Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effe...
Saved in:
Published in | China ocean engineering Vol. 30; no. 1; pp. 83 - 96 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Nanjing
Chinese Ocean Engineering Society
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-015-0080-5 |
Cover
Loading…
Abstract | Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine. |
---|---|
AbstractList | Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine. Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine. |
Author | 郭伟 康海贵 陈兵 谢宇 王胤 |
AuthorAffiliation | School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China School of Civil Engineering, Dalian University of Technology, Dalian 116024, China |
Author_xml | – sequence: 1 fullname: 郭伟 康海贵 陈兵 谢宇 王胤 |
BookMark | eNp9kc1OAyEURompiW31AdwR96MwwAyzbMb6kzS6sLolMwy0NC1UYJL27aW2ceGiKy4393w3HEZgYJ1VANxidI8RKh8CJoTSDGGWIcRRxi7AMMcVznhF2QAMEa9Sk_LyCoxCWCHEMKN4CFZv_UZ5I5s1bGwHp7ttum2UjanxEftuD52GcakgeYRTrZWM0FlYO2tTaewCTvzmMPKlfPxNmexMgHPTpbLuvU9JcN771lh1DS51sw7q5nSOwefTdF6_ZLP359d6Mssk4SxmTHd5y3jJSFXikmpZYNRxzhXltK0KTamUeaNVgSkiukO6oArjliCpmKYtJ2NQHnOldyF4pYU0sYnG2egbsxYYiYMycVQmkjJxUCZYIvE_cptkNH5_lsmPTEizdqG8WLne2_TAs9DdadHS2cV34v42FQXHVZG-jvwAQseLYQ |
CitedBy_id | crossref_primary_10_1080_1064119X_2021_1936313 crossref_primary_10_1002_ese3_1081 crossref_primary_10_1016_j_renene_2022_01_037 crossref_primary_10_1177_1475090216683762 |
Cites_doi | 10.1016/j.oceaneng.2012.09.020 10.1016/j.renene.2011.05.014 10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E 10.1016/S0376-0421(01)00011-2 10.4050/JAHS.15.3 10.5614/itbj.eng.sci.2011.43.1.3 10.1016/j.apenergy.2012.04.018 10.1007/s13344-014-0007-6 10.1016/j.renene.2010.03.002 10.1016/j.oceaneng.2012.01.004 10.1016/j.rser.2009.11.012 10.1016/j.apenergy.2009.02.017 10.1016/j.oceaneng.2013.03.005 10.1016/j.apenergy.2009.08.014 10.14311/718 |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION |
DOI | 10.1007/s13344-015-0080-5 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
DocumentTitleAlternate | Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine |
EISSN | 2191-8945 |
EndPage | 96 |
ExternalDocumentID | 10_1007_s13344_015_0080_5 668196219 |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 2RA 30V 4.4 406 408 5GY 5VR 5XA 5XB 5XL 8RM 92E 92I 92L 92M 92Q 93N 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W94 WK8 Z7R ZMTXR ~A9 ~LH ~WA AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 HG6 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c385t-5fd2b5875397174fc610d888e484b96f44cc2afe61403fd0f64e11b30ce5f4b83 |
IEDL.DBID | U2A |
ISSN | 0890-5487 |
IngestDate | Tue Jul 01 01:29:46 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Fri Feb 21 02:36:04 EST 2025 Wed Feb 14 10:21:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 3D numerical simulation connecting arm laboratory experimental study vertical axis tidal current turbine UDF |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-5fd2b5875397174fc610d888e484b96f44cc2afe61403fd0f64e11b30ce5f4b83 |
Notes | 32-1441/P GUO Wei,KANG Hai-gui, CHEN Bing, XIE Yu,WANG Yin (a School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; b School of Civil Engineering, Dalian University of Technology, Dalian 116024, China) connecting arm vertical axis tidal current turbine laboratory experimental study 3D numerical simulation UDF Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine. |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1007_s13344_015_0080_5 crossref_primary_10_1007_s13344_015_0080_5 springer_journals_10_1007_s13344_015_0080_5 chongqing_primary_668196219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitleAlternate | China Ocean Engineering |
PublicationYear | 2016 |
Publisher | Chinese Ocean Engineering Society |
Publisher_xml | – name: Chinese Ocean Engineering Society |
References | Khan, Bhuyan, Iqbal, Quaicoe (CR7) 2009; 86 Yang, Lawn (CR14) 2013; 58 Hantoro, Utama, Sulisetyono (CR5) 2011; 43 Yang, Lawn (CR12) 2011; 36 Yang, Shu (CR13) 2012; 42 Li, Calisal (CR8) 2010; 35 Han, Park, Lee, Park, Yi (CR6) 2013; 65 Rourke, Boyle, Reynolds (CR11) 2010; 87 Fergal, Fergal, Anthony (CR4) 2010; 14 Conlisk (CR2) 2001; 37 Lee, Park, Kim, Rhee, Kim (CR9) 2012; 98 Mitsuhiro, Katsuyuki, Seiji (CR10) 2000; 132 Coiro, de Marco, Nicolosi, Melone, Montella (CR1) 2005; 45 Clark, Leiper (CR3) 1970; 15 Zhang, Zhang, Wang, Zhao, Pang (CR15) 2013; 28 S. Mitsuhiro (80_CR10) 2000; 132 B. Yang (80_CR13) 2012; 42 B. Yang (80_CR12) 2011; 36 D. P. Coiro (80_CR1) 2005; 45 M. J. Khan (80_CR7) 2009; 86 A. T. Conlisk (80_CR2) 2001; 37 Y. Li (80_CR8) 2010; 35 S.-H. Han (80_CR6) 2013; 65 J. H. Lee (80_CR9) 2012; 98 X. W. Zhang (80_CR15) 2013; 28 F. O. Rourke (80_CR11) 2010; 87 O. R. Fergal (80_CR4) 2010; 14 D. R. Clark (80_CR3) 1970; 15 R. Hantoro (80_CR5) 2011; 43 B. Yang (80_CR14) 2013; 58 |
References_xml | – volume: 58 start-page: 1 year: 2013 end-page: 10 ident: CR14 article-title: Three-dimensional effects on the performance of a vertical axis tidal turbine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.09.020 – volume: 36 start-page: 3355 issue: 12 year: 2011 end-page: 3366 ident: CR12 article-title: Fluid dynamic performance of a vertical axis turbine for tidal current publication-title: Renew. Energ. doi: 10.1016/j.renene.2011.05.014 – volume: 45 start-page: 77 issue: 3 year: 2005 end-page: 84 ident: CR1 article-title: Dynamic behavior of the patented Kobold tidal turbine: Numerical and experimental aspects publication-title: Acta Polytechnica – volume: 132 start-page: 38 issue: 3 year: 2000 end-page: 47 ident: CR10 article-title: An experimental study of the characteristics of a Darrieus turbine for tidal power generation publication-title: Electrical Engineering in Japan doi: 10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E – volume: 37 start-page: 419 issue: 5 year: 2001 end-page: 476 ident: CR2 article-title: Modern helicopter rotor aerodynamics publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00011-2 – volume: 15 start-page: 3 issue: 1 year: 1970 end-page: 11 ident: CR3 article-title: The free wake analysis a method for the prediction of helicopter rotor hovering performance publication-title: Journal of the American Helicopter Society doi: 10.4050/JAHS.15.3 – volume: 43 start-page: 27 issue: 1 year: 2011 end-page: 40 ident: CR5 article-title: An experimental investigation of passive variablepitch vertical-axis ocean current turbine publication-title: ITB J. Eng. Sci. doi: 10.5614/itbj.eng.sci.2011.43.1.3 – volume: 98 start-page: 512 year: 2012 end-page: 523 ident: CR9 article-title: Computational methods for performance analysis of horizontal axis tidal stream turbines publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2012.04.018 – volume: 28 start-page: 95 issue: 1 year: 2013 end-page: 103 ident: CR15 article-title: Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine publication-title: China Ocean Eng. doi: 10.1007/s13344-014-0007-6 – volume: 35 start-page: 2325 issue: 10 year: 2010 end-page: 2334 ident: CR8 article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine publication-title: Renew. Energ. doi: 10.1016/j.renene.2010.03.002 – volume: 42 start-page: 35 year: 2012 end-page: 46 ident: CR13 article-title: Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.01.004 – volume: 14 start-page: 1026 issue: 3 year: 2010 end-page: 1036 ident: CR4 article-title: Marine current energy devices: Current status and possible future application in Ireland publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2009.11.012 – volume: 86 start-page: 1823 issue: 10 year: 2009 end-page: 1835 ident: CR7 article-title: Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2009.02.017 – volume: 65 start-page: 83 year: 2013 end-page: 89 ident: CR6 article-title: Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.03.005 – volume: 87 start-page: 398 issue: 2 year: 2010 end-page: 409 ident: CR11 article-title: Tidal energy update 2009 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2009.08.014 – volume: 35 start-page: 2325 issue: 10 year: 2010 ident: 80_CR8 publication-title: Renew. Energ. doi: 10.1016/j.renene.2010.03.002 – volume: 37 start-page: 419 issue: 5 year: 2001 ident: 80_CR2 publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00011-2 – volume: 42 start-page: 35 year: 2012 ident: 80_CR13 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.01.004 – volume: 86 start-page: 1823 issue: 10 year: 2009 ident: 80_CR7 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2009.02.017 – volume: 14 start-page: 1026 issue: 3 year: 2010 ident: 80_CR4 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2009.11.012 – volume: 98 start-page: 512 year: 2012 ident: 80_CR9 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2012.04.018 – volume: 58 start-page: 1 year: 2013 ident: 80_CR14 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.09.020 – volume: 87 start-page: 398 issue: 2 year: 2010 ident: 80_CR11 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2009.08.014 – volume: 36 start-page: 3355 issue: 12 year: 2011 ident: 80_CR12 publication-title: Renew. Energ. doi: 10.1016/j.renene.2011.05.014 – volume: 28 start-page: 95 issue: 1 year: 2013 ident: 80_CR15 publication-title: China Ocean Eng. doi: 10.1007/s13344-014-0007-6 – volume: 45 start-page: 77 issue: 3 year: 2005 ident: 80_CR1 publication-title: Acta Polytechnica doi: 10.14311/718 – volume: 132 start-page: 38 issue: 3 year: 2000 ident: 80_CR10 publication-title: Electrical Engineering in Japan doi: 10.1002/1520-6416(200008)132:3<38::AID-EEJ6>3.0.CO;2-E – volume: 43 start-page: 27 issue: 1 year: 2011 ident: 80_CR5 publication-title: ITB J. Eng. Sci. doi: 10.5614/itbj.eng.sci.2011.43.1.3 – volume: 15 start-page: 3 issue: 1 year: 1970 ident: 80_CR3 publication-title: Journal of the American Helicopter Society doi: 10.4050/JAHS.15.3 – volume: 65 start-page: 83 year: 2013 ident: 80_CR6 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.03.005 |
SSID | ssj0051541 |
Score | 2.0383837 |
Snippet | Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the... |
SourceID | crossref springer chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 83 |
SubjectTerms | Coastal Sciences Engineering Fluid- and Aerodynamics Marine & Freshwater Sciences Numerical and Computational Physics Oceanography Offshore Engineering Simulation 三维效应 三维数值模型 垂直轴 实验 数值模拟 水轮机 潮流发电 连接臂 |
Title | Numerical and Experimental Study of the 3D Effect on Connecting Arm of Vertical Axis Tidal Current Turbine |
URI | http://lib.cqvip.com/qk/86654A/201601/668196219.html https://link.springer.com/article/10.1007/s13344-015-0080-5 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwNBDA7aXlQQrYq1KnPwpAy0nUd3j0Vbi2K9WNDTsvPyQd3VPsCfb2Yf2oIK3vaQzcJkNvlCki8AJ5gjaAw9ljojFOWatWhgdUA7oXNOGM144Oedb4ZyMOJX9-K-mOOelt3uZUky89Tfw26Mcd8xIaiHOVSsQlVg6u6v9ajdLd0vxudsXWUzCFEG4XhZyvxJhSdUeEqTx3f83HJgWq6KZsGmvwWbBUok3dys27BikxqsL3AH1mDjVts4KQind-BlOM9rL2MSJ4YsEveTjEKWpI4g2CPsguQ9HCRNiPZtLtp3PpN48upFsvXMmZaP5ymZPRt81DmHE8HohHm03YVRv3d3PqDFHgWqWSBmVDjTVsInJiEmb9xphEwGM1_LA65C6TjXuh07Kz13nzNNJ7lttRRraiscVwHbg0qSJnYfSCA6jDMVilAhLujEcdvYUHekUaGWzrI6NL4ONHrL-TIiKRF2SHSNdWiWRxzpgoLcb8IYR9_kyd5CEVoo8haKRB1Ov14p9f0hfFbaLSp-xenv0gf_km7AGmIlmbefHUJlNpnbI8QjM3UM1e7lw3XvOLuHn9Of2AI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB614dAWibbQqoGW-tBTkVESP7J7RDya8kgvQYKTtR7bNEA3QDYS4tcz3gePqkXitodZ7-7Y6_lG8_kbgG-UIyCFHs-DU5ZLFF2eeEx4Pw0hKIdCJvG888FQDw7l7pE6qs9xTxu2e1OSLHfq-8NuQsjImFA8whyuXsKcpBRctWBu48fx3nazAVOELhtWdpKUrAiQN8XMfw0SJRV-T_KTS3rg49D0uC5ahpudtzBqXrRimZytzwq7jjd_aTg-80vewUINP9lGtV7ewwufL8KbB6KEizD_C32W10rWS3A6nFVFnXOW5Y497AjASm1aNgmMUCQTW6wih7BJzjDyZzBSqll29SealH2fy1Gux1NWjB1dYiUOxSjsUYLuP8DhzvZoc8DrBg0cRaIKroLrWRUznpSyQhmQsJijlNrLRNpUBykRe1nwOooCBtcJWvpu14oOehWkTcRHaOWT3H8Clqi-kMKmKrUEOPpZ1nM-xb52NkUdvGjDyt08mYtKiMNoTXhG057bhk4zcwZrbfPYYuPc3KsyR58b8rmJPjeqDd_vbmnGe8J4rZlJU__j0_9bLz_L-iu8GowO9s3-z-HeCrwmQKYrjttnaBVXM_-FQE9hV-tFfgsh_vYa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgNBEC00gqggrhjXPnhSGpP0kpmjGINr9GDAWzO9uaATNRPw862exSio4G0ONT3Q1dP1inr1CmAXcwSDocdRb4Wm3LAmjZyJaDv23gtrGI9Cv_NlT570-dmtuC3nnA4rtntVkix6GoJKU5odvFh_MG58Y4wH9oSgAfJQMQlTeBs3A6er3zqsrmKM1fnoykYUow1C86qs-dMSQVzhfpDeveKnvwep7xXSPPB0F2C-RIzksHDxIky4dAlmv-gILsHclXFJWopPL8Njb1TUYZ5IklryVcSf5HKyZOAJAj_COqTgc5BBSkygvJjAgibJ23MwyUc156u8PwxJ9mDx0RR6TgQjFebUbgX63eOboxNazlSghkUio8LblhYhSYkxkePeIHyymAU7HnEdS8-5Ma3EOxl0_LxteMlds6lZwzjhuY7YKtTSQerWgESizTjTsYg1YoR2krSsi01bWh0b6R2rw8bnhqqXQjtDSYkQROI1WYdGtcXKlHLkYSrGkxoLKQcPKfSQCh5Sog57n69U6_1hvF_5TZW_5fB36_V_We_A9HWnqy5Oe-cbMIMQShastE2oZW8jt4UwJdPb-VH8ABYW3Z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+Experimental+Study+of+the+3D+Effect+on+Connecting+Arm+of+Vertical+Axis+Tidal+Current+Turbine&rft.jtitle=%E4%B8%AD%E5%9B%BD%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%83%AD%E4%BC%9F+%E5%BA%B7%E6%B5%B7%E8%B4%B5+%E9%99%88%E5%85%B5+%E8%B0%A2%E5%AE%87+%E7%8E%8B%E8%83%A4&rft.date=2016-03-01&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=1&rft.spage=83&rft.epage=96&rft_id=info:doi/10.1007%2Fs13344-015-0080-5&rft.externalDocID=668196219 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg |