Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search

Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototy...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 26; no. 11; pp. 5324 - 5336
Main Authors Liu, Xianglong, Li, Zhujin, Deng, Cheng, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
AbstractList Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Author Cheng Deng
Zhujin Li
Dacheng Tao
Xianglong Liu
Author_xml – sequence: 1
  givenname: Xianglong
  orcidid: 0000-0001-8425-4195
  surname: Liu
  fullname: Liu, Xianglong
– sequence: 2
  givenname: Zhujin
  surname: Li
  fullname: Li, Zhujin
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0003-2620-3247
  surname: Deng
  fullname: Deng, Cheng
– sequence: 4
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28749350$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEUhYNUbH3sBUFm6WZq3pksa30VxAfqOiSZjEbamZpkBP31RltduHB1L5fvHO4522DQdq0DYB_BMUJQHj_MbscYIjHGAstK8g0wQpKiEkKKB3mHTJQCUTkE2zG-QIgoQ3wLDHElqCQMjsDs1McUvOmTq4tJrZfJv7nixLc6vBd3vW6T_9DJd23RdKE41zEV104H9z3907PJ1_t8sM-7YLPR8-j21nMHPJ6fPUwvy6ubi9l0clVaUrFUcso5s7XkQsCaUNcQTa3lBmNdU0qxMVYgCY3huJGoYpoxJozQVWUNJawiO-Bo5bsM3WufH1ELH62bz3Xruj4qJDFlksOKZ_RwjfZm4Wq1DH6Rc6mf-BngK8CGLsbgGmV9-o6bgvZzhaD66lnlntVXz2rdcxbCP8If738kByuJd8794kJKSAgjn0e1hug
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2924996
crossref_primary_10_1016_j_patcog_2018_05_018
crossref_primary_10_1016_j_neucom_2022_08_002
crossref_primary_10_1109_TIP_2021_3130528
crossref_primary_10_1186_s13640_019_0442_7
crossref_primary_10_1109_TMM_2020_2977459
crossref_primary_10_1109_TCYB_2018_2816791
crossref_primary_10_1109_TIP_2023_3261755
crossref_primary_10_1109_TIP_2017_2781422
crossref_primary_10_1109_TMM_2020_2969792
crossref_primary_10_1109_TCSVT_2022_3174577
crossref_primary_10_1109_TMM_2021_3091888
crossref_primary_10_1109_ACCESS_2020_3023592
crossref_primary_10_1016_j_image_2019_115650
crossref_primary_10_1155_2017_8961091
crossref_primary_10_1016_j_patrec_2017_11_018
crossref_primary_10_1109_TBDATA_2019_2954516
crossref_primary_10_1109_TIP_2020_2963957
crossref_primary_10_1016_j_patcog_2020_107409
crossref_primary_10_1109_LSP_2019_2907777
crossref_primary_10_1016_j_neucom_2018_05_052
crossref_primary_10_1007_s11276_020_02500_2
crossref_primary_10_1109_TCYB_2019_2894020
crossref_primary_10_1007_s11280_018_0642_6
crossref_primary_10_1109_TCSVT_2020_2974877
crossref_primary_10_1109_TCSVT_2022_3197849
crossref_primary_10_1007_s11280_018_0527_8
crossref_primary_10_1016_j_jvcir_2019_03_024
crossref_primary_10_1109_TDSC_2021_3050435
crossref_primary_10_1186_s13640_019_0428_5
crossref_primary_10_1007_s11280_018_0550_9
crossref_primary_10_1109_TIP_2018_2890144
crossref_primary_10_1109_TMM_2020_3004962
crossref_primary_10_1109_TSIPN_2020_2975356
crossref_primary_10_1007_s11263_020_01331_0
crossref_primary_10_1016_j_neucom_2018_03_064
crossref_primary_10_1016_j_patrec_2019_09_025
crossref_primary_10_1109_TMM_2019_2934833
crossref_primary_10_1109_TIP_2018_2855427
crossref_primary_10_1109_TNNLS_2020_2965992
crossref_primary_10_1109_TKDE_2018_2817526
crossref_primary_10_1109_TCYB_2019_2955130
crossref_primary_10_1016_j_patcog_2020_107309
crossref_primary_10_1016_j_patrec_2019_08_009
crossref_primary_10_1145_3355394
crossref_primary_10_1007_s11280_018_0540_y
crossref_primary_10_1007_s11280_018_0549_2
crossref_primary_10_1109_TBDATA_2022_3161905
crossref_primary_10_1109_TCYB_2020_3032017
crossref_primary_10_1109_TMM_2017_2749159
crossref_primary_10_1016_j_patcog_2019_107151
crossref_primary_10_1109_TCSVT_2020_3027001
crossref_primary_10_1016_j_patcog_2020_107270
crossref_primary_10_1109_TMM_2020_3007321
crossref_primary_10_1016_j_patrec_2019_01_013
crossref_primary_10_1145_3477180
crossref_primary_10_1109_TMM_2020_2991513
crossref_primary_10_1109_TIP_2018_2814344
crossref_primary_10_1109_TNNLS_2020_3027729
Cites_doi 10.1109/TIP.2016.2593344
10.1109/TPAMI.2006.134
10.1109/CVPR.2016.553
10.1109/TIP.2017.2678163
10.1145/2766462.2767825
10.1109/TPAMI.2013.240
10.1109/TIP.2017.2695895
10.1109/TIP.2015.2390975
10.1109/ICCV.2013.39
10.1109/TIP.2015.2505180
10.1109/TPAMI.2010.57
10.1145/276698.276876
10.1109/CVPR.2013.378
10.1109/TCYB.2014.2360856
10.1109/TNNLS.2015.2495345
10.1145/997817.997857
10.1109/TPAMI.2008.128
10.1109/TCYB.2013.2289351
10.1109/CVPR.2011.5995432
10.1109/TPAMI.2015.2404776
10.1016/j.patcog.2013.08.022
10.1109/TCYB.2015.2474742
10.1109/TMM.2013.2271746
10.1109/ICCV.2015.335
10.1109/TPAMI.2017.2699960
10.1109/CVPR.2014.130
10.1109/CVPR.2015.7298862
10.1109/CVPR.2014.275
10.1109/TIP.2015.2405340
10.1109/CVPR.2013.388
10.1109/ICCV.2009.5459466
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2729896
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5336
ExternalDocumentID 28749350
10_1109_TIP_2017_2729896
7990335
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Science and Technology Commission
  grantid: Z171100000117022
– fundername: National Natural Science Foundation of China
  grantid: 61370125; 61402026
  funderid: 10.13039/501100001809
– fundername: Foundation of State Key Laboratory of Software Development Environment
  grantid: SKLSDE-2016ZX-04
– fundername: Foundation of Shaanxi Key Industrial Innovation Chain
  grantid: 2017ZDCXL-GY-05-04-02
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c385t-64665cd96770d34ef3a4cc6b22ad4442bbc7190bb62f9185a5557b7a88cb43583
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 17:50:47 EDT 2025
Thu Apr 03 07:05:32 EDT 2025
Tue Jul 01 02:03:15 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Aug 26 17:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-64665cd96770d34ef3a4cc6b22ad4442bbc7190bb62f9185a5557b7a88cb43583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8425-4195
0000-0003-2620-3247
PMID 28749350
PQID 1924596086
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIP_2017_2729896
crossref_primary_10_1109_TIP_2017_2729896
ieee_primary_7990335
proquest_miscellaneous_1924596086
pubmed_primary_28749350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Nov.
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References li (ref38) 2013
liu (ref24) 2014
ref13
ref56
ref12
ref14
ref53
ref52
jain (ref8) 2010
ref55
ref11
ref10
kulis (ref45) 2009
mu (ref28) 2016
huang (ref39) 2013
ref16
leng (ref54) 2015
zhu (ref17) 2016
ref51
kong (ref36) 2012
ref46
xia (ref15) 2014
wang (ref4) 2015
ref48
ref47
ref42
ref43
song (ref25) 2016
wu (ref40) 2015
ref7
liu (ref20) 2011
weiss (ref19) 2008
ref3
ref6
ref5
ref35
ref34
ref37
ref31
ref30
ref32
liu (ref9) 2012
ref2
raginsky (ref44) 2009
jiang (ref41) 2015
gong (ref22) 2012
li (ref50) 2016
yu (ref27) 2014
ref23
ref26
ref21
ref29
heo (ref49) 2012
he (ref1) 2012
kang (ref18) 2016
xu (ref33) 2011
References_xml – ident: ref6
  doi: 10.1109/TIP.2016.2593344
– start-page: 1860
  year: 2016
  ident: ref28
  article-title: Fast structural binary coding
  publication-title: Proc IJCAI
– ident: ref51
  doi: 10.1109/TPAMI.2006.134
– ident: ref11
  doi: 10.1109/CVPR.2016.553
– ident: ref48
  doi: 10.1109/TIP.2017.2678163
– ident: ref32
  doi: 10.1145/2766462.2767825
– ident: ref53
  doi: 10.1109/TPAMI.2013.240
– start-page: 1
  year: 2012
  ident: ref9
  article-title: Compact hyperplane hashing with bilinear functions
  publication-title: Proc ICML
– ident: ref42
  doi: 10.1109/TIP.2017.2695895
– ident: ref31
  doi: 10.1109/TIP.2015.2390975
– ident: ref37
  doi: 10.1109/ICCV.2013.39
– start-page: 946
  year: 2014
  ident: ref27
  article-title: Circulant binary embedding
  publication-title: Proc ICML
– start-page: 2156
  year: 2014
  ident: ref15
  article-title: Supervised hashing for image retrieval via image representation learning
  publication-title: Proc AAAI
– start-page: 928
  year: 2010
  ident: ref8
  article-title: Hashing hyperplane queries to near points with applications to large-scale active learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 64
  year: 2016
  ident: ref50
  article-title: Adaptive binary quantization for fast nearest neighbor search
  publication-title: Proc ECAI
– start-page: 2415
  year: 2016
  ident: ref17
  article-title: Deep hashing network for efficient similarity retrieval
  publication-title: Proc AAAI
– start-page: 1205
  year: 2012
  ident: ref22
  article-title: Angular quantization-based binary codes for fast similarity search
  publication-title: Proc NIPS
– ident: ref34
  doi: 10.1109/TIP.2015.2505180
– start-page: 1631
  year: 2011
  ident: ref33
  article-title: Complementary hashing for approximate nearest neighbor search
  publication-title: Proc IEEE ICCV
– ident: ref52
  doi: 10.1109/TPAMI.2010.57
– start-page: 1
  year: 2009
  ident: ref44
  article-title: Locality-sensitive binary codes from shift-invariant kernels
  publication-title: Proc NIPS
– ident: ref13
  doi: 10.1145/276698.276876
– ident: ref43
  doi: 10.1109/CVPR.2013.378
– ident: ref29
  doi: 10.1109/TCYB.2014.2360856
– start-page: 2248
  year: 2015
  ident: ref41
  article-title: Scalable graph hashing with feature transformation
  publication-title: Proc IJCAI
– start-page: 3005
  year: 2012
  ident: ref1
  article-title: Mobile product search with bag of hash bits and boundary reranking
  publication-title: Proc IEEE CVPR
– ident: ref5
  doi: 10.1109/TNNLS.2015.2495345
– ident: ref14
  doi: 10.1145/997817.997857
– ident: ref56
  doi: 10.1109/TPAMI.2008.128
– start-page: 2604
  year: 2016
  ident: ref18
  article-title: Column sampling based discrete supervised hashing
  publication-title: Proc AAAI
– start-page: 142
  year: 2013
  ident: ref38
  article-title: Learning hash functions using column generation
  publication-title: Proc ICML
– ident: ref3
  doi: 10.1109/TCYB.2013.2289351
– ident: ref35
  doi: 10.1109/CVPR.2011.5995432
– start-page: 1
  year: 2012
  ident: ref36
  article-title: Isotropic hashing
  publication-title: Proc NIPS
– ident: ref16
  doi: 10.1109/TPAMI.2015.2404776
– ident: ref2
  doi: 10.1016/j.patcog.2013.08.022
– ident: ref26
  doi: 10.1109/TCYB.2015.2474742
– start-page: 1
  year: 2011
  ident: ref20
  article-title: Hashing with graphs
  publication-title: Proc ICML
– start-page: 3946
  year: 2015
  ident: ref40
  article-title: Quantized correlation hashing for fast cross-modal search
  publication-title: Proc IJCAI
– ident: ref30
  doi: 10.1109/TMM.2013.2271746
– ident: ref55
  doi: 10.1109/ICCV.2015.335
– ident: ref7
  doi: 10.1109/TPAMI.2017.2699960
– start-page: 1
  year: 2009
  ident: ref45
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc NIPS
– start-page: 1
  year: 2008
  ident: ref19
  article-title: Spectral hashing
  publication-title: Proc NIPS
– ident: ref10
  doi: 10.1109/CVPR.2014.130
– start-page: 2957
  year: 2012
  ident: ref49
  article-title: Spherical hashing
  publication-title: Proc IEEE CVPR
– start-page: 1422
  year: 2013
  ident: ref39
  article-title: Online hashing
  publication-title: Proc IJCAI
– ident: ref47
  doi: 10.1109/CVPR.2015.7298862
– ident: ref12
  doi: 10.1109/CVPR.2014.275
– ident: ref21
  doi: 10.1109/TIP.2015.2405340
– ident: ref23
  doi: 10.1109/CVPR.2013.388
– start-page: 1642
  year: 2015
  ident: ref54
  article-title: Hashing for distributed data
  publication-title: Proc ICML
– ident: ref46
  doi: 10.1109/ICCV.2009.5459466
– start-page: 3419
  year: 2014
  ident: ref24
  article-title: Discrete graph hashing
  publication-title: Proc NIPS
– start-page: 2018
  year: 2016
  ident: ref25
  article-title: Coordinate discrete optimization for efficient cross-view image retrieval
  publication-title: Proc IJCAI
– start-page: 3911
  year: 2015
  ident: ref4
  article-title: Ranking preserving hashing for fast similarity search
  publication-title: Proc IJCAI
SSID ssj0014516
Score 2.5033305
Snippet Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5324
SubjectTerms Binary codes
binary quantization
distributed learning
Encoding
Hypercubes
Locality-sensitive hashing
nearest neighbor search
Nearest neighbor searches
product quantization
Prototypes
Quantization (signal)
Training
Title Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search
URI https://ieeexplore.ieee.org/document/7990335
https://www.ncbi.nlm.nih.gov/pubmed/28749350
https://www.proquest.com/docview/1924596086
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BJziwM_SwyEhzQSLd6cSO7SNbC5BAgwQSt8h2nAuouzWdXObrp8pZhBCMOCUHO4urHL9Kud4D-GVlrB33MuJZ7COuEhupcRxHYxdrpcrS8iCdcP-Q3TzzuxfxsgRnfS2M9z5sPvNDOg25_GLmavpVNpL46UxTsQzLGLg1tVp9xoAEZ0NmU8hIIuzvUpKxHj3d_qY9XHKYSOIbJ9UiYnnXKRXbv1uNgrzK10gzrDiTDbjvnrXZaPI6rCs7dH8_0Dh-92U2Yb2Fnuy88ZUtWPLTbdhoYShrJ_liG9becRTuwO0VUeuSKhY2Oi_MnL6P7CKU8bLHGg3TVnIyhL9sYhYVeyBe3HDEyB99jDV7mnfheXL9dHkTtfoLkUuVqKKMZ5lwhc6kjIuU-zI13LnMJokpONrQWicRT1ibJaXGdd8IIaSVRilnEYWpdA9WprOp3wc29npspPZWqJJzww0pJJWltok2JP8zgFFnh9y15OSkkfGWhyAl1jkaMScj5q0RB3Da95g3xBz_abtD49-3a4d-ACedqXOcVJQpMVM_qxc5RaUCYzuFXX80PtB37lzn5-cXPYBVunVTrngIK9Wf2h8hbqnscXDYf-AO5R0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLRAt-VhJC5IZDcPO7aPLbDabbsrkLZSb5HtOBfQbtVNLv31zDgPVaggTsnBjhLP2PNN5vEBfLQy1o57GfE89hFXqY1UEsdR4mKtVFVZHqgTFst8dsXPr8X1DnweamG89yH5zI_pNsTyy41r6FfZROLRmWXiETxGuy-StlpriBkQ5WyIbQoZSQT-fVAy1pPV_DtlcclxKqnjOPEWUZ93nVG5_T17FAhW_o41g82Z7sOif9s21eTnuKnt2N390cjxfz_nOTzrwCc7bbXlBez49QHsd0CUddt8ewB797oUHsL8KzXXJV4sHHRamhs6IdlZKORlPxoUTVfLyRAAs6nZ1mxJnXHDFX1_1DLWZjW_hKvpt9WXWdQxMEQuU6KOcp7nwpU6lzIuM-6rzHDncpumpuQoRWudRERhbZ5WGi2_EUJIK41SziIOU9kr2F1v1v4IWOJ1YqT2VqiKc8MNcSRVlbapNkQANIJJL4fCde3JiSXjVxHclFgXKMSChFh0QhzBp2HGTdua4x9jD2n9h3Hd0o_gQy_qArcVxUrM2m-abUF-qUDvTuHU160ODJN71Tl--KHv4clstbgsLufLixN4Sq_RFi--gd36tvFvEcXU9l1Q3t_-Hehm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Adaptive+Binary+Quantization+for+Fast+Nearest+Neighbor+Search&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Xianglong&rft.au=Li%2C+Zhujin&rft.au=Deng%2C+Cheng&rft.au=Tao%2C+Dacheng&rft.date=2017-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=26&rft.issue=11&rft.spage=5324&rft.epage=5336&rft_id=info:doi/10.1109%2FTIP.2017.2729896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2729896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon