Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval

This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 26; no. 12; pp. 5706 - 5717
Main Authors Liu, Peizhong, Guo, Jing-Ming, Wu, Chi-Yi, Cai, Danlin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
AbstractList This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Author Jing-Ming Guo
Peizhong Liu
Chi-Yi Wu
Danlin Cai
Author_xml – sequence: 1
  givenname: Peizhong
  surname: Liu
  fullname: Liu, Peizhong
– sequence: 2
  givenname: Jing-Ming
  surname: Guo
  fullname: Guo, Jing-Ming
– sequence: 3
  givenname: Chi-Yi
  surname: Wu
  fullname: Wu, Chi-Yi
– sequence: 4
  givenname: Danlin
  orcidid: 0000-0003-3083-5503
  surname: Cai
  fullname: Cai, Danlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28866491$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1r3DAQhkVIyFd7LxSCjr14q09bOrabbLKwkBBS6M3I9iio2NJGkgP999Gy2xxy6GnE6Hk1o-cCHfvgAaEvlCwoJfr70_phwQhtFqzhNRf8CJ1TLWhFiGDH5UxkUzVU6DN0kdIfQqiQtD5FZ0ypuhaanqPfqzm54HGw-Bpgizdgonf-GRs_4GWYthFSggFfh8k4j1dg8lxa2IZYrn0Gn6ufZkesJ_MM-BFydPBqxk_oxJoxwedDvUS_VjdPy7tqc3-7Xv7YVD1XMlfSdtBZqQdlhVAg7ACSW83KpraThlndWG6bQYIgVDeC8b7ugGtlazXowfJL9G3_7jaGlxlSbieXehhH4yHMqaWaS0F4zVhBrw7o3E0wtNvoJhP_tv9sFIDsgT6GlCLYd4SSdie8LcLbnfD2ILxE6g-R3mWTi9IcjRv_F_y6DzoAeJ-jyicV4_wNeSGMjg
CODEN IIPRE4
CitedBy_id crossref_primary_10_32604_csse_2022_021459
crossref_primary_10_1007_s11063_021_10537_3
crossref_primary_10_1109_ACCESS_2020_3010882
crossref_primary_10_1109_ACCESS_2021_3076074
crossref_primary_10_1109_TITS_2019_2909915
crossref_primary_10_1177_0020720920936834
crossref_primary_10_1109_ACCESS_2019_2950968
crossref_primary_10_1109_ACCESS_2019_2938000
crossref_primary_10_1109_JIOT_2021_3105647
crossref_primary_10_1016_j_ijleo_2021_167754
crossref_primary_10_1109_TIP_2019_2901407
crossref_primary_10_1109_TCSVT_2019_2959875
crossref_primary_10_3390_app10196829
crossref_primary_10_1016_j_dsp_2025_105138
crossref_primary_10_1049_iet_cvi_2018_5206
crossref_primary_10_1371_journal_pone_0232776
crossref_primary_10_1007_s11042_022_13120_7
crossref_primary_10_1080_17538947_2022_2036833
crossref_primary_10_1007_s12652_018_0963_4
crossref_primary_10_1016_j_eij_2024_100499
crossref_primary_10_1007_s11042_021_11045_1
crossref_primary_10_1007_s00371_021_02170_x
crossref_primary_10_1016_j_patcog_2023_109748
crossref_primary_10_1007_s13369_019_03880_0
crossref_primary_10_1155_2019_4625371
crossref_primary_10_1007_s12065_020_00563_w
crossref_primary_10_1109_ACCESS_2019_2947006
crossref_primary_10_1089_big_2021_0049
crossref_primary_10_3389_fninf_2021_805669
crossref_primary_10_3390_a12070135
crossref_primary_10_3390_info14030184
crossref_primary_10_1088_1742_6596_2833_1_012013
crossref_primary_10_1109_ACCESS_2020_2981720
crossref_primary_10_1016_j_eswa_2020_114545
crossref_primary_10_1016_j_sigpro_2019_107329
crossref_primary_10_1109_TCYB_2019_2894498
crossref_primary_10_1016_j_irbm_2020_06_007
crossref_primary_10_1109_ACCESS_2019_2911630
crossref_primary_10_1007_s11042_024_18488_2
crossref_primary_10_1007_s11063_022_11079_y
crossref_primary_10_1007_s11760_023_02631_x
crossref_primary_10_1049_iet_ipr_2017_0917
crossref_primary_10_1007_s00371_020_01839_z
crossref_primary_10_1016_j_dibe_2022_100085
crossref_primary_10_1016_j_neucom_2020_04_125
crossref_primary_10_1007_s11042_019_08113_y
crossref_primary_10_1177_0040517519829003
crossref_primary_10_1142_S0219467822500474
crossref_primary_10_1016_j_heliyon_2023_e22316
crossref_primary_10_1109_ACCESS_2019_2948388
crossref_primary_10_1016_j_compeleceng_2023_108647
crossref_primary_10_1007_s11042_020_09983_3
crossref_primary_10_1016_j_inffus_2019_07_009
crossref_primary_10_1016_j_dsp_2020_102765
crossref_primary_10_1007_s11042_022_12348_7
crossref_primary_10_1007_s11042_020_10269_x
crossref_primary_10_1016_j_bspc_2022_103710
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1049_iet_ipr_2019_1023
crossref_primary_10_1007_s12652_020_02139_z
crossref_primary_10_1049_iet_ipr_2018_6619
crossref_primary_10_1177_1473871619891062
crossref_primary_10_1016_j_ipm_2022_103119
crossref_primary_10_1142_S0219467821500467
crossref_primary_10_1541_ieejeiss_138_853
crossref_primary_10_1016_j_compag_2020_105714
crossref_primary_10_1016_j_engappai_2021_104256
crossref_primary_10_1016_j_patcog_2019_04_003
crossref_primary_10_1007_s11042_018_5943_3
crossref_primary_10_1117_1_JEI_32_2_023003
crossref_primary_10_1007_s00521_019_04279_6
crossref_primary_10_3390_electronics10131574
crossref_primary_10_1109_ACCESS_2020_2968982
crossref_primary_10_1007_s10044_020_00879_4
crossref_primary_10_1109_ACCESS_2020_2986157
crossref_primary_10_1109_JSEN_2021_3084618
crossref_primary_10_1007_s11042_022_13119_0
crossref_primary_10_1016_j_compeleceng_2019_02_006
crossref_primary_10_3390_math8061019
crossref_primary_10_1007_s10115_024_02152_0
crossref_primary_10_1016_j_neucom_2020_11_057
Cites_doi 10.1109/76.927424
10.1049/el:20052176
10.1109/TIP.2014.2329182
10.1109/SITIS.2009.43
10.1016/j.mcm.2011.11.064
10.1109/CVPR.2015.7298594
10.1109/TMM.2015.2449234
10.1109/TSMCB.2006.880137
10.1016/j.patcog.2010.02.012
10.1109/TIP.2014.2305072
10.1109/TIP.2013.2257812
10.1016/j.compeleceng.2012.11.023
10.1007/978-1-4471-2099-5_24
10.1016/j.imavis.2004.03.026
10.1016/j.imavis.2008.07.004
10.1016/j.jvcir.2012.10.003
10.1049/iet-ipr.2013.0375
10.1016/j.knosys.2010.06.001
10.1109/TIP.2014.2372619
10.1016/j.patcog.2011.11.009
10.1016/j.eswa.2011.03.014
10.1109/CVPR.2010.5539957
10.1016/S0031-3203(03)00010-4
10.1016/S0031-3203(02)00083-3
10.1109/34.531803
10.1016/j.patrec.2008.10.005
10.1016/j.patcog.2011.02.003
10.1016/j.ipm.2006.07.014
10.1109/TCSVT.2014.2358011
10.1016/0031-3203(95)00067-4
10.1109/TIP.2002.807356
10.1109/TIP.2010.2042645
10.1109/CVPR.2016.227
10.1109/TSMCB.2005.850176
10.1109/TIP.2012.2188809
10.1007/978-3-642-01307-2_90
10.1016/j.sigpro.2011.12.005
10.1016/j.patcog.2009.08.017
10.1109/CVPR.2006.264
10.1109/ICCV.2003.1238663
10.1016/j.patrec.2009.02.006
10.1049/el.2010.3232
10.1109/CBMI.2010.5529838
10.1145/2647868.2654948
10.1016/j.eswa.2011.11.029
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2736343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5717
ExternalDocumentID 28866491
10_1109_TIP_2017_2736343
8019823
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province, China
  grantid: 2016J01300
  funderid: 10.13039/501100003392
– fundername: National Science Council of Taiwan
  grantid: 105-2628-E-011 -002 -MY3
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JB-ZR1202
– fundername: Fujian Provincial Key Laboratory of Data-intensive Computing and Fujian University Laboratory of Intelligent Computing and Information Processing
– fundername: National Natural Science Foundation of China
  grantid: 61605048
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 16:59:05 EDT 2025
Thu Apr 03 07:08:34 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 02:03:15 EDT 2025
Tue Aug 26 17:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3083-5503
PMID 28866491
PQID 1935403622
PQPubID 23479
PageCount 12
ParticipantIDs ieee_primary_8019823
proquest_miscellaneous_1935403622
crossref_citationtrail_10_1109_TIP_2017_2736343
pubmed_primary_28866491
crossref_primary_10_1109_TIP_2017_2736343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref59
ref15
ref58
ref53
saadatmand-tarzjan (ref34) 2006
ref52
ref55
ref54
(ref19) 2016
ref17
wang (ref51) 2011
silakari (ref24) 2009; 4
(ref13) 2016
ref50
ref46
ref45
ref48
simonyan (ref6) 2014
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
arandjelovic (ref11) 2013
ref5
ref40
gahroudi (ref22) 2007
ref35
guo (ref37) 2015; 25
krizhevsky (ref4) 2012
ref36
ref31
ref30
ref33
ref32
jia (ref8) 2013
ref2
ref1
ref39
ref38
(ref14) 2016
tan (ref56) 2010; 19
lin (ref10) 2013
(ref18) 2016
ref23
ref26
ref25
ref20
chiang (ref29) 2006; 1
ref21
ref28
ref27
zeiler (ref3) 2014
ref60
ref62
jegou (ref16) 2013
ref61
(ref12) 2016
References_xml – start-page: 1
  year: 2007
  ident: ref22
  article-title: Image retrieval based on texture and color method in BTC-VQ compressed domain
  publication-title: Proc 9th Int Symp Signal Process Appl
– ident: ref41
  doi: 10.1109/76.927424
– ident: ref30
  doi: 10.1049/el:20052176
– ident: ref50
  doi: 10.1109/TIP.2014.2329182
– ident: ref47
  doi: 10.1109/SITIS.2009.43
– ident: ref31
  doi: 10.1016/j.mcm.2011.11.064
– ident: ref5
  doi: 10.1109/CVPR.2015.7298594
– ident: ref1
  doi: 10.1109/TMM.2015.2449234
– ident: ref33
  doi: 10.1109/TSMCB.2006.880137
– year: 2016
  ident: ref13
  publication-title: SIPI-USC Brodatz Texture Image Database
– ident: ref42
  doi: 10.1016/j.patcog.2010.02.012
– ident: ref52
  doi: 10.1109/TIP.2014.2305072
– year: 2016
  ident: ref18
  publication-title: Outex Texture Image Database
– ident: ref2
  doi: 10.1109/TIP.2013.2257812
– ident: ref60
  doi: 10.1016/j.compeleceng.2012.11.023
– ident: ref49
  doi: 10.1007/978-1-4471-2099-5_24
– ident: ref26
  doi: 10.1016/j.imavis.2004.03.026
– ident: ref25
  doi: 10.1016/j.imavis.2008.07.004
– volume: 4
  start-page: 31
  year: 2009
  ident: ref24
  article-title: Color image clustering using block truncation algorithm
  publication-title: Int J Comput Sci Issues
– year: 2013
  ident: ref10
  publication-title: Network in Network
– ident: ref43
  doi: 10.1016/j.jvcir.2012.10.003
– volume: 1
  start-page: 205
  year: 2006
  ident: ref29
  article-title: Content-based image retrieval via the multiresolution wavelet features of interest
  publication-title: J Inf Technol Appl
– ident: ref48
  doi: 10.1049/iet-ipr.2013.0375
– ident: ref32
  doi: 10.1016/j.knosys.2010.06.001
– ident: ref36
  doi: 10.1109/TIP.2014.2372619
– start-page: 304
  year: 2013
  ident: ref16
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref17
  doi: 10.1016/j.patcog.2011.11.009
– ident: ref39
  doi: 10.1016/j.eswa.2011.03.014
– start-page: 209
  year: 2011
  ident: ref51
  article-title: Contextual weighting for vocabulary tree based image retrieval
  publication-title: Proc IEEE Int Conf Comput Vis (ICCV)
– ident: ref7
  doi: 10.1109/CVPR.2010.5539957
– ident: ref38
  doi: 10.1016/S0031-3203(03)00010-4
– ident: ref27
  doi: 10.1016/S0031-3203(02)00083-3
– ident: ref53
  doi: 10.1109/34.531803
– ident: ref15
  doi: 10.1016/j.patrec.2008.10.005
– start-page: 925
  year: 2006
  ident: ref34
  article-title: Gabor wavelet correlogram algorithm for image indexing and retrieval
  publication-title: Proc 18th Int Conf Pattern Recognit
– ident: ref40
  doi: 10.1016/j.patcog.2011.02.003
– ident: ref28
  doi: 10.1016/j.ipm.2006.07.014
– volume: 25
  start-page: 466
  year: 2015
  ident: ref37
  article-title: Content-based image retrieval using error diffusion block truncation coding features
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2014.2358011
– ident: ref55
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref21
  doi: 10.1109/TIP.2002.807356
– volume: 19
  start-page: 1635
  year: 2010
  ident: ref56
  article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2042645
– year: 2016
  ident: ref12
  publication-title: Corel Photo Collection Color Image Database
– ident: ref62
  doi: 10.1109/CVPR.2016.227
– ident: ref54
  doi: 10.1109/TSMCB.2005.850176
– ident: ref59
  doi: 10.1109/TIP.2012.2188809
– ident: ref46
  doi: 10.1007/978-3-642-01307-2_90
– ident: ref58
  doi: 10.1016/j.sigpro.2011.12.005
– start-page: 818
  year: 2014
  ident: ref3
  article-title: Visualizing and understanding convolutional networks
  publication-title: Vision Computer
– ident: ref57
  doi: 10.1016/j.patcog.2009.08.017
– year: 2016
  ident: ref19
  publication-title: KTH-TIPS Texture Image Database
– ident: ref20
  doi: 10.1109/CVPR.2006.264
– year: 2014
  ident: ref6
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– year: 2013
  ident: ref8
  publication-title: Caffe An Open Source Convolutional Architecture for Fast Feature Embedding
– ident: ref44
  doi: 10.1109/ICCV.2003.1238663
– ident: ref61
  doi: 10.1016/j.patrec.2009.02.006
– start-page: 1578
  year: 2013
  ident: ref11
  article-title: All about VLAD
  publication-title: Proc IEEE Conf CVPR
– ident: ref23
  doi: 10.1049/el.2010.3232
– ident: ref45
  doi: 10.1109/CBMI.2010.5529838
– start-page: 1097
  year: 2012
  ident: ref4
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref9
  doi: 10.1145/2647868.2654948
– ident: ref35
  doi: 10.1016/j.eswa.2011.11.029
– year: 2016
  ident: ref14
  publication-title: MIT-Vision Texture (VisTex) Image Database
SSID ssj0014516
Score 2.54717
Snippet This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5706
SubjectTerms block truncation coding
Computational complexity
Content-based image retrieval
convolutional-neural network
deep learning
Feature extraction
halftoning
Histograms
Image coding
Image color analysis
Image retrieval
Machine learning
Title Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval
URI https://ieeexplore.ieee.org/document/8019823
https://www.ncbi.nlm.nih.gov/pubmed/28866491
https://www.proquest.com/docview/1935403622
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQstjaUFG4oKEd0Nsx_aRUlYtUhFCrbS3KI7HFYImFU0u_PqOnYcAAeIWRXYemvHMN57xNwAvLRl9bb3kAnXGpctrbq1HnhUhc0aqoNM57rOPxcmF_LBRmy14PZ-FQcRUfIbLeJly-b6t-7hVtiJrak0utmGbArfhrNacMYgNZ1NmU2muCfZPKcnMrs5PP8UaLr0kV10IGVvn5MYUhbRvfvFGqb3K35Fm8jjrXTibvnUoNPm67Du3rH_8RuP4vz9zH-6N0JO9HXTlAWxhswe7Iwxl4yK_2YO7P3EU7sNm3ccNNdYGdox4zUZC1ktWNZ5Fa5LYxz07bq-qLw2LkLKnW4zAMEvUV03Hj6o44vSKbBf7nFp4kX4_hIv1-_N3J3xsx8BrYVTHVXDogrLeBIrpUAaPSgQbqc6DU1UerA4iaK-QYjYbM8B14VBYEwrjrQ_iEew0bYNPgGkvTV7lucu8kEj-knBWZH8yBC5lLfUCVpNYynrkKo8tM76VKWbJbEkyLaNMy1GmC3g1z7geeDr-MXY_imMeN0piAS8myZe0xmLipGqw7W9KArkEbMnV5wt4PKjEPHnSpKd_fugB3ImvHgpgDmGn-97jM4IxnXue9PcWYPzp0A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLRQlqeRuCDh3TS2Y_sIlNUudCuEttLeoji2UVWaVDS59Nd37DwECBC3KLIjRzOe-eyZ-QbgtUajL7XllDmZUG7SkmptHU0ynxjFhZexjnt1ki1O-aeN2GzB27EWxjkXk8_cNDzGWL6tyzZclc3QmmqVsltwG_2-OOyqtcaYQWg5G2ObQlKJwH8ISiZ6tl5-CVlccorOOmM8NM9Jlcoyrg9_8UexwcrfsWb0OfNdWA2r7VJNzqdtY6bl9W9Ejv_7O_fhXg8-ybtOWx7Alqv2YLcHoqTf5ld7sPMTS-E-bOZtuFIjtSdHzl2SnpL1GykqS4I9ifzjlhzVF8VZRQKobPEVQThMIvlV1dD3RRixvEDrRb7GJl6o4Q_hdP5x_WFB-4YMtGRKNFR444wX2iqPpzrHvXWCeR3Izr0RReq19MxLKxye2nSIAZeZcUwrnymrrWePYLuqK_cYiLRcpUWamsQy7tBjItIK_E8K4SUvuZzAbBBLXvZs5aFpxvc8nloSnaNM8yDTvJfpBN6MMy47po5_jN0P4hjH9ZKYwKtB8jnushA6KSpXt1c5wlyEtujs0wkcdCoxTh406cmfP_oS7izWq-P8eHny-SncDcvo0mGewXbzo3XPEdQ05kXU5Ru9Hu0Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Deep+Learning+and+Compressed+Domain+Features+for+Content-Based+Image+Retrieval&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Peizhong+Liu&rft.au=Jing-Ming+Guo&rft.au=Chi-Yi+Wu&rft.au=Danlin+Cai&rft.date=2017-12-01&rft.eissn=1941-0042&rft.volume=26&rft.issue=12&rft.spage=5706&rft_id=info:doi/10.1109%2FTIP.2017.2736343&rft_id=info%3Apmid%2F28866491&rft.externalDocID=28866491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon