Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototy...
Saved in:
Published in | IEEE transactions on image processing Vol. 26; no. 11; pp. 5324 - 5336 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively. |
---|---|
AbstractList | Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively. Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively. |
Author | Cheng Deng Zhujin Li Dacheng Tao Xianglong Liu |
Author_xml | – sequence: 1 givenname: Xianglong orcidid: 0000-0001-8425-4195 surname: Liu fullname: Liu, Xianglong – sequence: 2 givenname: Zhujin surname: Li fullname: Li, Zhujin – sequence: 3 givenname: Cheng orcidid: 0000-0003-2620-3247 surname: Deng fullname: Deng, Cheng – sequence: 4 givenname: Dacheng surname: Tao fullname: Tao, Dacheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28749350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLAzEUhYNUbH3sBUFm6WZq3pksa30VxAfqOiSZjEbamZpkBP31RltduHB1L5fvHO4522DQdq0DYB_BMUJQHj_MbscYIjHGAstK8g0wQpKiEkKKB3mHTJQCUTkE2zG-QIgoQ3wLDHElqCQMjsDs1McUvOmTq4tJrZfJv7nixLc6vBd3vW6T_9DJd23RdKE41zEV104H9z3907PJ1_t8sM-7YLPR8-j21nMHPJ6fPUwvy6ubi9l0clVaUrFUcso5s7XkQsCaUNcQTa3lBmNdU0qxMVYgCY3huJGoYpoxJozQVWUNJawiO-Bo5bsM3WufH1ELH62bz3Xruj4qJDFlksOKZ_RwjfZm4Wq1DH6Rc6mf-BngK8CGLsbgGmV9-o6bgvZzhaD66lnlntVXz2rdcxbCP8If738kByuJd8794kJKSAgjn0e1hug |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2924996 crossref_primary_10_1016_j_patcog_2018_05_018 crossref_primary_10_1016_j_neucom_2022_08_002 crossref_primary_10_1109_TIP_2021_3130528 crossref_primary_10_1186_s13640_019_0442_7 crossref_primary_10_1109_TMM_2020_2977459 crossref_primary_10_1109_TCYB_2018_2816791 crossref_primary_10_1109_TIP_2023_3261755 crossref_primary_10_1109_TIP_2017_2781422 crossref_primary_10_1109_TMM_2020_2969792 crossref_primary_10_1109_TCSVT_2022_3174577 crossref_primary_10_1109_TMM_2021_3091888 crossref_primary_10_1109_ACCESS_2020_3023592 crossref_primary_10_1016_j_image_2019_115650 crossref_primary_10_1155_2017_8961091 crossref_primary_10_1016_j_patrec_2017_11_018 crossref_primary_10_1109_TBDATA_2019_2954516 crossref_primary_10_1109_TIP_2020_2963957 crossref_primary_10_1016_j_patcog_2020_107409 crossref_primary_10_1109_LSP_2019_2907777 crossref_primary_10_1016_j_neucom_2018_05_052 crossref_primary_10_1007_s11276_020_02500_2 crossref_primary_10_1109_TCYB_2019_2894020 crossref_primary_10_1007_s11280_018_0642_6 crossref_primary_10_1109_TCSVT_2020_2974877 crossref_primary_10_1109_TCSVT_2022_3197849 crossref_primary_10_1007_s11280_018_0527_8 crossref_primary_10_1016_j_jvcir_2019_03_024 crossref_primary_10_1109_TDSC_2021_3050435 crossref_primary_10_1186_s13640_019_0428_5 crossref_primary_10_1007_s11280_018_0550_9 crossref_primary_10_1109_TIP_2018_2890144 crossref_primary_10_1109_TMM_2020_3004962 crossref_primary_10_1109_TSIPN_2020_2975356 crossref_primary_10_1007_s11263_020_01331_0 crossref_primary_10_1016_j_neucom_2018_03_064 crossref_primary_10_1016_j_patrec_2019_09_025 crossref_primary_10_1109_TMM_2019_2934833 crossref_primary_10_1109_TIP_2018_2855427 crossref_primary_10_1109_TNNLS_2020_2965992 crossref_primary_10_1109_TKDE_2018_2817526 crossref_primary_10_1109_TCYB_2019_2955130 crossref_primary_10_1016_j_patcog_2020_107309 crossref_primary_10_1016_j_patrec_2019_08_009 crossref_primary_10_1145_3355394 crossref_primary_10_1007_s11280_018_0540_y crossref_primary_10_1007_s11280_018_0549_2 crossref_primary_10_1109_TBDATA_2022_3161905 crossref_primary_10_1109_TCYB_2020_3032017 crossref_primary_10_1109_TMM_2017_2749159 crossref_primary_10_1016_j_patcog_2019_107151 crossref_primary_10_1109_TCSVT_2020_3027001 crossref_primary_10_1016_j_patcog_2020_107270 crossref_primary_10_1109_TMM_2020_3007321 crossref_primary_10_1016_j_patrec_2019_01_013 crossref_primary_10_1145_3477180 crossref_primary_10_1109_TMM_2020_2991513 crossref_primary_10_1109_TIP_2018_2814344 crossref_primary_10_1109_TNNLS_2020_3027729 |
Cites_doi | 10.1109/TIP.2016.2593344 10.1109/TPAMI.2006.134 10.1109/CVPR.2016.553 10.1109/TIP.2017.2678163 10.1145/2766462.2767825 10.1109/TPAMI.2013.240 10.1109/TIP.2017.2695895 10.1109/TIP.2015.2390975 10.1109/ICCV.2013.39 10.1109/TIP.2015.2505180 10.1109/TPAMI.2010.57 10.1145/276698.276876 10.1109/CVPR.2013.378 10.1109/TCYB.2014.2360856 10.1109/TNNLS.2015.2495345 10.1145/997817.997857 10.1109/TPAMI.2008.128 10.1109/TCYB.2013.2289351 10.1109/CVPR.2011.5995432 10.1109/TPAMI.2015.2404776 10.1016/j.patcog.2013.08.022 10.1109/TCYB.2015.2474742 10.1109/TMM.2013.2271746 10.1109/ICCV.2015.335 10.1109/TPAMI.2017.2699960 10.1109/CVPR.2014.130 10.1109/CVPR.2015.7298862 10.1109/CVPR.2014.275 10.1109/TIP.2015.2405340 10.1109/CVPR.2013.388 10.1109/ICCV.2009.5459466 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TIP.2017.2729896 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 5336 |
ExternalDocumentID | 28749350 10_1109_TIP_2017_2729896 7990335 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Beijing Municipal Science and Technology Commission grantid: Z171100000117022 – fundername: National Natural Science Foundation of China grantid: 61370125; 61402026 funderid: 10.13039/501100001809 – fundername: Foundation of State Key Laboratory of Software Development Environment grantid: SKLSDE-2016ZX-04 – fundername: Foundation of Shaanxi Key Industrial Innovation Chain grantid: 2017ZDCXL-GY-05-04-02 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c385t-64665cd96770d34ef3a4cc6b22ad4442bbc7190bb62f9185a5557b7a88cb43583 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Jul 10 17:50:47 EDT 2025 Thu Apr 03 07:05:32 EDT 2025 Tue Jul 01 02:03:15 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Aug 26 17:01:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-64665cd96770d34ef3a4cc6b22ad4442bbc7190bb62f9185a5557b7a88cb43583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8425-4195 0000-0003-2620-3247 |
PMID | 28749350 |
PQID | 1924596086 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2017_2729896 crossref_primary_10_1109_TIP_2017_2729896 ieee_primary_7990335 proquest_miscellaneous_1924596086 pubmed_primary_28749350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov. 2017-11-00 2017-Nov 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | li (ref38) 2013 liu (ref24) 2014 ref13 ref56 ref12 ref14 ref53 ref52 jain (ref8) 2010 ref55 ref11 ref10 kulis (ref45) 2009 mu (ref28) 2016 huang (ref39) 2013 ref16 leng (ref54) 2015 zhu (ref17) 2016 ref51 kong (ref36) 2012 ref46 xia (ref15) 2014 wang (ref4) 2015 ref48 ref47 ref42 ref43 song (ref25) 2016 wu (ref40) 2015 ref7 liu (ref20) 2011 weiss (ref19) 2008 ref3 ref6 ref5 ref35 ref34 ref37 ref31 ref30 ref32 liu (ref9) 2012 ref2 raginsky (ref44) 2009 jiang (ref41) 2015 gong (ref22) 2012 li (ref50) 2016 yu (ref27) 2014 ref23 ref26 ref21 ref29 heo (ref49) 2012 he (ref1) 2012 kang (ref18) 2016 xu (ref33) 2011 |
References_xml | – ident: ref6 doi: 10.1109/TIP.2016.2593344 – start-page: 1860 year: 2016 ident: ref28 article-title: Fast structural binary coding publication-title: Proc IJCAI – ident: ref51 doi: 10.1109/TPAMI.2006.134 – ident: ref11 doi: 10.1109/CVPR.2016.553 – ident: ref48 doi: 10.1109/TIP.2017.2678163 – ident: ref32 doi: 10.1145/2766462.2767825 – ident: ref53 doi: 10.1109/TPAMI.2013.240 – start-page: 1 year: 2012 ident: ref9 article-title: Compact hyperplane hashing with bilinear functions publication-title: Proc ICML – ident: ref42 doi: 10.1109/TIP.2017.2695895 – ident: ref31 doi: 10.1109/TIP.2015.2390975 – ident: ref37 doi: 10.1109/ICCV.2013.39 – start-page: 946 year: 2014 ident: ref27 article-title: Circulant binary embedding publication-title: Proc ICML – start-page: 2156 year: 2014 ident: ref15 article-title: Supervised hashing for image retrieval via image representation learning publication-title: Proc AAAI – start-page: 928 year: 2010 ident: ref8 article-title: Hashing hyperplane queries to near points with applications to large-scale active learning publication-title: Proc Adv Neural Inf Process Syst – start-page: 64 year: 2016 ident: ref50 article-title: Adaptive binary quantization for fast nearest neighbor search publication-title: Proc ECAI – start-page: 2415 year: 2016 ident: ref17 article-title: Deep hashing network for efficient similarity retrieval publication-title: Proc AAAI – start-page: 1205 year: 2012 ident: ref22 article-title: Angular quantization-based binary codes for fast similarity search publication-title: Proc NIPS – ident: ref34 doi: 10.1109/TIP.2015.2505180 – start-page: 1631 year: 2011 ident: ref33 article-title: Complementary hashing for approximate nearest neighbor search publication-title: Proc IEEE ICCV – ident: ref52 doi: 10.1109/TPAMI.2010.57 – start-page: 1 year: 2009 ident: ref44 article-title: Locality-sensitive binary codes from shift-invariant kernels publication-title: Proc NIPS – ident: ref13 doi: 10.1145/276698.276876 – ident: ref43 doi: 10.1109/CVPR.2013.378 – ident: ref29 doi: 10.1109/TCYB.2014.2360856 – start-page: 2248 year: 2015 ident: ref41 article-title: Scalable graph hashing with feature transformation publication-title: Proc IJCAI – start-page: 3005 year: 2012 ident: ref1 article-title: Mobile product search with bag of hash bits and boundary reranking publication-title: Proc IEEE CVPR – ident: ref5 doi: 10.1109/TNNLS.2015.2495345 – ident: ref14 doi: 10.1145/997817.997857 – ident: ref56 doi: 10.1109/TPAMI.2008.128 – start-page: 2604 year: 2016 ident: ref18 article-title: Column sampling based discrete supervised hashing publication-title: Proc AAAI – start-page: 142 year: 2013 ident: ref38 article-title: Learning hash functions using column generation publication-title: Proc ICML – ident: ref3 doi: 10.1109/TCYB.2013.2289351 – ident: ref35 doi: 10.1109/CVPR.2011.5995432 – start-page: 1 year: 2012 ident: ref36 article-title: Isotropic hashing publication-title: Proc NIPS – ident: ref16 doi: 10.1109/TPAMI.2015.2404776 – ident: ref2 doi: 10.1016/j.patcog.2013.08.022 – ident: ref26 doi: 10.1109/TCYB.2015.2474742 – start-page: 1 year: 2011 ident: ref20 article-title: Hashing with graphs publication-title: Proc ICML – start-page: 3946 year: 2015 ident: ref40 article-title: Quantized correlation hashing for fast cross-modal search publication-title: Proc IJCAI – ident: ref30 doi: 10.1109/TMM.2013.2271746 – ident: ref55 doi: 10.1109/ICCV.2015.335 – ident: ref7 doi: 10.1109/TPAMI.2017.2699960 – start-page: 1 year: 2009 ident: ref45 article-title: Learning to hash with binary reconstructive embeddings publication-title: Proc NIPS – start-page: 1 year: 2008 ident: ref19 article-title: Spectral hashing publication-title: Proc NIPS – ident: ref10 doi: 10.1109/CVPR.2014.130 – start-page: 2957 year: 2012 ident: ref49 article-title: Spherical hashing publication-title: Proc IEEE CVPR – start-page: 1422 year: 2013 ident: ref39 article-title: Online hashing publication-title: Proc IJCAI – ident: ref47 doi: 10.1109/CVPR.2015.7298862 – ident: ref12 doi: 10.1109/CVPR.2014.275 – ident: ref21 doi: 10.1109/TIP.2015.2405340 – ident: ref23 doi: 10.1109/CVPR.2013.388 – start-page: 1642 year: 2015 ident: ref54 article-title: Hashing for distributed data publication-title: Proc ICML – ident: ref46 doi: 10.1109/ICCV.2009.5459466 – start-page: 3419 year: 2014 ident: ref24 article-title: Discrete graph hashing publication-title: Proc NIPS – start-page: 2018 year: 2016 ident: ref25 article-title: Coordinate discrete optimization for efficient cross-view image retrieval publication-title: Proc IJCAI – start-page: 3911 year: 2015 ident: ref4 article-title: Ranking preserving hashing for fast similarity search publication-title: Proc IJCAI |
SSID | ssj0014516 |
Score | 2.5033305 |
Snippet | Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5324 |
SubjectTerms | Binary codes binary quantization distributed learning Encoding Hypercubes Locality-sensitive hashing nearest neighbor search Nearest neighbor searches product quantization Prototypes Quantization (signal) Training |
Title | Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search |
URI | https://ieeexplore.ieee.org/document/7990335 https://www.ncbi.nlm.nih.gov/pubmed/28749350 https://www.proquest.com/docview/1924596086 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BJziwM_SwyEhzQSLd6cSO7SNbC5BAgwQSt8h2nAuouzWdXObrp8pZhBCMOCUHO4urHL9Kud4D-GVlrB33MuJZ7COuEhupcRxHYxdrpcrS8iCdcP-Q3TzzuxfxsgRnfS2M9z5sPvNDOg25_GLmavpVNpL46UxTsQzLGLg1tVp9xoAEZ0NmU8hIIuzvUpKxHj3d_qY9XHKYSOIbJ9UiYnnXKRXbv1uNgrzK10gzrDiTDbjvnrXZaPI6rCs7dH8_0Dh-92U2Yb2Fnuy88ZUtWPLTbdhoYShrJ_liG9becRTuwO0VUeuSKhY2Oi_MnL6P7CKU8bLHGg3TVnIyhL9sYhYVeyBe3HDEyB99jDV7mnfheXL9dHkTtfoLkUuVqKKMZ5lwhc6kjIuU-zI13LnMJokpONrQWicRT1ibJaXGdd8IIaSVRilnEYWpdA9WprOp3wc29npspPZWqJJzww0pJJWltok2JP8zgFFnh9y15OSkkfGWhyAl1jkaMScj5q0RB3Da95g3xBz_abtD49-3a4d-ACedqXOcVJQpMVM_qxc5RaUCYzuFXX80PtB37lzn5-cXPYBVunVTrngIK9Wf2h8hbqnscXDYf-AO5R0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLRAt-VhJC5IZDcPO7aPLbDabbsrkLZSb5HtOBfQbtVNLv31zDgPVaggTsnBjhLP2PNN5vEBfLQy1o57GfE89hFXqY1UEsdR4mKtVFVZHqgTFst8dsXPr8X1DnweamG89yH5zI_pNsTyy41r6FfZROLRmWXiETxGuy-StlpriBkQ5WyIbQoZSQT-fVAy1pPV_DtlcclxKqnjOPEWUZ93nVG5_T17FAhW_o41g82Z7sOif9s21eTnuKnt2N390cjxfz_nOTzrwCc7bbXlBez49QHsd0CUddt8ewB797oUHsL8KzXXJV4sHHRamhs6IdlZKORlPxoUTVfLyRAAs6nZ1mxJnXHDFX1_1DLWZjW_hKvpt9WXWdQxMEQuU6KOcp7nwpU6lzIuM-6rzHDncpumpuQoRWudRERhbZ5WGi2_EUJIK41SziIOU9kr2F1v1v4IWOJ1YqT2VqiKc8MNcSRVlbapNkQANIJJL4fCde3JiSXjVxHclFgXKMSChFh0QhzBp2HGTdua4x9jD2n9h3Hd0o_gQy_qArcVxUrM2m-abUF-qUDvTuHU160ODJN71Tl--KHv4clstbgsLufLixN4Sq_RFi--gd36tvFvEcXU9l1Q3t_-Hehm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Adaptive+Binary+Quantization+for+Fast+Nearest+Neighbor+Search&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Xianglong&rft.au=Li%2C+Zhujin&rft.au=Deng%2C+Cheng&rft.au=Tao%2C+Dacheng&rft.date=2017-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=26&rft.issue=11&rft.spage=5324&rft.epage=5336&rft_id=info:doi/10.1109%2FTIP.2017.2729896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2729896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |