Biological applications of knowledge graph embedding models
Abstract Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predic...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 2; pp. 1679 - 1693 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.03.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems. |
---|---|
AbstractList | Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems. Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems. Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems. |
Author | Mohamed, Sameh K Nounu, Aayah Nováček, Vít |
Author_xml | – sequence: 1 givenname: Sameh K surname: Mohamed fullname: Mohamed, Sameh K email: s.kamal1@nuigalway.ie organization: Data Science Institute, NUI Galway, Galway, Irelands.kamal1@nuigalway.ie – sequence: 2 givenname: Aayah surname: Nounu fullname: Nounu, Aayah email: s.kamal1@nuigalway.ie organization: Insight Centre for Data Analytics, NUI Galway, Galway, Ireland – sequence: 3 givenname: Vít surname: Nováček fullname: Nováček, Vít email: s.kamal1@nuigalway.ie organization: MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32065227$$D View this record in MEDLINE/PubMed |
BookMark | eNp90EtLxDAQwPEgK-5DT96lIIggdfNomwZPuviCBS96Dmk6rVnTpjYt4re3ursgi3jKHH4zhP8UjWpXA0LHBF8SLNg8M9k8y5TChO6hCYk4DyMcR6Nf8xhNvV9hTDFPyQEaM4qTmFI-QVc3xllXGq1soJrGDkNnXO0DVwRvtfuwkJcQlK1qXgOoMshzU5dB5XKw_hDtF8p6ONq8M_Ryd_u8eAiXT_ePi-tlqFkad2EiBEkBcwFQiIIzyERCGcFpkos84UQTRjMVER5hTBTXWIBWRaJiTgUHotkMna_vNq1778F3sjJeg7WqBtd7SVmcxKmgggz0dIeuXN_Ww-8kjakQScpTPqiTjeqzCnLZtKZS7afcZhkAWQPdOu9bKKQ23U-YrlXGSoLld3o5pJeb9MPOxc7O9uzf-mytXd_8C78AS6KQ1w |
CitedBy_id | crossref_primary_10_1093_jac_dkae292 crossref_primary_10_1016_j_pbi_2024_102665 crossref_primary_10_1038_s41467_021_27137_3 crossref_primary_10_1016_j_artmed_2023_102677 crossref_primary_10_1016_j_isci_2024_109148 crossref_primary_10_3390_biom14111447 crossref_primary_10_1016_j_str_2024_02_004 crossref_primary_10_1007_s10462_023_10465_9 crossref_primary_10_1016_j_drudis_2024_103979 crossref_primary_10_1186_s12859_023_05612_6 crossref_primary_10_1038_s41598_025_86166_w crossref_primary_10_1186_s12911_022_02070_7 crossref_primary_10_1016_j_ins_2024_121698 crossref_primary_10_1016_j_jii_2024_100612 crossref_primary_10_1016_j_xpro_2023_102666 crossref_primary_10_1016_j_isci_2023_108020 crossref_primary_10_1093_bioinformatics_btae648 crossref_primary_10_3390_info14030186 crossref_primary_10_2147_JMDH_S410301 crossref_primary_10_3390_ijms26020477 crossref_primary_10_1016_j_inffus_2024_102721 crossref_primary_10_1145_3643806 crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1186_s12943_024_02155_z crossref_primary_10_1016_j_websem_2024_100851 crossref_primary_10_1038_s42256_023_00618_4 crossref_primary_10_2196_54748 crossref_primary_10_1016_j_jgg_2023_03_011 crossref_primary_10_1021_acs_jcim_1c00982 crossref_primary_10_1111_exsy_13181 crossref_primary_10_1038_s41467_022_32111_8 crossref_primary_10_1016_j_ailsci_2022_100036 crossref_primary_10_1080_17461391_2023_2171906 crossref_primary_10_1016_j_xcrp_2023_101520 crossref_primary_10_1016_j_eng_2023_01_014 crossref_primary_10_3233_IDT_230245 crossref_primary_10_1007_s41666_021_00096_6 crossref_primary_10_1186_s13040_024_00365_1 crossref_primary_10_1038_s42256_024_00899_3 crossref_primary_10_1016_j_jbi_2022_104133 crossref_primary_10_1093_bioinformatics_btae533 crossref_primary_10_1093_nargab_lqae049 crossref_primary_10_1016_j_sbi_2021_09_003 crossref_primary_10_1093_bioinformatics_btac085 crossref_primary_10_1145_3674153 crossref_primary_10_1186_s13020_023_00763_3 crossref_primary_10_2298_CSIS230530027G crossref_primary_10_1002_asi_24736 crossref_primary_10_1016_j_ailsci_2023_100078 crossref_primary_10_1016_j_isci_2023_106460 crossref_primary_10_1186_s12859_024_05779_6 crossref_primary_10_3390_app14156807 crossref_primary_10_1002_wcms_1597 crossref_primary_10_1021_acssynbio_2c00255 crossref_primary_10_1093_nar_gkad393 crossref_primary_10_1109_TCBB_2021_3108718 crossref_primary_10_1038_s42256_025_01014_w crossref_primary_10_1155_2022_3401074 crossref_primary_10_1016_j_procs_2022_11_012 crossref_primary_10_1093_bioadv_vbaf016 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1007_s10489_023_05075_5 crossref_primary_10_1016_j_jare_2024_12_004 crossref_primary_10_3390_healthcare11121762 |
Cites_doi | 10.1016/j.jbi.2008.03.004 10.1093/bioinformatics/btn162 10.1093/nar/gku989 10.1111/j.1527-3458.2004.tb00003.x 10.1126/science.1260419 10.1093/nar/gkq537 10.1093/bioinformatics/bty294 10.1093/bib/bbp001 10.1093/nar/gkw1074 10.1093/nar/gkv1075 10.1093/nar/30.1.412 10.1609/aimag.v31i3.2303 10.1093/nar/gkx1132 10.1186/s12859-016-0890-3 10.1109/JPROC.2015.2483592 10.1093/bioinformatics/btv256 10.1093/nar/gkr912 10.1093/nar/gky1100 10.1093/bioinformatics/bts670 10.1016/j.websem.2017.06.002 10.1093/bib/bby117 10.18653/v1/W15-4007 10.1038/nrg1272 10.1038/nrd2199 10.1007/978-3-319-25007-6_37 10.1097/00000542-200108000-00037 10.1093/nar/gkw1092 10.1371/journal.pone.0041064 10.1002/net.20127 10.1002/prp2.235 10.1093/nar/gkt1113 10.1145/219717.219748 10.1093/bfgp/els037 10.18653/v1/D17-1184 10.1097/MNH.0b013e3282f94a96 10.1289/ehp.6028 10.1609/aaai.v32i1.11573 10.1093/nar/gkv1070 10.1186/s12920-017-0313-y 10.1093/bib/bbx022 10.1186/1759-4499-2-2 10.1371/journal.pone.0020284 10.1093/bib/bbx169 10.1093/nar/gkw937 10.1093/gbe/evq019 10.1093/nar/gkq1116 10.1126/scitranslmed.3003377 10.1038/ng.3259 10.1037/0033-295X.99.1.45 10.1093/bib/bbx099 10.1287/moor.6.1.19 10.1093/nar/gkt1115 10.1038/nrd3845 10.1007/978-3-319-71249-9_40 10.1038/nrg3031 10.3233/SW-170275 10.1093/nar/30.1.163 10.1093/nar/28.1.263 10.1016/S0959-440X(96)80058-3 10.1074/mcp.M113.035600 10.1007/s10994-013-5363-6 10.1016/j.cbpa.2008.01.022 10.1093/bioinformatics/btx275 10.1109/TSE.1983.234958 10.1093/bioinformatics/btx731 10.1023/A:1007804823932 10.1242/jcs.02714 10.1093/nar/gkm958 10.1001/jama.2015.13766 10.1145/3167132.3167346 10.1145/2939672.2939754 10.1371/journal.pcbi.1002503 10.1016/j.ins.2019.08.061 10.1038/srep38860 10.1109/TCBB.2017.2701824 10.1093/nar/gkj067 10.1145/2736277.2741093 10.1038/nrd2410 10.1038/srep40376 10.1109/TKDE.2017.2754499 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbaa012 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1693 |
ExternalDocumentID | 32065227 10_1093_bib_bbaa012 10.1093/bib/bbaa012 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c385t-69918e079eef9f73eb96231086d9d671c132ba4174001a7c09ecaf6a57297e1c3 |
IEDL.DBID | TOX |
ISSN | 1477-4054 1467-5463 |
IngestDate | Fri Jul 11 11:46:48 EDT 2025 Sat Jul 19 23:11:42 EDT 2025 Wed Feb 19 02:29:07 EST 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Wed Aug 28 03:20:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | polypharmacy side effects biomedical knowledge graphs knowledge graph embeddings tensor factorization link prediction drug–target interactions |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-69918e079eef9f73eb96231086d9d671c132ba4174001a7c09ecaf6a57297e1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbaa012/32499622/bbaa012.pdf |
PMID | 32065227 |
PQID | 2529968787 |
PQPubID | 26846 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2356589291 proquest_journals_2529968787 pubmed_primary_32065227 crossref_citationtrail_10_1093_bib_bbaa012 crossref_primary_10_1093_bib_bbaa012 oup_primary_10_1093_bib_bbaa012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Mar-22 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-Mar-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Bordes (2021032314275785800_ref60) 2014; 94 Hao (2021032314275785800_ref77) 2017; 7 García-Durán (2021032314275785800_ref81) 2018 Wang (2021032314275785800_ref24) 2017; 29 Pohl (2021032314275785800_ref94) 1972 Bordes (2021032314275785800_ref26) 2013 Papalexakis (2021032314275785800_ref92) 2016; 8 Cheung (2021032314275785800_ref100) 1983; 4 Fabregat (2021032314275785800_ref42) 2018; 46 Zhang (2021032314275785800_ref106) 2018; 19 Lao (2021032314275785800_ref16) 2011 Minoda (2021032314275785800_ref97) 2001; 95 Bizer (2021032314275785800_ref56) 2006 Fagerberg (2021032314275785800_ref82) 2014; 13 Cheng (2021032314275785800_ref72) 2012; 7 Hewett (2021032314275785800_ref52) 2002; 30 Nickel (2021032314275785800_ref62) 2016 Gusmão (2021032314275785800_ref114) 2018 Muñoz (2021032314275785800_ref6) 2019; 20 Qian (2021032314275785800_ref33) Cohen (2021032314275785800_ref1) 1992; 99 Wei (2021032314275785800_ref119) 2016 D’Agati (2021032314275785800_ref84) 2008; 17 Mitchell (2021032314275785800_ref51) 2019; 47 Minervini (2021032314275785800_ref123) 2017 Gaulton (2021032314275785800_ref46) 2017; 45 Tang (2021032314275785800_ref87) 2015 Miller (2021032314275785800_ref36) 1995; 38 Amrouch (2021032314275785800_ref57) 2012 Liu (2021032314275785800_ref63) 2017 Nickel (2021032314275785800_ref15) 2016; 104 Tuncbag (2021032314275785800_ref105) 2008; 10 Su (2021032314275785800_ref14) 2018 Malone (2021032314275785800_ref91) 2018 Nickel (2021032314275785800_ref27) 2011 Warde-Farley (2021032314275785800_ref88) 2010; 38 Belleau (2021032314275785800_ref55) 2008; 41 Mohamed (2021032314275785800_ref64) 2019 Kanehisa (2021032314275785800_ref40) 2017; 45 Zitnik (2021032314275785800_ref86) 2017 Landrum (2021032314275785800_ref39) 2014; 42 Janjic (2021032314275785800_ref5) 2012; 11 Stark (2021032314275785800_ref50) 2007; 39 Guo (2021032314275785800_ref61) 2016 Verster (2021032314275785800_ref95) 2004; 10 Lerer (2021032314275785800_ref104) 2019 Zitnik (2021032314275785800_ref8) 2018; 34 Uhlén (2021032314275785800_ref48) 2015; 347 Zeng (2021032314275785800_ref109) 2017; 10 Lacroix (2021032314275785800_ref25) 2018 Mohamed (2021032314275785800_ref103) 2017 The UniProt Consortium (2021032314275785800_ref10) 2017; 45 Nickel (2021032314275785800_ref23) 2016; 104 Tatonetti (2021032314275785800_ref80) 2012; 4 Sleno (2021032314275785800_ref68) 2008; 12 Mattingly (2021032314275785800_ref45) 2003; 111 Perozzi (2021032314275785800_ref65) 2014 Mitchell (2021032314275785800_ref35) 2015 Krompass (2021032314275785800_ref112) 2015 van der Maaten (2021032314275785800_ref99) 2014; 15 Minervini (2021032314275785800_ref113) 2017 Aronson (2021032314275785800_ref38) 2004; 107 Mohamed (2021032314275785800_ref59) 2019 Toutanova (2021032314275785800_ref22) 2015 Muñoz (2021032314275785800_ref124) 2019 The Gene Ontology Consortium (2021032314275785800_ref11) 2019; 47 Olayan (2021032314275785800_ref21) 2018; 34 Lim (2021032314275785800_ref89) 2016; 6 Albert (2021032314275785800_ref4) 2005; 118 Rosdah (2021032314275785800_ref74) 2016; 4 Wishart (2021032314275785800_ref44) 2008; 36 Dumontier (2021032314275785800_ref12) 2014 Abdelaziz (2021032314275785800_ref32) 2017; 44 Nascimento (2021032314275785800_ref76) 2016; 17 Bateman (2021032314275785800_ref90) 2000; 28 Färber (2021032314275785800_ref116) 2017; 9 Kantor (2021032314275785800_ref79) 2015; 314 Muñoz (2021032314275785800_ref111) 2016 Barabási (2021032314275785800_ref3) 2004; 5 Wishart (2021032314275785800_ref71) 2006; 34 Overington (2021032314275785800_ref96) 2006; 5 Olayan (2021032314275785800_ref7) 2017; 34 Kadlec (2021032314275785800_ref118) 2017 Ferrucci (2021032314275785800_ref34) 2010; 31 Liu (2021032314275785800_ref75) 2015; 31 Zitnik (2021032314275785800_ref31) 2016; 21 Szklarczyk (2021032314275785800_ref49) 2017; 45 Bauer-Mehren (2021032314275785800_ref110) 2011; 6 Xu (2021032314275785800_ref17) 2017; 16 Chen (2021032314275785800_ref53) 2002; 30 Ngomo (2021032314275785800_ref58) 2011 Yamanishi (2021032314275785800_ref69) 2008; 24 Lipschitz (2021032314275785800_ref93) 1943 Fraigniaud (2021032314275785800_ref101) 2006; 48 Greene (2021032314275785800_ref83) 2015; 47 Mohamed (2021032314275785800_ref102) 2019; 36 Alshahrani (2021032314275785800_ref13) 2017; 33 Yang (2021032314275785800_ref28) 2015 Grover (2021032314275785800_ref66) 2016; 2016 Mohamed (2021032314275785800_ref107) 2020; 508 Dettmers (2021032314275785800_ref30) 2018 The Uniprot Consortium (2021032314275785800_ref115) 2015; 43 Solis (2021032314275785800_ref120) 1981; 6 Weber (2021032314275785800_ref122) 2019 Snoek (2021032314275785800_ref121) 2012 Cai (2021032314275785800_ref85) 2010; 2 Pujara (2021032314275785800_ref117) 2017 Orchard (2021032314275785800_ref41) 2014; 42 Trouillon (2021032314275785800_ref29) 2016 Gibrat (2021032314275785800_ref2) 1996; 6 Raman (2021032314275785800_ref18) 2010; 2 Terstappen (2021032314275785800_ref67) 2007; 6 Bamshad (2021032314275785800_ref108) 2011; 12 Mohamed (2021032314275785800_ref20) 2018 Zhu (2021032314275785800_ref37) 2019; 20 Gardner (2021032314275785800_ref19) 2015 Rungruangsak-Torrissen (2021032314275785800_ref98) 1999; 21 Kanehisa (2021032314275785800_ref43) 2016; 44 Bowes (2021032314275785800_ref78) 2012; 11 Mohamed (2021032314275785800_ref9) 2019 Cheng (2021032314275785800_ref73) 2012; 8 Kuhn (2021032314275785800_ref47) 2016; 44 Hecker (2021032314275785800_ref54) 2012; 40 Mei (2021032314275785800_ref70) 2012; 29 |
References_xml | – volume: 41 start-page: 706 issue: 5 year: 2008 ident: 2021032314275785800_ref55 article-title: Bio2RDF: towards a mashup to build bioinformatics knowledge systems publication-title: J Biomed Inform doi: 10.1016/j.jbi.2008.03.004 – volume: 24 start-page: i232 issue: 13 year: 2008 ident: 2021032314275785800_ref69 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 – volume: 43 year: 2015 ident: 2021032314275785800_ref115 article-title: Uniprot: a hub for protein information publication-title: Nucleic Acids Res doi: 10.1093/nar/gku989 – volume: 10 start-page: 45 issue: 1 year: 2004 ident: 2021032314275785800_ref95 article-title: Clinical pharmacology, clinical efficacy, and behavioral toxicity of alprazolam: a review of the literature publication-title: CNS Drug Rev doi: 10.1111/j.1527-3458.2004.tb00003.x – volume: 347 start-page: (6220):1260419 year: 2015 ident: 2021032314275785800_ref48 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 38 year: 2010 ident: 2021032314275785800_ref88 article-title: The genemania prediction server: biological network integration for gene prioritization and predicting gene function publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq537 – volume: 34 issue: 13 year: 2018 ident: 2021032314275785800_ref8 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume: 10 start-page: 217 issue: 3 year: 2008 ident: 2021032314275785800_ref105 article-title: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces publication-title: Brief Bioinform doi: 10.1093/bib/bbp001 – volume: 45 year: 2017 ident: 2021032314275785800_ref46 article-title: The chembl database in 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 8 start-page: 16:1 year: 2016 ident: 2021032314275785800_ref92 article-title: Tensors for data mining and data fusion: models, applications, and scalable algorithms publication-title: ACM Trans Intell Syst Technol – volume: 44 start-page: D1075 issue: D1 year: 2016 ident: 2021032314275785800_ref47 article-title: The sider database of drugs and side effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – volume: 30 start-page: 412 issue: 1 year: 2002 ident: 2021032314275785800_ref53 article-title: TTD: therapeutic target database publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.412 – volume: 31 start-page: 59 issue: 3 year: 2010 ident: 2021032314275785800_ref34 article-title: Building Watson: an overview of the deepqa project publication-title: AI Magazine doi: 10.1609/aimag.v31i3.2303 – volume: 46 year: 2018 ident: 2021032314275785800_ref42 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1132 – volume: 17 start-page: 46 issue: 1 year: 2016 ident: 2021032314275785800_ref76 article-title: A multiple kernel learning algorithm for drug-target interaction prediction publication-title: BMC Bioinform doi: 10.1186/s12859-016-0890-3 – start-page: 69 volume-title: Rep4NLP@ACL year: 2017 ident: 2021032314275785800_ref118 article-title: Knowledge base completion: Baselines strike back – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 2021032314275785800_ref23 article-title: A review of relational machine learning for knowledge graphs publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – volume: 31 start-page: i221 issue: 12 year: 2015 ident: 2021032314275785800_ref75 article-title: Improving compound–protein interaction prediction by building up highly credible negative samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 40 year: 2012 ident: 2021032314275785800_ref54 article-title: Supertarget goes quantitative: update on drug-target interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr912 – volume: 47 start-page: D351 issue: D1 year: 2019 ident: 2021032314275785800_ref51 article-title: Interpro in 2019: improving coverage, classification and access to protein sequence annotations publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1100 – volume: 29 start-page: 238 issue: 2 year: 2012 ident: 2021032314275785800_ref70 article-title: Drug–target interaction prediction by learning from local information and neighbors publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts670 – volume: 44 start-page: 104 year: 2017 ident: 2021032314275785800_ref32 article-title: Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions publication-title: J Web Semant doi: 10.1016/j.websem.2017.06.002 – year: 2018 ident: 2021032314275785800_ref14 article-title: Network embedding in biomedical data science publication-title: Brief Bioinform doi: 10.1093/bib/bby117 – start-page: 57 volume-title: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality year: 2015 ident: 2021032314275785800_ref22 article-title: Observed versus latent features for knowledge base and text inference doi: 10.18653/v1/W15-4007 – start-page: 401 volume-title: Proceedings of the ISWC 2014 Posters & Demonstrations year: 2014 ident: 2021032314275785800_ref12 article-title: Bio2rdf release 3: a larger, more connected network of linked data for the life sciences – volume: 45 year: 2017 ident: 2021032314275785800_ref10 article-title: Uniprot: the universal protein knowledgebase publication-title: Nucleic Acids Res – volume: 5 start-page: 101 year: 2004 ident: 2021032314275785800_ref3 article-title: Network biology: understanding the cell’s functional organization publication-title: Nat Rev Genet doi: 10.1038/nrg1272 – volume: 5 start-page: 993 year: 2006 ident: 2021032314275785800_ref96 article-title: How many drug targets are there? publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2199 – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 2021032314275785800_ref15 article-title: A review of relational machine learning for knowledge graphs publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – volume: 21 start-page: 81 year: 2016 ident: 2021032314275785800_ref31 article-title: Collective pairwise classification for multi-way analysis of disease and drug data publication-title: Pac Symp Biocomput – volume-title: ICML year: 2017 ident: 2021032314275785800_ref63 article-title: Analogical inference for multi-relational embeddings – volume-title: Type-constrained representation learning in knowledge graphs year: 2015 ident: 2021032314275785800_ref112 doi: 10.1007/978-3-319-25007-6_37 – start-page: 668 volume-title: ECML/PKDD (1) year: 2017 ident: 2021032314275785800_ref123 article-title: Regularizing knowledge graph embeddings via equivalence and inversion axioms – start-page: 97 volume-title: Pharmacol Exp Ther year: 1943 ident: 2021032314275785800_ref93 article-title: Bioassay of diuretics – volume: 95 start-page: 509 issue: 2 year: 2001 ident: 2021032314275785800_ref97 article-title: Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6) publication-title: Anesthesiology doi: 10.1097/00000542-200108000-00037 – year: 2017 ident: 2021032314275785800_ref103 article-title: Identifying equivalent relation paths in knowledge graphs publication-title: LDK – start-page: 2243 volume-title: SAC year: 2019 ident: 2021032314275785800_ref124 article-title: Embedding cardinality constraints in neural link predictors – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 2021032314275785800_ref40 article-title: Kegg: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 7 start-page: e41064 issue: 7 year: 2012 ident: 2021032314275785800_ref72 article-title: Prediction of chemical-protein interactions network with weighted network-based inference method publication-title: PLoS One doi: 10.1371/journal.pone.0041064 – volume: 48 start-page: 166 issue: 3 year: 2006 ident: 2021032314275785800_ref101 article-title: Collective tree exploration publication-title: Network doi: 10.1002/net.20127 – volume: 47 year: 2019 ident: 2021032314275785800_ref11 article-title: The gene ontology resource: 20 years and still GOing strong publication-title: Nucleic Acids Res – volume: 4 start-page: e00235 issue: 3 year: 2016 ident: 2021032314275785800_ref74 article-title: Mitochondrial fission–a drug target for cytoprotection or cytodestruction? publication-title: Pharmacol Res Perspect doi: 10.1002/prp2.235 – start-page: 2869 volume-title: ICML year: 2018 ident: 2021032314275785800_ref25 article-title: Canonical tensor decomposition for knowledge base completion – volume: 42 year: 2014 ident: 2021032314275785800_ref39 article-title: Clinvar: public archive of relationships among sequence variation and human phenotype publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1113 – volume-title: UAI year: 2018 ident: 2021032314275785800_ref81 article-title: Kblrn: End-to-end learning of knowledge base representations with latent, relational, and numerical features – ident: 2021032314275785800_ref33 article-title: Understand your world with bing, 2013 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 2021032314275785800_ref36 article-title: Wordnet: a lexical database for english publication-title: Commun ACM doi: 10.1145/219717.219748 – volume-title: DL4KGS@ESWC year: 2019 ident: 2021032314275785800_ref59 article-title: Loss functions in knowledge graph embedding models – volume: 11 start-page: 522 issue: 6 year: 2012 ident: 2021032314275785800_ref5 article-title: Biological function through network topology: a survey of the human diseasome publication-title: Brief Funct Genomics doi: 10.1093/bfgp/els037 – volume-title: EMNLP year: 2017 ident: 2021032314275785800_ref117 article-title: Sparsity and noise: where knowledge graph embeddings fall short doi: 10.18653/v1/D17-1184 – volume: 17 start-page: 271 issue: 3 year: 2008 ident: 2021032314275785800_ref84 article-title: The spectrum of focal segmental glomerulosclerosis: new insights publication-title: Curr Opin Nephrol Hypertens doi: 10.1097/MNH.0b013e3282f94a96 – volume: 111 start-page: 793 year: 2003 ident: 2021032314275785800_ref45 article-title: The comparative toxicogenomics database (CTD) publication-title: Environ Health Perspect doi: 10.1289/ehp.6028 – volume-title: NIPS year: 2012 ident: 2021032314275785800_ref121 article-title: Practical bayesian optimization of machine learning algorithms – volume-title: Proceedings of the 32th AAAI Conference on Artificial Intelligence year: 2018 ident: 2021032314275785800_ref30 article-title: Convolutional 2d knowledge graph embeddings doi: 10.1609/aaai.v32i1.11573 – volume: 44 start-page: D457 issue: D1 year: 2016 ident: 2021032314275785800_ref43 article-title: Kegg as a reference resource for gene and protein annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1070 – volume: 10 start-page: 76 year: 2017 ident: 2021032314275785800_ref109 article-title: Probability-based collaborative filtering model for predicting gene-disease associations publication-title: BMC Med Genomics doi: 10.1186/s12920-017-0313-y – volume: 19 start-page: 821 year: 2018 ident: 2021032314275785800_ref106 article-title: Review and comparative assessment of sequence-based predictors of protein-binding residues publication-title: Brief Bioinform doi: 10.1093/bib/bbx022 – volume-title: ICLR year: 2015 ident: 2021032314275785800_ref28 article-title: Embedding entities and relations for learning and inference in knowledge bases – volume: 2 year: 2010 ident: 2021032314275785800_ref18 article-title: Construction and analysis of protein-protein interaction networks publication-title: Autom Exp doi: 10.1186/1759-4499-2-2 – volume: 6 year: 2011 ident: 2021032314275785800_ref110 article-title: Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases publication-title: PLoS One doi: 10.1371/journal.pone.0020284 – volume: 20 issue: 4 year: 2019 ident: 2021032314275785800_ref37 article-title: Drug knowledge bases and their applications in biomedical informatics research publication-title: Brief Bioinform doi: 10.1093/bib/bbx169 – volume-title: DILS year: 2018 ident: 2021032314275785800_ref91 article-title: Knowledge graph completion to predict polypharmacy side effects – volume: 15 start-page: 3221 year: 2014 ident: 2021032314275785800_ref99 article-title: Accelerating t-sne using tree-based algorithms publication-title: J Mach Learn Res – volume: 45 year: 2017 ident: 2021032314275785800_ref49 article-title: The string database in 2017: quality-controlled protein-protein association networks, made broadly accessible publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw937 – volume: 2 start-page: 393 year: 2010 ident: 2021032314275785800_ref85 article-title: Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes publication-title: Genome Biol Evol doi: 10.1093/gbe/evq019 – volume: 39 start-page: D698 year: 2007 ident: 2021032314275785800_ref50 article-title: The BioGRID interaction database: 2011 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1116 – volume: 4 start-page: 125ra31 issue: 125 year: 2012 ident: 2021032314275785800_ref80 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003377 – volume: 47 start-page: 569 issue: 6 year: 2015 ident: 2021032314275785800_ref83 article-title: Understanding multicellular function and disease with human tissue-specific networks publication-title: Nat Genet doi: 10.1038/ng.3259 – volume-title: Twenty-Second International Joint Conference on Artificial Intelligence year: 2011 ident: 2021032314275785800_ref58 article-title: Limes—a time-efficient approach for large-scale link discovery on the web of data – volume: 99 start-page: 45 issue: 1 year: 1992 ident: 2021032314275785800_ref1 article-title: Context, cortex, and dopanmine: a connectionist approach to behavior and biology in schizophrenia publication-title: Psychol Rev doi: 10.1037/0033-295X.99.1.45 – volume: 20 issue: 1 year: 2019 ident: 2021032314275785800_ref6 article-title: Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models publication-title: Brief Bioinform doi: 10.1093/bib/bbx099 – volume: 6 start-page: 19 year: 1981 ident: 2021032314275785800_ref120 article-title: Minimization by random search techniques publication-title: Math Oper Res doi: 10.1287/moor.6.1.19 – start-page: 2071 volume-title: ICML year: 2016 ident: 2021032314275785800_ref29 article-title: Complex embeddings for simple link prediction – year: 2011 ident: 2021032314275785800_ref16 article-title: Random walk inference and learning in a large scale knowledge base publication-title: EMNLP – volume: 42 year: 2014 ident: 2021032314275785800_ref41 article-title: The mintact project intact as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1115 – year: 2016 ident: 2021032314275785800_ref61 article-title: Jointly embedding knowledge graphs and logical rules publication-title: EMNLP – volume: 11 start-page: 909 issue: 12 year: 2012 ident: 2021032314275785800_ref78 article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3845 – volume-title: ECML/PKDD year: 2017 ident: 2021032314275785800_ref113 article-title: Regularizing knowledge graph embeddings via equivalence and inversion axioms doi: 10.1007/978-3-319-71249-9_40 – volume: 12 start-page: 745 year: 2011 ident: 2021032314275785800_ref108 article-title: Exome sequencing as a tool for Mendelian disease gene discovery publication-title: Nat Rev Genet doi: 10.1038/nrg3031 – start-page: 2787 volume-title: NIPS year: 2013 ident: 2021032314275785800_ref26 article-title: Translating embeddings for modeling multi-relational data – volume: 9 start-page: 77 year: 2017 ident: 2021032314275785800_ref116 article-title: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO publication-title: Semantic Web doi: 10.3233/SW-170275 – volume: 30 start-page: 163 issue: 1 year: 2002 ident: 2021032314275785800_ref52 article-title: Pharmgkb: the pharmacogenetics knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.163 – volume: 28 start-page: 263 issue: 1 year: 2000 ident: 2021032314275785800_ref90 article-title: The pfam protein families database publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.263 – volume: 6 start-page: 377 issue: 3 year: 1996 ident: 2021032314275785800_ref2 article-title: Surprising similarities in structure comparison publication-title: Curr Opin Struct Biol doi: 10.1016/S0959-440X(96)80058-3 – start-page: 1955 volume-title: AAAI year: 2016 ident: 2021032314275785800_ref62 article-title: Holographic embeddings of knowledge graphs – volume: 13 start-page: 397 issue: 2 year: 2014 ident: 2021032314275785800_ref82 article-title: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M113.035600 – start-page: 2302 volume-title: AAAI year: 2015 ident: 2021032314275785800_ref35 article-title: Never-ending learning – start-page: 1 volume-title: 2012 International Conference on Information Technology and e-Services year: 2012 ident: 2021032314275785800_ref57 article-title: Survey on the literature of ontology mapping, alignment and merging – volume: 94 start-page: 233 issue: 2 year: 2014 ident: 2021032314275785800_ref60 article-title: A semantic matching energy function for learning with multi-relational data—application to word-sense disambiguation publication-title: Mach Learn doi: 10.1007/s10994-013-5363-6 – volume: 36 year: 2019 ident: 2021032314275785800_ref102 article-title: Discovering protein drug targets using knowledge graph embeddings publication-title: Bioinformatics – volume: 12 start-page: 46 issue: 1 year: 2008 ident: 2021032314275785800_ref68 article-title: Proteomic methods for drug target discovery publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2008.01.022 – start-page: 6151 volume-title: ACL (1) year: 2019 ident: 2021032314275785800_ref122 article-title: Nlprolog: reasoning with weak unification for question answering in natural language – volume: 33 issue: 17 year: 2017 ident: 2021032314275785800_ref13 article-title: Neuro-symbolic representation learning on biological knowledge graphs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx275 – volume: 4 start-page: 504 year: 1983 ident: 2021032314275785800_ref100 article-title: Graph traversal techniques and the maximum flow problem in distributed computation publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.1983.234958 – volume-title: The 2nd SysML Conference year: 2019 ident: 2021032314275785800_ref104 article-title: Pytorch-biggraph: a large-scale graph embedding system – volume: 107 start-page: 268 issue: Pt. 1 year: 2004 ident: 2021032314275785800_ref38 article-title: The nlm indexing initiative’s medical text indexer publication-title: Stud Health Technol Informatics – start-page: 145 volume-title: Clinical Science year: 1972 ident: 2021032314275785800_ref94 article-title: The antidiuretic action of diazoxide – volume: 34 start-page: 1164 issue: 7 year: 2017 ident: 2021032314275785800_ref7 article-title: Ddr: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx731 – volume: 21 start-page: 223 year: 1999 ident: 2021032314275785800_ref98 article-title: Maintenance ration, protein synthesis capacity, plasma insulin and growth of Atlantic salmon (salmo Salar L.) with genetically different trypsin isozymes publication-title: Fish Physiol Biochem doi: 10.1023/A:1007804823932 – volume-title: Bioinformatics year: 2017 ident: 2021032314275785800_ref86 article-title: Predicting multicellular function through multi-layer tissue networks – volume: 118 start-page: 4947 issue: Pt 21 year: 2005 ident: 2021032314275785800_ref4 article-title: Scale-free networks in cell biology publication-title: J Cell Sci doi: 10.1242/jcs.02714 – volume: 36 start-page: D901 year: 2008 ident: 2021032314275785800_ref44 article-title: Drugbank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm958 – volume-title: Proceedings of WHI year: 2018 ident: 2021032314275785800_ref114 article-title: Interpreting embedding models of knowledge bases: a pedagogical approach – volume: 314 start-page: 1818 issue: 17 year: 2015 ident: 2021032314275785800_ref79 article-title: Trends in prescription drug use among adults in the United States from 1999-2012 publication-title: JAMA doi: 10.1001/jama.2015.13766 – start-page: 1992 volume-title: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18 year: 2018 ident: 2021032314275785800_ref20 article-title: Knowledge base completion using distinct subgraph paths doi: 10.1145/3167132.3167346 – volume: 2016 start-page: 855 year: 2016 ident: 2021032314275785800_ref66 article-title: node2vec: scalable feature learning for networks publication-title: KDD: Proceedings International Conference on Knowledge Discovery & Data Mining doi: 10.1145/2939672.2939754 – start-page: 240 volume-title: ESWC year: 2019 ident: 2021032314275785800_ref64 article-title: Link prediction using multi part embeddings – volume: 8 start-page: e1002503 issue: 5 year: 2012 ident: 2021032314275785800_ref73 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – start-page: 11 volume-title: Proceedings of the 34th Annual ACM Symposium on Applied Computing, SAC ’19 year: 2019 ident: 2021032314275785800_ref9 article-title: Drug target discovery using knowledge graph embeddings – start-page: 1488 volume-title: EMNLP year: 2015 ident: 2021032314275785800_ref19 article-title: Efficient and expressive knowledge base completion using subgraph feature extraction – volume-title: Poster at the 5th International Semantic Web Conference year: 2006 ident: 2021032314275785800_ref56 article-title: D2R server-publishing relational databases on the semantic web – volume: 508 start-page: 343 year: 2020 ident: 2021032314275785800_ref107 article-title: Predicting tissue-specific protein functions using multi-part tensor decomposition publication-title: Inform Sci doi: 10.1016/j.ins.2019.08.061 – start-page: 701 volume-title: SIGKDD year: 2014 ident: 2021032314275785800_ref65 article-title: Deepwalk: online learning of social representations – year: 2016 ident: 2021032314275785800_ref119 article-title: Why is differential evolution better than grid search for tuning defect predictors? – start-page: 809 volume-title: ICML year: 2011 ident: 2021032314275785800_ref27 article-title: A three-way model for collective learning on multi-relational data – volume: 6 start-page: 38860 year: 2016 ident: 2021032314275785800_ref89 article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem publication-title: Sci Rep doi: 10.1038/srep38860 – volume: 16 start-page: 377 year: 2017 ident: 2021032314275785800_ref17 article-title: Essential protein detection by random walk on weighted protein-protein interaction networks publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2701824 – volume: 34 start-page: D668 year: 2006 ident: 2021032314275785800_ref71 article-title: Drugbank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume-title: WWW year: 2015 ident: 2021032314275785800_ref87 article-title: Line: large-scale information network embedding doi: 10.1145/2736277.2741093 – volume: 6 start-page: 891 issue: 11 year: 2007 ident: 2021032314275785800_ref67 article-title: Target deconvolution strategies in drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2410 – volume: 7 start-page: 40376 year: 2017 ident: 2021032314275785800_ref77 article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization publication-title: Sci Rep doi: 10.1038/srep40376 – volume: 34 start-page: 1164 issue: 7 year: 2018 ident: 2021032314275785800_ref21 article-title: DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx731 – volume-title: AMIA 2016 year: 2016 ident: 2021032314275785800_ref111 article-title: Using drug similarities for discovery of possible adverse reactions – volume: 29 start-page: 2724 issue: 12 year: 2017 ident: 2021032314275785800_ref24 article-title: Knowledge graph embedding: a survey of approaches and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2754499 |
SSID | ssj0020781 |
Score | 2.5877979 |
SecondaryResourceType | review_article |
Snippet | Abstract
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs,... Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1679 |
SubjectTerms | Accuracy Computer applications Embedding Graph theory Graphical representations Graphs Knowledge representation Polypharmacy Side effects Therapeutic targets |
Title | Biological applications of knowledge graph embedding models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32065227 https://www.proquest.com/docview/2529968787 https://www.proquest.com/docview/2356589291 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFH7IQPAi_rY6NcJOQlmXpEmLJxHH8KCXDXYreWkKgnbitoP_vS9tV5wOvRX6SuBL2u97fcn7AHom10IKq0MjrQmlLrwbIMqQlCzRU2S4yqsNsk9qNJGP03jabJCdbyjhp6KPL9hHNCaqzISJfn2L_PHztM2rfL-a5ujdj_g1slk7wPZLR1Z8MtyD3UYIsrt65vZhy5UHsF1bQ34ewm195SFk34vMbFaw9j8Yq9pNM_eGLvccxCpfm_kRTIYP4_tR2BgdhFYk8SJUJNISF-nUuSIttHCYKq-7EgIqV3pgKWVEIyl5IFIx2kaps6ZQJiZlrN3AimPolLPSnQJLtUGOKWJEDxSoEmUFIuVYCnMXJTKAmxUimW26gHszitesrkaLjODLGvgC6LXB73Xzi81hVwTt3xHdFexZ847MMx4TFaqEvhgBXLe3aXX7koUp3WxJMYIEZ0ISbhDAST1d7TiCk3ziXJ_9O_w57HC_FSUSIedd6Cw-lu6CtMQCL6uV9AU3gccG |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+applications+of+knowledge+graph+embedding+models&rft.jtitle=Briefings+in+bioinformatics&rft.au=Mohamed%2C+Sameh+K&rft.au=Nounu%2C+Aayah&rft.au=Nov%C3%A1%C4%8Dek%2C+V%C3%ADt&rft.date=2021-03-22&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=1679&rft_id=info:doi/10.1093%2Fbib%2Fbbaa012&rft_id=info%3Apmid%2F32065227&rft.externalDocID=32065227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon |