Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites

The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast r...

Full description

Saved in:
Bibliographic Details
Published inAdvanced fiber materials (Online) Vol. 3; no. 1; pp. 38 - 46
Main Authors Aouraghe, Mohamed Amine, Mengjie, Zhou, Qiu, Yiping, Fujun, Xu
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10 –4  °C −1 ), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability.
AbstractList The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10–4 °C−1), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability.
The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10 –4  °C −1 ), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability.
Author Qiu, Yiping
Fujun, Xu
Mengjie, Zhou
Aouraghe, Mohamed Amine
Author_xml – sequence: 1
  givenname: Mohamed Amine
  surname: Aouraghe
  fullname: Aouraghe, Mohamed Amine
  organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University
– sequence: 2
  givenname: Zhou
  surname: Mengjie
  fullname: Mengjie, Zhou
  organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University
– sequence: 3
  givenname: Yiping
  surname: Qiu
  fullname: Qiu, Yiping
  organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University
– sequence: 4
  givenname: Xu
  surname: Fujun
  fullname: Fujun, Xu
  email: fjxu@dhu.edu.cn
  organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University
BookMark eNp9kMtOwzAQRS1UJErpD7CyxBbTiZM4ybKUFpDKQ7zEznIdp6RK7GK7VPw9LkUgsehqRtY545l7iDraaIXQcQRnEUA2cAnNWEqAAgEABmS9h7o0pQnJivi189vT6AD1nVsEiGYRUApdpKdmTV5M48Vc4aH09YfwtZ6f4olwHj8otzS6DA943CjprSH-TdlWNBt2Jbyx-Fw4VWKj8UjYWSi3Qhu_mik8qZt2cH9x84hHpl0aV3vljtB-JRqn-j-1h54n46fRFZneXV6PhlMi4zz1hCUSVDgqEVAqSalM0iyWlYhFVjKIWA5FwTLJqrwosyKCKkmTAKYzQZOiYhD30Ml27tKa95Vyni_MyurwJadFTOOCAmWByreUtMY5qyouax_uN9pbUTc8Ar4JmG8D5iFg_h0wXweV_lOXtm6F_dwtxVvJBVjPlf3baof1BRuvj_g
CitedBy_id crossref_primary_10_1021_acsami_2c04112
crossref_primary_10_1002_adfm_202300516
crossref_primary_10_1002_adma_202309518
crossref_primary_10_1016_j_optlastec_2023_109853
crossref_primary_10_1016_j_isci_2023_106796
crossref_primary_10_1088_1361_665X_ac9769
crossref_primary_10_1007_s40684_023_00533_4
crossref_primary_10_1016_j_cej_2024_150014
crossref_primary_10_1007_s10854_022_09452_7
crossref_primary_10_1016_j_colsurfa_2023_132063
crossref_primary_10_3390_jcs8100391
crossref_primary_10_1002_cjoc_202300328
crossref_primary_10_1016_j_electacta_2022_141802
crossref_primary_10_3390_machines13020101
crossref_primary_10_1021_acsanm_2c02257
crossref_primary_10_1021_acsami_1c17170
crossref_primary_10_3390_polym15122755
crossref_primary_10_1016_j_pmatsci_2024_101406
crossref_primary_10_1016_j_sna_2022_114149
crossref_primary_10_1063_5_0180323
crossref_primary_10_1016_j_colsurfa_2022_130605
crossref_primary_10_1002_adem_202200752
crossref_primary_10_3390_ijms24098221
crossref_primary_10_3390_nano13020316
crossref_primary_10_1002_advs_202304506
crossref_primary_10_1177_00219983221121876
crossref_primary_10_1016_j_polymertesting_2023_108131
crossref_primary_10_1089_soro_2022_0235
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_3390_polym16172496
crossref_primary_10_1038_s41598_022_16872_2
crossref_primary_10_1002_sus2_35
crossref_primary_10_1007_s11696_022_02467_8
crossref_primary_10_1002_advs_202300673
crossref_primary_10_1007_s42765_024_00399_4
Cites_doi 10.1016/j.carbon.2014.12.012
10.1016/j.snb.2017.06.104
10.1021/acsnano.6b05545
10.1016/j.compscitech.2019.107824
10.1016/j.carbon.2019.04.014
10.1016/j.sna.2016.01.018
10.1126/science.1226762
10.1016/j.eml.2019.100463
10.1002/adma.201801072
10.1021/acsnano.5b05413
10.1002/adma.201902028
10.1016/j.compscitech.2017.04.004
10.1007/s10853-015-9395-0
10.1039/C5NR07237A
10.1002/adfm.201900161
10.1063/1.5003610
10.1016/j.sna.2017.10.051
10.1039/C6NR09270E
10.1126/science.aat7439
10.1002/advs.201800239
10.1002/adma.201603483
ContentType Journal Article
Copyright Donghua University, Shanghai, China 2021
Donghua University, Shanghai, China 2021.
Copyright_xml – notice: Donghua University, Shanghai, China 2021
– notice: Donghua University, Shanghai, China 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s42765-020-00060-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2524-793X
EndPage 46
ExternalDocumentID 10_1007_s42765_020_00060_w
GrantInformation_xml – fundername: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
– fundername: Fundamental Research Fund of Shanghai Natural Science Foundation
  grantid: 17ZR1400800
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFTV
ABJCF
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ARAPS
AXYYD
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
H13
HCIFZ
IKXTQ
IWAJR
JZLTJ
KB.
LLZTM
M7S
NPVJJ
NQJWS
PDBOC
PT4
PTHSS
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c385t-64c0e2764a0dec22c4573cfa3a7d6016809967c6f89d7910f454dec5ba249f603
IEDL.DBID BENPR
ISSN 2524-7921
IngestDate Sat Aug 23 12:24:52 EDT 2025
Tue Jul 01 00:58:16 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Soft robotic
Multifunctional composite
Carbon nanotube film
PDMS
Actuator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-64c0e2764a0dec22c4573cfa3a7d6016809967c6f89d7910f454dec5ba249f603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932392026
PQPubID 6623281
PageCount 9
ParticipantIDs proquest_journals_2932392026
crossref_citationtrail_10_1007_s42765_020_00060_w
crossref_primary_10_1007_s42765_020_00060_w
springer_journals_10_1007_s42765_020_00060_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Shanghai
PublicationTitle Advanced fiber materials (Online)
PublicationTitleAbbrev Adv. Fiber Mater
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References LimaMDLiNJung de AndradeMFangSOhJSpinksGMKozlovMEHainesCSSuhDForoughiJKimSJChenYWareTShinMKMachadoLDFonsecaAFMaddenJDVoitWEGalvaoDSBaughmanRHElectrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn musclesScience201233861099289321:CAS:528:DC%2BC38Xhs1GntL%2FJ10.1126/science.1226762
YaoSCuiJCuiZZhuYSoft electrothermal actuators using silver nanowire heatersNanoscale2017911379738051:CAS:528:DC%2BC2sXpslKntg%3D%3D10.1039/C6NR09270E
Roy S, Kim J, Kotal M, Tabassian R, Kim KJ, Oh IK. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co‐doping for electroactive ionic artificial muscles. Adv Funct Mater.2019;29(17):e1900161.
AmjadiMSittiMHigh-performance multiresponsive paper actuatorsACS Nano2016101110202102101:CAS:528:DC%2BC28Xhs1yltbrN10.1021/acsnano.6b05545
ZengZJinHZhangLZhangHChenZGaoFZhangZLow-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer compositesCarbon2015843273341:CAS:528:DC%2BC2cXitV2it7zO10.1016/j.carbon.2014.12.012
WangCXiaKWangHLiangXYinZZhangYAdvanced carbon for flexible and wearable electronicsAdv Mater2019319e180107210.1002/adma.201801072
ChenLWengMZhangWZhouZZhouYXiaDLiJHuangZLiuCFanSTransparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer compositesNanoscale2016812687768831:CAS:528:DC%2BC28XjvV2isL4%3D10.1039/C5NR07237A
AmjadiMSittiMSelf-sensing paper actuators based on graphite-carbon nanotube hybrid filmsAdv Sci (Weinh)201857180023910.1002/advs.201800239
LiuHNiuDJiangWZhaoTLeiBYinLShiYChenBLuBIllumination-oriented and thickness-dependent photomechanical bilayer actuators realized by graphene-nanoplateletsSens Actuators A Phys201623945531:CAS:528:DC%2BC28Xhtlejur4%3D10.1016/j.sna.2016.01.018
Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater.2019;32(5):e1902028.
Aouraghe MA, Xu F, Liu X, Qiu Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol.2019;183:107824.
Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29(13):e1603483.
Kuang Y, Chen C, Cheng J, Pastel G, Li T, Song J, Jiang F, Li Y, Zhang Y, Jang S-H, Chen G, Li T, Hu L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech Lett. 2019;29.
KinlochIASuhrJLouJYoungRJAjayanPMComposites with carbon nanotubes and graphene: an outlookScience201836264145475531:CAS:528:DC%2BC1cXitVartLvK10.1126/science.aat7439
XuFWeiBLiuWZhuHZhangYQiuYIn-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decompositionJ Mater Sci20155024816681741:CAS:528:DC%2BC2MXhsVKlurfN10.1007/s10853-015-9395-0
Xiaohua Liu FX, Zhang K, Wei B, Gao Z, Qiu Y. Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Compos Sci Technol.2017;145:114–121.
Luzhuo Chen CL, Liu K, Meng C, Hu C, Wang J, Fan S. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. NANO.2011;5(3):1588–1593.
LiJMouLZhangRSunJWangRAnBChenHInoueKOvalle-RoblesRLiuZMulti-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheetsCarbon20191484874951:CAS:528:DC%2BC1MXnsVegu78%3D10.1016/j.carbon.2019.04.014
Shirasu K, Yamamoto G, Inoue Y, Ogasawara T, Shimamura Y, Hashida T. Development of large-movements and high-force electrothermal bimorph actuators based on aligned carbon nanotube reinforced epoxy composites. Sens Actuators A: Phys. 2017;267:455–463.
SachyaniELayaniMTibiGAvidanTDeganiAMagdassiSEnhanced movement of CNT-based actuators by a three-Layered structure with controlled resistivitySens Actuators B: Chemical2017252107110771:CAS:528:DC%2BC2sXhtVChu7%2FN10.1016/j.snb.2017.06.104
ZhangT-YWangQDengN-QZhaoH-MWangD-YYangZLiuYYangYRenT-LA large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxideAppl Phys Lett20171111212190110.1063/1.5003610
Luzhuo Chen M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu L, Fan S. Large-deformation curling actuators based on carbon nanotube composite_ advanced-structure design and biomimetic application. ACS NANO.2015;9(12):12189–12196.
60_CR10
60_CR21
60_CR14
C Wang (60_CR9) 2019; 31
60_CR13
E Sachyani (60_CR16) 2017; 252
60_CR3
60_CR17
60_CR1
H Liu (60_CR6) 2016; 239
F Xu (60_CR15) 2015; 50
M Amjadi (60_CR20) 2016; 10
M Amjadi (60_CR22) 2018; 5
J Li (60_CR18) 2019; 148
MD Lima (60_CR2) 2012; 338
S Yao (60_CR7) 2017; 9
Z Zeng (60_CR8) 2015; 84
L Chen (60_CR19) 2016; 8
60_CR4
60_CR5
IA Kinloch (60_CR11) 2018; 362
T-Y Zhang (60_CR12) 2017; 111
References_xml – reference: Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29(13):e1603483.
– reference: SachyaniELayaniMTibiGAvidanTDeganiAMagdassiSEnhanced movement of CNT-based actuators by a three-Layered structure with controlled resistivitySens Actuators B: Chemical2017252107110771:CAS:528:DC%2BC2sXhtVChu7%2FN10.1016/j.snb.2017.06.104
– reference: Roy S, Kim J, Kotal M, Tabassian R, Kim KJ, Oh IK. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co‐doping for electroactive ionic artificial muscles. Adv Funct Mater.2019;29(17):e1900161.
– reference: ZhangT-YWangQDengN-QZhaoH-MWangD-YYangZLiuYYangYRenT-LA large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxideAppl Phys Lett20171111212190110.1063/1.5003610
– reference: Luzhuo Chen M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu L, Fan S. Large-deformation curling actuators based on carbon nanotube composite_ advanced-structure design and biomimetic application. ACS NANO.2015;9(12):12189–12196.
– reference: ZengZJinHZhangLZhangHChenZGaoFZhangZLow-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer compositesCarbon2015843273341:CAS:528:DC%2BC2cXitV2it7zO10.1016/j.carbon.2014.12.012
– reference: LimaMDLiNJung de AndradeMFangSOhJSpinksGMKozlovMEHainesCSSuhDForoughiJKimSJChenYWareTShinMKMachadoLDFonsecaAFMaddenJDVoitWEGalvaoDSBaughmanRHElectrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn musclesScience201233861099289321:CAS:528:DC%2BC38Xhs1GntL%2FJ10.1126/science.1226762
– reference: KinlochIASuhrJLouJYoungRJAjayanPMComposites with carbon nanotubes and graphene: an outlookScience201836264145475531:CAS:528:DC%2BC1cXitVartLvK10.1126/science.aat7439
– reference: Aouraghe MA, Xu F, Liu X, Qiu Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol.2019;183:107824.
– reference: LiJMouLZhangRSunJWangRAnBChenHInoueKOvalle-RoblesRLiuZMulti-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheetsCarbon20191484874951:CAS:528:DC%2BC1MXnsVegu78%3D10.1016/j.carbon.2019.04.014
– reference: AmjadiMSittiMHigh-performance multiresponsive paper actuatorsACS Nano2016101110202102101:CAS:528:DC%2BC28Xhs1yltbrN10.1021/acsnano.6b05545
– reference: ChenLWengMZhangWZhouZZhouYXiaDLiJHuangZLiuCFanSTransparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer compositesNanoscale2016812687768831:CAS:528:DC%2BC28XjvV2isL4%3D10.1039/C5NR07237A
– reference: WangCXiaKWangHLiangXYinZZhangYAdvanced carbon for flexible and wearable electronicsAdv Mater2019319e180107210.1002/adma.201801072
– reference: Xiaohua Liu FX, Zhang K, Wei B, Gao Z, Qiu Y. Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Compos Sci Technol.2017;145:114–121.
– reference: Kuang Y, Chen C, Cheng J, Pastel G, Li T, Song J, Jiang F, Li Y, Zhang Y, Jang S-H, Chen G, Li T, Hu L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech Lett. 2019;29.
– reference: Luzhuo Chen CL, Liu K, Meng C, Hu C, Wang J, Fan S. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. NANO.2011;5(3):1588–1593.
– reference: LiuHNiuDJiangWZhaoTLeiBYinLShiYChenBLuBIllumination-oriented and thickness-dependent photomechanical bilayer actuators realized by graphene-nanoplateletsSens Actuators A Phys201623945531:CAS:528:DC%2BC28Xhtlejur4%3D10.1016/j.sna.2016.01.018
– reference: XuFWeiBLiuWZhuHZhangYQiuYIn-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decompositionJ Mater Sci20155024816681741:CAS:528:DC%2BC2MXhsVKlurfN10.1007/s10853-015-9395-0
– reference: AmjadiMSittiMSelf-sensing paper actuators based on graphite-carbon nanotube hybrid filmsAdv Sci (Weinh)201857180023910.1002/advs.201800239
– reference: Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater.2019;32(5):e1902028.
– reference: YaoSCuiJCuiZZhuYSoft electrothermal actuators using silver nanowire heatersNanoscale2017911379738051:CAS:528:DC%2BC2sXpslKntg%3D%3D10.1039/C6NR09270E
– reference: Shirasu K, Yamamoto G, Inoue Y, Ogasawara T, Shimamura Y, Hashida T. Development of large-movements and high-force electrothermal bimorph actuators based on aligned carbon nanotube reinforced epoxy composites. Sens Actuators A: Phys. 2017;267:455–463.
– volume: 84
  start-page: 327
  year: 2015
  ident: 60_CR8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.012
– volume: 252
  start-page: 1071
  year: 2017
  ident: 60_CR16
  publication-title: Sens Actuators B: Chemical
  doi: 10.1016/j.snb.2017.06.104
– volume: 10
  start-page: 10202
  issue: 11
  year: 2016
  ident: 60_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05545
– ident: 60_CR13
  doi: 10.1016/j.compscitech.2019.107824
– volume: 148
  start-page: 487
  year: 2019
  ident: 60_CR18
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.014
– volume: 239
  start-page: 45
  year: 2016
  ident: 60_CR6
  publication-title: Sens Actuators A Phys
  doi: 10.1016/j.sna.2016.01.018
– ident: 60_CR21
– volume: 338
  start-page: 928
  issue: 6109
  year: 2012
  ident: 60_CR2
  publication-title: Science
  doi: 10.1126/science.1226762
– ident: 60_CR4
  doi: 10.1016/j.eml.2019.100463
– volume: 31
  start-page: e1801072
  issue: 9
  year: 2019
  ident: 60_CR9
  publication-title: Adv Mater
  doi: 10.1002/adma.201801072
– ident: 60_CR17
  doi: 10.1021/acsnano.5b05413
– ident: 60_CR10
  doi: 10.1002/adma.201902028
– ident: 60_CR14
  doi: 10.1016/j.compscitech.2017.04.004
– volume: 50
  start-page: 8166
  issue: 24
  year: 2015
  ident: 60_CR15
  publication-title: J Mater Sci
  doi: 10.1007/s10853-015-9395-0
– volume: 8
  start-page: 6877
  issue: 12
  year: 2016
  ident: 60_CR19
  publication-title: Nanoscale
  doi: 10.1039/C5NR07237A
– ident: 60_CR3
  doi: 10.1002/adfm.201900161
– volume: 111
  start-page: 121901
  issue: 12
  year: 2017
  ident: 60_CR12
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5003610
– ident: 60_CR5
  doi: 10.1016/j.sna.2017.10.051
– volume: 9
  start-page: 3797
  issue: 11
  year: 2017
  ident: 60_CR7
  publication-title: Nanoscale
  doi: 10.1039/C6NR09270E
– volume: 362
  start-page: 547
  issue: 6414
  year: 2018
  ident: 60_CR11
  publication-title: Science
  doi: 10.1126/science.aat7439
– volume: 5
  start-page: 1800239
  issue: 7
  year: 2018
  ident: 60_CR22
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.201800239
– ident: 60_CR1
  doi: 10.1002/adma.201603483
SSID ssj0002710220
ssib052855615
Score 2.3403196
Snippet The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Actuators
Aluminum
Artificial muscles
Automation
Bilayers
Carbon
Carbon nanotubes
Chemistry and Materials Science
Electric potential
Electrical resistivity
End effectors
Fourier transforms
Graphene
Heat conductivity
Heating
Manufacturing engineering
Materials Engineering
Materials Science
Mechanical properties
Modulus of elasticity
Morphology
Nanoscale Science and Technology
Nanowires
Polydimethylsiloxane
Polymer Sciences
Polymers
Renewable and Green Energy
Research Article
Robotics
Silicones
Silver
Structural and Functional Fibers and Composites
Temperature
Tensile strength
Textile Engineering
Thermal conductivity
Thermal expansion
Voltage
Title Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites
URI https://link.springer.com/article/10.1007/s42765-020-00060-w
https://www.proquest.com/docview/2932392026
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9oUXBAJEYav8wBuzljj-kTyhdjRMiFXTYGhvke04aFKXjDVT__2dXacVSOwpD7FPytm5786-uw_gY5oJaZx2tNCZpFwLTbXWCVUutdY4kdWBDuh8Kc-u-LdrcR0P3NYxrXKwicFQ1531Z-QnCEsMsRxDhs93f6hnjfK3q5FC4wDGaILzfATj-WJ5cTnsKMFyT_8odqcuzANq6NXIBONUFSyNlTShno4zJX3Bcii2lgnd_I1Wexf0n1vTAEblS3gRvUgy2y77K3jm2tfQfu829Fe36tFEkJnd8pa1v49Jqdc9uQzJsB6pyGJLfUO973frxfgiEoy9yRwhrSZdS071vcEHmt6ufzCOlDer25OLL-c_iLcfPs_Lrd_AVbn4eXpGI50CtVkueiq5TRx-INdJ7SxjlguV2UZnWtW-KUuOzqJUVjZ5USv0IhouOA4URmOI1sgkewujtmvdOyBFg-hmC2XSTHNZu4LX0uZSmyYtjErtBNJBbZWNvcY95cWq2nVJDqquUNVVUHW1mcCn3Zy7baeNJ0cfDqtRxb9uXe33yASOhxXav_6_tPdPS_sAz5lPZQnJ2ocw6u8f3BH6Ir2ZwkFefp3CeFbO58tp3H6PuG7bIg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUoHNpLRQVVt6XUBzgVi8SfyaFCFAhL2UWohYpbajtOVWlJKBu04k_1N3bsJLtqJbhxyiHOKBpP5s3EM_MQ2oqZkMZpR1LNJOFaaKK1johysbXGCVYEOqDxmRxe8i9X4moJ_el7YXxZZe8Tg6Muauv_ke8CLFHAckgZ9m5-E88a5U9XewqN1ixO3f0MUrbpp5ND2N9tSrOji4Mh6VgFiGWJaIjkNnJUSa6jwllKLReK2VIzrQo_mySBmEkqK8skLRSAackFh4XCaMhUShkxkPsMrXAGSO4707Pj3n4FTTzZpJj_46EevsNkSCooJyqlcde3E7r3OLyFb48Ord0yIrN_sXER8P53RhugL1tFL7uYFe-3RvYKLblqDVWjeka-15MGHBLety1LWvVzB2d62uCvofTW4yI-aol2iI80r70Y37ICmT7-DABa4LrCB_rWwAUcfd3cGYezX5Pr3fPD8TfsvZWvKnPTdXT5JGp-jZarunJvEE5LwFKbKhMzzWXhUl5Im0htyjg1KrYDFPdqy2032dwTbEzy-UzmoOocVJ0HVeezAfo4f-amnevx6OqNfjfy7huf5guLHKCdfocWtx-W9vZxaR_Q8-HFeJSPTs5O36EX1BfRhDLxDbTc3N659xAFNWYzmB5GP57a1v8CRc0Tcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Voltage+Activating%2C+Fast+Responding+Electro-thermal+Actuator+Based+on+Carbon+Nanotube+Film%2FPDMS+Composites&rft.jtitle=Advanced+fiber+materials+%28Online%29&rft.au=Aouraghe%2C+Mohamed+Amine&rft.au=Mengjie%2C+Zhou&rft.au=Qiu%2C+Yiping&rft.au=Fujun%2C+Xu&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2524-7921&rft.eissn=2524-793X&rft.volume=3&rft.issue=1&rft.spage=38&rft.epage=46&rft_id=info:doi/10.1007%2Fs42765-020-00060-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7921&client=summon