Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner

This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly....

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 45; p. 1
Main Authors Wang, Yuchen, Cao, Yan, Hays, Cassandra L., Laboute, Thibaut, Ray, Thomas A., Guerrero-Given, Debbie, Ahuja, Abhimanyu S., Patil, Dipak, Rivero, Olga, Kamasawa, Naomi, Kay, Jeremy N., Thoreson, Wallace B., Martemyanov, Kirill A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.11.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2106694118

Cover

Loading…
Abstract This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3. Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca V 1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
AbstractList Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca 1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Significance This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3.
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3. Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca V 1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Author Kamasawa, Naomi
Guerrero-Given, Debbie
Kay, Jeremy N.
Rivero, Olga
Laboute, Thibaut
Cao, Yan
Ahuja, Abhimanyu S.
Martemyanov, Kirill A.
Wang, Yuchen
Ray, Thomas A.
Patil, Dipak
Thoreson, Wallace B.
Hays, Cassandra L.
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0000-0001-5246-7305
  surname: Wang
  fullname: Wang, Yuchen
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
– sequence: 2
  givenname: Yan
  orcidid: 0000-0003-4902-2297
  surname: Cao
  fullname: Cao, Yan
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
– sequence: 3
  givenname: Cassandra L.
  orcidid: 0000-0003-4481-3495
  surname: Hays
  fullname: Hays, Cassandra L.
  organization: Truhlsen Eye Institute, Durham Research Center I, University of Nebraska Medical Center, Omaha, NE 68198-5840
– sequence: 4
  givenname: Thibaut
  orcidid: 0000-0003-0870-1891
  surname: Laboute
  fullname: Laboute, Thibaut
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
– sequence: 5
  givenname: Thomas A.
  surname: Ray
  fullname: Ray, Thomas A.
  organization: Department of Neurobiology and Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710
– sequence: 6
  givenname: Debbie
  surname: Guerrero-Given
  fullname: Guerrero-Given, Debbie
  organization: Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458
– sequence: 7
  givenname: Abhimanyu S.
  orcidid: 0000-0003-4333-9189
  surname: Ahuja
  fullname: Ahuja, Abhimanyu S.
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
– sequence: 8
  givenname: Dipak
  surname: Patil
  fullname: Patil, Dipak
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
– sequence: 9
  givenname: Olga
  surname: Rivero
  fullname: Rivero, Olga
  organization: Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg 97080 Würzburg, Germany
– sequence: 10
  givenname: Naomi
  orcidid: 0000-0002-8926-5309
  surname: Kamasawa
  fullname: Kamasawa, Naomi
  organization: Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458
– sequence: 11
  givenname: Jeremy N.
  orcidid: 0000-0001-6145-1604
  surname: Kay
  fullname: Kay, Jeremy N.
  organization: Department of Neurobiology and Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710
– sequence: 12
  givenname: Wallace B.
  orcidid: 0000-0001-7104-042X
  surname: Thoreson
  fullname: Thoreson, Wallace B.
  organization: Truhlsen Eye Institute, Durham Research Center I, University of Nebraska Medical Center, Omaha, NE 68198-5840
– sequence: 13
  givenname: Kirill A.
  orcidid: 0000-0002-9925-7599
  surname: Martemyanov
  fullname: Martemyanov, Kirill A.
  organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34732574$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04994630$$DView record in HAL
BookMark eNp1ks9rFDEUx4NU7LZ69iYBL3qY9uXnTC7CsmgrLCii55DJZjops8mYzBT635tx26oLnh4kn-_3fZP3ztBJiMEh9JrABYGaXY7B5AtKQErFCWmeoRUBRSrJFZygFQCtq4ZTforOcr4FACUaeIFOGa8ZFTVfIb_e9S77GPDV1803vDVTimPvBx8ww8ndzIOZXMb5Pphx8hZ3c7DTgscO25IFj32cYnLWjaVkXHQGT8mEXD1p9iYEl16i550Zsnv1UM_Rj08fv2-uq-2Xq8-b9bayrBFTJYQp4VrTKEsZdbTtlGRGtUY1tCGdhdaALRAQ6QivORizo1bsKNSilkDYOfpw8B3ndu921oUSZ9Bj8nuT7nU0Xv97E3yvb-KdbiQoBk0xeH8w6I9k1-utXs6AK8Ulg7ul2buHZin-nF2e9N5n64bBBBfnrKlQTKhGSl7Qt0fobZxTKF-xUFJSKX6nf_N3-qf-jxMrgDgANsWck-u09ZNZRlIe4wdNQC-boZfN0H82o-guj3SP1v9T_AK2Qrtr
CitedBy_id crossref_primary_10_1038_s41586_023_06913_9
crossref_primary_10_1016_j_tips_2025_01_004
crossref_primary_10_1016_j_devcel_2023_07_011
crossref_primary_10_1016_j_neuroscience_2025_03_041
crossref_primary_10_1016_j_celrep_2024_115078
Cites_doi 10.7554/eLife.08149
10.1016/j.brainres.2012.04.053
10.1113/JP274177
10.1152/jn.01042.2005
10.1074/jbc.M111.318659
10.1038/mp.2010.6
10.1016/j.neuron.2006.04.034
10.3389/fnins.2019.00158
10.1016/j.neuron.2016.05.019
10.1016/j.neuron.2018.03.004
10.1016/j.str.2015.06.024
10.1016/j.cell.2018.03.036
10.1152/physrev.00030.2017
10.1017/S1431927612000268
10.1016/j.neuron.2015.05.004
10.1093/hmg/ddi336
10.1016/j.str.2015.01.013
10.1523/JNEUROSCI.1541-18.2018
10.1016/j.cell.2009.09.029
10.1523/JNEUROSCI.3667-05.2006
10.1016/j.neuron.2012.10.002
10.7554/eLife.37935
10.1016/S0896-6273(01)00535-9
10.1016/S0896-6273(00)00011-8
10.1016/j.cub.2017.10.050
10.1371/journal.pbio.1001057
10.1016/S0042-6989(96)00142-3
10.1083/jcb.201703042
10.1038/s41467-020-17009-7
10.1038/s41467-020-16029-7
10.1016/j.neuron.2017.02.021
10.1111/nyas.14198
10.1038/ng1306
10.1074/jbc.M114.607465
10.1038/nn1320
10.1038/eye.2015.236
10.1371/journal.pbio.1001864
10.1038/947
10.1523/JNEUROSCI.0658-15.2015
10.1038/s41380-020-0673-0
10.1016/j.celrep.2018.11.072
10.1152/jn.00737.2007
10.1085/jgp.201110654
10.1016/S0092-8674(05)80033-9
10.1113/jphysiol.1983.sp014781
10.1038/nn.2267
10.3389/fncel.2017.00198
10.1016/S0896-6273(04)00254-5
10.1085/jgp.200308863
10.3389/fnins.2019.00700
10.1074/jbc.M113.504779
10.1523/JNEUROSCI.14-03-01091.1994
10.1016/j.str.2015.06.022
10.1016/j.preteyeres.2014.06.003
10.1038/s41467-019-12780-8
10.7554/eLife.54443
10.1038/ncomms11184
10.1159/000266260
10.1016/j.celrep.2013.09.045
10.1126/science.aav7969
10.1371/journal.pbio.3000200
10.1016/j.neuron.2019.04.010
10.1016/j.cell.2016.01.029
10.1146/annurev-cellbio-100617-062826
10.1016/j.celrep.2019.01.040
10.1016/j.neuron.2012.01.018
10.1371/journal.pbio.1002322
10.1016/j.cell.2019.12.014
10.1016/j.neuron.2005.10.014
10.1016/j.preteyeres.2012.04.003
10.1152/jn.1991.65.5.1197
10.1523/JNEUROSCI.23-36-11332.2003
10.1016/0042-6989(71)90134-9
10.1016/0042-6989(86)90069-6
10.1152/jn.00634.2011
10.1126/science.1060101
10.1113/JP272556
10.1016/j.neuron.2005.09.011
10.1038/940
10.1016/j.cell.2020.04.010
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 9, 2021
Distributed under a Creative Commons Attribution 4.0 International License
2021
Copyright_xml – notice: Copyright National Academy of Sciences Nov 9, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.2106694118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC8609308
oai_HAL_hal_04994630v1
34732574
10_1073_pnas_2106694118
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY018139
– fundername: NEI NIH HHS
  grantid: R01 EY024694
– fundername: NEI NIH HHS
  grantid: R29 EY010542
– fundername: NEI NIH HHS
  grantid: F32 EY026344
– fundername: NEI NIH HHS
  grantid: R01 EY010542
– fundername: NEI NIH HHS
  grantid: K99 EY030554
– fundername: NEI NIH HHS
  grantid: R01 EY028033
– fundername: NEI NIH HHS
  grantid: P30 EY005722
– fundername: NEI NIH HHS
  grantid: R01 EY031445
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY10542
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY026344
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY030554
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY024694
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY018139
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY031445
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY5722
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
UMC
5PM
ID FETCH-LOGICAL-c385t-55a473ba89c232e2bf963a9ba98281fc0ba0c55a016e14740aad2c5d207576013
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:34:37 EDT 2025
Fri May 09 12:19:33 EDT 2025
Thu Jul 10 23:13:42 EDT 2025
Mon Jun 30 08:24:59 EDT 2025
Wed Feb 19 02:24:28 EST 2025
Tue Jul 01 01:03:05 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords adhesion GPCR
vision
synapses
retina
horizontal cells
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-55a473ba89c232e2bf963a9ba98281fc0ba0c55a016e14740aad2c5d207576013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Alex L. Kolodkin, Johns Hopkins University, Baltimore, MD, and accepted by the Editorial Board September 23, 2021 (received for review April 8, 2021)
Author contributions: Y.W., J.N.K., W.B.T., and K.A.M. designed research; Y.W., Y.C., C.L.H., T.L., T.A.R., D.G.-G., A.S.A., D.P., and N.K. performed research; O.R. contributed new reagents/analytic tools; Y.W., Y.C., C.L.H., T.L., T.A.R., D.G.-G., A.S.A., D.P., N.K., J.N.K., W.B.T., and K.A.M. analyzed data; and Y.W., W.B.T., and K.A.M. wrote the paper.
ORCID 0000-0002-8926-5309
0000-0001-5246-7305
0000-0003-4481-3495
0000-0002-9925-7599
0000-0003-0870-1891
0000-0003-4902-2297
0000-0001-6145-1604
0000-0001-7104-042X
0000-0003-4333-9189
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8609308
PMID 34732574
PQID 2596626501
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609308
hal_primary_oai_HAL_hal_04994630v1
proquest_miscellaneous_2593598664
proquest_journals_2596626501
pubmed_primary_34732574
crossref_citationtrail_10_1073_pnas_2106694118
crossref_primary_10_1073_pnas_2106694118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-09
PublicationDateYYYYMMDD 2021-11-09
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
Kawano K. (e_1_3_4_39_2) 1984; 28
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
Morgans C. W. (e_1_3_4_60_2) 2001; 42
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
Blanks J. C. (e_1_3_4_38_2) 1984; 25
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_71_2
  doi: 10.7554/eLife.08149
– ident: e_1_3_4_44_2
  doi: 10.1016/j.brainres.2012.04.053
– ident: e_1_3_4_23_2
  doi: 10.1113/JP274177
– ident: e_1_3_4_32_2
  doi: 10.1152/jn.01042.2005
– ident: e_1_3_4_68_2
  doi: 10.1074/jbc.M111.318659
– ident: e_1_3_4_82_2
  doi: 10.1038/mp.2010.6
– ident: e_1_3_4_21_2
  doi: 10.1016/j.neuron.2006.04.034
– ident: e_1_3_4_70_2
  doi: 10.3389/fnins.2019.00158
– ident: e_1_3_4_58_2
  doi: 10.1016/j.neuron.2016.05.019
– ident: e_1_3_4_73_2
  doi: 10.1016/j.neuron.2018.03.004
– ident: e_1_3_4_50_2
  doi: 10.1016/j.str.2015.06.024
– ident: e_1_3_4_48_2
  doi: 10.1016/j.cell.2018.03.036
– ident: e_1_3_4_15_2
  doi: 10.1152/physrev.00030.2017
– ident: e_1_3_4_61_2
  doi: 10.1017/S1431927612000268
– ident: e_1_3_4_45_2
  doi: 10.1016/j.neuron.2015.05.004
– ident: e_1_3_4_10_2
  doi: 10.1093/hmg/ddi336
– ident: e_1_3_4_79_2
  doi: 10.1016/j.str.2015.01.013
– ident: e_1_3_4_28_2
  doi: 10.1523/JNEUROSCI.1541-18.2018
– ident: e_1_3_4_7_2
  doi: 10.1016/j.cell.2009.09.029
– ident: e_1_3_4_57_2
  doi: 10.1523/JNEUROSCI.3667-05.2006
– ident: e_1_3_4_1_2
  doi: 10.1016/j.neuron.2012.10.002
– ident: e_1_3_4_65_2
  doi: 10.7554/eLife.37935
– ident: e_1_3_4_54_2
  doi: 10.1016/S0896-6273(01)00535-9
– ident: e_1_3_4_20_2
  doi: 10.1016/S0896-6273(00)00011-8
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cub.2017.10.050
– ident: e_1_3_4_27_2
  doi: 10.1371/journal.pbio.1001057
– ident: e_1_3_4_37_2
  doi: 10.1016/S0042-6989(96)00142-3
– ident: e_1_3_4_64_2
  doi: 10.1083/jcb.201703042
– ident: e_1_3_4_47_2
  doi: 10.1038/s41467-020-17009-7
– ident: e_1_3_4_51_2
  doi: 10.1038/s41467-020-16029-7
– ident: e_1_3_4_18_2
  doi: 10.1016/j.neuron.2017.02.021
– ident: e_1_3_4_76_2
  doi: 10.1111/nyas.14198
– ident: e_1_3_4_83_2
  doi: 10.1038/ng1306
– ident: e_1_3_4_62_2
  doi: 10.1074/jbc.M114.607465
– ident: e_1_3_4_16_2
  doi: 10.1038/nn1320
– ident: e_1_3_4_5_2
  doi: 10.1038/eye.2015.236
– ident: e_1_3_4_36_2
  doi: 10.1371/journal.pbio.1001864
– ident: e_1_3_4_11_2
  doi: 10.1038/947
– ident: e_1_3_4_17_2
  doi: 10.1523/JNEUROSCI.0658-15.2015
– ident: e_1_3_4_81_2
  doi: 10.1038/s41380-020-0673-0
– ident: e_1_3_4_56_2
  doi: 10.1016/j.celrep.2018.11.072
– ident: e_1_3_4_59_2
  doi: 10.1152/jn.00737.2007
– ident: e_1_3_4_8_2
  doi: 10.1085/jgp.201110654
– ident: e_1_3_4_19_2
  doi: 10.1016/S0092-8674(05)80033-9
– ident: e_1_3_4_9_2
  doi: 10.1113/jphysiol.1983.sp014781
– ident: e_1_3_4_22_2
  doi: 10.1038/nn.2267
– ident: e_1_3_4_29_2
  doi: 10.3389/fncel.2017.00198
– ident: e_1_3_4_14_2
  doi: 10.1016/S0896-6273(04)00254-5
– ident: e_1_3_4_33_2
  doi: 10.1085/jgp.200308863
– volume: 25
  start-page: 546
  year: 1984
  ident: e_1_3_4_38_2
  article-title: Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison
  publication-title: Invest. Ophthalmol. Vis. Sci.
– ident: e_1_3_4_53_2
  doi: 10.3389/fnins.2019.00700
– ident: e_1_3_4_77_2
  doi: 10.1074/jbc.M113.504779
– ident: e_1_3_4_6_2
  doi: 10.1523/JNEUROSCI.14-03-01091.1994
– volume: 42
  start-page: 2414
  year: 2001
  ident: e_1_3_4_60_2
  article-title: Localization of the alpha(1F) calcium channel subunit in the rat retina
  publication-title: Invest. Ophthalmol. Vis. Sci.
– ident: e_1_3_4_78_2
  doi: 10.1016/j.str.2015.06.022
– ident: e_1_3_4_2_2
  doi: 10.1016/j.preteyeres.2014.06.003
– ident: e_1_3_4_42_2
  doi: 10.1038/s41467-019-12780-8
– ident: e_1_3_4_66_2
  doi: 10.7554/eLife.54443
– ident: e_1_3_4_69_2
  doi: 10.1038/ncomms11184
– ident: e_1_3_4_40_2
  doi: 10.1159/000266260
– ident: e_1_3_4_72_2
  doi: 10.1016/j.celrep.2013.09.045
– ident: e_1_3_4_41_2
  doi: 10.1126/science.aav7969
– volume: 28
  start-page: 205
  year: 1984
  ident: e_1_3_4_39_2
  article-title: Binding sites of peanut agglutinin in mammalian retina
  publication-title: Jpn. J. Ophthalmol.
– ident: e_1_3_4_35_2
  doi: 10.1371/journal.pbio.3000200
– ident: e_1_3_4_43_2
  doi: 10.1016/j.neuron.2019.04.010
– ident: e_1_3_4_46_2
  doi: 10.1016/j.cell.2016.01.029
– ident: e_1_3_4_74_2
  doi: 10.1146/annurev-cellbio-100617-062826
– ident: e_1_3_4_75_2
  doi: 10.1016/j.celrep.2019.01.040
– ident: e_1_3_4_49_2
  doi: 10.1016/j.neuron.2012.01.018
– ident: e_1_3_4_67_2
  doi: 10.1371/journal.pbio.1002322
– ident: e_1_3_4_52_2
  doi: 10.1016/j.cell.2019.12.014
– ident: e_1_3_4_3_2
  doi: 10.1016/j.neuron.2005.10.014
– ident: e_1_3_4_24_2
  doi: 10.1016/j.preteyeres.2012.04.003
– ident: e_1_3_4_34_2
  doi: 10.1152/jn.1991.65.5.1197
– ident: e_1_3_4_55_2
  doi: 10.1523/JNEUROSCI.23-36-11332.2003
– ident: e_1_3_4_25_2
  doi: 10.1016/0042-6989(71)90134-9
– ident: e_1_3_4_30_2
  doi: 10.1016/0042-6989(86)90069-6
– ident: e_1_3_4_13_2
  doi: 10.1152/jn.00634.2011
– ident: e_1_3_4_31_2
  doi: 10.1126/science.1060101
– ident: e_1_3_4_4_2
  doi: 10.1113/JP272556
– ident: e_1_3_4_63_2
  doi: 10.1016/j.neuron.2005.09.011
– ident: e_1_3_4_12_2
  doi: 10.1038/940
– ident: e_1_3_4_80_2
  doi: 10.1016/j.cell.2020.04.010
SSID ssj0009580
Score 2.4099572
Snippet This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is...
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to...
Significance This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Adhesion
Alternative Splicing
Animals
Biological Sciences
Calcium channels
Calcium channels (voltage-gated)
Calcium Channels - metabolism
Channel gating
Cones
Dendrites
G protein-coupled receptors
Horizontal cells
Life Sciences
Mice
Mice, Knockout
Modulation
Negative feedback
Neurotransmitter release
Neurotransmitters
Photoreception
Photoreceptors
Protein Isoforms - metabolism
Proteome
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Receptors, Peptide - genetics
Receptors, Peptide - metabolism
Retinal Cone Photoreceptor Cells - metabolism
Splicing
Synapses
Synapses - metabolism
Synaptic transmission
Vertebrates
Title Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner
URI https://www.ncbi.nlm.nih.gov/pubmed/34732574
https://www.proquest.com/docview/2596626501
https://www.proquest.com/docview/2593598664
https://hal.science/hal-04994630
https://pubmed.ncbi.nlm.nih.gov/PMC8609308
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6y4ULYnkWFmQQh0VRShInTnKsqt2tUCkVakX3FDmOq1Ra0qptOPCH-JvMxHkuywq4RFX8qOX5Op6Zjr8h5J2Q0pciFKZyXGa6iYzN2OXMtB0rWCnQmrp0wqcpHy_cj0tv2ev9bGUt5Yd4IH_ceq_kf6QK70CueEv2HyRbTwov4DPIF54gYXj-lYyHSaow2mVczkZfjAmGtbcYIMkMZux0kXm1R1ICsUVeVjzDKgMR3GBlbNMNuNwKM1uw5g6ME1gzItub9ZhvAmtztU3YWX3k7asEg2kVURw291NKpbE3TGM2baodfy3j01c5oKUG5kgUEdurBqpjoRE2AuNeZMlOGHWUelIkU2u24HQdi_zQDl04dnGHr1GQdy2urbMdOEddfdN6oLSaBivH5K4uNFrr8UaR5xVJZamW7VsPC9BuWOE4E_sBOL4cr_SWU3Rouaefo4vFZBLNz5fzI3LPAX8ET4DLpd1idw70XadyqRWHlM8-3Ji-Y_4cpZh8-7tnczNBt2XxzB-SB6WrQocadyekp7JH5KTaOnpWMpa_f0zWFRApApG2gEgZrYFIK1DRCoh0s6IIRNoFIoVxgnaBSDUQn5DFxfl8NDbLGh6mZIF3MD1PuD6LRRBKsN2VE69A44swFiG4-vZKWrGwJHQCz0PZru9aQiSO9BIHTFlM12JPyXEGC3lOaCIdpFEGDz-xXbCjgxCs23iVSJieh1z2yaDa2kiWBPdYZ-U6KhItfBahLKJGFn1yVg_Yam6XP3d9C7KqeyEn-3g4ifAdxgxAu1nf7T45rUQZlVoC5vBCzh3wg6D5Td0MOhz_mBOZ2uRFHyTS5Nztk2da8vVXMdg-OFahxe9gorOWbku2Tgue-IBbIbOCF3cv6yW53_w2T8nxYZerV2BoH-LXBch_AUKA10M
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adhesion+GPCR+Latrophilin+3+regulates+synaptic+function+of+cone+photoreceptors+in+a+trans-synaptic+manner&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yuchen&rft.au=Cao%2C+Yan&rft.au=Hays%2C+Cassandra+L&rft.au=Laboute%2C+Thibaut&rft.date=2021-11-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=45&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2106694118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon