Systematic literature review on software quality for AI-based software

There is a widespread demand for Artificial Intelligence (AI) software, specifically Machine Learning (ML). It is getting increasingly popular and being adopted in various applications we use daily. AI-based software quality is different from traditional software quality because it generally address...

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 27; no. 3
Main Authors Gezici, Bahar, Tarhan, Ayça Kolukısa
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a widespread demand for Artificial Intelligence (AI) software, specifically Machine Learning (ML). It is getting increasingly popular and being adopted in various applications we use daily. AI-based software quality is different from traditional software quality because it generally addresses distinct and more complex kinds of problems. With the fast advance of AI technologies and related techniques, how to build high-quality AI-based software becomes a very prominent subject. This paper aims at investigating the state of the art on software quality (SQ) for AI-based systems and identifying quality attributes, applied models, challenges, and practices that are reported in the literature. We carried out a systematic literature review (SLR) from 1988 to 2020 to (i) analyze and understand related primary studies and (ii) synthesize limitations and open challenges to drive future research. Our study provides a road map for researchers to understand quality challenges, attributes, and practices in the context of software quality for AI-based software better. From the empirical evidence that we have gathered by this SLR, we suggest future work on this topic be structured under three categories which are Definition/Specification, Design/Evaluation, and Process/Socio-technical.
AbstractList There is a widespread demand for Artificial Intelligence (AI) software, specifically Machine Learning (ML). It is getting increasingly popular and being adopted in various applications we use daily. AI-based software quality is different from traditional software quality because it generally addresses distinct and more complex kinds of problems. With the fast advance of AI technologies and related techniques, how to build high-quality AI-based software becomes a very prominent subject. This paper aims at investigating the state of the art on software quality (SQ) for AI-based systems and identifying quality attributes, applied models, challenges, and practices that are reported in the literature. We carried out a systematic literature review (SLR) from 1988 to 2020 to (i) analyze and understand related primary studies and (ii) synthesize limitations and open challenges to drive future research. Our study provides a road map for researchers to understand quality challenges, attributes, and practices in the context of software quality for AI-based software better. From the empirical evidence that we have gathered by this SLR, we suggest future work on this topic be structured under three categories which are Definition/Specification, Design/Evaluation, and Process/Socio-technical.
ArticleNumber 66
Author Tarhan, Ayça Kolukısa
Gezici, Bahar
Author_xml – sequence: 1
  givenname: Bahar
  orcidid: 0000-0001-6704-3134
  surname: Gezici
  fullname: Gezici, Bahar
  email: bahargezici@cs.hacettepe.edu.tr
  organization: Institute of Science, Computer Engineering Department, Hacettepe University
– sequence: 2
  givenname: Ayça Kolukısa
  surname: Tarhan
  fullname: Tarhan, Ayça Kolukısa
  organization: Institute of Science, Computer Engineering Department, Hacettepe University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOZfO3usRSrBcGDeg7ZbCJb2k2bpJb-e6MrCh56mmHmfebjnaBR73uL0DWQWyCkvItApOSYUMBAgAhMz9AYRMlwKUGOcs4qihkV8gJNYlwRQuqSizFavBxjshudOlOsu2SDTvtgi2A_OnsofF9E79JB59Jur7PgWDgfitkSNzra9rd7ic6dXkd79ROn6G1x_zp_xE_PD8v57AkbVomEZdPUpKWOC1Ea7biDkkpmtaUAriHGtgBlRXhdVZLThraC12AqqjUT1DnDpuhmmLsNfre3MamV34c-r1RUciIkk1RkVTWoTPAxBuuU6VJ-0fcp6G6tgKgv19TgmsquqW_XFM0o_YduQ7fR4XgaYgMUs7h_t-HvqhPUJw2LgQE
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3317798
crossref_primary_10_1145_3698111
crossref_primary_10_1109_MC_2023_3240730
crossref_primary_10_1016_j_infsof_2025_107678
crossref_primary_10_3390_su16145901
crossref_primary_10_3390_app12178700
crossref_primary_10_1007_s10515_024_00453_w
crossref_primary_10_1109_TSE_2023_3308952
crossref_primary_10_1145_3716497
crossref_primary_10_3233_AIS_220483
crossref_primary_10_1016_j_jss_2024_112151
Cites_doi 10.1109/ICTKE.2017.8259629
10.1109/ICSME.2019.00051
10.1109/ICSTW.2018.00061
10.1016/S0065-2458(05)65001-2
10.4018/978-1-7998-5101-1.ch001
10.1007/978-3-030-58793-2_2
10.1016/j.aei.2006.11.006
10.1109/ICSTW.2018.00060
10.18293/SEKE2017-176
10.1109/CESSER-IP.2019.00009
10.3923/itj.2007.835.842
10.1109/TELFOR.2016.7818902
10.1109/ISSREW.2019.00035
10.1016/j.infsof.2020.106368
10.1080/14783363.2017.1310703
10.1109/MSP.2017.2762725
10.1109/ACCESS.2019.2937107
10.1145/3338906.3338937
10.1007/s10664-020-09881-0
10.1145/3371158.3371233
10.1109/GCCE.2018.8574766
10.1109/69.368522
10.1109/RE48521.2020.00036
10.1007/978-3-030-58793-2_5
10.1109/REW.2019.00050
10.1145/3368089.3417039
10.1016/j.jss.2020.110542
10.1145/2601248.2601268
10.1109/SEAA.2018.00018
10.1109/ICDEW.2007.4401084
10.1007/978-3-030-65854-0_4
10.1049/sfw2.12011
10.2991/jase.d.190131.001
10.1109/EIT48999.2020.9208288
10.1080/09720529.2020.1721883
10.1007/978-3-642-29044-2
10.1007/s10994-020-05872-w
10.1145/1463788.1463807
10.1145/3487043
10.1145/2915970.2916008
10.1007/978-3-662-43839-8
10.1016/j.infsof.2015.03.007
10.1007/978-3-030-32409-4_1
10.1007/978-3-030-41418-4_3
10.1109/QRS51102.2020.00016
10.1109/BigDataCongress.2018.00029
10.1109/TSE.2019.2937083
10.1145/3194085.3194090
10.1109/RE.2019.00050
10.1007/s10664-010-9146-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-021-10105-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central (New)
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_021_10105_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-6bb90d2f4557caf4f17263eae211fb0ced117804988642b2d5491c82aa352ffc3
IEDL.DBID U2A
ISSN 1382-3256
IngestDate Fri Jul 25 12:21:50 EDT 2025
Tue Jul 01 03:32:20 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Fri Feb 21 02:46:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Measurement
Machine learning
Software quality
Product quality model
Quality attributes
Artificial intelligence
Quality metrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-6bb90d2f4557caf4f17263eae211fb0ced117804988642b2d5491c82aa352ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6704-3134
PQID 2640563625
PQPubID 326341
ParticipantIDs proquest_journals_2640563625
crossref_citationtrail_10_1007_s10664_021_10105_2
crossref_primary_10_1007_s10664_021_10105_2
springer_journals_10_1007_s10664_021_10105_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rushby J (1988) Quality measures and assurance for AI software, vol 18. National Aeronautics and Space Administration, Scientific and Technical Information Division
Henriksson J, Borg M, Englund C (2018) Automotive safety and machine learning: Initial results from a study on how to adapt the iso 26262 safety standard. In: 2018 IEEE/ACM 1St international workshop on software engineering for AI in autonomous systems (SEFAIAS). IEEE, pp 47–49
HopgoodAAThe state of artificial intelligenceAdv Comput20056517510.1016/S0065-2458(05)65001-2
Masuda S, Ono K, Yasue T, Hosokawa N (2018) A survey of software quality for machine learning applications. In: 2018 IEEE International conference on software testing, verification and validation workshops (ICSTW). IEEE, pp 279–284
PetersenKVakkalankaSKuzniarzLGuidelines for conducting systematic mapping studies in software engineering: an updateInf Softw Technol20156411810.1016/j.infsof.2015.03.007
Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 625–635
ChenRBastaniFBTsaoTWOn the reliability of ai planning software in real-time applicationsIEEE Trans Knowl Data Eng19957141310.1109/69.368522
Kuwajima H, Ishikawa F (2019) Adapting square for quality assessment of artificial intelligence systems. In: 2019 IEEE International symposium on software reliability engineering workshops (ISSREW). IEEE, pp 13–18
Wan Z, Xia X, Lo D, Murphy GC (2019) How does machine learning change software development practices? IEEE Transactions on Software Engineering
25012:2008 I (2008) software engineering — software product quality requirements and evaluation (square) — data quality model. https://www.iso.org/standard/35736.html
Geske F, Hofmann P, Lämmermann L, Schlatt V, Urbach N (2021) Gateways to artificial intelligence: Developing a taxonomy for ai service platforms. In: Twenty-ninth european conference on information systems (ECIS)
29119-1:2013 I (2013) Software and systems engineering — software testing. https://www.iso.org/standard/45142.html
Lakshen GA, Vraneš S., Janev V (2016) Big data and quality: A literature review. In: 2016 24Th telecommunications forum (TELFOR). IEEE, pp 1–4
Tao C, Gao J, Wang T (2019) Testing and quality validation for ai software–perspectives, issues, and practices. IEEE Access 7:120164–120175
Turhan B, Kutlubay O (2007) Mining software data. In: 2007 IEEE 23Rd international conference on data engineering workshop. IEEE, pp 912–916
KitchenhamBProcedures for performing systematic reviews. keele, UKKeele Univ2004332004126
Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44Th euromicro conference on software engineering and advanced applications (SEAA). IEEE, pp 50–59
9126-1:2001 I (2001) Software engineering — product quality. https://www.iso.org/standard/22749.html
25000 I (2005) The iso/iec 25000 series of standards. https://iso25000.com/index.php/en/iso-25000-standards
Mannarswamy S, Roy S, Chidambaram S (2020) Tutorial on software testing & quality assurance for machine learning applications from research bench to real world. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp 373–374
Russel S, Norvig P (2009) Artificial intelligence: a modern approach, English
Lenarduzzi V, Lomio F, Moreschini S, Taibi D, Tamburri DA (2021) Software quality for ai: Where we are now?. In: International conference on software quality. Springer, pp 43–53
26262-1:2018 I (2018) Road vehicles — functional safety. https://www.iso.org/standard/68383.html
ISO/IECIso/iec 25010 (2011)-systems and software quality requirements and evaluation (square)-system and software quality modelsInternational Standard ISO/IEC 25010201121125
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering -
Garousi V, Felderer M, Mäntylä MV (2016) The need for multivocal literature reviews in software engineering: complementing systematic literature reviews with grey literature. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering, pp 1–6
Byrne C (2017) Development Workflows for Data Scientists. O’Reilly Media
KuwajimaHYasuokaHNakaeTEngineering problems in machine learning systemsMach Learn2020109511031126410156810.1007/s10994-020-05872-w07224993
Taleb I, Serhani MA, Dssouli R (2018) Big data quality: a survey. In: 2018 IEEE International congress on big data (bigdata congress). IEEE, pp 166–173
Pons L, Ozkaya I (2019) Priority quality attributes for engineering ai-enabled systems. arXiv:1911.02912
Bosch J, Olsson HH, Crnkovic I (2021) Engineering ai systems: a research agenda. In: Artificial intelligence paradigms for smart cyber-physical systems. IGI Global, pp 1–19
IvarssonMGorschekTA method for evaluating rigor and industrial relevance of technology evaluationsEmpir Softw Eng201116336539510.1007/s10664-010-9146-4
Murphy C, Kaiser GE, Arias M (2006) A framework for quality assurance of machine learning applications -
RiccioVJahangirovaGStoccoAHumbatovaNWeissMTonellaPTesting machine learning based systems: a systematic mappingEmpir Softw Eng20202565193525410.1007/s10664-020-09881-0
Nakajima S (2019) Distortion and faults in machine learning software. In: International workshop on structured object-oriented formal language and method. Springer, pp 29–41
Ongsulee P (2017) Artificial intelligence, machine learning and deep learning. In: 2017 15Th international conference on ICT and knowledge engineering (ICT&KE). IEEE, pp 1–6
DengLArtificial intelligence in the rising wave of deep learning: The historical path and future outlook [perspectives]IEEE Signal Proc Mag201835118017710.1109/MSP.2017.2762725
Hamada K, Ishikawa F, Masuda S, Matsuya M, Ujita Y (2020) Guidelines for quality assurance of machine learning-based artificial intelligence. In: SEKE2020: The 32nd international conference on software engineering & knowledge engineering, pp 335–341
Borg M, Englund C, Wnuk K, Duran B, Levandowski C, Gao S, Tan Y, Kaijser H, Lönn H, Törnqvist J (2018) Safely entering the deep: A review of verification and validation for machine learning and a challenge elicitation in the automotive industry. arXiv:1812.05389
Forward A, Lethbridge TC (2008) A taxonomy of software types to facilitate search and evidence-based software engineering. In: Proceedings of the 2008 conference of the center for advanced studies on collaborative research: meeting of minds, pp 179–191
Hyun ParkSSeon ShinWHyun ParkYLeeYBuilding a new culture for quality management in the era of the fourth industrial revolutionTotal Qual Manag Bus Excell2017289-1093494510.1080/14783363.2017.1310703
de Almeida BiolchiniJCMianPGNataliACCConteTTravassosGHScientific research ontology to support systematic review in software engineeringAdv Eng Inform200721213315110.1016/j.aei.2006.11.006
Vogelsang A, Borg M (2019) Requirements engineering for machine learning: Perspectives from data scientists. In: 2019 IEEE 27Th international requirements engineering conference workshops (REW). IEEE, pp 245–251
Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: survey, landscapes and horizons. IEEE Transactions on Software Engineering
Nakajima S (2018) Quality assurance of machine learning software. In: 2018 IEEE 7Th global conference on consumer electronics (GCCE). IEEE, pp 601–604
MalikVSinghSArtificial intelligent environments: risk management and quality assurance implementationJ Discret Math Sci Cryptogr202023118719510.1080/09720529.2020.172188307477051
Tao C, Hao C, Gao J, Wang T, Wen W (2017) A practical study on quality evaluation for age recognition systems. In: SEKE, pp 345–350
Horkoff J (2019) Non-functional requirements for machine learning: Challenges and new directions. In: 2019 IEEE 27Th international requirements engineering conference (RE). IEEE, pp 386–391
VinayagasundaramBSrivatsaSSoftware quality in artificial intelligence systemInf Technol J20076683584210.3923/itj.2007.835.842
Zhang P, Cao W, Muccini H (2020) Quality assurance technologies of big data applications: A systematic literature review. arXiv:2002.01759
Siebert J, Joeckel L, Heidrich J, Nakamichi K, Ohashi K, Namba I, Yamamoto R, Aoyama M (2020) Towards guidelines for assessing qualities of machine learning systems. In: International conference on the quality of information and communications technology. Springer, pp 17–31
Martínez-Fernández S, Bogner J, Franch X, Oriol M, Siebert J, Trendowicz A, Vollmer AM, Wagner S (2021) Software engineering for ai-based systems: A survey. arXiv:2105.01984
BraiekHBKhomhFOn testing machine learning programsJ Syst Softw202016411054210.1016/j.jss.2020.110542
Poth A, Meyer B, Schlicht P, Riel A (2020) Quality assurance for machine learning–an approach to function and system safeguarding. In: 2020 IEEE 20Th international conference on software quality, reliability and security (QRS). IEEE, pp 22–29
HannousseASearching relevant papers for software engineering secondary studies: Semantic scholar coverage and identification roleIET Softw202115112614610.1049/sfw2.12011
Rahman MS, Reza H (2020) Systematic mapping study of non-functional requirements in big data system. In: 2020 IEEE International conference on electro information technology (EIT). IEEE, pp 025–031
Bourque P, Dupuis R, Abran A, Moore JW, Tripp L (2004) Guide to the software engineering body of knowledge -
Alamin MAA, Uddin G (2021) Quality assurance challenges for machine learning software applications during software development life cycle phases. arXiv:2105.01195
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering. Springer Science & Business Media
Nascimento E, Nguyen-Duc A, Sundbø I, Conte T (2020) Software engineering for artificial intelligence and machine learning software: A systematic literature review. arXiv:2
10105_CR7
10105_CR8
10105_CR44
10105_CR43
10105_CR42
10105_CR48
HB Braiek (10105_CR14) 2020; 164
10105_CR47
10105_CR46
10105_CR45
10105_CR49
B Kitchenham (10105_CR32) 2004; 33
V Riccio (10105_CR57) 2020; 25
10105_CR73
10105_CR72
10105_CR71
10105_CR70
10105_CR33
10105_CR74
10105_CR37
10105_CR35
10105_CR34
V Malik (10105_CR41) 2020; 23
LE Lwakatare (10105_CR40) 2020; 127
10105_CR39
L Deng (10105_CR18) 2018; 35
10105_CR38
10105_CR1
10105_CR2
10105_CR5
10105_CR6
10105_CR3
R Chen (10105_CR16) 1995; 7
AA Hopgood (10105_CR26) 2005; 65
10105_CR4
A Hannousse (10105_CR24) 2021; 15
H Kuwajima (10105_CR36) 2020; 109
10105_CR62
10105_CR61
10105_CR60
10105_CR22
10105_CR66
10105_CR21
10105_CR65
10105_CR20
10105_CR64
10105_CR63
10105_CR25
10105_CR69
K Petersen (10105_CR53) 2015; 64
10105_CR68
10105_CR23
10105_CR29
10105_CR27
S Hyun Park (10105_CR28) 2017; 28
JC de Almeida Biolchini (10105_CR9) 2007; 21
ISO/IEC (10105_CR30) 2011; 2
10105_CR51
10105_CR50
10105_CR11
M Ivarsson (10105_CR31) 2011; 16
10105_CR55
10105_CR10
10105_CR54
10105_CR52
10105_CR15
10105_CR59
10105_CR58
10105_CR13
10105_CR12
10105_CR56
10105_CR19
10105_CR17
B Vinayagasundaram (10105_CR67) 2007; 6
References_xml – reference: Garousi V, Felderer M, Mäntylä MV (2016) The need for multivocal literature reviews in software engineering: complementing systematic literature reviews with grey literature. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering, pp 1–6
– reference: Geske F, Hofmann P, Lämmermann L, Schlatt V, Urbach N (2021) Gateways to artificial intelligence: Developing a taxonomy for ai service platforms. In: Twenty-ninth european conference on information systems (ECIS)
– reference: VinayagasundaramBSrivatsaSSoftware quality in artificial intelligence systemInf Technol J20076683584210.3923/itj.2007.835.842
– reference: Ongsulee P (2017) Artificial intelligence, machine learning and deep learning. In: 2017 15Th international conference on ICT and knowledge engineering (ICT&KE). IEEE, pp 1–6
– reference: Borg M, Englund C, Wnuk K, Duran B, Levandowski C, Gao S, Tan Y, Kaijser H, Lönn H, Törnqvist J (2018) Safely entering the deep: A review of verification and validation for machine learning and a challenge elicitation in the automotive industry. arXiv:1812.05389
– reference: Mannarswamy S, Roy S, Chidambaram S (2020) Tutorial on software testing & quality assurance for machine learning applications from research bench to real world. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp 373–374
– reference: Rahman MS, Reza H (2020) Systematic mapping study of non-functional requirements in big data system. In: 2020 IEEE International conference on electro information technology (EIT). IEEE, pp 025–031
– reference: Siebert J, Joeckel L, Heidrich J, Nakamichi K, Ohashi K, Namba I, Yamamoto R, Aoyama M (2020) Towards guidelines for assessing qualities of machine learning systems. In: International conference on the quality of information and communications technology. Springer, pp 17–31
– reference: Nascimento E, Nguyen-Duc A, Sundbø I, Conte T (2020) Software engineering for artificial intelligence and machine learning software: A systematic literature review. arXiv:2011.03751
– reference: Vogelsang A, Borg M (2019) Requirements engineering for machine learning: Perspectives from data scientists. In: 2019 IEEE 27Th international requirements engineering conference workshops (REW). IEEE, pp 245–251
– reference: Wieringa RJ (2014) Design science methodology for information systems and software engineering. Springer
– reference: Nishi Y, Masuda S, Ogawa H, Uetsuki K (2018) A test architecture for machine learning product. In: 2018 IEEE International conference on software testing, verification and validation workshops (ICSTW). IEEE, pp 273–278
– reference: Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: survey, landscapes and horizons. IEEE Transactions on Software Engineering
– reference: HopgoodAAThe state of artificial intelligenceAdv Comput20056517510.1016/S0065-2458(05)65001-2
– reference: Cummaudo A, Vasa R, Grundy J, Abdelrazek M, Cain A (2019) Losing confidence in quality: Unspoken evolution of computer vision services. In: 2019 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 333–342
– reference: 25000 I (2005) The iso/iec 25000 series of standards. https://iso25000.com/index.php/en/iso-25000-standards
– reference: Nakajima S (2018) Quality assurance of machine learning software. In: 2018 IEEE 7Th global conference on consumer electronics (GCCE). IEEE, pp 601–604
– reference: Nguyen-Duc A, Abrahamsson P (2020) Continuous experimentation on artificial intelligence software: a research agenda. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 1513–1516
– reference: Hyun ParkSSeon ShinWHyun ParkYLeeYBuilding a new culture for quality management in the era of the fourth industrial revolutionTotal Qual Manag Bus Excell2017289-1093494510.1080/14783363.2017.1310703
– reference: Tsintzira AA, Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A (2020) Applying machine learning in technical debt management: Future opportunities and challenges. In: International conference on the quality of information and communications technology. Springer, pp 53–67
– reference: Gezici B, Tarhan AK (2019) Final pool. https://drive.google.com/file/d/1ve6BpJTrITsfo6auSoWKh48ajWbNb05n/view?usp=sharing
– reference: Tao C, Gao J, Wang T (2019) Testing and quality validation for ai software–perspectives, issues, and practices. IEEE Access 7:120164–120175
– reference: Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 625–635
– reference: Nakajima S (2019) Distortion and faults in machine learning software. In: International workshop on structured object-oriented formal language and method. Springer, pp 29–41
– reference: BraiekHBKhomhFOn testing machine learning programsJ Syst Softw202016411054210.1016/j.jss.2020.110542
– reference: Ishikawa F, Yoshioka N (2019) How do engineers perceive difficulties in engineering of machine-learning systems?-questionnaire survey. In: 2019 IEEE/ACM Joint 7th international workshop on conducting empirical studies in industry (CESI) and 6th international workshop on software engineering research and industrial practice (SER&IP). IEEE, pp 2–9
– reference: Lenarduzzi V, Lomio F, Moreschini S, Taibi D, Tamburri DA (2021) Software quality for ai: Where we are now?. In: International conference on software quality. Springer, pp 43–53
– reference: Byrne C (2017) Development Workflows for Data Scientists. O’Reilly Media
– reference: 29119-1:2013 I (2013) Software and systems engineering — software testing. https://www.iso.org/standard/45142.html
– reference: LwakatareLERajACrnkovicIBoschJOlssonHHLarge-scale machine learning systems in real-world industrial settings: a review of challenges and solutionsInf Softw Technol202012710636810.1016/j.infsof.2020.106368
– reference: Nakamichi K, Ohashi K, Namba I, Yamamoto R, Aoyama M, Joeckel L, Siebert J, Heidrich J (2020) Requirements-driven method to determine quality characteristics and measurements for machine learning software and its evaluation. In: 2020 IEEE 28Th international requirements engineering conference (RE). IEEE, pp 260–270
– reference: Pons L, Ozkaya I (2019) Priority quality attributes for engineering ai-enabled systems. arXiv:1911.02912
– reference: Russel S, Norvig P (2009) Artificial intelligence: a modern approach, English
– reference: DengLArtificial intelligence in the rising wave of deep learning: The historical path and future outlook [perspectives]IEEE Signal Proc Mag201835118017710.1109/MSP.2017.2762725
– reference: Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering -
– reference: Bosch J, Olsson HH, Crnkovic I (2021) Engineering ai systems: a research agenda. In: Artificial intelligence paradigms for smart cyber-physical systems. IGI Global, pp 1–19
– reference: MalikVSinghSArtificial intelligent environments: risk management and quality assurance implementationJ Discret Math Sci Cryptogr202023118719510.1080/09720529.2020.172188307477051
– reference: de Almeida BiolchiniJCMianPGNataliACCConteTTravassosGHScientific research ontology to support systematic review in software engineeringAdv Eng Inform200721213315110.1016/j.aei.2006.11.006
– reference: Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on evaluation and assessment in software engineering, pp 1–10
– reference: 9126-1:2001 I (2001) Software engineering — product quality. https://www.iso.org/standard/22749.html
– reference: Forward A, Lethbridge TC (2008) A taxonomy of software types to facilitate search and evidence-based software engineering. In: Proceedings of the 2008 conference of the center for advanced studies on collaborative research: meeting of minds, pp 179–191
– reference: Hamada K, Ishikawa F, Masuda S, Matsuya M, Ujita Y (2020) Guidelines for quality assurance of machine learning-based artificial intelligence. In: SEKE2020: The 32nd international conference on software engineering & knowledge engineering, pp 335–341
– reference: Poth A, Meyer B, Schlicht P, Riel A (2020) Quality assurance for machine learning–an approach to function and system safeguarding. In: 2020 IEEE 20Th international conference on software quality, reliability and security (QRS). IEEE, pp 22–29
– reference: Martínez-Fernández S, Bogner J, Franch X, Oriol M, Siebert J, Trendowicz A, Vollmer AM, Wagner S (2021) Software engineering for ai-based systems: A survey. arXiv:2105.01984
– reference: Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering. Springer Science & Business Media
– reference: PetersenKVakkalankaSKuzniarzLGuidelines for conducting systematic mapping studies in software engineering: an updateInf Softw Technol20156411810.1016/j.infsof.2015.03.007
– reference: Masuda S, Ono K, Yasue T, Hosokawa N (2018) A survey of software quality for machine learning applications. In: 2018 IEEE International conference on software testing, verification and validation workshops (ICSTW). IEEE, pp 279–284
– reference: Taleb I, Serhani MA, Dssouli R (2018) Big data quality: a survey. In: 2018 IEEE International congress on big data (bigdata congress). IEEE, pp 166–173
– reference: Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44Th euromicro conference on software engineering and advanced applications (SEAA). IEEE, pp 50–59
– reference: ISO/IECIso/iec 25010 (2011)-systems and software quality requirements and evaluation (square)-system and software quality modelsInternational Standard ISO/IEC 25010201121125
– reference: Kuwajima H, Ishikawa F (2019) Adapting square for quality assessment of artificial intelligence systems. In: 2019 IEEE International symposium on software reliability engineering workshops (ISSREW). IEEE, pp 13–18
– reference: Ali Z Quality measurement challenges for artificial intelligence software
– reference: KitchenhamBProcedures for performing systematic reviews. keele, UKKeele Univ2004332004126
– reference: Bourque P, Dupuis R, Abran A, Moore JW, Tripp L (2004) Guide to the software engineering body of knowledge -
– reference: KuwajimaHYasuokaHNakaeTEngineering problems in machine learning systemsMach Learn2020109511031126410156810.1007/s10994-020-05872-w07224993
– reference: Alamin MAA, Uddin G (2021) Quality assurance challenges for machine learning software applications during software development life cycle phases. arXiv:2105.01195
– reference: Lakshen GA, Vraneš S., Janev V (2016) Big data and quality: A literature review. In: 2016 24Th telecommunications forum (TELFOR). IEEE, pp 1–4
– reference: Tao C, Hao C, Gao J, Wang T, Wen W (2017) A practical study on quality evaluation for age recognition systems. In: SEKE, pp 345–350
– reference: 26262-1:2018 I (2018) Road vehicles — functional safety. https://www.iso.org/standard/68383.html
– reference: IvarssonMGorschekTA method for evaluating rigor and industrial relevance of technology evaluationsEmpir Softw Eng201116336539510.1007/s10664-010-9146-4
– reference: Henriksson J, Borg M, Englund C (2018) Automotive safety and machine learning: Initial results from a study on how to adapt the iso 26262 safety standard. In: 2018 IEEE/ACM 1St international workshop on software engineering for AI in autonomous systems (SEFAIAS). IEEE, pp 47–49
– reference: ChenRBastaniFBTsaoTWOn the reliability of ai planning software in real-time applicationsIEEE Trans Knowl Data Eng19957141310.1109/69.368522
– reference: Horkoff J (2019) Non-functional requirements for machine learning: Challenges and new directions. In: 2019 IEEE 27Th international requirements engineering conference (RE). IEEE, pp 386–391
– reference: Rushby J (1988) Quality measures and assurance for AI software, vol 18. National Aeronautics and Space Administration, Scientific and Technical Information Division
– reference: Liu Y, Ma L, Zhao J (2019) Secure deep learning engineering: a road towards quality assurance of intelligent systems. In: International conference on formal engineering methods. Springer, pp 3–15
– reference: Zhang P, Cao W, Muccini H (2020) Quality assurance technologies of big data applications: A systematic literature review. arXiv:2002.01759
– reference: HannousseASearching relevant papers for software engineering secondary studies: Semantic scholar coverage and identification roleIET Softw202115112614610.1049/sfw2.12011
– reference: Samoili S, Cobo ML, Gomez E, De Prato G, Martinez-Plumed F, Delipetrev B (2020) Ai watch. defining artificial intelligence. towards an operational definition and taxonomy of artificial intelligence. In: JRC Technical reports. Joint research centre (seville site)
– reference: Turhan B, Kutlubay O (2007) Mining software data. In: 2007 IEEE 23Rd international conference on data engineering workshop. IEEE, pp 912–916
– reference: 25012:2008 I (2008) software engineering — software product quality requirements and evaluation (square) — data quality model. https://www.iso.org/standard/35736.html
– reference: Murphy C, Kaiser GE, Arias M (2006) A framework for quality assurance of machine learning applications -
– reference: RiccioVJahangirovaGStoccoAHumbatovaNWeissMTonellaPTesting machine learning based systems: a systematic mappingEmpir Softw Eng20202565193525410.1007/s10664-020-09881-0
– reference: Wan Z, Xia X, Lo D, Murphy GC (2019) How does machine learning change software development practices? IEEE Transactions on Software Engineering
– reference: Kuwajima H, Yasuoka H, Nakae T (2018) Open problems in engineering and quality assurance of safety critical machine learning systems. arXiv:1812.03057
– ident: 10105_CR52
  doi: 10.1109/ICTKE.2017.8259629
– ident: 10105_CR17
  doi: 10.1109/ICSME.2019.00051
– ident: 10105_CR44
  doi: 10.1109/ICSTW.2018.00061
– volume: 65
  start-page: 1
  year: 2005
  ident: 10105_CR26
  publication-title: Adv Comput
  doi: 10.1016/S0065-2458(05)65001-2
– ident: 10105_CR12
  doi: 10.4018/978-1-7998-5101-1.ch001
– ident: 10105_CR61
  doi: 10.1007/978-3-030-58793-2_2
– volume: 33
  start-page: 1
  issue: 2004
  year: 2004
  ident: 10105_CR32
  publication-title: Keele Univ
– volume: 21
  start-page: 133
  issue: 2
  year: 2007
  ident: 10105_CR9
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2006.11.006
– ident: 10105_CR1
– ident: 10105_CR51
  doi: 10.1109/ICSTW.2018.00060
– ident: 10105_CR64
  doi: 10.18293/SEKE2017-176
– ident: 10105_CR5
– ident: 10105_CR29
  doi: 10.1109/CESSER-IP.2019.00009
– volume: 6
  start-page: 835
  issue: 6
  year: 2007
  ident: 10105_CR67
  publication-title: Inf Technol J
  doi: 10.3923/itj.2007.835.842
– ident: 10105_CR37
  doi: 10.1109/TELFOR.2016.7818902
– ident: 10105_CR34
  doi: 10.1109/ISSREW.2019.00035
– ident: 10105_CR58
– ident: 10105_CR33
– volume: 127
  start-page: 106368
  year: 2020
  ident: 10105_CR40
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2020.106368
– ident: 10105_CR54
– volume: 28
  start-page: 934
  issue: 9-10
  year: 2017
  ident: 10105_CR28
  publication-title: Total Qual Manag Bus Excell
  doi: 10.1080/14783363.2017.1310703
– ident: 10105_CR4
– ident: 10105_CR13
– volume: 35
  start-page: 180
  issue: 1
  year: 2018
  ident: 10105_CR18
  publication-title: IEEE Signal Proc Mag
  doi: 10.1109/MSP.2017.2762725
– ident: 10105_CR63
  doi: 10.1109/ACCESS.2019.2937107
– ident: 10105_CR6
  doi: 10.1145/3338906.3338937
– volume: 25
  start-page: 5193
  issue: 6
  year: 2020
  ident: 10105_CR57
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-020-09881-0
– ident: 10105_CR42
  doi: 10.1145/3371158.3371233
– ident: 10105_CR23
– ident: 10105_CR8
– ident: 10105_CR46
  doi: 10.1109/GCCE.2018.8574766
– volume: 7
  start-page: 4
  issue: 1
  year: 1995
  ident: 10105_CR16
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/69.368522
– ident: 10105_CR48
  doi: 10.1109/RE48521.2020.00036
– ident: 10105_CR59
– ident: 10105_CR74
– ident: 10105_CR65
  doi: 10.1007/978-3-030-58793-2_5
– ident: 10105_CR68
  doi: 10.1109/REW.2019.00050
– ident: 10105_CR50
  doi: 10.1145/3368089.3417039
– volume: 164
  start-page: 110542
  year: 2020
  ident: 10105_CR14
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2020.110542
– ident: 10105_CR71
  doi: 10.1145/2601248.2601268
– ident: 10105_CR3
– ident: 10105_CR10
  doi: 10.1109/SEAA.2018.00018
– ident: 10105_CR66
  doi: 10.1109/ICDEW.2007.4401084
– ident: 10105_CR38
  doi: 10.1007/978-3-030-65854-0_4
– volume: 15
  start-page: 126
  issue: 1
  year: 2021
  ident: 10105_CR24
  publication-title: IET Softw
  doi: 10.1049/sfw2.12011
– ident: 10105_CR11
  doi: 10.2991/jase.d.190131.001
– ident: 10105_CR56
  doi: 10.1109/EIT48999.2020.9208288
– volume: 23
  start-page: 187
  issue: 1
  year: 2020
  ident: 10105_CR41
  publication-title: J Discret Math Sci Cryptogr
  doi: 10.1080/09720529.2020.1721883
– ident: 10105_CR60
– ident: 10105_CR72
  doi: 10.1007/978-3-642-29044-2
– ident: 10105_CR22
– ident: 10105_CR49
– volume: 109
  start-page: 1103
  issue: 5
  year: 2020
  ident: 10105_CR36
  publication-title: Mach Learn
  doi: 10.1007/s10994-020-05872-w
– ident: 10105_CR45
– ident: 10105_CR7
– ident: 10105_CR19
  doi: 10.1145/1463788.1463807
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10105_CR30
  publication-title: International Standard ISO/IEC 25010
– ident: 10105_CR35
– ident: 10105_CR43
  doi: 10.1145/3487043
– ident: 10105_CR20
  doi: 10.1145/2915970.2916008
– ident: 10105_CR70
  doi: 10.1007/978-3-662-43839-8
– volume: 64
  start-page: 1
  year: 2015
  ident: 10105_CR53
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.03.007
– ident: 10105_CR73
– ident: 10105_CR39
  doi: 10.1007/978-3-030-32409-4_1
– ident: 10105_CR47
  doi: 10.1007/978-3-030-41418-4_3
– ident: 10105_CR2
– ident: 10105_CR15
– ident: 10105_CR55
  doi: 10.1109/QRS51102.2020.00016
– ident: 10105_CR62
  doi: 10.1109/BigDataCongress.2018.00029
– ident: 10105_CR21
– ident: 10105_CR69
  doi: 10.1109/TSE.2019.2937083
– ident: 10105_CR25
  doi: 10.1145/3194085.3194090
– ident: 10105_CR27
  doi: 10.1109/RE.2019.00050
– volume: 16
  start-page: 365
  issue: 3
  year: 2011
  ident: 10105_CR31
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-010-9146-4
SSID ssj0009745
Score 2.400237
Snippet There is a widespread demand for Artificial Intelligence (AI) software, specifically Machine Learning (ML). It is getting increasingly popular and being...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial intelligence
Compilers
Computer Science
Empirical analysis
Interpreters
Literature reviews
Machine learning
Programming Languages
Quality management
Software
Software Engineering/Programming and Operating Systems
Software quality
Systematic review
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWADi9pJHHdCBbUqSFQIqNQt8nNCaaFFiH_POXESgUS3KE483Nl339l33yF04bhONawEkgIeILHqx0RKbgg1IqbWSAANvlD4ccLH0_hhlszCgdsypFVWNrEw1Gau_Rn5NThu8NVgbpObxTvxXaP87WpoobGJ2mCCBQRf7dvh5Om5od1NizbFnmiPRODdQ9lMKJ7jPCY-RYH6NpGE_XZNDd78c0VaeJ7RLtoOkBEPSh3voQ2b76Odqh0DDrvzAI1ealZm_FazJeOyOAXPc7wEk_sl4VVZSfmNAbDiwT3xnszUo4doOhq-3o1JaJNAdCSSFeFK9XuGuThJUi1d7ACT8MhKC7GdUz1tDaWeZqgvBAQbihkICakWTEoAX87p6Ai18nlujxG2oDYnhZAMoiijKDy41DipjNFMC9dBtJJQpgOHuG9l8ZY17MdeqhlINSukmrEOuqz_WZQMGmu_7laCz8JuWmaN7jvoqlJGM_z_bCfrZztFW8xXMxT5i13UWn182jPAGCt1HhbSD7LEzPA
  priority: 102
  providerName: ProQuest
Title Systematic literature review on software quality for AI-based software
URI https://link.springer.com/article/10.1007/s10664-021-10105-2
https://www.proquest.com/docview/2640563625
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4Fqu15OBNA032lR5X6bYqFlEL9bTkeSpbsRXx3zvZp4oKnnbZZHOYPOYbMt83CJ3aUEUKVgKJAA8QXw58IkSoCdXcp0YLAA2OKHw7CcdT_3oWzEpS2LLKdq-uJPOT-hPZLQx94lIKqCvrSODgbQcudodVPGVxI7Ub5aWJnbge8cCjl1SZn8f46o4ajPntWjT3Nsk22ixhIo6Led1BaybbRVtVCQZc7sg9lDzUSsx4Xisk44KQghcZXsIx-ybgU8GefMcAUnF8RZz30nXrPpomw8fLMSlLIxDl8WBFQikHfc2sHwSREta3gENCzwgD8ZyVfWU0pU5aaMA5BBiSaQgDqeJMCABc1irvALWyRWYOETYwVVZwLhhETlpSeLGRtkJqrZjitoNoZaFUlbrhrnzFPG0Uj51VU7Bqmls1ZR10Vv_zXKhm_Nm7Wxk-LXfQMgWgBtgM3GvQQefVZDTNv4929L_ux2iDOUZDnsPYRa3Vy6s5AZyxkj20zpNRD7Xj0dPNEJ4Xw8ndfS9fbB-Ubsxv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFNBwIwIBXEAFFlnv5RQIIWBJyNEQJLrF66NCCZAglJ_iGxnvKZBIl261h4vx88ybtecNwIkJZCgRCTREPkC9pOlRIQJFHcU9RyuBpMEWCvf6QevJe3j2nxfgu6iFsccqC5-YOmo1kvYf-QUGbozV6G79q7d3artG2d3VooVGBouOnn5hyja-bN_i_J4yFt0Nblo07ypApcv9CQ2SpNlQzHi-H0phPIMhPHC10JgKmaQhtXIcq8rT5By5ecIUZlCO5EwI5CrGSBfHXYRlz3WbdkXx6L4S-Q3TpshW1o-6yCXyIp28VC8IPGoPRDi2KSVlvwNhxW7_bMimcS7agLWcoJLrDFGbsKCHW7BeNH8guS_Yhuix1IAmr6U2M8lKYchoSMbo4L8E3srqNqcE6TG5blMbN1X5dAee5mK-XVgajoZ6D4hGkBjBuWCYs6nEwQsTKiMSpSST3NTAKSwUy1yx3DbOeI0rrWVr1RitGqdWjVkNzspv3jK9jplv1wvDx_naHccV0mpwXkxG9fj_0fZnj3YMK61Brxt32_3OAawyW0eRnpysw9Lk41MfIruZJEcppAi8zBvDP-77CDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJsaLbyOKugc96Ua6fXIwBhUCosSoJN7qdh8nAyoYwl_z1znbbmk0kZu3ptvuYfbrzDfdnW8AjnQgQoFIoCHyAeoldY9yHkjqyMhzlORIGkyh8F0vaPe9m2f_uQRfeS2MOVaZ-8TUUcuhMP_IzzBwY6xGd-ufaXss4v66dfH2Tk0HKbPTmrfTyCDSVdMJpm-j8841rvUxY63m01Wb2g4DVLiRP6ZBktRrkmnP90PBtacxnAeu4grTIp3UhJKOYxR66lGEPD1hErMpR0SMc-QtWgsX512AxRCzoloZFi-bvfuHQvI3TFskG5E_6iKzsCU7tnAvCDxqjkc4pkUlZT_DYsF1f23PplGvtQYrlq6SRoavdSipwQas5q0giPUMm9B6nClCk9eZUjPJCmPIcEBG6O4nHG9lVZxTgmSZNDrURFE5G92C_r8YcBvKg-FA7QBRCBnNo4gzzOBk4uCFDqXmiZSCiUhXwMktFAurX27aaLzGhfKysWqMVo1Tq8asAiezd94y9Y65T1dzw8f2Sx7FBe4qcJovRjH892y782c7hCXEb3zb6XX3YJmZoor0GGUVyuOPT7WPVGecHFhMEXj5bxh_A8HPDcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+literature+review+on+software+quality+for+AI-based+software&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Gezici%2C+Bahar&rft.au=Tarhan%2C+Ay%C3%A7a+Koluk%C4%B1sa&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs10664-021-10105-2&rft.externalDocID=10_1007_s10664_021_10105_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon