Efficient Classical Simulation of Random Shallow 2D Quantum Circuits
A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist...
Saved in:
Published in | Physical review. X Vol. 12; no. 2; p. 021021 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a409×409grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient. |
---|---|
AbstractList | A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a409×409grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient. A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating quantum dynamics on a classical computer is thought to require exponential overhead in the worst case, efficient simulations are known to exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition is false by showing that certain families of constant-depth, 2D random circuits can be approximately simulated on a classical computer in time only linear in the number of qubits and gates, even though the same families are capable of universal quantum computation and are hard to exactly simulate in the worst case (under standard hardness assumptions). While our proof applies to specific random circuit families, we demonstrate numerically that typical instances of more general families of sufficiently shallow constant-depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms. One is based on first simulating spatially local regions which are then “stitched” together via recovery maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have recently been the subject of an intensive research focus, which has observed that the dynamics generally undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a similar computational phase transition occurs for both of our algorithms as parameters of the circuit architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture, for which exact simulation is hard, we find that a laptop could simulate typical instances on a 409×409 grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task intractable for previously known circuit simulation algorithms. Numerical results support our analytic evidence that the algorithm is asymptotically efficient. |
ArticleNumber | 021021 |
Author | Brandão, Fernando G. S. L. Harrow, Aram W. Dalzell, Alexander M. Napp, John C. La Placa, Rolando L. |
Author_xml | – sequence: 1 givenname: John C. orcidid: 0000-0003-0990-2695 surname: Napp fullname: Napp, John C. – sequence: 2 givenname: Rolando L. surname: La Placa fullname: La Placa, Rolando L. – sequence: 3 givenname: Alexander M. orcidid: 0000-0002-3756-8500 surname: Dalzell fullname: Dalzell, Alexander M. – sequence: 4 givenname: Fernando G. S. L. surname: Brandão fullname: Brandão, Fernando G. S. L. – sequence: 5 givenname: Aram W. surname: Harrow fullname: Harrow, Aram W. |
BookMark | eNp9kNtKAzEQhoMoWA8v4NWC1605bZK9lNYTFNSq4F2YZhObst3UJKv49q5WRbxwGJhhmP-f4dtD221oLUJHBI8IwezkZvGWZvblcUToCFPS5xYaUCLwkDGstn_1u-gwpSXuQ2DCpRygyZlz3njb5mLcQEreQFPc-VXXQPahLYIrZtDWYVXcLaBpwmtBJ8VtB23uVsXYR9P5nA7QjoMm2cOvuo8ezs_ux5fD6fXF1fh0OjRMlXkoOeOcW-64rImYG0kMEFNWGM-NLYUVuGSVqktRMSO5kwIDx5SqORBspBNsH11tfOsAS72OfgXxTQfw-nMQ4pOGmL1prJaK1rUlYA0vueBVVVswc-swc07VnPdexxuvdQzPnU1ZL0MX2_59TSUjhDElVL9FN1smhpSidT9XCdYf8PU3fE2o3sDvReqPyPj8iTNH8M1_0neZ8oxb |
CitedBy_id | crossref_primary_10_1103_PhysRevA_109_012606 crossref_primary_10_21468_SciPostPhysCore_7_1_011 crossref_primary_10_1103_PhysRevResearch_6_043246 crossref_primary_10_1103_PhysRevLett_133_220601 crossref_primary_10_1103_PRXQuantum_5_030311 crossref_primary_10_1103_PRXQuantum_5_030332 crossref_primary_10_1103_PhysRevA_108_062420 crossref_primary_10_1103_PRXQuantum_5_030317 crossref_primary_10_1103_PhysRevB_109_195128 crossref_primary_10_1103_PhysRevB_106_224305 crossref_primary_10_1103_PhysRevB_111_024312 crossref_primary_10_1103_PhysRevLett_131_180601 crossref_primary_10_1103_PRXQuantum_5_020347 crossref_primary_10_1103_PhysRevB_106_144311 crossref_primary_10_1103_PhysRevB_108_214302 crossref_primary_10_1103_PhysRevB_109_235102 crossref_primary_10_1109_ACCESS_2023_3323847 crossref_primary_10_1103_PhysRevResearch_6_043256 crossref_primary_10_1103_PRXQuantum_3_040329 crossref_primary_10_22331_q_2024_05_06_1337 crossref_primary_10_22331_q_2024_12_11_1560 crossref_primary_10_1103_PhysRevResearch_7_013001 crossref_primary_10_1038_s41534_023_00703_x crossref_primary_10_1103_PhysRevLett_133_120603 crossref_primary_10_1103_PRXQuantum_4_030322 crossref_primary_10_1103_PhysRevLett_131_200201 crossref_primary_10_1103_PhysRevA_109_052613 crossref_primary_10_1103_PRXQuantum_6_010312 crossref_primary_10_1103_PRXQuantum_6_010356 crossref_primary_10_1103_PhysRevLett_129_150604 crossref_primary_10_1103_RevModPhys_95_035001 crossref_primary_10_1103_PhysRevB_108_075151 crossref_primary_10_1103_PhysRevB_108_165126 crossref_primary_10_1103_PhysRevA_110_012207 crossref_primary_10_1103_PhysRevLett_129_120604 crossref_primary_10_1103_PhysRevLett_134_120401 crossref_primary_10_1103_PhysRevX_14_041029 crossref_primary_10_1103_PhysRevA_106_052430 crossref_primary_10_1103_PhysRevA_109_042414 crossref_primary_10_1103_PRXQuantum_4_040326 crossref_primary_10_1007_JHEP11_2023_221 crossref_primary_10_1103_PhysRevB_108_104203 crossref_primary_10_1103_PhysRevLett_132_030401 crossref_primary_10_1103_PhysRevResearch_6_013137 |
Cites_doi | 10.1038/s41567-020-01112-z 10.1103/PhysRevA.68.012308 10.1103/PhysRevB.100.134203 10.1088/2633-1357/abd1e2 10.1038/s41567-018-0318-2 10.1088/1751-8121/aa6dc3 10.1103/PhysRevLett.126.060501 10.1103/PhysRevLett.121.030501 10.1103/PhysRevLett.125.070606 10.1103/PhysRevX.8.021014 10.1098/rspa.2010.0301 10.1103/PhysRevLett.93.040502 10.1103/PRXQuantum.2.010352 10.1103/PhysRevA.71.042328 10.1103/PhysRevResearch.2.043072 10.1103/PhysRevLett.97.157202 10.1103/PhysRevB.102.054302 10.1103/PhysRevB.103.104306 10.1103/PhysRevX.10.041020 10.1103/PhysRevX.8.021013 10.1038/s41567-018-0124-x 10.1103/PhysRevLett.100.030504 10.1103/PhysRevB.99.174205 10.1103/PhysRevD.102.086017 10.1103/PhysRevB.100.064204 10.1103/PhysRevLett.127.180501 10.1103/PhysRevB.101.104301 10.1103/PhysRevLett.125.210602 10.1103/PhysRevA.100.032328 10.1038/s41567-020-01109-8 10.1103/PhysRevA.96.062320 10.1103/PhysRevA.80.062328 10.1103/PhysRevB.102.014315 10.1007/s00220-006-1535-6 10.1103/PhysRevB.104.104305 10.1088/1751-8113/40/28/S16 10.1103/PhysRevX.9.031009 10.1103/PhysRevB.100.134306 10.1103/PhysRevX.11.011030 10.1088/1367-2630/ab0610 10.1103/PhysRevLett.125.030505 10.1126/science.aao4309 10.1103/PhysRevA.71.062313 10.1103/PhysRevLett.125.060503 10.1103/PhysRevLett.118.040502 10.1098/rspa.2005.1546 10.1103/PhysRevLett.86.5188 10.1103/PhysRevB.99.224307 10.26421/QIC4.2-5 10.1103/PhysRevB.101.104302 10.1103/PhysRevResearch.3.023200 10.1103/PhysRevB.101.060301 10.1103/PhysRevX.9.021033 10.1103/PhysRevX.8.021010 10.1098/rspa.2008.0443 10.1103/PhysRevResearch.2.013022 10.22331/q-2017-04-25-8 10.1038/s41586-019-1666-5 10.1038/nature23458 10.1007/JHEP11(2016)009 10.1137/050644756 10.22331/q-2021-01-17-382 10.1088/1367-2630/10/2/023010 10.1126/science.abe8770 10.1088/2058-9565/ab7eeb 10.1016/j.aop.2014.06.013 10.26421/QIC4.3-7 10.1103/PhysRevLett.112.011601 10.1103/PhysRevLett.71.1291 10.1088/1367-2630/aadfa8 10.1007/s00220-006-0118-x 10.1103/PhysRevB.103.174309 10.1103/PhysRevB.98.205136 10.1007/s00220-016-2791-8 10.1103/PhysRevLett.117.080501 10.1103/PhysRevLett.91.147902 10.1103/PhysRevResearch.2.023288 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.12.021021 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_782dde1aec4546499deacbef03ff8d44 10_1103_PhysRevX_12_021021 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c385t-743444e4f47d16bc71ca1c5900bce56e605398d5693c74f760a40228ba10c7f63 |
IEDL.DBID | BENPR |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Fri Jul 25 11:43:06 EDT 2025 Tue Jul 01 01:33:22 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-743444e4f47d16bc71ca1c5900bce56e605398d5693c74f760a40228ba10c7f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0990-2695 0000-0002-3756-8500 |
OpenAccessLink | https://www.proquest.com/docview/2731133868?pq-origsite=%requestingapplication% |
PQID | 2731133868 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_782dde1aec4546499deacbef03ff8d44 proquest_journals_2731133868 crossref_primary_10_1103_PhysRevX_12_021021 crossref_citationtrail_10_1103_PhysRevX_12_021021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2022 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.12.021021Cc60R1 PhysRevX.12.021021Cc81R1 PhysRevX.12.021021Cc4R1 PhysRevX.12.021021Cc2R1 P. W. Shor (PhysRevX.12.021021Cc73R1) 1996 PhysRevX.12.021021Cc17R1 PhysRevX.12.021021Cc38R1 PhysRevX.12.021021Cc15R1 PhysRevX.12.021021Cc36R1 PhysRevX.12.021021Cc59R1 PhysRevX.12.021021Cc8R1 PhysRevX.12.021021Cc99R1 PhysRevX.12.021021Cc30R1 PhysRevX.12.021021Cc76R1 PhysRevX.12.021021Cc95R1 PhysRevX.12.021021Cc13R1 PhysRevX.12.021021Cc34R1 PhysRevX.12.021021Cc51R1 PhysRevX.12.021021Cc97R1 PhysRevX.12.021021Cc32R1 PhysRevX.12.021021Cc103R1 PhysRevX.12.021021Cc71R1 S. Aaronson (PhysRevX.12.021021Cc6R1) 2011 L. Eldar (PhysRevX.12.021021Cc69R1) 2018 H. Buhrman (PhysRevX.12.021021Cc78R1) 2006 PhysRevX.12.021021Cc28R1 PhysRevX.12.021021Cc49R1 PhysRevX.12.021021Cc26R1 PhysRevX.12.021021Cc47R1 PhysRevX.12.021021Cc41R1 PhysRevX.12.021021Cc87R1 PhysRevX.12.021021Cc68R1 PhysRevX.12.021021Cc24R1 PhysRevX.12.021021Cc45R1 PhysRevX.12.021021Cc62R1 PhysRevX.12.021021Cc83R1 PhysRevX.12.021021Cc22R1 PhysRevX.12.021021Cc64R1 PhysRevX.12.021021Cc85R1 PhysRevX.12.021021Cc80R1 PhysRevX.12.021021Cc82R1 PhysRevX.12.021021Cc5R1 PhysRevX.12.021021Cc3R1 PhysRevX.12.021021Cc1R1 PhysRevX.12.021021Cc16R1 PhysRevX.12.021021Cc39R1 PhysRevX.12.021021Cc37R1 PhysRevX.12.021021Cc58R1 PhysRevX.12.021021Cc9R1 PhysRevX.12.021021Cc18R1 PhysRevX.12.021021Cc7R1 PhysRevX.12.021021Cc31R1 PhysRevX.12.021021Cc54R1 PhysRevX.12.021021Cc77R1 PhysRevX.12.021021Cc98R1 D. J. Rosenbaum (PhysRevX.12.021021Cc20R1) 2013 J. Kempe (PhysRevX.12.021021Cc79R1) 2008 PhysRevX.12.021021Cc35R1 PhysRevX.12.021021Cc50R1 D. Gottesman (PhysRevX.12.021021Cc14R1) 1998 PhysRevX.12.021021Cc94R1 PhysRevX.12.021021Cc10R1 PhysRevX.12.021021Cc33R1 PhysRevX.12.021021Cc75R1 PhysRevX.12.021021Cc96R1 PhysRevX.12.021021Cc70R1 PhysRevX.12.021021Cc93R1 PhysRevX.12.021021Cc104R1 S. Aaronson (PhysRevX.12.021021Cc11R1) 2017 PhysRevX.12.021021Cc100R1 D. Aharonov (PhysRevX.12.021021Cc74R1) 1996 A. Broadbent (PhysRevX.12.021021Cc90R1) 2009 PhysRevX.12.021021Cc27R1 PhysRevX.12.021021Cc25R1 PhysRevX.12.021021Cc48R1 PhysRevX.12.021021Cc29R1 PhysRevX.12.021021Cc42R1 PhysRevX.12.021021Cc88R1 PhysRevX.12.021021Cc40R1 PhysRevX.12.021021Cc23R1 PhysRevX.12.021021Cc46R1 PhysRevX.12.021021Cc61R1 PhysRevX.12.021021Cc84R1 PhysRevX.12.021021Cc21R1 PhysRevX.12.021021Cc44R1 PhysRevX.12.021021Cc63R1 PhysRevX.12.021021Cc86R1 |
References_xml | – ident: PhysRevX.12.021021Cc38R1 doi: 10.1038/s41567-020-01112-z – ident: PhysRevX.12.021021Cc75R1 doi: 10.1103/PhysRevA.68.012308 – ident: PhysRevX.12.021021Cc104R1 doi: 10.1103/PhysRevB.100.134203 – ident: PhysRevX.12.021021Cc103R1 doi: 10.1088/2633-1357/abd1e2 – ident: PhysRevX.12.021021Cc54R1 doi: 10.1038/s41567-018-0318-2 – volume-title: Proceedings of the 37th Conference on Foundations of Computer Science year: 1996 ident: PhysRevX.12.021021Cc73R1 – ident: PhysRevX.12.021021Cc95R1 doi: 10.1088/1751-8121/aa6dc3 – ident: PhysRevX.12.021021Cc49R1 doi: 10.1103/PhysRevLett.126.060501 – ident: PhysRevX.12.021021Cc83R1 doi: 10.1103/PhysRevLett.121.030501 – ident: PhysRevX.12.021021Cc31R1 doi: 10.1103/PhysRevLett.125.070606 – ident: PhysRevX.12.021021Cc98R1 doi: 10.1103/PhysRevX.8.021014 – ident: PhysRevX.12.021021Cc8R1 doi: 10.1098/rspa.2010.0301 – ident: PhysRevX.12.021021Cc16R1 doi: 10.1103/PhysRevLett.93.040502 – ident: PhysRevX.12.021021Cc48R1 doi: 10.1103/PRXQuantum.2.010352 – volume-title: Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) year: 2018 ident: PhysRevX.12.021021Cc69R1 – ident: PhysRevX.12.021021Cc77R1 doi: 10.1103/PhysRevA.71.042328 – ident: PhysRevX.12.021021Cc44R1 doi: 10.1103/PhysRevResearch.2.043072 – volume-title: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, 1998 year: 1998 ident: PhysRevX.12.021021Cc14R1 – ident: PhysRevX.12.021021Cc17R1 doi: 10.1103/PhysRevLett.97.157202 – ident: PhysRevX.12.021021Cc41R1 doi: 10.1103/PhysRevB.102.054302 – ident: PhysRevX.12.021021Cc45R1 doi: 10.1103/PhysRevB.103.104306 – ident: PhysRevX.12.021021Cc28R1 doi: 10.1103/PhysRevX.10.041020 – ident: PhysRevX.12.021021Cc99R1 doi: 10.1103/PhysRevX.8.021013 – ident: PhysRevX.12.021021Cc10R1 doi: 10.1038/s41567-018-0124-x – ident: PhysRevX.12.021021Cc93R1 doi: 10.1103/PhysRevLett.100.030504 – volume-title: Proceedings of the 32nd Computational Complexity Conference year: 2017 ident: PhysRevX.12.021021Cc11R1 – ident: PhysRevX.12.021021Cc100R1 doi: 10.1103/PhysRevB.99.174205 – ident: PhysRevX.12.021021Cc35R1 doi: 10.1103/PhysRevD.102.086017 – volume-title: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science year: 2009 ident: PhysRevX.12.021021Cc90R1 – ident: PhysRevX.12.021021Cc26R1 doi: 10.1103/PhysRevB.100.064204 – ident: PhysRevX.12.021021Cc4R1 doi: 10.1103/PhysRevLett.127.180501 – ident: PhysRevX.12.021021Cc29R1 doi: 10.1103/PhysRevB.101.104301 – ident: PhysRevX.12.021021Cc42R1 doi: 10.1103/PhysRevLett.125.210602 – ident: PhysRevX.12.021021Cc18R1 doi: 10.1103/PhysRevA.100.032328 – ident: PhysRevX.12.021021Cc71R1 doi: 10.1038/s41567-020-01109-8 – ident: PhysRevX.12.021021Cc87R1 doi: 10.1103/PhysRevA.96.062320 – ident: PhysRevX.12.021021Cc81R1 doi: 10.1103/PhysRevA.80.062328 – ident: PhysRevX.12.021021Cc46R1 doi: 10.1103/PhysRevB.102.014315 – ident: PhysRevX.12.021021Cc59R1 doi: 10.1007/s00220-006-1535-6 – ident: PhysRevX.12.021021Cc37R1 doi: 10.1103/PhysRevB.104.104305 – ident: PhysRevX.12.021021Cc60R1 doi: 10.1088/1751-8113/40/28/S16 – ident: PhysRevX.12.021021Cc24R1 doi: 10.1103/PhysRevX.9.031009 – ident: PhysRevX.12.021021Cc25R1 doi: 10.1103/PhysRevB.100.134306 – ident: PhysRevX.12.021021Cc40R1 doi: 10.1103/PhysRevX.11.011030 – ident: PhysRevX.12.021021Cc84R1 doi: 10.1088/1367-2630/ab0610 – ident: PhysRevX.12.021021Cc27R1 doi: 10.1103/PhysRevLett.125.030505 – ident: PhysRevX.12.021021Cc21R1 doi: 10.1126/science.aao4309 – ident: PhysRevX.12.021021Cc80R1 doi: 10.1103/PhysRevA.71.062313 – ident: PhysRevX.12.021021Cc70R1 doi: 10.1103/PhysRevLett.125.060503 – volume-title: Proceedings of the International Colloquium on Automata, Languages, and Programming year: 2008 ident: PhysRevX.12.021021Cc79R1 – ident: PhysRevX.12.021021Cc86R1 doi: 10.1103/PhysRevLett.118.040502 – ident: PhysRevX.12.021021Cc50R1 doi: 10.1098/rspa.2005.1546 – ident: PhysRevX.12.021021Cc85R1 doi: 10.1103/PhysRevLett.86.5188 – ident: PhysRevX.12.021021Cc23R1 doi: 10.1103/PhysRevB.99.224307 – ident: PhysRevX.12.021021Cc5R1 doi: 10.26421/QIC4.2-5 – volume-title: Proceedings of the 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) year: 2006 ident: PhysRevX.12.021021Cc78R1 – volume-title: Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013) year: 2013 ident: PhysRevX.12.021021Cc20R1 – ident: PhysRevX.12.021021Cc30R1 doi: 10.1103/PhysRevB.101.104302 – ident: PhysRevX.12.021021Cc39R1 doi: 10.1103/PhysRevResearch.3.023200 – ident: PhysRevX.12.021021Cc32R1 doi: 10.1103/PhysRevB.101.060301 – ident: PhysRevX.12.021021Cc62R1 doi: 10.1103/PhysRevX.9.021033 – ident: PhysRevX.12.021021Cc88R1 doi: 10.1103/PhysRevX.8.021010 – ident: PhysRevX.12.021021Cc7R1 doi: 10.1098/rspa.2008.0443 – ident: PhysRevX.12.021021Cc33R1 doi: 10.1103/PhysRevResearch.2.013022 – ident: PhysRevX.12.021021Cc51R1 doi: 10.22331/q-2017-04-25-8 – ident: PhysRevX.12.021021Cc2R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevX.12.021021Cc1R1 doi: 10.1038/nature23458 – ident: PhysRevX.12.021021Cc63R1 doi: 10.1007/JHEP11(2016)009 – ident: PhysRevX.12.021021Cc13R1 doi: 10.1137/050644756 – volume-title: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing year: 2011 ident: PhysRevX.12.021021Cc6R1 – ident: PhysRevX.12.021021Cc47R1 doi: 10.22331/q-2021-01-17-382 – ident: PhysRevX.12.021021Cc82R1 doi: 10.1088/1367-2630/10/2/023010 – ident: PhysRevX.12.021021Cc3R1 doi: 10.1126/science.abe8770 – ident: PhysRevX.12.021021Cc97R1 doi: 10.1088/2058-9565/ab7eeb – ident: PhysRevX.12.021021Cc94R1 doi: 10.1016/j.aop.2014.06.013 – ident: PhysRevX.12.021021Cc76R1 doi: 10.26421/QIC4.3-7 – ident: PhysRevX.12.021021Cc61R1 doi: 10.1103/PhysRevLett.112.011601 – ident: PhysRevX.12.021021Cc58R1 doi: 10.1103/PhysRevLett.71.1291 – ident: PhysRevX.12.021021Cc68R1 doi: 10.1088/1367-2630/aadfa8 – ident: PhysRevX.12.021021Cc96R1 doi: 10.1007/s00220-006-0118-x – ident: PhysRevX.12.021021Cc36R1 doi: 10.1103/PhysRevB.103.174309 – ident: PhysRevX.12.021021Cc22R1 doi: 10.1103/PhysRevB.98.205136 – volume-title: Proceedings of the 37th Conference on Foundations of Computer Science year: 1996 ident: PhysRevX.12.021021Cc74R1 – ident: PhysRevX.12.021021Cc64R1 doi: 10.1007/s00220-016-2791-8 – ident: PhysRevX.12.021021Cc9R1 doi: 10.1103/PhysRevLett.117.080501 – ident: PhysRevX.12.021021Cc15R1 doi: 10.1103/PhysRevLett.91.147902 – ident: PhysRevX.12.021021Cc34R1 doi: 10.1103/PhysRevResearch.2.023288 |
SSID | ssj0000601477 |
Score | 2.6062217 |
Snippet | A central question of quantum computing is determining the source of the advantage of quantum computation over classical computation. Even though simulating... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 021021 |
SubjectTerms | Algorithms Brickwork Circuits Computer architecture Dynamics Gates (circuits) Hilbert space Phase transitions Quantum computers Quantum computing Quantum entanglement Qubits (quantum computing) Run time (computers) Simulation Surface hardness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIHgRP7FaZQ_eJDSb_UqP2lqKB8HWQm9L9gsKNpE20b_v7iYpFUEvXsOGhDeZfTNh9j0AbimVSKfcRkGskiCLo4HveXAsDU8dZRsT1D6f2WROnhZ0sWP15WfCanngGri-YzCXgSgzilDCXH2u3VYhjY2xtakmQQnUcd5OM1Xvwa7057w9JRPjvh-onJqPRfj55_sc9I2JgmD_j_04kMz4CBw21SG8r9_qGOyZ_ATshylNtTkFo8cg-OB4AgYzSw8wnC1XjQUXLCycZrkuVnDmPVKKT5iM4EvlwKtWcLhcq2pZbs7AfPz4OpxEjQ1CpHBKy8hxPCHEEEu4RkwqjlSGlHf7lMpQZlxDggeppmyAFSeWszgjXtVGZihW3DJ8Djp5kZsLAKWNE82sK-l4TIzKUsMTphNDrUtjrlgXoBYSoRqNcG9V8SZCrxBj0cIoUCJqGLvgbnvPe62Q8evqB4_0dqVXtw4XXMxFE3PxV8y7oNfGSTQptxGuDkO-4Wbp5X884wocJP6kQxjS6YFOua7Mtas_SnkTPrUv94jYVg priority: 102 providerName: Directory of Open Access Journals |
Title | Efficient Classical Simulation of Random Shallow 2D Quantum Circuits |
URI | https://www.proquest.com/docview/2731133868 https://doaj.org/article/782dde1aec4546499deacbef03ff8d44 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngRn1gfJQdvsrjZZJP0JD5axYNoVegt7OYhBdutfejfN0mzFRG87mYvk8x8M7OT7wM4zfMSa8FtEsgqKbYkafuah6Sl4cJBtjGB7fOB3b3S-37ejw23aRyrrGNiCNS6Ur5Hfu5gFvt6iomL8UfiVaP839UoobEKay4EC9GAtavOw2Nv2WXxbCOU8_q2TErO_WBlz3z2QxPQ1zv4FyIF4v4_cTmATXcLNmOWiC4X27oNK2a0A-thWlNNd-GmE4gfHF6gIGrpDY2eB8MoxYUqi3rFSFdD9Oy1UqovlN2gp7kz4nyIrgcTNR_Mpnvw2u28XN8lUQ4hUUTks8RhPaXUUEu5xqxUHKsCK6_6WSqTM-MKE9IWOmdtoji1nKUF9ew2ZYFTxS0j-9AYVSNzAKi0aaaZdakdT6lRhTA8YzozuXXuzBVrAq5NIlXkCveSFe8y1AwpkbUZJc7kwoxNOFt-M14wZfy7-spbernSs1yHB9XkTUankS57cdEXF0bRnDJXm2kHE6WxKbFWaEqbcFzvk4yuN5U_B-Xw_9dHsJH5uwxhDOcYGrPJ3Jy4DGNWtmBVdG9b8TC1Qp3-DaOm0Wc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXiqcILbAHOCGrXu961zmgqjRNU1oq0YeU22LvA0UiccmDqn-qv5GZjR2EKvXWq1-H2dn5ZtYz3wfwIc8r7godkkhWKXkQSZdqHpFWXhcI2d5Hts8TNbiQX4f5cA1u2lkYaqtsY2IM1K62dEa-jTDLqZ5Sxc7l74RUo-jvaiuhsXSLI399hSXb7PNhD9f3Y5b198_3BkmjKpBYUeTzBCFTSullkNpxVVnNbcktiWdW1ufKY34vuoXLVVdYLYNWaSmJJKYqeWp1UAK_-wAeSoFITpPp_YPVmQ5xm0it29mcVGxTG-ep_zOMR45UXfH_8C_KBNxCgQht_aew0eSkbHfpRM9gzU-ew6PYG2pnL6C3H2kmEJ1YlNCkZWVno3Ej_MXqwE7LiavH7IyUWeorlvXY9wUu2WLM9kZTuxjNZy_h4l7M9ArWJ_XEvwZWhTRzKmAiqVPpbVl4nSmX-Txg8NBWdYC3JjG2YSYngYxfJlYoqTCtGQ3PzNKMHfi0eudyyctx59NfyNKrJ4lTO16opz9Ns0UN5koY63nprcylwkrQIShVPqQihMJJ2YGtdp1Ms9Fn5p9bvrn79nt4PDj_dmyOD0-ONuFJRlMUsQFoC9bn04V_i7nNvHoXHYrBj_v24L9u7Alj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Classical+Simulation+of+Random+Shallow+2D+Quantum+Circuits&rft.jtitle=Physical+review.+X&rft.au=Napp%2C+John+C&rft.au=La+Placa%2C+Rolando+L&rft.au=Dalzell%2C+Alexander+M&rft.au=Fernando+G.%E2%80%89S.%E2%80%89L.+Brand%C3%A3o&rft.date=2022-04-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.12.021021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |