303.110641 – volume: 7 start-page: 189 year: 2003 ident: 9448_CR21 publication-title: Mech. Time-Depend. Mater. doi: 10.1023/B:MTDM.0000007217.07156.9b – volume: 40 start-page: 822 year: 2009 ident: 9448_CR7 publication-title: Composites, Part A, Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.04.004 – volume: 11 start-page: 199 year: 2007 ident: 9448_CR18 publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-007-9035-4 – volume: 3 start-page: 47 year: 1965 ident: 9448_CR26 publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(65)90019-4 – volume: 105 start-page: 51 year: 2014 ident: 9448_CR13 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2014.09.016 – volume: 42 start-page: 1831 year: 2005 ident: 9448_CR23 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.07.018 – volume: 20 start-page: 1 year: 1992 ident: 9448_CR12 publication-title: Compos. Struct. doi: 10.1016/0263-8223(92)90007-Y – volume-title: Measurements of Viscoelastic Properties by Nanoindentation year: 2007 ident: 9448_CR14 – volume: 10 start-page: 229 year: 2006 ident: 9448_CR15 publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-006-9020-3 – ident: 9448_CR20 doi: 10.1063/1.2220649 |
SSID | ssj0007908 |
Score | 2.6140275 |
Snippet | Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 353 |
SubjectTerms | Characterization and Evaluation of Materials Classical Mechanics Composite materials Creep (materials) Design analysis Engineering Failure modes Fiber composites Glass fiber reinforced plastics Loading rate Mechanical properties Modulus of elasticity Nanoindentation Nanoindenters Polymer Sciences Polyvinyl chloride Resin transfer molding Shear creep Solid Mechanics Strain rate Stress distribution Viscoelasticity |
Title | Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite |
URI | https://link.springer.com/article/10.1007/s11043-020-09448-y https://www.proquest.com/docview/2576937039 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXOCAWEVZKh-4QSS7juPkWKFCBYITlcop8qpWhaRqCogb_8Af8iXYbtIAAiTOcUbK2Bm_sd-8AeCYIkkZ4lEQMpMEocIm4EyggCvGoygxMfe9CK5vol4_vBzQQVkUVlRs9-pK0kfqutgNu5til-7YlCSMg5dlsEJt7u6IXP12ZxF_WeL70GESU7cGUFkq87ONr9tRjTG_XYv63eZ8A6yXMBF25vO6CZZ0tgXWPokHboOxDYy5EzucFw9l8KE-7oO5gU6f8v31rRiPMjjy1MKh3bHg06iQubaY2VqGE3cUP3WaqnYI5LDgmXoeySH0oBo6vrkjdekd0D_v3p71grJ1QiDtZ88CG-IEjYgmgjBkNEtio4lsIx0pGTItNXZKdcaYyMI_KpmgRqhQxBEnodIYk13QyPJM7wGYcCQwVzymvB0Sm9FiyhVSMSEaCRshmgBXHkxlqSvu2lvcp7UisvN6ar2eeq-nL01wsnhnMlfV-HP0YTUxafmHFalLlCy0QiRpgtNqsurHv1vb_9_wA7DadjQWTys7BI3Z9FEfWRwyEy2w0rm4u-q2_PL7AKpZ2OA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQ9VKU_6lJafGhPbSQ7juPkwAHRouX3xErcUv-KFW0WkaVob30HXoEn40kYexPSIlqpB85xnGhmPP7GnvkG4IOgRkiq8iSTvkwyy3yipKaJslLleekLFXsR7B_kw1G2cySOFuCqq4WJ2e7dlWT01H2xGws3xSHcwZAkK5JZm0q562YXGKg169tfUKsf03Tr6-HmMGl7CSSGF2Ka4JrXIueOay6pd7IsvOMmpS63JpPOOBao27z3OeIhYaQWXttMF7nimXWMcZz3ESwh-CjC2hmlG7f-Xpax7x3D7wSbo21pzv3__Of212PaO9ewcXfbeg7PWlhKNuZ2tAwLrn4BT38jK3wJJ-iIJ4FccV6sVJMf_fEimXgS-DCvf102J-OajGMq4zHukOTnuDEThxgdZyan4ej_LHC44hCiSKNqezE2xySCeBLy20MSmXsFowcR72tYrCe1ewOkVFQzZVUhVJpxjKCZUJbagnNHNXqkAbBOgpVpecxDO43vVc_AHKReodSrKPVqNoBPt--czlk8_jl6tVNM1a7opgqBGUI5yssBfO6U1T_--2wr_zd8DR4PD_f3qr3tg9238CQNKTQxpW0VFqdn5-4dYqCpfh9NkMC3h7b5G4NfFRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7VhQI-wAmi2rEdJwcOFWXVUqg4sFJvwb_qqpBdNdtWe-MdeBGeiSdh7E0aQIDEoef1OtF4bH-T-eYbgKeSWqmoLjKhQpUJx0KmlaGZdkoXRRVKnXoRvDsodifizaE8XINvfS1MYrv3KclVTUNUaWoWW3MXtobCNxazxjH0wfBElNmyo1Xu--U5Bm3ty70dXOFneT5-_eHVbtb1FcgsL-Uiw_1vZME9N1zR4FVVBs9tTn3hrFDeehZl3EIIBWIjaZWRwThhykJz4TxjHOe9AldFrD7GHTTJty_OflWlHngMnxP9j3ZlOn9-51-vwgHf_paSTTfd-Bbc7CAq2V751G1Y880duPGTcOFdOMZDeRaFFleFSw35PHxqJLNAojbm9y9f2-NpQ6aJ1niEtyU5m7Z25hGv48xkHtMAJ1HPFYcQTVrduPOpPSIJ0JPIdY-EMn8PJpdi3vuw3swavwGk0tQw7XQpdS44RtNMakddybmnBk-nEbDegrXtNM1ja41P9aDGHK1eo9XrZPV6OYLnF_-ZrxQ9_jl6s1-YutvdbR2DNIR1lFcjeNEv1vDz32d78H_Dn8C19zvj-u3ewf5DuJ5HNk1it23C-uLk1D9COLQwj5MHEvh42S7_A4MBGUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoindentation+measurement+of+core%E2%80%93skin+interphase+viscoelastic+properties+in+a+sandwich+glass+composite&rft.jtitle=Mechanics+of+time-dependent+materials&rft.au=Cao%2C+Dongyang&rft.au=Malakooti%2C+Sadeq&rft.au=Kulkarni%2C+Vijay+N.&rft.au=Ren%2C+Yao&rft.date=2021-09-01&rft.issn=1385-2000&rft.eissn=1573-2738&rft.volume=25&rft.issue=3&rft.spage=353&rft.epage=363&rft_id=info:doi/10.1007%2Fs11043-020-09448-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11043_020_09448_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2000&client=summon |