Biological applications of knowledge graph embedding models

Abstract Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predic...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 2; pp. 1679 - 1693
Main Authors Mohamed, Sameh K, Nounu, Aayah, Nováček, Vít
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.03.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
AbstractList Abstract Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.
Author Mohamed, Sameh K
Nounu, Aayah
Nováček, Vít
Author_xml – sequence: 1
  givenname: Sameh K
  surname: Mohamed
  fullname: Mohamed, Sameh K
  email: s.kamal1@nuigalway.ie
  organization: Data Science Institute, NUI Galway, Galway, Irelands.kamal1@nuigalway.ie
– sequence: 2
  givenname: Aayah
  surname: Nounu
  fullname: Nounu, Aayah
  email: s.kamal1@nuigalway.ie
  organization: Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
– sequence: 3
  givenname: Vít
  surname: Nováček
  fullname: Nováček, Vít
  email: s.kamal1@nuigalway.ie
  organization: MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32065227$$D View this record in MEDLINE/PubMed
BookMark eNp90EtLxDAQwPEgK-5DT96lIIggdfNomwZPuviCBS96Dmk6rVnTpjYt4re3ursgi3jKHH4zhP8UjWpXA0LHBF8SLNg8M9k8y5TChO6hCYk4DyMcR6Nf8xhNvV9hTDFPyQEaM4qTmFI-QVc3xllXGq1soJrGDkNnXO0DVwRvtfuwkJcQlK1qXgOoMshzU5dB5XKw_hDtF8p6ONq8M_Ryd_u8eAiXT_ePi-tlqFkad2EiBEkBcwFQiIIzyERCGcFpkos84UQTRjMVER5hTBTXWIBWRaJiTgUHotkMna_vNq1778F3sjJeg7WqBtd7SVmcxKmgggz0dIeuXN_Ww-8kjakQScpTPqiTjeqzCnLZtKZS7afcZhkAWQPdOu9bKKQ23U-YrlXGSoLld3o5pJeb9MPOxc7O9uzf-mytXd_8C78AS6KQ1w
CitedBy_id crossref_primary_10_1093_jac_dkae292
crossref_primary_10_1016_j_pbi_2024_102665
crossref_primary_10_1038_s41467_021_27137_3
crossref_primary_10_1016_j_artmed_2023_102677
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_3390_biom14111447
crossref_primary_10_1016_j_str_2024_02_004
crossref_primary_10_1007_s10462_023_10465_9
crossref_primary_10_1016_j_drudis_2024_103979
crossref_primary_10_1186_s12859_023_05612_6
crossref_primary_10_1038_s41598_025_86166_w
crossref_primary_10_1186_s12911_022_02070_7
crossref_primary_10_1016_j_ins_2024_121698
crossref_primary_10_1016_j_jii_2024_100612
crossref_primary_10_1016_j_xpro_2023_102666
crossref_primary_10_1016_j_isci_2023_108020
crossref_primary_10_1093_bioinformatics_btae648
crossref_primary_10_3390_info14030186
crossref_primary_10_2147_JMDH_S410301
crossref_primary_10_3390_ijms26020477
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_1145_3643806
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1186_s12943_024_02155_z
crossref_primary_10_1016_j_websem_2024_100851
crossref_primary_10_1038_s42256_023_00618_4
crossref_primary_10_2196_54748
crossref_primary_10_1016_j_jgg_2023_03_011
crossref_primary_10_1021_acs_jcim_1c00982
crossref_primary_10_1111_exsy_13181
crossref_primary_10_1038_s41467_022_32111_8
crossref_primary_10_1016_j_ailsci_2022_100036
crossref_primary_10_1080_17461391_2023_2171906
crossref_primary_10_1016_j_xcrp_2023_101520
crossref_primary_10_1016_j_eng_2023_01_014
crossref_primary_10_3233_IDT_230245
crossref_primary_10_1007_s41666_021_00096_6
crossref_primary_10_1186_s13040_024_00365_1
crossref_primary_10_1038_s42256_024_00899_3
crossref_primary_10_1016_j_jbi_2022_104133
crossref_primary_10_1093_bioinformatics_btae533
crossref_primary_10_1093_nargab_lqae049
crossref_primary_10_1016_j_sbi_2021_09_003
crossref_primary_10_1093_bioinformatics_btac085
crossref_primary_10_1145_3674153
crossref_primary_10_1186_s13020_023_00763_3
crossref_primary_10_2298_CSIS230530027G
crossref_primary_10_1002_asi_24736
crossref_primary_10_1016_j_ailsci_2023_100078
crossref_primary_10_1016_j_isci_2023_106460
crossref_primary_10_1186_s12859_024_05779_6
crossref_primary_10_3390_app14156807
crossref_primary_10_1002_wcms_1597
crossref_primary_10_1021_acssynbio_2c00255
crossref_primary_10_1093_nar_gkad393
crossref_primary_10_1109_TCBB_2021_3108718
crossref_primary_10_1038_s42256_025_01014_w
crossref_primary_10_1155_2022_3401074
crossref_primary_10_1016_j_procs_2022_11_012
crossref_primary_10_1093_bioadv_vbaf016
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1007_s10489_023_05075_5
crossref_primary_10_1016_j_jare_2024_12_004
crossref_primary_10_3390_healthcare11121762
Cites_doi 10.1016/j.jbi.2008.03.004
10.1093/bioinformatics/btn162
10.1093/nar/gku989
10.1111/j.1527-3458.2004.tb00003.x
10.1126/science.1260419
10.1093/nar/gkq537
10.1093/bioinformatics/bty294
10.1093/bib/bbp001
10.1093/nar/gkw1074
10.1093/nar/gkv1075
10.1093/nar/30.1.412
10.1609/aimag.v31i3.2303
10.1093/nar/gkx1132
10.1186/s12859-016-0890-3
10.1109/JPROC.2015.2483592
10.1093/bioinformatics/btv256
10.1093/nar/gkr912
10.1093/nar/gky1100
10.1093/bioinformatics/bts670
10.1016/j.websem.2017.06.002
10.1093/bib/bby117
10.18653/v1/W15-4007
10.1038/nrg1272
10.1038/nrd2199
10.1007/978-3-319-25007-6_37
10.1097/00000542-200108000-00037
10.1093/nar/gkw1092
10.1371/journal.pone.0041064
10.1002/net.20127
10.1002/prp2.235
10.1093/nar/gkt1113
10.1145/219717.219748
10.1093/bfgp/els037
10.18653/v1/D17-1184
10.1097/MNH.0b013e3282f94a96
10.1289/ehp.6028
10.1609/aaai.v32i1.11573
10.1093/nar/gkv1070
10.1186/s12920-017-0313-y
10.1093/bib/bbx022
10.1186/1759-4499-2-2
10.1371/journal.pone.0020284
10.1093/bib/bbx169
10.1093/nar/gkw937
10.1093/gbe/evq019
10.1093/nar/gkq1116
10.1126/scitranslmed.3003377
10.1038/ng.3259
10.1037/0033-295X.99.1.45
10.1093/bib/bbx099
10.1287/moor.6.1.19
10.1093/nar/gkt1115
10.1038/nrd3845
10.1007/978-3-319-71249-9_40
10.1038/nrg3031
10.3233/SW-170275
10.1093/nar/30.1.163
10.1093/nar/28.1.263
10.1016/S0959-440X(96)80058-3
10.1074/mcp.M113.035600
10.1007/s10994-013-5363-6
10.1016/j.cbpa.2008.01.022
10.1093/bioinformatics/btx275
10.1109/TSE.1983.234958
10.1093/bioinformatics/btx731
10.1023/A:1007804823932
10.1242/jcs.02714
10.1093/nar/gkm958
10.1001/jama.2015.13766
10.1145/3167132.3167346
10.1145/2939672.2939754
10.1371/journal.pcbi.1002503
10.1016/j.ins.2019.08.061
10.1038/srep38860
10.1109/TCBB.2017.2701824
10.1093/nar/gkj067
10.1145/2736277.2741093
10.1038/nrd2410
10.1038/srep40376
10.1109/TKDE.2017.2754499
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa012
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1693
ExternalDocumentID 32065227
10_1093_bib_bbaa012
10.1093/bib/bbaa012
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c385t-69918e079eef9f73eb96231086d9d671c132ba4174001a7c09ecaf6a57297e1c3
IEDL.DBID TOX
ISSN 1477-4054
1467-5463
IngestDate Fri Jul 11 11:46:48 EDT 2025
Sat Jul 19 23:11:42 EDT 2025
Wed Feb 19 02:29:07 EST 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Wed Aug 28 03:20:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords polypharmacy side effects
biomedical knowledge graphs
knowledge graph embeddings
tensor factorization
link prediction
drug–target interactions
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-69918e079eef9f73eb96231086d9d671c132ba4174001a7c09ecaf6a57297e1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbaa012/32499622/bbaa012.pdf
PMID 32065227
PQID 2529968787
PQPubID 26846
PageCount 15
ParticipantIDs proquest_miscellaneous_2356589291
proquest_journals_2529968787
pubmed_primary_32065227
crossref_citationtrail_10_1093_bib_bbaa012
crossref_primary_10_1093_bib_bbaa012
oup_primary_10_1093_bib_bbaa012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Mar-22
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-Mar-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Bordes (2021032314275785800_ref60) 2014; 94
Hao (2021032314275785800_ref77) 2017; 7
García-Durán (2021032314275785800_ref81) 2018
Wang (2021032314275785800_ref24) 2017; 29
Pohl (2021032314275785800_ref94) 1972
Bordes (2021032314275785800_ref26) 2013
Papalexakis (2021032314275785800_ref92) 2016; 8
Cheung (2021032314275785800_ref100) 1983; 4
Fabregat (2021032314275785800_ref42) 2018; 46
Zhang (2021032314275785800_ref106) 2018; 19
Lao (2021032314275785800_ref16) 2011
Minoda (2021032314275785800_ref97) 2001; 95
Bizer (2021032314275785800_ref56) 2006
Fagerberg (2021032314275785800_ref82) 2014; 13
Cheng (2021032314275785800_ref72) 2012; 7
Hewett (2021032314275785800_ref52) 2002; 30
Nickel (2021032314275785800_ref62) 2016
Gusmão (2021032314275785800_ref114) 2018
Muñoz (2021032314275785800_ref6) 2019; 20
Qian (2021032314275785800_ref33)
Cohen (2021032314275785800_ref1) 1992; 99
Wei (2021032314275785800_ref119) 2016
D’Agati (2021032314275785800_ref84) 2008; 17
Mitchell (2021032314275785800_ref51) 2019; 47
Minervini (2021032314275785800_ref123) 2017
Gaulton (2021032314275785800_ref46) 2017; 45
Tang (2021032314275785800_ref87) 2015
Miller (2021032314275785800_ref36) 1995; 38
Amrouch (2021032314275785800_ref57) 2012
Liu (2021032314275785800_ref63) 2017
Nickel (2021032314275785800_ref15) 2016; 104
Tuncbag (2021032314275785800_ref105) 2008; 10
Su (2021032314275785800_ref14) 2018
Malone (2021032314275785800_ref91) 2018
Nickel (2021032314275785800_ref27) 2011
Warde-Farley (2021032314275785800_ref88) 2010; 38
Belleau (2021032314275785800_ref55) 2008; 41
Mohamed (2021032314275785800_ref64) 2019
Kanehisa (2021032314275785800_ref40) 2017; 45
Zitnik (2021032314275785800_ref86) 2017
Landrum (2021032314275785800_ref39) 2014; 42
Janjic (2021032314275785800_ref5) 2012; 11
Stark (2021032314275785800_ref50) 2007; 39
Guo (2021032314275785800_ref61) 2016
Verster (2021032314275785800_ref95) 2004; 10
Lerer (2021032314275785800_ref104) 2019
Zitnik (2021032314275785800_ref8) 2018; 34
Uhlén (2021032314275785800_ref48) 2015; 347
Zeng (2021032314275785800_ref109) 2017; 10
Lacroix (2021032314275785800_ref25) 2018
Mohamed (2021032314275785800_ref103) 2017
The UniProt Consortium (2021032314275785800_ref10) 2017; 45
Nickel (2021032314275785800_ref23) 2016; 104
Tatonetti (2021032314275785800_ref80) 2012; 4
Sleno (2021032314275785800_ref68) 2008; 12
Mattingly (2021032314275785800_ref45) 2003; 111
Perozzi (2021032314275785800_ref65) 2014
Mitchell (2021032314275785800_ref35) 2015
Krompass (2021032314275785800_ref112) 2015
van der Maaten (2021032314275785800_ref99) 2014; 15
Minervini (2021032314275785800_ref113) 2017
Aronson (2021032314275785800_ref38) 2004; 107
Mohamed (2021032314275785800_ref59) 2019
Toutanova (2021032314275785800_ref22) 2015
Muñoz (2021032314275785800_ref124) 2019
The Gene Ontology Consortium (2021032314275785800_ref11) 2019; 47
Olayan (2021032314275785800_ref21) 2018; 34
Lim (2021032314275785800_ref89) 2016; 6
Albert (2021032314275785800_ref4) 2005; 118
Rosdah (2021032314275785800_ref74) 2016; 4
Wishart (2021032314275785800_ref44) 2008; 36
Dumontier (2021032314275785800_ref12) 2014
Abdelaziz (2021032314275785800_ref32) 2017; 44
Nascimento (2021032314275785800_ref76) 2016; 17
Bateman (2021032314275785800_ref90) 2000; 28
Färber (2021032314275785800_ref116) 2017; 9
Kantor (2021032314275785800_ref79) 2015; 314
Muñoz (2021032314275785800_ref111) 2016
Barabási (2021032314275785800_ref3) 2004; 5
Wishart (2021032314275785800_ref71) 2006; 34
Overington (2021032314275785800_ref96) 2006; 5
Olayan (2021032314275785800_ref7) 2017; 34
Kadlec (2021032314275785800_ref118) 2017
Ferrucci (2021032314275785800_ref34) 2010; 31
Liu (2021032314275785800_ref75) 2015; 31
Zitnik (2021032314275785800_ref31) 2016; 21
Szklarczyk (2021032314275785800_ref49) 2017; 45
Bauer-Mehren (2021032314275785800_ref110) 2011; 6
Xu (2021032314275785800_ref17) 2017; 16
Chen (2021032314275785800_ref53) 2002; 30
Ngomo (2021032314275785800_ref58) 2011
Yamanishi (2021032314275785800_ref69) 2008; 24
Lipschitz (2021032314275785800_ref93) 1943
Fraigniaud (2021032314275785800_ref101) 2006; 48
Greene (2021032314275785800_ref83) 2015; 47
Mohamed (2021032314275785800_ref102) 2019; 36
Alshahrani (2021032314275785800_ref13) 2017; 33
Yang (2021032314275785800_ref28) 2015
Grover (2021032314275785800_ref66) 2016; 2016
Mohamed (2021032314275785800_ref107) 2020; 508
Dettmers (2021032314275785800_ref30) 2018
The Uniprot Consortium (2021032314275785800_ref115) 2015; 43
Solis (2021032314275785800_ref120) 1981; 6
Weber (2021032314275785800_ref122) 2019
Snoek (2021032314275785800_ref121) 2012
Cai (2021032314275785800_ref85) 2010; 2
Pujara (2021032314275785800_ref117) 2017
Orchard (2021032314275785800_ref41) 2014; 42
Trouillon (2021032314275785800_ref29) 2016
Gibrat (2021032314275785800_ref2) 1996; 6
Raman (2021032314275785800_ref18) 2010; 2
Terstappen (2021032314275785800_ref67) 2007; 6
Bamshad (2021032314275785800_ref108) 2011; 12
Mohamed (2021032314275785800_ref20) 2018
Zhu (2021032314275785800_ref37) 2019; 20
Gardner (2021032314275785800_ref19) 2015
Rungruangsak-Torrissen (2021032314275785800_ref98) 1999; 21
Kanehisa (2021032314275785800_ref43) 2016; 44
Bowes (2021032314275785800_ref78) 2012; 11
Mohamed (2021032314275785800_ref9) 2019
Cheng (2021032314275785800_ref73) 2012; 8
Kuhn (2021032314275785800_ref47) 2016; 44
Hecker (2021032314275785800_ref54) 2012; 40
Mei (2021032314275785800_ref70) 2012; 29
References_xml – volume: 41
  start-page: 706
  issue: 5
  year: 2008
  ident: 2021032314275785800_ref55
  article-title: Bio2RDF: towards a mashup to build bioinformatics knowledge systems
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.03.004
– volume: 24
  start-page: i232
  issue: 13
  year: 2008
  ident: 2021032314275785800_ref69
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 43
  year: 2015
  ident: 2021032314275785800_ref115
  article-title: Uniprot: a hub for protein information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku989
– volume: 10
  start-page: 45
  issue: 1
  year: 2004
  ident: 2021032314275785800_ref95
  article-title: Clinical pharmacology, clinical efficacy, and behavioral toxicity of alprazolam: a review of the literature
  publication-title: CNS Drug Rev
  doi: 10.1111/j.1527-3458.2004.tb00003.x
– volume: 347
  start-page: (6220):1260419
  year: 2015
  ident: 2021032314275785800_ref48
  article-title: Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 38
  year: 2010
  ident: 2021032314275785800_ref88
  article-title: The genemania prediction server: biological network integration for gene prioritization and predicting gene function
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq537
– volume: 34
  issue: 13
  year: 2018
  ident: 2021032314275785800_ref8
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume: 10
  start-page: 217
  issue: 3
  year: 2008
  ident: 2021032314275785800_ref105
  article-title: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbp001
– volume: 45
  year: 2017
  ident: 2021032314275785800_ref46
  article-title: The chembl database in 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 8
  start-page: 16:1
  year: 2016
  ident: 2021032314275785800_ref92
  article-title: Tensors for data mining and data fusion: models, applications, and scalable algorithms
  publication-title: ACM Trans Intell Syst Technol
– volume: 44
  start-page: D1075
  issue: D1
  year: 2016
  ident: 2021032314275785800_ref47
  article-title: The sider database of drugs and side effects
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1075
– volume: 30
  start-page: 412
  issue: 1
  year: 2002
  ident: 2021032314275785800_ref53
  article-title: TTD: therapeutic target database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.412
– volume: 31
  start-page: 59
  issue: 3
  year: 2010
  ident: 2021032314275785800_ref34
  article-title: Building Watson: an overview of the deepqa project
  publication-title: AI Magazine
  doi: 10.1609/aimag.v31i3.2303
– volume: 46
  year: 2018
  ident: 2021032314275785800_ref42
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1132
– volume: 17
  start-page: 46
  issue: 1
  year: 2016
  ident: 2021032314275785800_ref76
  article-title: A multiple kernel learning algorithm for drug-target interaction prediction
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0890-3
– start-page: 69
  volume-title: Rep4NLP@ACL
  year: 2017
  ident: 2021032314275785800_ref118
  article-title: Knowledge base completion: Baselines strike back
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 2021032314275785800_ref23
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– volume: 31
  start-page: i221
  issue: 12
  year: 2015
  ident: 2021032314275785800_ref75
  article-title: Improving compound–protein interaction prediction by building up highly credible negative samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 40
  year: 2012
  ident: 2021032314275785800_ref54
  article-title: Supertarget goes quantitative: update on drug-target interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr912
– volume: 47
  start-page: D351
  issue: D1
  year: 2019
  ident: 2021032314275785800_ref51
  article-title: Interpro in 2019: improving coverage, classification and access to protein sequence annotations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1100
– volume: 29
  start-page: 238
  issue: 2
  year: 2012
  ident: 2021032314275785800_ref70
  article-title: Drug–target interaction prediction by learning from local information and neighbors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts670
– volume: 44
  start-page: 104
  year: 2017
  ident: 2021032314275785800_ref32
  article-title: Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions
  publication-title: J Web Semant
  doi: 10.1016/j.websem.2017.06.002
– year: 2018
  ident: 2021032314275785800_ref14
  article-title: Network embedding in biomedical data science
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby117
– start-page: 57
  volume-title: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality
  year: 2015
  ident: 2021032314275785800_ref22
  article-title: Observed versus latent features for knowledge base and text inference
  doi: 10.18653/v1/W15-4007
– start-page: 401
  volume-title: Proceedings of the ISWC 2014 Posters & Demonstrations
  year: 2014
  ident: 2021032314275785800_ref12
  article-title: Bio2rdf release 3: a larger, more connected network of linked data for the life sciences
– volume: 45
  year: 2017
  ident: 2021032314275785800_ref10
  article-title: Uniprot: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 101
  year: 2004
  ident: 2021032314275785800_ref3
  article-title: Network biology: understanding the cell’s functional organization
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1272
– volume: 5
  start-page: 993
  year: 2006
  ident: 2021032314275785800_ref96
  article-title: How many drug targets are there?
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2199
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 2021032314275785800_ref15
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– volume: 21
  start-page: 81
  year: 2016
  ident: 2021032314275785800_ref31
  article-title: Collective pairwise classification for multi-way analysis of disease and drug data
  publication-title: Pac Symp Biocomput
– volume-title: ICML
  year: 2017
  ident: 2021032314275785800_ref63
  article-title: Analogical inference for multi-relational embeddings
– volume-title: Type-constrained representation learning in knowledge graphs
  year: 2015
  ident: 2021032314275785800_ref112
  doi: 10.1007/978-3-319-25007-6_37
– start-page: 668
  volume-title: ECML/PKDD (1)
  year: 2017
  ident: 2021032314275785800_ref123
  article-title: Regularizing knowledge graph embeddings via equivalence and inversion axioms
– start-page: 97
  volume-title: Pharmacol Exp Ther
  year: 1943
  ident: 2021032314275785800_ref93
  article-title: Bioassay of diuretics
– volume: 95
  start-page: 509
  issue: 2
  year: 2001
  ident: 2021032314275785800_ref97
  article-title: Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6)
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200108000-00037
– year: 2017
  ident: 2021032314275785800_ref103
  article-title: Identifying equivalent relation paths in knowledge graphs
  publication-title: LDK
– start-page: 2243
  volume-title: SAC
  year: 2019
  ident: 2021032314275785800_ref124
  article-title: Embedding cardinality constraints in neural link predictors
– volume: 45
  start-page: D353
  issue: D1
  year: 2017
  ident: 2021032314275785800_ref40
  article-title: Kegg: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 7
  start-page: e41064
  issue: 7
  year: 2012
  ident: 2021032314275785800_ref72
  article-title: Prediction of chemical-protein interactions network with weighted network-based inference method
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041064
– volume: 48
  start-page: 166
  issue: 3
  year: 2006
  ident: 2021032314275785800_ref101
  article-title: Collective tree exploration
  publication-title: Network
  doi: 10.1002/net.20127
– volume: 47
  year: 2019
  ident: 2021032314275785800_ref11
  article-title: The gene ontology resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: e00235
  issue: 3
  year: 2016
  ident: 2021032314275785800_ref74
  article-title: Mitochondrial fission–a drug target for cytoprotection or cytodestruction?
  publication-title: Pharmacol Res Perspect
  doi: 10.1002/prp2.235
– start-page: 2869
  volume-title: ICML
  year: 2018
  ident: 2021032314275785800_ref25
  article-title: Canonical tensor decomposition for knowledge base completion
– volume: 42
  year: 2014
  ident: 2021032314275785800_ref39
  article-title: Clinvar: public archive of relationships among sequence variation and human phenotype
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1113
– volume-title: UAI
  year: 2018
  ident: 2021032314275785800_ref81
  article-title: Kblrn: End-to-end learning of knowledge base representations with latent, relational, and numerical features
– ident: 2021032314275785800_ref33
  article-title: Understand your world with bing, 2013
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 2021032314275785800_ref36
  article-title: Wordnet: a lexical database for english
  publication-title: Commun ACM
  doi: 10.1145/219717.219748
– volume-title: DL4KGS@ESWC
  year: 2019
  ident: 2021032314275785800_ref59
  article-title: Loss functions in knowledge graph embedding models
– volume: 11
  start-page: 522
  issue: 6
  year: 2012
  ident: 2021032314275785800_ref5
  article-title: Biological function through network topology: a survey of the human diseasome
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/els037
– volume-title: EMNLP
  year: 2017
  ident: 2021032314275785800_ref117
  article-title: Sparsity and noise: where knowledge graph embeddings fall short
  doi: 10.18653/v1/D17-1184
– volume: 17
  start-page: 271
  issue: 3
  year: 2008
  ident: 2021032314275785800_ref84
  article-title: The spectrum of focal segmental glomerulosclerosis: new insights
  publication-title: Curr Opin Nephrol Hypertens
  doi: 10.1097/MNH.0b013e3282f94a96
– volume: 111
  start-page: 793
  year: 2003
  ident: 2021032314275785800_ref45
  article-title: The comparative toxicogenomics database (CTD)
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.6028
– volume-title: NIPS
  year: 2012
  ident: 2021032314275785800_ref121
  article-title: Practical bayesian optimization of machine learning algorithms
– volume-title: Proceedings of the 32th AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 2021032314275785800_ref30
  article-title: Convolutional 2d knowledge graph embeddings
  doi: 10.1609/aaai.v32i1.11573
– volume: 44
  start-page: D457
  issue: D1
  year: 2016
  ident: 2021032314275785800_ref43
  article-title: Kegg as a reference resource for gene and protein annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1070
– volume: 10
  start-page: 76
  year: 2017
  ident: 2021032314275785800_ref109
  article-title: Probability-based collaborative filtering model for predicting gene-disease associations
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-017-0313-y
– volume: 19
  start-page: 821
  year: 2018
  ident: 2021032314275785800_ref106
  article-title: Review and comparative assessment of sequence-based predictors of protein-binding residues
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx022
– volume-title: ICLR
  year: 2015
  ident: 2021032314275785800_ref28
  article-title: Embedding entities and relations for learning and inference in knowledge bases
– volume: 2
  year: 2010
  ident: 2021032314275785800_ref18
  article-title: Construction and analysis of protein-protein interaction networks
  publication-title: Autom Exp
  doi: 10.1186/1759-4499-2-2
– volume: 6
  year: 2011
  ident: 2021032314275785800_ref110
  article-title: Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020284
– volume: 20
  issue: 4
  year: 2019
  ident: 2021032314275785800_ref37
  article-title: Drug knowledge bases and their applications in biomedical informatics research
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx169
– volume-title: DILS
  year: 2018
  ident: 2021032314275785800_ref91
  article-title: Knowledge graph completion to predict polypharmacy side effects
– volume: 15
  start-page: 3221
  year: 2014
  ident: 2021032314275785800_ref99
  article-title: Accelerating t-sne using tree-based algorithms
  publication-title: J Mach Learn Res
– volume: 45
  year: 2017
  ident: 2021032314275785800_ref49
  article-title: The string database in 2017: quality-controlled protein-protein association networks, made broadly accessible
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw937
– volume: 2
  start-page: 393
  year: 2010
  ident: 2021032314275785800_ref85
  article-title: Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evq019
– volume: 39
  start-page: D698
  year: 2007
  ident: 2021032314275785800_ref50
  article-title: The BioGRID interaction database: 2011 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1116
– volume: 4
  start-page: 125ra31
  issue: 125
  year: 2012
  ident: 2021032314275785800_ref80
  article-title: Data-driven prediction of drug effects and interactions
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003377
– volume: 47
  start-page: 569
  issue: 6
  year: 2015
  ident: 2021032314275785800_ref83
  article-title: Understanding multicellular function and disease with human tissue-specific networks
  publication-title: Nat Genet
  doi: 10.1038/ng.3259
– volume-title: Twenty-Second International Joint Conference on Artificial Intelligence
  year: 2011
  ident: 2021032314275785800_ref58
  article-title: Limes—a time-efficient approach for large-scale link discovery on the web of data
– volume: 99
  start-page: 45
  issue: 1
  year: 1992
  ident: 2021032314275785800_ref1
  article-title: Context, cortex, and dopanmine: a connectionist approach to behavior and biology in schizophrenia
  publication-title: Psychol Rev
  doi: 10.1037/0033-295X.99.1.45
– volume: 20
  issue: 1
  year: 2019
  ident: 2021032314275785800_ref6
  article-title: Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx099
– volume: 6
  start-page: 19
  year: 1981
  ident: 2021032314275785800_ref120
  article-title: Minimization by random search techniques
  publication-title: Math Oper Res
  doi: 10.1287/moor.6.1.19
– start-page: 2071
  volume-title: ICML
  year: 2016
  ident: 2021032314275785800_ref29
  article-title: Complex embeddings for simple link prediction
– year: 2011
  ident: 2021032314275785800_ref16
  article-title: Random walk inference and learning in a large scale knowledge base
  publication-title: EMNLP
– volume: 42
  year: 2014
  ident: 2021032314275785800_ref41
  article-title: The mintact project intact as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1115
– year: 2016
  ident: 2021032314275785800_ref61
  article-title: Jointly embedding knowledge graphs and logical rules
  publication-title: EMNLP
– volume: 11
  start-page: 909
  issue: 12
  year: 2012
  ident: 2021032314275785800_ref78
  article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3845
– volume-title: ECML/PKDD
  year: 2017
  ident: 2021032314275785800_ref113
  article-title: Regularizing knowledge graph embeddings via equivalence and inversion axioms
  doi: 10.1007/978-3-319-71249-9_40
– volume: 12
  start-page: 745
  year: 2011
  ident: 2021032314275785800_ref108
  article-title: Exome sequencing as a tool for Mendelian disease gene discovery
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3031
– start-page: 2787
  volume-title: NIPS
  year: 2013
  ident: 2021032314275785800_ref26
  article-title: Translating embeddings for modeling multi-relational data
– volume: 9
  start-page: 77
  year: 2017
  ident: 2021032314275785800_ref116
  article-title: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO
  publication-title: Semantic Web
  doi: 10.3233/SW-170275
– volume: 30
  start-page: 163
  issue: 1
  year: 2002
  ident: 2021032314275785800_ref52
  article-title: Pharmgkb: the pharmacogenetics knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.163
– volume: 28
  start-page: 263
  issue: 1
  year: 2000
  ident: 2021032314275785800_ref90
  article-title: The pfam protein families database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.263
– volume: 6
  start-page: 377
  issue: 3
  year: 1996
  ident: 2021032314275785800_ref2
  article-title: Surprising similarities in structure comparison
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/S0959-440X(96)80058-3
– start-page: 1955
  volume-title: AAAI
  year: 2016
  ident: 2021032314275785800_ref62
  article-title: Holographic embeddings of knowledge graphs
– volume: 13
  start-page: 397
  issue: 2
  year: 2014
  ident: 2021032314275785800_ref82
  article-title: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M113.035600
– start-page: 2302
  volume-title: AAAI
  year: 2015
  ident: 2021032314275785800_ref35
  article-title: Never-ending learning
– start-page: 1
  volume-title: 2012 International Conference on Information Technology and e-Services
  year: 2012
  ident: 2021032314275785800_ref57
  article-title: Survey on the literature of ontology mapping, alignment and merging
– volume: 94
  start-page: 233
  issue: 2
  year: 2014
  ident: 2021032314275785800_ref60
  article-title: A semantic matching energy function for learning with multi-relational data—application to word-sense disambiguation
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5363-6
– volume: 36
  year: 2019
  ident: 2021032314275785800_ref102
  article-title: Discovering protein drug targets using knowledge graph embeddings
  publication-title: Bioinformatics
– volume: 12
  start-page: 46
  issue: 1
  year: 2008
  ident: 2021032314275785800_ref68
  article-title: Proteomic methods for drug target discovery
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2008.01.022
– start-page: 6151
  volume-title: ACL (1)
  year: 2019
  ident: 2021032314275785800_ref122
  article-title: Nlprolog: reasoning with weak unification for question answering in natural language
– volume: 33
  issue: 17
  year: 2017
  ident: 2021032314275785800_ref13
  article-title: Neuro-symbolic representation learning on biological knowledge graphs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx275
– volume: 4
  start-page: 504
  year: 1983
  ident: 2021032314275785800_ref100
  article-title: Graph traversal techniques and the maximum flow problem in distributed computation
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.1983.234958
– volume-title: The 2nd SysML Conference
  year: 2019
  ident: 2021032314275785800_ref104
  article-title: Pytorch-biggraph: a large-scale graph embedding system
– volume: 107
  start-page: 268
  issue: Pt. 1
  year: 2004
  ident: 2021032314275785800_ref38
  article-title: The nlm indexing initiative’s medical text indexer
  publication-title: Stud Health Technol Informatics
– start-page: 145
  volume-title: Clinical Science
  year: 1972
  ident: 2021032314275785800_ref94
  article-title: The antidiuretic action of diazoxide
– volume: 34
  start-page: 1164
  issue: 7
  year: 2017
  ident: 2021032314275785800_ref7
  article-title: Ddr: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx731
– volume: 21
  start-page: 223
  year: 1999
  ident: 2021032314275785800_ref98
  article-title: Maintenance ration, protein synthesis capacity, plasma insulin and growth of Atlantic salmon (salmo Salar L.) with genetically different trypsin isozymes
  publication-title: Fish Physiol Biochem
  doi: 10.1023/A:1007804823932
– volume-title: Bioinformatics
  year: 2017
  ident: 2021032314275785800_ref86
  article-title: Predicting multicellular function through multi-layer tissue networks
– volume: 118
  start-page: 4947
  issue: Pt 21
  year: 2005
  ident: 2021032314275785800_ref4
  article-title: Scale-free networks in cell biology
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02714
– volume: 36
  start-page: D901
  year: 2008
  ident: 2021032314275785800_ref44
  article-title: Drugbank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm958
– volume-title: Proceedings of WHI
  year: 2018
  ident: 2021032314275785800_ref114
  article-title: Interpreting embedding models of knowledge bases: a pedagogical approach
– volume: 314
  start-page: 1818
  issue: 17
  year: 2015
  ident: 2021032314275785800_ref79
  article-title: Trends in prescription drug use among adults in the United States from 1999-2012
  publication-title: JAMA
  doi: 10.1001/jama.2015.13766
– start-page: 1992
  volume-title: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18
  year: 2018
  ident: 2021032314275785800_ref20
  article-title: Knowledge base completion using distinct subgraph paths
  doi: 10.1145/3167132.3167346
– volume: 2016
  start-page: 855
  year: 2016
  ident: 2021032314275785800_ref66
  article-title: node2vec: scalable feature learning for networks
  publication-title: KDD: Proceedings International Conference on Knowledge Discovery & Data Mining
  doi: 10.1145/2939672.2939754
– start-page: 240
  volume-title: ESWC
  year: 2019
  ident: 2021032314275785800_ref64
  article-title: Link prediction using multi part embeddings
– volume: 8
  start-page: e1002503
  issue: 5
  year: 2012
  ident: 2021032314275785800_ref73
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– start-page: 11
  volume-title: Proceedings of the 34th Annual ACM Symposium on Applied Computing, SAC ’19
  year: 2019
  ident: 2021032314275785800_ref9
  article-title: Drug target discovery using knowledge graph embeddings
– start-page: 1488
  volume-title: EMNLP
  year: 2015
  ident: 2021032314275785800_ref19
  article-title: Efficient and expressive knowledge base completion using subgraph feature extraction
– volume-title: Poster at the 5th International Semantic Web Conference
  year: 2006
  ident: 2021032314275785800_ref56
  article-title: D2R server-publishing relational databases on the semantic web
– volume: 508
  start-page: 343
  year: 2020
  ident: 2021032314275785800_ref107
  article-title: Predicting tissue-specific protein functions using multi-part tensor decomposition
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.08.061
– start-page: 701
  volume-title: SIGKDD
  year: 2014
  ident: 2021032314275785800_ref65
  article-title: Deepwalk: online learning of social representations
– year: 2016
  ident: 2021032314275785800_ref119
  article-title: Why is differential evolution better than grid search for tuning defect predictors?
– start-page: 809
  volume-title: ICML
  year: 2011
  ident: 2021032314275785800_ref27
  article-title: A three-way model for collective learning on multi-relational data
– volume: 6
  start-page: 38860
  year: 2016
  ident: 2021032314275785800_ref89
  article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem
  publication-title: Sci Rep
  doi: 10.1038/srep38860
– volume: 16
  start-page: 377
  year: 2017
  ident: 2021032314275785800_ref17
  article-title: Essential protein detection by random walk on weighted protein-protein interaction networks
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2701824
– volume: 34
  start-page: D668
  year: 2006
  ident: 2021032314275785800_ref71
  article-title: Drugbank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume-title: WWW
  year: 2015
  ident: 2021032314275785800_ref87
  article-title: Line: large-scale information network embedding
  doi: 10.1145/2736277.2741093
– volume: 6
  start-page: 891
  issue: 11
  year: 2007
  ident: 2021032314275785800_ref67
  article-title: Target deconvolution strategies in drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2410
– volume: 7
  start-page: 40376
  year: 2017
  ident: 2021032314275785800_ref77
  article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization
  publication-title: Sci Rep
  doi: 10.1038/srep40376
– volume: 34
  start-page: 1164
  issue: 7
  year: 2018
  ident: 2021032314275785800_ref21
  article-title: DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx731
– volume-title: AMIA 2016
  year: 2016
  ident: 2021032314275785800_ref111
  article-title: Using drug similarities for discovery of possible adverse reactions
– volume: 29
  start-page: 2724
  issue: 12
  year: 2017
  ident: 2021032314275785800_ref24
  article-title: Knowledge graph embedding: a survey of approaches and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2754499
SSID ssj0020781
Score 2.5877979
SecondaryResourceType review_article
Snippet Abstract Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs,...
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1679
SubjectTerms Accuracy
Computer applications
Embedding
Graph theory
Graphical representations
Graphs
Knowledge representation
Polypharmacy
Side effects
Therapeutic targets
Title Biological applications of knowledge graph embedding models
URI https://www.ncbi.nlm.nih.gov/pubmed/32065227
https://www.proquest.com/docview/2529968787
https://www.proquest.com/docview/2356589291
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFH7IQPAi_rY6NcJOQlmXpEmLJxHH8KCXDXYreWkKgnbitoP_vS9tV5wOvRX6SuBL2u97fcn7AHom10IKq0MjrQmlLrwbIMqQlCzRU2S4yqsNsk9qNJGP03jabJCdbyjhp6KPL9hHNCaqzISJfn2L_PHztM2rfL-a5ujdj_g1slk7wPZLR1Z8MtyD3UYIsrt65vZhy5UHsF1bQ34ewm195SFk34vMbFaw9j8Yq9pNM_eGLvccxCpfm_kRTIYP4_tR2BgdhFYk8SJUJNISF-nUuSIttHCYKq-7EgIqV3pgKWVEIyl5IFIx2kaps6ZQJiZlrN3AimPolLPSnQJLtUGOKWJEDxSoEmUFIuVYCnMXJTKAmxUimW26gHszitesrkaLjODLGvgC6LXB73Xzi81hVwTt3xHdFexZ847MMx4TFaqEvhgBXLe3aXX7koUp3WxJMYIEZ0ISbhDAST1d7TiCk3ziXJ_9O_w57HC_FSUSIedd6Cw-lu6CtMQCL6uV9AU3gccG
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+applications+of+knowledge+graph+embedding+models&rft.jtitle=Briefings+in+bioinformatics&rft.au=Mohamed%2C+Sameh+K&rft.au=Nounu%2C+Aayah&rft.au=Nov%C3%A1%C4%8Dek%2C+V%C3%ADt&rft.date=2021-03-22&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=1679&rft_id=info:doi/10.1093%2Fbib%2Fbbaa012&rft_id=info%3Apmid%2F32065227&rft.externalDocID=32065227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon