Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine

Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effe...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 30; no. 1; pp. 83 - 96
Main Author 郭伟 康海贵 陈兵 谢宇 王胤
Format Journal Article
LanguageEnglish
Published Nanjing Chinese Ocean Engineering Society 01.03.2016
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-015-0080-5

Cover

Loading…
Abstract Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
AbstractList Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
Author 郭伟 康海贵 陈兵 谢宇 王胤
AuthorAffiliation School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
Author_xml – sequence: 1
  fullname: 郭伟 康海贵 陈兵 谢宇 王胤
BookMark eNp9kc1OAyEURompiW31AdwR96MwwAyzbMb6kzS6sLolMwy0NC1UYJL27aW2ceGiKy4393w3HEZgYJ1VANxidI8RKh8CJoTSDGGWIcRRxi7AMMcVznhF2QAMEa9Sk_LyCoxCWCHEMKN4CFZv_UZ5I5s1bGwHp7ttum2UjanxEftuD52GcakgeYRTrZWM0FlYO2tTaewCTvzmMPKlfPxNmexMgHPTpbLuvU9JcN771lh1DS51sw7q5nSOwefTdF6_ZLP359d6Mssk4SxmTHd5y3jJSFXikmpZYNRxzhXltK0KTamUeaNVgSkiukO6oArjliCpmKYtJ2NQHnOldyF4pYU0sYnG2egbsxYYiYMycVQmkjJxUCZYIvE_cptkNH5_lsmPTEizdqG8WLne2_TAs9DdadHS2cV34v42FQXHVZG-jvwAQseLYQ
CitedBy_id crossref_primary_10_1080_1064119X_2021_1936313
crossref_primary_10_1002_ese3_1081
crossref_primary_10_1016_j_renene_2022_01_037
crossref_primary_10_1177_1475090216683762
Cites_doi 10.1016/j.oceaneng.2012.09.020
10.1016/j.renene.2011.05.014
10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E
10.1016/S0376-0421(01)00011-2
10.4050/JAHS.15.3
10.5614/itbj.eng.sci.2011.43.1.3
10.1016/j.apenergy.2012.04.018
10.1007/s13344-014-0007-6
10.1016/j.renene.2010.03.002
10.1016/j.oceaneng.2012.01.004
10.1016/j.rser.2009.11.012
10.1016/j.apenergy.2009.02.017
10.1016/j.oceaneng.2013.03.005
10.1016/j.apenergy.2009.08.014
10.14311/718
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
DOI 10.1007/s13344-015-0080-5
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
DocumentTitleAlternate Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine
EISSN 2191-8945
EndPage 96
ExternalDocumentID 10_1007_s13344_015_0080_5
668196219
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
2RA
30V
4.4
406
408
5GY
5VR
5XA
5XB
5XL
8RM
92E
92I
92L
92M
92Q
93N
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W94
WK8
Z7R
ZMTXR
~A9
~LH
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
HG6
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c385t-5fd2b5875397174fc610d888e484b96f44cc2afe61403fd0f64e11b30ce5f4b83
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Tue Jul 01 01:29:46 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Fri Feb 21 02:36:04 EST 2025
Wed Feb 14 10:21:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3D numerical simulation
connecting arm
laboratory experimental study
vertical axis tidal current turbine
UDF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-5fd2b5875397174fc610d888e484b96f44cc2afe61403fd0f64e11b30ce5f4b83
Notes 32-1441/P
GUO Wei,KANG Hai-gui, CHEN Bing, XIE Yu,WANG Yin (a School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; b School of Civil Engineering, Dalian University of Technology, Dalian 116024, China)
connecting arm vertical axis tidal current turbine laboratory experimental study 3D numerical simulation UDF
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
PageCount 14
ParticipantIDs crossref_citationtrail_10_1007_s13344_015_0080_5
crossref_primary_10_1007_s13344_015_0080_5
springer_journals_10_1007_s13344_015_0080_5
chongqing_primary_668196219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitleAlternate China Ocean Engineering
PublicationYear 2016
Publisher Chinese Ocean Engineering Society
Publisher_xml – name: Chinese Ocean Engineering Society
References Khan, Bhuyan, Iqbal, Quaicoe (CR7) 2009; 86
Yang, Lawn (CR14) 2013; 58
Hantoro, Utama, Sulisetyono (CR5) 2011; 43
Yang, Lawn (CR12) 2011; 36
Yang, Shu (CR13) 2012; 42
Li, Calisal (CR8) 2010; 35
Han, Park, Lee, Park, Yi (CR6) 2013; 65
Rourke, Boyle, Reynolds (CR11) 2010; 87
Fergal, Fergal, Anthony (CR4) 2010; 14
Conlisk (CR2) 2001; 37
Lee, Park, Kim, Rhee, Kim (CR9) 2012; 98
Mitsuhiro, Katsuyuki, Seiji (CR10) 2000; 132
Coiro, de Marco, Nicolosi, Melone, Montella (CR1) 2005; 45
Clark, Leiper (CR3) 1970; 15
Zhang, Zhang, Wang, Zhao, Pang (CR15) 2013; 28
S. Mitsuhiro (80_CR10) 2000; 132
B. Yang (80_CR13) 2012; 42
B. Yang (80_CR12) 2011; 36
D. P. Coiro (80_CR1) 2005; 45
M. J. Khan (80_CR7) 2009; 86
A. T. Conlisk (80_CR2) 2001; 37
Y. Li (80_CR8) 2010; 35
S.-H. Han (80_CR6) 2013; 65
J. H. Lee (80_CR9) 2012; 98
X. W. Zhang (80_CR15) 2013; 28
F. O. Rourke (80_CR11) 2010; 87
O. R. Fergal (80_CR4) 2010; 14
D. R. Clark (80_CR3) 1970; 15
R. Hantoro (80_CR5) 2011; 43
B. Yang (80_CR14) 2013; 58
References_xml – volume: 58
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR14
  article-title: Three-dimensional effects on the performance of a vertical axis tidal turbine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.09.020
– volume: 36
  start-page: 3355
  issue: 12
  year: 2011
  end-page: 3366
  ident: CR12
  article-title: Fluid dynamic performance of a vertical axis turbine for tidal current
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2011.05.014
– volume: 45
  start-page: 77
  issue: 3
  year: 2005
  end-page: 84
  ident: CR1
  article-title: Dynamic behavior of the patented Kobold tidal turbine: Numerical and experimental aspects
  publication-title: Acta Polytechnica
– volume: 132
  start-page: 38
  issue: 3
  year: 2000
  end-page: 47
  ident: CR10
  article-title: An experimental study of the characteristics of a Darrieus turbine for tidal power generation
  publication-title: Electrical Engineering in Japan
  doi: 10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E
– volume: 37
  start-page: 419
  issue: 5
  year: 2001
  end-page: 476
  ident: CR2
  article-title: Modern helicopter rotor aerodynamics
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00011-2
– volume: 15
  start-page: 3
  issue: 1
  year: 1970
  end-page: 11
  ident: CR3
  article-title: The free wake analysis a method for the prediction of helicopter rotor hovering performance
  publication-title: Journal of the American Helicopter Society
  doi: 10.4050/JAHS.15.3
– volume: 43
  start-page: 27
  issue: 1
  year: 2011
  end-page: 40
  ident: CR5
  article-title: An experimental investigation of passive variablepitch vertical-axis ocean current turbine
  publication-title: ITB J. Eng. Sci.
  doi: 10.5614/itbj.eng.sci.2011.43.1.3
– volume: 98
  start-page: 512
  year: 2012
  end-page: 523
  ident: CR9
  article-title: Computational methods for performance analysis of horizontal axis tidal stream turbines
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2012.04.018
– volume: 28
  start-page: 95
  issue: 1
  year: 2013
  end-page: 103
  ident: CR15
  article-title: Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-014-0007-6
– volume: 35
  start-page: 2325
  issue: 10
  year: 2010
  end-page: 2334
  ident: CR8
  article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2010.03.002
– volume: 42
  start-page: 35
  year: 2012
  end-page: 46
  ident: CR13
  article-title: Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.01.004
– volume: 14
  start-page: 1026
  issue: 3
  year: 2010
  end-page: 1036
  ident: CR4
  article-title: Marine current energy devices: Current status and possible future application in Ireland
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.11.012
– volume: 86
  start-page: 1823
  issue: 10
  year: 2009
  end-page: 1835
  ident: CR7
  article-title: Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2009.02.017
– volume: 65
  start-page: 83
  year: 2013
  end-page: 89
  ident: CR6
  article-title: Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.03.005
– volume: 87
  start-page: 398
  issue: 2
  year: 2010
  end-page: 409
  ident: CR11
  article-title: Tidal energy update 2009
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2009.08.014
– volume: 35
  start-page: 2325
  issue: 10
  year: 2010
  ident: 80_CR8
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2010.03.002
– volume: 37
  start-page: 419
  issue: 5
  year: 2001
  ident: 80_CR2
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00011-2
– volume: 42
  start-page: 35
  year: 2012
  ident: 80_CR13
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.01.004
– volume: 86
  start-page: 1823
  issue: 10
  year: 2009
  ident: 80_CR7
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2009.02.017
– volume: 14
  start-page: 1026
  issue: 3
  year: 2010
  ident: 80_CR4
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.11.012
– volume: 98
  start-page: 512
  year: 2012
  ident: 80_CR9
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2012.04.018
– volume: 58
  start-page: 1
  year: 2013
  ident: 80_CR14
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.09.020
– volume: 87
  start-page: 398
  issue: 2
  year: 2010
  ident: 80_CR11
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2009.08.014
– volume: 36
  start-page: 3355
  issue: 12
  year: 2011
  ident: 80_CR12
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2011.05.014
– volume: 28
  start-page: 95
  issue: 1
  year: 2013
  ident: 80_CR15
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-014-0007-6
– volume: 45
  start-page: 77
  issue: 3
  year: 2005
  ident: 80_CR1
  publication-title: Acta Polytechnica
  doi: 10.14311/718
– volume: 132
  start-page: 38
  issue: 3
  year: 2000
  ident: 80_CR10
  publication-title: Electrical Engineering in Japan
  doi: 10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E
– volume: 43
  start-page: 27
  issue: 1
  year: 2011
  ident: 80_CR5
  publication-title: ITB J. Eng. Sci.
  doi: 10.5614/itbj.eng.sci.2011.43.1.3
– volume: 15
  start-page: 3
  issue: 1
  year: 1970
  ident: 80_CR3
  publication-title: Journal of the American Helicopter Society
  doi: 10.4050/JAHS.15.3
– volume: 65
  start-page: 83
  year: 2013
  ident: 80_CR6
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.03.005
SSID ssj0051541
Score 2.0383837
Snippet Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the...
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 83
SubjectTerms Coastal Sciences
Engineering
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Numerical and Computational Physics
Oceanography
Offshore Engineering
Simulation
三维效应
三维数值模型
垂直轴
实验
数值模拟
水轮机
潮流发电
连接臂
Title Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine
URI http://lib.cqvip.com/qk/86654A/201601/668196219.html
https://link.springer.com/article/10.1007/s13344-015-0080-5
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDA7aXlQQrYq1KnPwpAy0nUd3j0Vbi2K9WNDTsvPyQd3VPsCfb2Yf2oIK3vaQzcJkNvlCki8AJ5gjaAw9ljojFOWatWhgdUA7oXNOGM144Oedb4ZyMOJX9-K-mOOelt3uZUky89Tfw26Mcd8xIaiHOVSsQlVg6u6v9ajdLd0vxudsXWUzCFEG4XhZyvxJhSdUeEqTx3f83HJgWq6KZsGmvwWbBUok3dys27BikxqsL3AH1mDjVts4KQind-BlOM9rL2MSJ4YsEveTjEKWpI4g2CPsguQ9HCRNiPZtLtp3PpN48upFsvXMmZaP5ymZPRt81DmHE8HohHm03YVRv3d3PqDFHgWqWSBmVDjTVsInJiEmb9xphEwGM1_LA65C6TjXuh07Kz13nzNNJ7lttRRraiscVwHbg0qSJnYfSCA6jDMVilAhLujEcdvYUHekUaGWzrI6NL4ONHrL-TIiKRF2SHSNdWiWRxzpgoLcb8IYR9_kyd5CEVoo8haKRB1Ov14p9f0hfFbaLSp-xenv0gf_km7AGmIlmbefHUJlNpnbI8QjM3UM1e7lw3XvOLuHn9Of2AI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB614dAWibbQqoGW-tBTkVESP7J7RDya8kgvQYKTtR7bNEA3QDYS4tcz3gePqkXitodZ7-7Y6_lG8_kbgG-UIyCFHs-DU5ZLFF2eeEx4Pw0hKIdCJvG888FQDw7l7pE6qs9xTxu2e1OSLHfq-8NuQsjImFA8whyuXsKcpBRctWBu48fx3nazAVOELhtWdpKUrAiQN8XMfw0SJRV-T_KTS3rg49D0uC5ahpudtzBqXrRimZytzwq7jjd_aTg-80vewUINP9lGtV7ewwufL8KbB6KEizD_C32W10rWS3A6nFVFnXOW5Y497AjASm1aNgmMUCQTW6wih7BJzjDyZzBSqll29SealH2fy1Gux1NWjB1dYiUOxSjsUYLuP8DhzvZoc8DrBg0cRaIKroLrWRUznpSyQhmQsJijlNrLRNpUBykRe1nwOooCBtcJWvpu14oOehWkTcRHaOWT3H8Clqi-kMKmKrUEOPpZ1nM-xb52NkUdvGjDyt08mYtKiMNoTXhG057bhk4zcwZrbfPYYuPc3KsyR58b8rmJPjeqDd_vbmnGe8J4rZlJU__j0_9bLz_L-iu8GowO9s3-z-HeCrwmQKYrjttnaBVXM_-FQE9hV-tFfgsh_vYa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgNBEC00gqggrhjXPnhSGpP0kpmjGINr9GDAWzO9uaATNRPw862exSio4G0ONT3Q1dP1inr1CmAXcwSDocdRb4Wm3LAmjZyJaDv23gtrGI9Cv_NlT570-dmtuC3nnA4rtntVkix6GoJKU5odvFh_MG58Y4wH9oSgAfJQMQlTeBs3A6er3zqsrmKM1fnoykYUow1C86qs-dMSQVzhfpDeveKnvwep7xXSPPB0F2C-RIzksHDxIky4dAlmv-gILsHclXFJWopPL8Njb1TUYZ5IklryVcSf5HKyZOAJAj_COqTgc5BBSkygvJjAgibJ23MwyUc156u8PwxJ9mDx0RR6TgQjFebUbgX63eOboxNazlSghkUio8LblhYhSYkxkePeIHyymAU7HnEdS8-5Ma3EOxl0_LxteMlds6lZwzjhuY7YKtTSQerWgESizTjTsYg1YoR2krSsi01bWh0b6R2rw8bnhqqXQjtDSYkQROI1WYdGtcXKlHLkYSrGkxoLKQcPKfSQCh5Sog57n69U6_1hvF_5TZW_5fB36_V_We_A9HWnqy5Oe-cbMIMQShastE2oZW8jt4UwJdPb-VH8ABYW3Z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+Experimental+Study+of+the+3D+Effect+on+Connecting+Arm+of+Vertical+Axis+Tidal+Current+Turbine&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%83%AD%E4%BC%9F+%E5%BA%B7%E6%B5%B7%E8%B4%B5+%E9%99%88%E5%85%B5+%E8%B0%A2%E5%AE%87+%E7%8E%8B%E8%83%A4&rft.date=2016-03-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=1&rft.spage=83&rft.epage=96&rft_id=info:doi/10.1007%2Fs13344-015-0080-5&rft.externalDocID=668196219
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg