Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites
The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast r...
Saved in:
Published in | Advanced fiber materials (Online) Vol. 3; no. 1; pp. 38 - 46 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10
–4
°C
−1
), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability. |
---|---|
AbstractList | The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10–4 °C−1), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability. The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great potential in the fields of soft robotics, artificial muscle and aerospace component. In this study, to build a low-voltage activating, fast responding ETA, a robust and flexible carbon nanotube film (CNTF) with excellent electrical and thermal conductivity was adopted as the conductive material. Then, an asymmetric bilayer structured ETA was manufactured by coating a thin layer of polydimethylsiloxane (PDMS) with high coefficient of thermal expansion (9.3 × 10 –4 °C −1 ), low young’s modulus (2.07 MPa) on a thin CNTF (~ 11 μm). The as-produced CNTF/PDMS composite ETA exhibited a large deformation (bending angle ~ 324°) and high electro heating performance (351 °C) at a low driving voltage of 8 V within ~ 12 s. The actuated movement and the generated heat could be controlled by adjusting the driving voltages and showed almost the same values in 20 cycles. Furthermore, the influences of the PDMS thickness and driving voltage on CNTF/PDMS composite ETA performance were systematically investigated. The CNTF/PDMS soft robotic hand which can lift 5.1 times and crab 1.3 times of its weight demonstrated its potential capability. |
Author | Qiu, Yiping Fujun, Xu Mengjie, Zhou Aouraghe, Mohamed Amine |
Author_xml | – sequence: 1 givenname: Mohamed Amine surname: Aouraghe fullname: Aouraghe, Mohamed Amine organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University – sequence: 2 givenname: Zhou surname: Mengjie fullname: Mengjie, Zhou organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University – sequence: 3 givenname: Yiping surname: Qiu fullname: Qiu, Yiping organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University – sequence: 4 givenname: Xu surname: Fujun fullname: Fujun, Xu email: fjxu@dhu.edu.cn organization: Shanghai Key Laboratory of Lightweight Composite, Donghua University, College of Textiles, Donghua University |
BookMark | eNp9kMtOwzAQRS1UJErpD7CyxBbTiZM4ybKUFpDKQ7zEznIdp6RK7GK7VPw9LkUgsehqRtY545l7iDraaIXQcQRnEUA2cAnNWEqAAgEABmS9h7o0pQnJivi189vT6AD1nVsEiGYRUApdpKdmTV5M48Vc4aH09YfwtZ6f4olwHj8otzS6DA943CjprSH-TdlWNBt2Jbyx-Fw4VWKj8UjYWSi3Qhu_mik8qZt2cH9x84hHpl0aV3vljtB-JRqn-j-1h54n46fRFZneXV6PhlMi4zz1hCUSVDgqEVAqSalM0iyWlYhFVjKIWA5FwTLJqrwosyKCKkmTAKYzQZOiYhD30Ml27tKa95Vyni_MyurwJadFTOOCAmWByreUtMY5qyouax_uN9pbUTc8Ar4JmG8D5iFg_h0wXweV_lOXtm6F_dwtxVvJBVjPlf3baof1BRuvj_g |
CitedBy_id | crossref_primary_10_1021_acsami_2c04112 crossref_primary_10_1002_adfm_202300516 crossref_primary_10_1002_adma_202309518 crossref_primary_10_1016_j_optlastec_2023_109853 crossref_primary_10_1016_j_isci_2023_106796 crossref_primary_10_1088_1361_665X_ac9769 crossref_primary_10_1007_s40684_023_00533_4 crossref_primary_10_1016_j_cej_2024_150014 crossref_primary_10_1007_s10854_022_09452_7 crossref_primary_10_1016_j_colsurfa_2023_132063 crossref_primary_10_3390_jcs8100391 crossref_primary_10_1002_cjoc_202300328 crossref_primary_10_1016_j_electacta_2022_141802 crossref_primary_10_3390_machines13020101 crossref_primary_10_1021_acsanm_2c02257 crossref_primary_10_1021_acsami_1c17170 crossref_primary_10_3390_polym15122755 crossref_primary_10_1016_j_pmatsci_2024_101406 crossref_primary_10_1016_j_sna_2022_114149 crossref_primary_10_1063_5_0180323 crossref_primary_10_1016_j_colsurfa_2022_130605 crossref_primary_10_1002_adem_202200752 crossref_primary_10_3390_ijms24098221 crossref_primary_10_3390_nano13020316 crossref_primary_10_1002_advs_202304506 crossref_primary_10_1177_00219983221121876 crossref_primary_10_1016_j_polymertesting_2023_108131 crossref_primary_10_1089_soro_2022_0235 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_3390_polym16172496 crossref_primary_10_1038_s41598_022_16872_2 crossref_primary_10_1002_sus2_35 crossref_primary_10_1007_s11696_022_02467_8 crossref_primary_10_1002_advs_202300673 crossref_primary_10_1007_s42765_024_00399_4 |
Cites_doi | 10.1016/j.carbon.2014.12.012 10.1016/j.snb.2017.06.104 10.1021/acsnano.6b05545 10.1016/j.compscitech.2019.107824 10.1016/j.carbon.2019.04.014 10.1016/j.sna.2016.01.018 10.1126/science.1226762 10.1016/j.eml.2019.100463 10.1002/adma.201801072 10.1021/acsnano.5b05413 10.1002/adma.201902028 10.1016/j.compscitech.2017.04.004 10.1007/s10853-015-9395-0 10.1039/C5NR07237A 10.1002/adfm.201900161 10.1063/1.5003610 10.1016/j.sna.2017.10.051 10.1039/C6NR09270E 10.1126/science.aat7439 10.1002/advs.201800239 10.1002/adma.201603483 |
ContentType | Journal Article |
Copyright | Donghua University, Shanghai, China 2021 Donghua University, Shanghai, China 2021. |
Copyright_xml | – notice: Donghua University, Shanghai, China 2021 – notice: Donghua University, Shanghai, China 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s42765-020-00060-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2524-793X |
EndPage | 46 |
ExternalDocumentID | 10_1007_s42765_020_00060_w |
GrantInformation_xml | – fundername: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials – fundername: Fundamental Research Fund of Shanghai Natural Science Foundation grantid: 17ZR1400800 |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABFTV ABJCF ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ARAPS AXYYD BENPR BGLVJ CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI H13 HCIFZ IKXTQ IWAJR JZLTJ KB. LLZTM M7S NPVJJ NQJWS PDBOC PT4 PTHSS ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c385t-64c0e2764a0dec22c4573cfa3a7d6016809967c6f89d7910f454dec5ba249f603 |
IEDL.DBID | BENPR |
ISSN | 2524-7921 |
IngestDate | Sat Aug 23 12:24:52 EDT 2025 Tue Jul 01 00:58:16 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:48:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Soft robotic Multifunctional composite Carbon nanotube film PDMS Actuator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-64c0e2764a0dec22c4573cfa3a7d6016809967c6f89d7910f454dec5ba249f603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2932392026 |
PQPubID | 6623281 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2932392026 crossref_citationtrail_10_1007_s42765_020_00060_w crossref_primary_10_1007_s42765_020_00060_w springer_journals_10_1007_s42765_020_00060_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Shanghai |
PublicationTitle | Advanced fiber materials (Online) |
PublicationTitleAbbrev | Adv. Fiber Mater |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
References | LimaMDLiNJung de AndradeMFangSOhJSpinksGMKozlovMEHainesCSSuhDForoughiJKimSJChenYWareTShinMKMachadoLDFonsecaAFMaddenJDVoitWEGalvaoDSBaughmanRHElectrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn musclesScience201233861099289321:CAS:528:DC%2BC38Xhs1GntL%2FJ10.1126/science.1226762 YaoSCuiJCuiZZhuYSoft electrothermal actuators using silver nanowire heatersNanoscale2017911379738051:CAS:528:DC%2BC2sXpslKntg%3D%3D10.1039/C6NR09270E Roy S, Kim J, Kotal M, Tabassian R, Kim KJ, Oh IK. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co‐doping for electroactive ionic artificial muscles. Adv Funct Mater.2019;29(17):e1900161. AmjadiMSittiMHigh-performance multiresponsive paper actuatorsACS Nano2016101110202102101:CAS:528:DC%2BC28Xhs1yltbrN10.1021/acsnano.6b05545 ZengZJinHZhangLZhangHChenZGaoFZhangZLow-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer compositesCarbon2015843273341:CAS:528:DC%2BC2cXitV2it7zO10.1016/j.carbon.2014.12.012 WangCXiaKWangHLiangXYinZZhangYAdvanced carbon for flexible and wearable electronicsAdv Mater2019319e180107210.1002/adma.201801072 ChenLWengMZhangWZhouZZhouYXiaDLiJHuangZLiuCFanSTransparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer compositesNanoscale2016812687768831:CAS:528:DC%2BC28XjvV2isL4%3D10.1039/C5NR07237A AmjadiMSittiMSelf-sensing paper actuators based on graphite-carbon nanotube hybrid filmsAdv Sci (Weinh)201857180023910.1002/advs.201800239 LiuHNiuDJiangWZhaoTLeiBYinLShiYChenBLuBIllumination-oriented and thickness-dependent photomechanical bilayer actuators realized by graphene-nanoplateletsSens Actuators A Phys201623945531:CAS:528:DC%2BC28Xhtlejur4%3D10.1016/j.sna.2016.01.018 Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater.2019;32(5):e1902028. Aouraghe MA, Xu F, Liu X, Qiu Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol.2019;183:107824. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29(13):e1603483. Kuang Y, Chen C, Cheng J, Pastel G, Li T, Song J, Jiang F, Li Y, Zhang Y, Jang S-H, Chen G, Li T, Hu L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech Lett. 2019;29. KinlochIASuhrJLouJYoungRJAjayanPMComposites with carbon nanotubes and graphene: an outlookScience201836264145475531:CAS:528:DC%2BC1cXitVartLvK10.1126/science.aat7439 XuFWeiBLiuWZhuHZhangYQiuYIn-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decompositionJ Mater Sci20155024816681741:CAS:528:DC%2BC2MXhsVKlurfN10.1007/s10853-015-9395-0 Xiaohua Liu FX, Zhang K, Wei B, Gao Z, Qiu Y. Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Compos Sci Technol.2017;145:114–121. Luzhuo Chen CL, Liu K, Meng C, Hu C, Wang J, Fan S. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. NANO.2011;5(3):1588–1593. LiJMouLZhangRSunJWangRAnBChenHInoueKOvalle-RoblesRLiuZMulti-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheetsCarbon20191484874951:CAS:528:DC%2BC1MXnsVegu78%3D10.1016/j.carbon.2019.04.014 Shirasu K, Yamamoto G, Inoue Y, Ogasawara T, Shimamura Y, Hashida T. Development of large-movements and high-force electrothermal bimorph actuators based on aligned carbon nanotube reinforced epoxy composites. Sens Actuators A: Phys. 2017;267:455–463. SachyaniELayaniMTibiGAvidanTDeganiAMagdassiSEnhanced movement of CNT-based actuators by a three-Layered structure with controlled resistivitySens Actuators B: Chemical2017252107110771:CAS:528:DC%2BC2sXhtVChu7%2FN10.1016/j.snb.2017.06.104 ZhangT-YWangQDengN-QZhaoH-MWangD-YYangZLiuYYangYRenT-LA large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxideAppl Phys Lett20171111212190110.1063/1.5003610 Luzhuo Chen M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu L, Fan S. Large-deformation curling actuators based on carbon nanotube composite_ advanced-structure design and biomimetic application. ACS NANO.2015;9(12):12189–12196. 60_CR10 60_CR21 60_CR14 C Wang (60_CR9) 2019; 31 60_CR13 E Sachyani (60_CR16) 2017; 252 60_CR3 60_CR17 60_CR1 H Liu (60_CR6) 2016; 239 F Xu (60_CR15) 2015; 50 M Amjadi (60_CR20) 2016; 10 M Amjadi (60_CR22) 2018; 5 J Li (60_CR18) 2019; 148 MD Lima (60_CR2) 2012; 338 S Yao (60_CR7) 2017; 9 Z Zeng (60_CR8) 2015; 84 L Chen (60_CR19) 2016; 8 60_CR4 60_CR5 IA Kinloch (60_CR11) 2018; 362 T-Y Zhang (60_CR12) 2017; 111 |
References_xml | – reference: Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29(13):e1603483. – reference: SachyaniELayaniMTibiGAvidanTDeganiAMagdassiSEnhanced movement of CNT-based actuators by a three-Layered structure with controlled resistivitySens Actuators B: Chemical2017252107110771:CAS:528:DC%2BC2sXhtVChu7%2FN10.1016/j.snb.2017.06.104 – reference: Roy S, Kim J, Kotal M, Tabassian R, Kim KJ, Oh IK. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co‐doping for electroactive ionic artificial muscles. Adv Funct Mater.2019;29(17):e1900161. – reference: ZhangT-YWangQDengN-QZhaoH-MWangD-YYangZLiuYYangYRenT-LA large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxideAppl Phys Lett20171111212190110.1063/1.5003610 – reference: Luzhuo Chen M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu L, Fan S. Large-deformation curling actuators based on carbon nanotube composite_ advanced-structure design and biomimetic application. ACS NANO.2015;9(12):12189–12196. – reference: ZengZJinHZhangLZhangHChenZGaoFZhangZLow-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer compositesCarbon2015843273341:CAS:528:DC%2BC2cXitV2it7zO10.1016/j.carbon.2014.12.012 – reference: LimaMDLiNJung de AndradeMFangSOhJSpinksGMKozlovMEHainesCSSuhDForoughiJKimSJChenYWareTShinMKMachadoLDFonsecaAFMaddenJDVoitWEGalvaoDSBaughmanRHElectrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn musclesScience201233861099289321:CAS:528:DC%2BC38Xhs1GntL%2FJ10.1126/science.1226762 – reference: KinlochIASuhrJLouJYoungRJAjayanPMComposites with carbon nanotubes and graphene: an outlookScience201836264145475531:CAS:528:DC%2BC1cXitVartLvK10.1126/science.aat7439 – reference: Aouraghe MA, Xu F, Liu X, Qiu Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol.2019;183:107824. – reference: LiJMouLZhangRSunJWangRAnBChenHInoueKOvalle-RoblesRLiuZMulti-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheetsCarbon20191484874951:CAS:528:DC%2BC1MXnsVegu78%3D10.1016/j.carbon.2019.04.014 – reference: AmjadiMSittiMHigh-performance multiresponsive paper actuatorsACS Nano2016101110202102101:CAS:528:DC%2BC28Xhs1yltbrN10.1021/acsnano.6b05545 – reference: ChenLWengMZhangWZhouZZhouYXiaDLiJHuangZLiuCFanSTransparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer compositesNanoscale2016812687768831:CAS:528:DC%2BC28XjvV2isL4%3D10.1039/C5NR07237A – reference: WangCXiaKWangHLiangXYinZZhangYAdvanced carbon for flexible and wearable electronicsAdv Mater2019319e180107210.1002/adma.201801072 – reference: Xiaohua Liu FX, Zhang K, Wei B, Gao Z, Qiu Y. Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Compos Sci Technol.2017;145:114–121. – reference: Kuang Y, Chen C, Cheng J, Pastel G, Li T, Song J, Jiang F, Li Y, Zhang Y, Jang S-H, Chen G, Li T, Hu L. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech Lett. 2019;29. – reference: Luzhuo Chen CL, Liu K, Meng C, Hu C, Wang J, Fan S. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. NANO.2011;5(3):1588–1593. – reference: LiuHNiuDJiangWZhaoTLeiBYinLShiYChenBLuBIllumination-oriented and thickness-dependent photomechanical bilayer actuators realized by graphene-nanoplateletsSens Actuators A Phys201623945531:CAS:528:DC%2BC28Xhtlejur4%3D10.1016/j.sna.2016.01.018 – reference: XuFWeiBLiuWZhuHZhangYQiuYIn-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decompositionJ Mater Sci20155024816681741:CAS:528:DC%2BC2MXhsVKlurfN10.1007/s10853-015-9395-0 – reference: AmjadiMSittiMSelf-sensing paper actuators based on graphite-carbon nanotube hybrid filmsAdv Sci (Weinh)201857180023910.1002/advs.201800239 – reference: Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater.2019;32(5):e1902028. – reference: YaoSCuiJCuiZZhuYSoft electrothermal actuators using silver nanowire heatersNanoscale2017911379738051:CAS:528:DC%2BC2sXpslKntg%3D%3D10.1039/C6NR09270E – reference: Shirasu K, Yamamoto G, Inoue Y, Ogasawara T, Shimamura Y, Hashida T. Development of large-movements and high-force electrothermal bimorph actuators based on aligned carbon nanotube reinforced epoxy composites. Sens Actuators A: Phys. 2017;267:455–463. – volume: 84 start-page: 327 year: 2015 ident: 60_CR8 publication-title: Carbon doi: 10.1016/j.carbon.2014.12.012 – volume: 252 start-page: 1071 year: 2017 ident: 60_CR16 publication-title: Sens Actuators B: Chemical doi: 10.1016/j.snb.2017.06.104 – volume: 10 start-page: 10202 issue: 11 year: 2016 ident: 60_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.6b05545 – ident: 60_CR13 doi: 10.1016/j.compscitech.2019.107824 – volume: 148 start-page: 487 year: 2019 ident: 60_CR18 publication-title: Carbon doi: 10.1016/j.carbon.2019.04.014 – volume: 239 start-page: 45 year: 2016 ident: 60_CR6 publication-title: Sens Actuators A Phys doi: 10.1016/j.sna.2016.01.018 – ident: 60_CR21 – volume: 338 start-page: 928 issue: 6109 year: 2012 ident: 60_CR2 publication-title: Science doi: 10.1126/science.1226762 – ident: 60_CR4 doi: 10.1016/j.eml.2019.100463 – volume: 31 start-page: e1801072 issue: 9 year: 2019 ident: 60_CR9 publication-title: Adv Mater doi: 10.1002/adma.201801072 – ident: 60_CR17 doi: 10.1021/acsnano.5b05413 – ident: 60_CR10 doi: 10.1002/adma.201902028 – ident: 60_CR14 doi: 10.1016/j.compscitech.2017.04.004 – volume: 50 start-page: 8166 issue: 24 year: 2015 ident: 60_CR15 publication-title: J Mater Sci doi: 10.1007/s10853-015-9395-0 – volume: 8 start-page: 6877 issue: 12 year: 2016 ident: 60_CR19 publication-title: Nanoscale doi: 10.1039/C5NR07237A – ident: 60_CR3 doi: 10.1002/adfm.201900161 – volume: 111 start-page: 121901 issue: 12 year: 2017 ident: 60_CR12 publication-title: Appl Phys Lett doi: 10.1063/1.5003610 – ident: 60_CR5 doi: 10.1016/j.sna.2017.10.051 – volume: 9 start-page: 3797 issue: 11 year: 2017 ident: 60_CR7 publication-title: Nanoscale doi: 10.1039/C6NR09270E – volume: 362 start-page: 547 issue: 6414 year: 2018 ident: 60_CR11 publication-title: Science doi: 10.1126/science.aat7439 – volume: 5 start-page: 1800239 issue: 7 year: 2018 ident: 60_CR22 publication-title: Adv Sci (Weinh) doi: 10.1002/advs.201800239 – ident: 60_CR1 doi: 10.1002/adma.201603483 |
SSID | ssj0002710220 ssib052855615 |
Score | 2.3403196 |
Snippet | The electro-thermal actuators (ETA) are smart devices that can convert electric energy into mechanical energy under electro-heating stimulation, showing great... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 38 |
SubjectTerms | Actuators Aluminum Artificial muscles Automation Bilayers Carbon Carbon nanotubes Chemistry and Materials Science Electric potential Electrical resistivity End effectors Fourier transforms Graphene Heat conductivity Heating Manufacturing engineering Materials Engineering Materials Science Mechanical properties Modulus of elasticity Morphology Nanoscale Science and Technology Nanowires Polydimethylsiloxane Polymer Sciences Polymers Renewable and Green Energy Research Article Robotics Silicones Silver Structural and Functional Fibers and Composites Temperature Tensile strength Textile Engineering Thermal conductivity Thermal expansion Voltage |
Title | Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites |
URI | https://link.springer.com/article/10.1007/s42765-020-00060-w https://www.proquest.com/docview/2932392026 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9oUXBAJEYav8wBuzljj-kTyhdjRMiFXTYGhvke04aFKXjDVT__2dXacVSOwpD7FPytm5786-uw_gY5oJaZx2tNCZpFwLTbXWCVUutdY4kdWBDuh8Kc-u-LdrcR0P3NYxrXKwicFQ1531Z-QnCEsMsRxDhs93f6hnjfK3q5FC4wDGaILzfATj-WJ5cTnsKMFyT_8odqcuzANq6NXIBONUFSyNlTShno4zJX3Bcii2lgnd_I1Wexf0n1vTAEblS3gRvUgy2y77K3jm2tfQfu829Fe36tFEkJnd8pa1v49Jqdc9uQzJsB6pyGJLfUO973frxfgiEoy9yRwhrSZdS071vcEHmt6ufzCOlDer25OLL-c_iLcfPs_Lrd_AVbn4eXpGI50CtVkueiq5TRx-INdJ7SxjlguV2UZnWtW-KUuOzqJUVjZ5USv0IhouOA4URmOI1sgkewujtmvdOyBFg-hmC2XSTHNZu4LX0uZSmyYtjErtBNJBbZWNvcY95cWq2nVJDqquUNVVUHW1mcCn3Zy7baeNJ0cfDqtRxb9uXe33yASOhxXav_6_tPdPS_sAz5lPZQnJ2ocw6u8f3BH6Ir2ZwkFefp3CeFbO58tp3H6PuG7bIg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUoHNpLRQVVt6XUBzgVi8SfyaFCFAhL2UWohYpbajtOVWlJKBu04k_1N3bsJLtqJbhxyiHOKBpP5s3EM_MQ2oqZkMZpR1LNJOFaaKK1johysbXGCVYEOqDxmRxe8i9X4moJ_el7YXxZZe8Tg6Muauv_ke8CLFHAckgZ9m5-E88a5U9XewqN1ixO3f0MUrbpp5ND2N9tSrOji4Mh6VgFiGWJaIjkNnJUSa6jwllKLReK2VIzrQo_mySBmEkqK8skLRSAackFh4XCaMhUShkxkPsMrXAGSO4707Pj3n4FTTzZpJj_46EevsNkSCooJyqlcde3E7r3OLyFb48Ord0yIrN_sXER8P53RhugL1tFL7uYFe-3RvYKLblqDVWjeka-15MGHBLety1LWvVzB2d62uCvofTW4yI-aol2iI80r70Y37ICmT7-DABa4LrCB_rWwAUcfd3cGYezX5Pr3fPD8TfsvZWvKnPTdXT5JGp-jZarunJvEE5LwFKbKhMzzWXhUl5Im0htyjg1KrYDFPdqy2032dwTbEzy-UzmoOocVJ0HVeezAfo4f-amnevx6OqNfjfy7huf5guLHKCdfocWtx-W9vZxaR_Q8-HFeJSPTs5O36EX1BfRhDLxDbTc3N659xAFNWYzmB5GP57a1v8CRc0Tcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Voltage+Activating%2C+Fast+Responding+Electro-thermal+Actuator+Based+on+Carbon+Nanotube+Film%2FPDMS+Composites&rft.jtitle=Advanced+fiber+materials+%28Online%29&rft.au=Aouraghe%2C+Mohamed+Amine&rft.au=Mengjie%2C+Zhou&rft.au=Qiu%2C+Yiping&rft.au=Fujun%2C+Xu&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2524-7921&rft.eissn=2524-793X&rft.volume=3&rft.issue=1&rft.spage=38&rft.epage=46&rft_id=info:doi/10.1007%2Fs42765-020-00060-w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7921&client=summon |