Efficient Classical Simulation of Random Shallow 2D Quantum Circuits

A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 12; no. 2; p. 021021
Main Authors Napp, John C., La Placa, Rolando L., Dalzell, Alexander M., Brandão, Fernando G. S. L., Harrow, Aram W.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a409×409grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient.
AbstractList A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a409×409grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient.
A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a 409×409 grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient.
ArticleNumber 021021
Author Brandão, Fernando G. S. L.
Harrow, Aram W.
Dalzell, Alexander M.
Napp, John C.
La Placa, Rolando L.
Author_xml – sequence: 1
  givenname: John C.
  orcidid: 0000-0003-0990-2695
  surname: Napp
  fullname: Napp, John C.
– sequence: 2
  givenname: Rolando L.
  surname: La Placa
  fullname: La Placa, Rolando L.
– sequence: 3
  givenname: Alexander M.
  orcidid: 0000-0002-3756-8500
  surname: Dalzell
  fullname: Dalzell, Alexander M.
– sequence: 4
  givenname: Fernando G. S. L.
  surname: Brandão
  fullname: Brandão, Fernando G. S. L.
– sequence: 5
  givenname: Aram W.
  surname: Harrow
  fullname: Harrow, Aram W.
BookMark eNp9kNtKAzEQhoMoWA8v4NWC1605bZK9lNYTFNSq4F2YZhObst3UJKv49q5WRbxwGJhhmP-f4dtD221oLUJHBI8IwezkZvGWZvblcUToCFPS5xYaUCLwkDGstn_1u-gwpSXuQ2DCpRygyZlz3njb5mLcQEreQFPc-VXXQPahLYIrZtDWYVXcLaBpwmtBJ8VtB23uVsXYR9P5nA7QjoMm2cOvuo8ezs_ux5fD6fXF1fh0OjRMlXkoOeOcW-64rImYG0kMEFNWGM-NLYUVuGSVqktRMSO5kwIDx5SqORBspBNsH11tfOsAS72OfgXxTQfw-nMQ4pOGmL1prJaK1rUlYA0vueBVVVswc-swc07VnPdexxuvdQzPnU1ZL0MX2_59TSUjhDElVL9FN1smhpSidT9XCdYf8PU3fE2o3sDvReqPyPj8iTNH8M1_0neZ8oxb
CitedBy_id crossref_primary_10_1103_PhysRevA_109_012606
crossref_primary_10_21468_SciPostPhysCore_7_1_011
crossref_primary_10_1103_PhysRevResearch_6_043246
crossref_primary_10_1103_PhysRevLett_133_220601
crossref_primary_10_1103_PRXQuantum_5_030311
crossref_primary_10_1103_PRXQuantum_5_030332
crossref_primary_10_1103_PhysRevA_108_062420
crossref_primary_10_1103_PRXQuantum_5_030317
crossref_primary_10_1103_PhysRevB_109_195128
crossref_primary_10_1103_PhysRevB_106_224305
crossref_primary_10_1103_PhysRevB_111_024312
crossref_primary_10_1103_PhysRevLett_131_180601
crossref_primary_10_1103_PRXQuantum_5_020347
crossref_primary_10_1103_PhysRevB_106_144311
crossref_primary_10_1103_PhysRevB_108_214302
crossref_primary_10_1103_PhysRevB_109_235102
crossref_primary_10_1109_ACCESS_2023_3323847
crossref_primary_10_1103_PhysRevResearch_6_043256
crossref_primary_10_1103_PRXQuantum_3_040329
crossref_primary_10_22331_q_2024_05_06_1337
crossref_primary_10_22331_q_2024_12_11_1560
crossref_primary_10_1103_PhysRevResearch_7_013001
crossref_primary_10_1038_s41534_023_00703_x
crossref_primary_10_1103_PhysRevLett_133_120603
crossref_primary_10_1103_PRXQuantum_4_030322
crossref_primary_10_1103_PhysRevLett_131_200201
crossref_primary_10_1103_PhysRevA_109_052613
crossref_primary_10_1103_PRXQuantum_6_010312
crossref_primary_10_1103_PRXQuantum_6_010356
crossref_primary_10_1103_PhysRevLett_129_150604
crossref_primary_10_1103_RevModPhys_95_035001
crossref_primary_10_1103_PhysRevB_108_075151
crossref_primary_10_1103_PhysRevB_108_165126
crossref_primary_10_1103_PhysRevA_110_012207
crossref_primary_10_1103_PhysRevLett_129_120604
crossref_primary_10_1103_PhysRevLett_134_120401
crossref_primary_10_1103_PhysRevX_14_041029
crossref_primary_10_1103_PhysRevA_106_052430
crossref_primary_10_1103_PhysRevA_109_042414
crossref_primary_10_1103_PRXQuantum_4_040326
crossref_primary_10_1007_JHEP11_2023_221
crossref_primary_10_1103_PhysRevB_108_104203
crossref_primary_10_1103_PhysRevLett_132_030401
crossref_primary_10_1103_PhysRevResearch_6_013137
Cites_doi 10.1038/s41567-020-01112-z
10.1103/PhysRevA.68.012308
10.1103/PhysRevB.100.134203
10.1088/2633-1357/abd1e2
10.1038/s41567-018-0318-2
10.1088/1751-8121/aa6dc3
10.1103/PhysRevLett.126.060501
10.1103/PhysRevLett.121.030501
10.1103/PhysRevLett.125.070606
10.1103/PhysRevX.8.021014
10.1098/rspa.2010.0301
10.1103/PhysRevLett.93.040502
10.1103/PRXQuantum.2.010352
10.1103/PhysRevA.71.042328
10.1103/PhysRevResearch.2.043072
10.1103/PhysRevLett.97.157202
10.1103/PhysRevB.102.054302
10.1103/PhysRevB.103.104306
10.1103/PhysRevX.10.041020
10.1103/PhysRevX.8.021013
10.1038/s41567-018-0124-x
10.1103/PhysRevLett.100.030504
10.1103/PhysRevB.99.174205
10.1103/PhysRevD.102.086017
10.1103/PhysRevB.100.064204
10.1103/PhysRevLett.127.180501
10.1103/PhysRevB.101.104301
10.1103/PhysRevLett.125.210602
10.1103/PhysRevA.100.032328
10.1038/s41567-020-01109-8
10.1103/PhysRevA.96.062320
10.1103/PhysRevA.80.062328
10.1103/PhysRevB.102.014315
10.1007/s00220-006-1535-6
10.1103/PhysRevB.104.104305
10.1088/1751-8113/40/28/S16
10.1103/PhysRevX.9.031009
10.1103/PhysRevB.100.134306
10.1103/PhysRevX.11.011030
10.1088/1367-2630/ab0610
10.1103/PhysRevLett.125.030505
10.1126/science.aao4309
10.1103/PhysRevA.71.062313
10.1103/PhysRevLett.125.060503
10.1103/PhysRevLett.118.040502
10.1098/rspa.2005.1546
10.1103/PhysRevLett.86.5188
10.1103/PhysRevB.99.224307
10.26421/QIC4.2-5
10.1103/PhysRevB.101.104302
10.1103/PhysRevResearch.3.023200
10.1103/PhysRevB.101.060301
10.1103/PhysRevX.9.021033
10.1103/PhysRevX.8.021010
10.1098/rspa.2008.0443
10.1103/PhysRevResearch.2.013022
10.22331/q-2017-04-25-8
10.1038/s41586-019-1666-5
10.1038/nature23458
10.1007/JHEP11(2016)009
10.1137/050644756
10.22331/q-2021-01-17-382
10.1088/1367-2630/10/2/023010
10.1126/science.abe8770
10.1088/2058-9565/ab7eeb
10.1016/j.aop.2014.06.013
10.26421/QIC4.3-7
10.1103/PhysRevLett.112.011601
10.1103/PhysRevLett.71.1291
10.1088/1367-2630/aadfa8
10.1007/s00220-006-0118-x
10.1103/PhysRevB.103.174309
10.1103/PhysRevB.98.205136
10.1007/s00220-016-2791-8
10.1103/PhysRevLett.117.080501
10.1103/PhysRevLett.91.147902
10.1103/PhysRevResearch.2.023288
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.12.021021
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_782dde1aec4546499deacbef03ff8d44
10_1103_PhysRevX_12_021021
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c385t-743444e4f47d16bc71ca1c5900bce56e605398d5693c74f760a40228ba10c7f63
IEDL.DBID BENPR
ISSN 2160-3308
IngestDate Wed Aug 27 01:32:12 EDT 2025
Fri Jul 25 11:43:06 EDT 2025
Tue Jul 01 01:33:22 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-743444e4f47d16bc71ca1c5900bce56e605398d5693c74f760a40228ba10c7f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0990-2695
0000-0002-3756-8500
OpenAccessLink https://www.proquest.com/docview/2731133868?pq-origsite=%requestingapplication%
PQID 2731133868
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_782dde1aec4546499deacbef03ff8d44
proquest_journals_2731133868
crossref_primary_10_1103_PhysRevX_12_021021
crossref_citationtrail_10_1103_PhysRevX_12_021021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220401
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.12.021021Cc60R1
PhysRevX.12.021021Cc81R1
PhysRevX.12.021021Cc4R1
PhysRevX.12.021021Cc2R1
P. W. Shor (PhysRevX.12.021021Cc73R1) 1996
PhysRevX.12.021021Cc17R1
PhysRevX.12.021021Cc38R1
PhysRevX.12.021021Cc15R1
PhysRevX.12.021021Cc36R1
PhysRevX.12.021021Cc59R1
PhysRevX.12.021021Cc8R1
PhysRevX.12.021021Cc99R1
PhysRevX.12.021021Cc30R1
PhysRevX.12.021021Cc76R1
PhysRevX.12.021021Cc95R1
PhysRevX.12.021021Cc13R1
PhysRevX.12.021021Cc34R1
PhysRevX.12.021021Cc51R1
PhysRevX.12.021021Cc97R1
PhysRevX.12.021021Cc32R1
PhysRevX.12.021021Cc103R1
PhysRevX.12.021021Cc71R1
S. Aaronson (PhysRevX.12.021021Cc6R1) 2011
L. Eldar (PhysRevX.12.021021Cc69R1) 2018
H. Buhrman (PhysRevX.12.021021Cc78R1) 2006
PhysRevX.12.021021Cc28R1
PhysRevX.12.021021Cc49R1
PhysRevX.12.021021Cc26R1
PhysRevX.12.021021Cc47R1
PhysRevX.12.021021Cc41R1
PhysRevX.12.021021Cc87R1
PhysRevX.12.021021Cc68R1
PhysRevX.12.021021Cc24R1
PhysRevX.12.021021Cc45R1
PhysRevX.12.021021Cc62R1
PhysRevX.12.021021Cc83R1
PhysRevX.12.021021Cc22R1
PhysRevX.12.021021Cc64R1
PhysRevX.12.021021Cc85R1
PhysRevX.12.021021Cc80R1
PhysRevX.12.021021Cc82R1
PhysRevX.12.021021Cc5R1
PhysRevX.12.021021Cc3R1
PhysRevX.12.021021Cc1R1
PhysRevX.12.021021Cc16R1
PhysRevX.12.021021Cc39R1
PhysRevX.12.021021Cc37R1
PhysRevX.12.021021Cc58R1
PhysRevX.12.021021Cc9R1
PhysRevX.12.021021Cc18R1
PhysRevX.12.021021Cc7R1
PhysRevX.12.021021Cc31R1
PhysRevX.12.021021Cc54R1
PhysRevX.12.021021Cc77R1
PhysRevX.12.021021Cc98R1
D. J. Rosenbaum (PhysRevX.12.021021Cc20R1) 2013
J. Kempe (PhysRevX.12.021021Cc79R1) 2008
PhysRevX.12.021021Cc35R1
PhysRevX.12.021021Cc50R1
D. Gottesman (PhysRevX.12.021021Cc14R1) 1998
PhysRevX.12.021021Cc94R1
PhysRevX.12.021021Cc10R1
PhysRevX.12.021021Cc33R1
PhysRevX.12.021021Cc75R1
PhysRevX.12.021021Cc96R1
PhysRevX.12.021021Cc70R1
PhysRevX.12.021021Cc93R1
PhysRevX.12.021021Cc104R1
S. Aaronson (PhysRevX.12.021021Cc11R1) 2017
PhysRevX.12.021021Cc100R1
D. Aharonov (PhysRevX.12.021021Cc74R1) 1996
A. Broadbent (PhysRevX.12.021021Cc90R1) 2009
PhysRevX.12.021021Cc27R1
PhysRevX.12.021021Cc25R1
PhysRevX.12.021021Cc48R1
PhysRevX.12.021021Cc29R1
PhysRevX.12.021021Cc42R1
PhysRevX.12.021021Cc88R1
PhysRevX.12.021021Cc40R1
PhysRevX.12.021021Cc23R1
PhysRevX.12.021021Cc46R1
PhysRevX.12.021021Cc61R1
PhysRevX.12.021021Cc84R1
PhysRevX.12.021021Cc21R1
PhysRevX.12.021021Cc44R1
PhysRevX.12.021021Cc63R1
PhysRevX.12.021021Cc86R1
References_xml – ident: PhysRevX.12.021021Cc38R1
  doi: 10.1038/s41567-020-01112-z
– ident: PhysRevX.12.021021Cc75R1
  doi: 10.1103/PhysRevA.68.012308
– ident: PhysRevX.12.021021Cc104R1
  doi: 10.1103/PhysRevB.100.134203
– ident: PhysRevX.12.021021Cc103R1
  doi: 10.1088/2633-1357/abd1e2
– ident: PhysRevX.12.021021Cc54R1
  doi: 10.1038/s41567-018-0318-2
– volume-title: Proceedings of the 37th Conference on Foundations of Computer Science
  year: 1996
  ident: PhysRevX.12.021021Cc73R1
– ident: PhysRevX.12.021021Cc95R1
  doi: 10.1088/1751-8121/aa6dc3
– ident: PhysRevX.12.021021Cc49R1
  doi: 10.1103/PhysRevLett.126.060501
– ident: PhysRevX.12.021021Cc83R1
  doi: 10.1103/PhysRevLett.121.030501
– ident: PhysRevX.12.021021Cc31R1
  doi: 10.1103/PhysRevLett.125.070606
– ident: PhysRevX.12.021021Cc98R1
  doi: 10.1103/PhysRevX.8.021014
– ident: PhysRevX.12.021021Cc8R1
  doi: 10.1098/rspa.2010.0301
– ident: PhysRevX.12.021021Cc16R1
  doi: 10.1103/PhysRevLett.93.040502
– ident: PhysRevX.12.021021Cc48R1
  doi: 10.1103/PRXQuantum.2.010352
– volume-title: Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)
  year: 2018
  ident: PhysRevX.12.021021Cc69R1
– ident: PhysRevX.12.021021Cc77R1
  doi: 10.1103/PhysRevA.71.042328
– ident: PhysRevX.12.021021Cc44R1
  doi: 10.1103/PhysRevResearch.2.043072
– volume-title: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, 1998
  year: 1998
  ident: PhysRevX.12.021021Cc14R1
– ident: PhysRevX.12.021021Cc17R1
  doi: 10.1103/PhysRevLett.97.157202
– ident: PhysRevX.12.021021Cc41R1
  doi: 10.1103/PhysRevB.102.054302
– ident: PhysRevX.12.021021Cc45R1
  doi: 10.1103/PhysRevB.103.104306
– ident: PhysRevX.12.021021Cc28R1
  doi: 10.1103/PhysRevX.10.041020
– ident: PhysRevX.12.021021Cc99R1
  doi: 10.1103/PhysRevX.8.021013
– ident: PhysRevX.12.021021Cc10R1
  doi: 10.1038/s41567-018-0124-x
– ident: PhysRevX.12.021021Cc93R1
  doi: 10.1103/PhysRevLett.100.030504
– volume-title: Proceedings of the 32nd Computational Complexity Conference
  year: 2017
  ident: PhysRevX.12.021021Cc11R1
– ident: PhysRevX.12.021021Cc100R1
  doi: 10.1103/PhysRevB.99.174205
– ident: PhysRevX.12.021021Cc35R1
  doi: 10.1103/PhysRevD.102.086017
– volume-title: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science
  year: 2009
  ident: PhysRevX.12.021021Cc90R1
– ident: PhysRevX.12.021021Cc26R1
  doi: 10.1103/PhysRevB.100.064204
– ident: PhysRevX.12.021021Cc4R1
  doi: 10.1103/PhysRevLett.127.180501
– ident: PhysRevX.12.021021Cc29R1
  doi: 10.1103/PhysRevB.101.104301
– ident: PhysRevX.12.021021Cc42R1
  doi: 10.1103/PhysRevLett.125.210602
– ident: PhysRevX.12.021021Cc18R1
  doi: 10.1103/PhysRevA.100.032328
– ident: PhysRevX.12.021021Cc71R1
  doi: 10.1038/s41567-020-01109-8
– ident: PhysRevX.12.021021Cc87R1
  doi: 10.1103/PhysRevA.96.062320
– ident: PhysRevX.12.021021Cc81R1
  doi: 10.1103/PhysRevA.80.062328
– ident: PhysRevX.12.021021Cc46R1
  doi: 10.1103/PhysRevB.102.014315
– ident: PhysRevX.12.021021Cc59R1
  doi: 10.1007/s00220-006-1535-6
– ident: PhysRevX.12.021021Cc37R1
  doi: 10.1103/PhysRevB.104.104305
– ident: PhysRevX.12.021021Cc60R1
  doi: 10.1088/1751-8113/40/28/S16
– ident: PhysRevX.12.021021Cc24R1
  doi: 10.1103/PhysRevX.9.031009
– ident: PhysRevX.12.021021Cc25R1
  doi: 10.1103/PhysRevB.100.134306
– ident: PhysRevX.12.021021Cc40R1
  doi: 10.1103/PhysRevX.11.011030
– ident: PhysRevX.12.021021Cc84R1
  doi: 10.1088/1367-2630/ab0610
– ident: PhysRevX.12.021021Cc27R1
  doi: 10.1103/PhysRevLett.125.030505
– ident: PhysRevX.12.021021Cc21R1
  doi: 10.1126/science.aao4309
– ident: PhysRevX.12.021021Cc80R1
  doi: 10.1103/PhysRevA.71.062313
– ident: PhysRevX.12.021021Cc70R1
  doi: 10.1103/PhysRevLett.125.060503
– volume-title: Proceedings of the International Colloquium on Automata, Languages, and Programming
  year: 2008
  ident: PhysRevX.12.021021Cc79R1
– ident: PhysRevX.12.021021Cc86R1
  doi: 10.1103/PhysRevLett.118.040502
– ident: PhysRevX.12.021021Cc50R1
  doi: 10.1098/rspa.2005.1546
– ident: PhysRevX.12.021021Cc85R1
  doi: 10.1103/PhysRevLett.86.5188
– ident: PhysRevX.12.021021Cc23R1
  doi: 10.1103/PhysRevB.99.224307
– ident: PhysRevX.12.021021Cc5R1
  doi: 10.26421/QIC4.2-5
– volume-title: Proceedings of the 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06)
  year: 2006
  ident: PhysRevX.12.021021Cc78R1
– volume-title: Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)
  year: 2013
  ident: PhysRevX.12.021021Cc20R1
– ident: PhysRevX.12.021021Cc30R1
  doi: 10.1103/PhysRevB.101.104302
– ident: PhysRevX.12.021021Cc39R1
  doi: 10.1103/PhysRevResearch.3.023200
– ident: PhysRevX.12.021021Cc32R1
  doi: 10.1103/PhysRevB.101.060301
– ident: PhysRevX.12.021021Cc62R1
  doi: 10.1103/PhysRevX.9.021033
– ident: PhysRevX.12.021021Cc88R1
  doi: 10.1103/PhysRevX.8.021010
– ident: PhysRevX.12.021021Cc7R1
  doi: 10.1098/rspa.2008.0443
– ident: PhysRevX.12.021021Cc33R1
  doi: 10.1103/PhysRevResearch.2.013022
– ident: PhysRevX.12.021021Cc51R1
  doi: 10.22331/q-2017-04-25-8
– ident: PhysRevX.12.021021Cc2R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevX.12.021021Cc1R1
  doi: 10.1038/nature23458
– ident: PhysRevX.12.021021Cc63R1
  doi: 10.1007/JHEP11(2016)009
– ident: PhysRevX.12.021021Cc13R1
  doi: 10.1137/050644756
– volume-title: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing
  year: 2011
  ident: PhysRevX.12.021021Cc6R1
– ident: PhysRevX.12.021021Cc47R1
  doi: 10.22331/q-2021-01-17-382
– ident: PhysRevX.12.021021Cc82R1
  doi: 10.1088/1367-2630/10/2/023010
– ident: PhysRevX.12.021021Cc3R1
  doi: 10.1126/science.abe8770
– ident: PhysRevX.12.021021Cc97R1
  doi: 10.1088/2058-9565/ab7eeb
– ident: PhysRevX.12.021021Cc94R1
  doi: 10.1016/j.aop.2014.06.013
– ident: PhysRevX.12.021021Cc76R1
  doi: 10.26421/QIC4.3-7
– ident: PhysRevX.12.021021Cc61R1
  doi: 10.1103/PhysRevLett.112.011601
– ident: PhysRevX.12.021021Cc58R1
  doi: 10.1103/PhysRevLett.71.1291
– ident: PhysRevX.12.021021Cc68R1
  doi: 10.1088/1367-2630/aadfa8
– ident: PhysRevX.12.021021Cc96R1
  doi: 10.1007/s00220-006-0118-x
– ident: PhysRevX.12.021021Cc36R1
  doi: 10.1103/PhysRevB.103.174309
– ident: PhysRevX.12.021021Cc22R1
  doi: 10.1103/PhysRevB.98.205136
– volume-title: Proceedings of the 37th Conference on Foundations of Computer Science
  year: 1996
  ident: PhysRevX.12.021021Cc74R1
– ident: PhysRevX.12.021021Cc64R1
  doi: 10.1007/s00220-016-2791-8
– ident: PhysRevX.12.021021Cc9R1
  doi: 10.1103/PhysRevLett.117.080501
– ident: PhysRevX.12.021021Cc15R1
  doi: 10.1103/PhysRevLett.91.147902
– ident: PhysRevX.12.021021Cc34R1
  doi: 10.1103/PhysRevResearch.2.023288
SSID ssj0000601477
Score 2.6062217
Snippet A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 021021
SubjectTerms Algorithms
Brickwork
Circuits
Computer architecture
Dynamics
Gates (circuits)
Hilbert space
Phase transitions
Quantum computers
Quantum computing
Quantum entanglement
Qubits (quantum computing)
Run time (computers)
Simulation
Surface hardness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIHgRP7FaZQ_eJDSb_UqP2lqKB8HWQm9L9gsKNpE20b_v7iYpFUEvXsOGhDeZfTNh9j0AbimVSKfcRkGskiCLo4HveXAsDU8dZRsT1D6f2WROnhZ0sWP15WfCanngGri-YzCXgSgzilDCXH2u3VYhjY2xtakmQQnUcd5OM1Xvwa7057w9JRPjvh-onJqPRfj55_sc9I2JgmD_j_04kMz4CBw21SG8r9_qGOyZ_ATshylNtTkFo8cg-OB4AgYzSw8wnC1XjQUXLCycZrkuVnDmPVKKT5iM4EvlwKtWcLhcq2pZbs7AfPz4OpxEjQ1CpHBKy8hxPCHEEEu4RkwqjlSGlHf7lMpQZlxDggeppmyAFSeWszgjXtVGZihW3DJ8Djp5kZsLAKWNE82sK-l4TIzKUsMTphNDrUtjrlgXoBYSoRqNcG9V8SZCrxBj0cIoUCJqGLvgbnvPe62Q8evqB4_0dqVXtw4XXMxFE3PxV8y7oNfGSTQptxGuDkO-4Wbp5X884wocJP6kQxjS6YFOua7Mtas_SnkTPrUv94jYVg
  priority: 102
  providerName: Directory of Open Access Journals
Title Efficient Classical Simulation of Random Shallow 2D Quantum Circuits
URI https://www.proquest.com/docview/2731133868
https://doaj.org/article/782dde1aec4546499deacbef03ff8d44
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngRn1gfJQdvsrjZZJP0JD5axYNoVegt7OYhBdutfejfN0mzFRG87mYvk8x8M7OT7wM4zfMSa8FtEsgqKbYkafuah6Sl4cJBtjGB7fOB3b3S-37ejw23aRyrrGNiCNS6Ur5Hfu5gFvt6iomL8UfiVaP839UoobEKay4EC9GAtavOw2Nv2WXxbCOU8_q2TErO_WBlz3z2QxPQ1zv4FyIF4v4_cTmATXcLNmOWiC4X27oNK2a0A-thWlNNd-GmE4gfHF6gIGrpDY2eB8MoxYUqi3rFSFdD9Oy1UqovlN2gp7kz4nyIrgcTNR_Mpnvw2u28XN8lUQ4hUUTks8RhPaXUUEu5xqxUHKsCK6_6WSqTM-MKE9IWOmdtoji1nKUF9ew2ZYFTxS0j-9AYVSNzAKi0aaaZdakdT6lRhTA8YzozuXXuzBVrAq5NIlXkCveSFe8y1AwpkbUZJc7kwoxNOFt-M14wZfy7-spbernSs1yHB9XkTUankS57cdEXF0bRnDJXm2kHE6WxKbFWaEqbcFzvk4yuN5U_B-Xw_9dHsJH5uwxhDOcYGrPJ3Jy4DGNWtmBVdG9b8TC1Qp3-DaOm0Wc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXiqcILbAHOCGrXu961zmgqjRNU1oq0YeU22LvA0UiccmDqn-qv5GZjR2EKvXWq1-H2dn5ZtYz3wfwIc8r7godkkhWKXkQSZdqHpFWXhcI2d5Hts8TNbiQX4f5cA1u2lkYaqtsY2IM1K62dEa-jTDLqZ5Sxc7l74RUo-jvaiuhsXSLI399hSXb7PNhD9f3Y5b198_3BkmjKpBYUeTzBCFTSullkNpxVVnNbcktiWdW1ufKY34vuoXLVVdYLYNWaSmJJKYqeWp1UAK_-wAeSoFITpPp_YPVmQ5xm0it29mcVGxTG-ep_zOMR45UXfH_8C_KBNxCgQht_aew0eSkbHfpRM9gzU-ew6PYG2pnL6C3H2kmEJ1YlNCkZWVno3Ej_MXqwE7LiavH7IyUWeorlvXY9wUu2WLM9kZTuxjNZy_h4l7M9ArWJ_XEvwZWhTRzKmAiqVPpbVl4nSmX-Txg8NBWdYC3JjG2YSYngYxfJlYoqTCtGQ3PzNKMHfi0eudyyctx59NfyNKrJ4lTO16opz9Ns0UN5koY63nprcylwkrQIShVPqQihMJJ2YGtdp1Ms9Fn5p9bvrn79nt4PDj_dmyOD0-ONuFJRlMUsQFoC9bn04V_i7nNvHoXHYrBj_v24L9u7Alj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Classical+Simulation+of+Random+Shallow+2D+Quantum+Circuits&rft.jtitle=Physical+review.+X&rft.au=Napp%2C+John+C&rft.au=La+Placa%2C+Rolando+L&rft.au=Dalzell%2C+Alexander+M&rft.au=Fernando+G.%E2%80%89S.%E2%80%89L.+Brand%C3%A3o&rft.date=2022-04-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.12.021021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon