Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner
This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly....
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 45; p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2106694118 |
Cover
Loading…
Abstract | This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3.
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca
V
1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function. |
---|---|
AbstractList | Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca
1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function. Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function. Significance This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3. Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function. This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is particularly relevant in the visual system in which neurons handle a broad range of stimuli requiring synapses to adjust their gain accordingly. In this work, we describe how synapses of cone photoreceptors, which all vertebrate animals utilize for daylight vision, handle this task through an elegant trans-synaptic mechanism involving a splice isoform of a cell-adhesion molecule, Latrophillin 3. Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished Ca V 1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function. |
Author | Kamasawa, Naomi Guerrero-Given, Debbie Kay, Jeremy N. Rivero, Olga Laboute, Thibaut Cao, Yan Ahuja, Abhimanyu S. Martemyanov, Kirill A. Wang, Yuchen Ray, Thomas A. Patil, Dipak Thoreson, Wallace B. Hays, Cassandra L. |
Author_xml | – sequence: 1 givenname: Yuchen orcidid: 0000-0001-5246-7305 surname: Wang fullname: Wang, Yuchen organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 – sequence: 2 givenname: Yan orcidid: 0000-0003-4902-2297 surname: Cao fullname: Cao, Yan organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 – sequence: 3 givenname: Cassandra L. orcidid: 0000-0003-4481-3495 surname: Hays fullname: Hays, Cassandra L. organization: Truhlsen Eye Institute, Durham Research Center I, University of Nebraska Medical Center, Omaha, NE 68198-5840 – sequence: 4 givenname: Thibaut orcidid: 0000-0003-0870-1891 surname: Laboute fullname: Laboute, Thibaut organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 – sequence: 5 givenname: Thomas A. surname: Ray fullname: Ray, Thomas A. organization: Department of Neurobiology and Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 – sequence: 6 givenname: Debbie surname: Guerrero-Given fullname: Guerrero-Given, Debbie organization: Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458 – sequence: 7 givenname: Abhimanyu S. orcidid: 0000-0003-4333-9189 surname: Ahuja fullname: Ahuja, Abhimanyu S. organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 – sequence: 8 givenname: Dipak surname: Patil fullname: Patil, Dipak organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 – sequence: 9 givenname: Olga surname: Rivero fullname: Rivero, Olga organization: Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg 97080 Würzburg, Germany – sequence: 10 givenname: Naomi orcidid: 0000-0002-8926-5309 surname: Kamasawa fullname: Kamasawa, Naomi organization: Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458 – sequence: 11 givenname: Jeremy N. orcidid: 0000-0001-6145-1604 surname: Kay fullname: Kay, Jeremy N. organization: Department of Neurobiology and Ophthalmology, and Cell Biology, Duke University School of Medicine, Durham, NC 27710 – sequence: 12 givenname: Wallace B. orcidid: 0000-0001-7104-042X surname: Thoreson fullname: Thoreson, Wallace B. organization: Truhlsen Eye Institute, Durham Research Center I, University of Nebraska Medical Center, Omaha, NE 68198-5840 – sequence: 13 givenname: Kirill A. orcidid: 0000-0002-9925-7599 surname: Martemyanov fullname: Martemyanov, Kirill A. organization: Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34732574$$D View this record in MEDLINE/PubMed https://hal.science/hal-04994630$$DView record in HAL |
BookMark | eNp1ks9rFDEUx4NU7LZ69iYBL3qY9uXnTC7CsmgrLCii55DJZjops8mYzBT635tx26oLnh4kn-_3fZP3ztBJiMEh9JrABYGaXY7B5AtKQErFCWmeoRUBRSrJFZygFQCtq4ZTforOcr4FACUaeIFOGa8ZFTVfIb_e9S77GPDV1803vDVTimPvBx8ww8ndzIOZXMb5Pphx8hZ3c7DTgscO25IFj32cYnLWjaVkXHQGT8mEXD1p9iYEl16i550Zsnv1UM_Rj08fv2-uq-2Xq8-b9bayrBFTJYQp4VrTKEsZdbTtlGRGtUY1tCGdhdaALRAQ6QivORizo1bsKNSilkDYOfpw8B3ndu921oUSZ9Bj8nuT7nU0Xv97E3yvb-KdbiQoBk0xeH8w6I9k1-utXs6AK8Ulg7ul2buHZin-nF2e9N5n64bBBBfnrKlQTKhGSl7Qt0fobZxTKF-xUFJSKX6nf_N3-qf-jxMrgDgANsWck-u09ZNZRlIe4wdNQC-boZfN0H82o-guj3SP1v9T_AK2Qrtr |
CitedBy_id | crossref_primary_10_1038_s41586_023_06913_9 crossref_primary_10_1016_j_tips_2025_01_004 crossref_primary_10_1016_j_devcel_2023_07_011 crossref_primary_10_1016_j_neuroscience_2025_03_041 crossref_primary_10_1016_j_celrep_2024_115078 |
Cites_doi | 10.7554/eLife.08149 10.1016/j.brainres.2012.04.053 10.1113/JP274177 10.1152/jn.01042.2005 10.1074/jbc.M111.318659 10.1038/mp.2010.6 10.1016/j.neuron.2006.04.034 10.3389/fnins.2019.00158 10.1016/j.neuron.2016.05.019 10.1016/j.neuron.2018.03.004 10.1016/j.str.2015.06.024 10.1016/j.cell.2018.03.036 10.1152/physrev.00030.2017 10.1017/S1431927612000268 10.1016/j.neuron.2015.05.004 10.1093/hmg/ddi336 10.1016/j.str.2015.01.013 10.1523/JNEUROSCI.1541-18.2018 10.1016/j.cell.2009.09.029 10.1523/JNEUROSCI.3667-05.2006 10.1016/j.neuron.2012.10.002 10.7554/eLife.37935 10.1016/S0896-6273(01)00535-9 10.1016/S0896-6273(00)00011-8 10.1016/j.cub.2017.10.050 10.1371/journal.pbio.1001057 10.1016/S0042-6989(96)00142-3 10.1083/jcb.201703042 10.1038/s41467-020-17009-7 10.1038/s41467-020-16029-7 10.1016/j.neuron.2017.02.021 10.1111/nyas.14198 10.1038/ng1306 10.1074/jbc.M114.607465 10.1038/nn1320 10.1038/eye.2015.236 10.1371/journal.pbio.1001864 10.1038/947 10.1523/JNEUROSCI.0658-15.2015 10.1038/s41380-020-0673-0 10.1016/j.celrep.2018.11.072 10.1152/jn.00737.2007 10.1085/jgp.201110654 10.1016/S0092-8674(05)80033-9 10.1113/jphysiol.1983.sp014781 10.1038/nn.2267 10.3389/fncel.2017.00198 10.1016/S0896-6273(04)00254-5 10.1085/jgp.200308863 10.3389/fnins.2019.00700 10.1074/jbc.M113.504779 10.1523/JNEUROSCI.14-03-01091.1994 10.1016/j.str.2015.06.022 10.1016/j.preteyeres.2014.06.003 10.1038/s41467-019-12780-8 10.7554/eLife.54443 10.1038/ncomms11184 10.1159/000266260 10.1016/j.celrep.2013.09.045 10.1126/science.aav7969 10.1371/journal.pbio.3000200 10.1016/j.neuron.2019.04.010 10.1016/j.cell.2016.01.029 10.1146/annurev-cellbio-100617-062826 10.1016/j.celrep.2019.01.040 10.1016/j.neuron.2012.01.018 10.1371/journal.pbio.1002322 10.1016/j.cell.2019.12.014 10.1016/j.neuron.2005.10.014 10.1016/j.preteyeres.2012.04.003 10.1152/jn.1991.65.5.1197 10.1523/JNEUROSCI.23-36-11332.2003 10.1016/0042-6989(71)90134-9 10.1016/0042-6989(86)90069-6 10.1152/jn.00634.2011 10.1126/science.1060101 10.1113/JP272556 10.1016/j.neuron.2005.09.011 10.1038/940 10.1016/j.cell.2020.04.010 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Nov 9, 2021 Distributed under a Creative Commons Attribution 4.0 International License 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Nov 9, 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1073/pnas.2106694118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC8609308 oai_HAL_hal_04994630v1 34732574 10_1073_pnas_2106694118 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY018139 – fundername: NEI NIH HHS grantid: R01 EY024694 – fundername: NEI NIH HHS grantid: R29 EY010542 – fundername: NEI NIH HHS grantid: F32 EY026344 – fundername: NEI NIH HHS grantid: R01 EY010542 – fundername: NEI NIH HHS grantid: K99 EY030554 – fundername: NEI NIH HHS grantid: R01 EY028033 – fundername: NEI NIH HHS grantid: P30 EY005722 – fundername: NEI NIH HHS grantid: R01 EY031445 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY10542 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY026344 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY030554 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY024694 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY018139 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY031445 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY5722 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC UMC 5PM |
ID | FETCH-LOGICAL-c385t-55a473ba89c232e2bf963a9ba98281fc0ba0c55a016e14740aad2c5d207576013 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:34:37 EDT 2025 Fri May 09 12:19:33 EDT 2025 Thu Jul 10 23:13:42 EDT 2025 Mon Jun 30 08:24:59 EDT 2025 Wed Feb 19 02:24:28 EST 2025 Tue Jul 01 01:03:05 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | adhesion GPCR vision synapses retina horizontal cells |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-55a473ba89c232e2bf963a9ba98281fc0ba0c55a016e14740aad2c5d207576013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Alex L. Kolodkin, Johns Hopkins University, Baltimore, MD, and accepted by the Editorial Board September 23, 2021 (received for review April 8, 2021) Author contributions: Y.W., J.N.K., W.B.T., and K.A.M. designed research; Y.W., Y.C., C.L.H., T.L., T.A.R., D.G.-G., A.S.A., D.P., and N.K. performed research; O.R. contributed new reagents/analytic tools; Y.W., Y.C., C.L.H., T.L., T.A.R., D.G.-G., A.S.A., D.P., N.K., J.N.K., W.B.T., and K.A.M. analyzed data; and Y.W., W.B.T., and K.A.M. wrote the paper. |
ORCID | 0000-0002-8926-5309 0000-0001-5246-7305 0000-0003-4481-3495 0000-0002-9925-7599 0000-0003-0870-1891 0000-0003-4902-2297 0000-0001-6145-1604 0000-0001-7104-042X 0000-0003-4333-9189 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8609308 |
PMID | 34732574 |
PQID | 2596626501 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8609308 hal_primary_oai_HAL_hal_04994630v1 proquest_miscellaneous_2593598664 proquest_journals_2596626501 pubmed_primary_34732574 crossref_citationtrail_10_1073_pnas_2106694118 crossref_primary_10_1073_pnas_2106694118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-09 |
PublicationDateYYYYMMDD | 2021-11-09 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 Kawano K. (e_1_3_4_39_2) 1984; 28 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 Morgans C. W. (e_1_3_4_60_2) 2001; 42 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 Blanks J. C. (e_1_3_4_38_2) 1984; 25 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_71_2 doi: 10.7554/eLife.08149 – ident: e_1_3_4_44_2 doi: 10.1016/j.brainres.2012.04.053 – ident: e_1_3_4_23_2 doi: 10.1113/JP274177 – ident: e_1_3_4_32_2 doi: 10.1152/jn.01042.2005 – ident: e_1_3_4_68_2 doi: 10.1074/jbc.M111.318659 – ident: e_1_3_4_82_2 doi: 10.1038/mp.2010.6 – ident: e_1_3_4_21_2 doi: 10.1016/j.neuron.2006.04.034 – ident: e_1_3_4_70_2 doi: 10.3389/fnins.2019.00158 – ident: e_1_3_4_58_2 doi: 10.1016/j.neuron.2016.05.019 – ident: e_1_3_4_73_2 doi: 10.1016/j.neuron.2018.03.004 – ident: e_1_3_4_50_2 doi: 10.1016/j.str.2015.06.024 – ident: e_1_3_4_48_2 doi: 10.1016/j.cell.2018.03.036 – ident: e_1_3_4_15_2 doi: 10.1152/physrev.00030.2017 – ident: e_1_3_4_61_2 doi: 10.1017/S1431927612000268 – ident: e_1_3_4_45_2 doi: 10.1016/j.neuron.2015.05.004 – ident: e_1_3_4_10_2 doi: 10.1093/hmg/ddi336 – ident: e_1_3_4_79_2 doi: 10.1016/j.str.2015.01.013 – ident: e_1_3_4_28_2 doi: 10.1523/JNEUROSCI.1541-18.2018 – ident: e_1_3_4_7_2 doi: 10.1016/j.cell.2009.09.029 – ident: e_1_3_4_57_2 doi: 10.1523/JNEUROSCI.3667-05.2006 – ident: e_1_3_4_1_2 doi: 10.1016/j.neuron.2012.10.002 – ident: e_1_3_4_65_2 doi: 10.7554/eLife.37935 – ident: e_1_3_4_54_2 doi: 10.1016/S0896-6273(01)00535-9 – ident: e_1_3_4_20_2 doi: 10.1016/S0896-6273(00)00011-8 – ident: e_1_3_4_26_2 doi: 10.1016/j.cub.2017.10.050 – ident: e_1_3_4_27_2 doi: 10.1371/journal.pbio.1001057 – ident: e_1_3_4_37_2 doi: 10.1016/S0042-6989(96)00142-3 – ident: e_1_3_4_64_2 doi: 10.1083/jcb.201703042 – ident: e_1_3_4_47_2 doi: 10.1038/s41467-020-17009-7 – ident: e_1_3_4_51_2 doi: 10.1038/s41467-020-16029-7 – ident: e_1_3_4_18_2 doi: 10.1016/j.neuron.2017.02.021 – ident: e_1_3_4_76_2 doi: 10.1111/nyas.14198 – ident: e_1_3_4_83_2 doi: 10.1038/ng1306 – ident: e_1_3_4_62_2 doi: 10.1074/jbc.M114.607465 – ident: e_1_3_4_16_2 doi: 10.1038/nn1320 – ident: e_1_3_4_5_2 doi: 10.1038/eye.2015.236 – ident: e_1_3_4_36_2 doi: 10.1371/journal.pbio.1001864 – ident: e_1_3_4_11_2 doi: 10.1038/947 – ident: e_1_3_4_17_2 doi: 10.1523/JNEUROSCI.0658-15.2015 – ident: e_1_3_4_81_2 doi: 10.1038/s41380-020-0673-0 – ident: e_1_3_4_56_2 doi: 10.1016/j.celrep.2018.11.072 – ident: e_1_3_4_59_2 doi: 10.1152/jn.00737.2007 – ident: e_1_3_4_8_2 doi: 10.1085/jgp.201110654 – ident: e_1_3_4_19_2 doi: 10.1016/S0092-8674(05)80033-9 – ident: e_1_3_4_9_2 doi: 10.1113/jphysiol.1983.sp014781 – ident: e_1_3_4_22_2 doi: 10.1038/nn.2267 – ident: e_1_3_4_29_2 doi: 10.3389/fncel.2017.00198 – ident: e_1_3_4_14_2 doi: 10.1016/S0896-6273(04)00254-5 – ident: e_1_3_4_33_2 doi: 10.1085/jgp.200308863 – volume: 25 start-page: 546 year: 1984 ident: e_1_3_4_38_2 article-title: Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison publication-title: Invest. Ophthalmol. Vis. Sci. – ident: e_1_3_4_53_2 doi: 10.3389/fnins.2019.00700 – ident: e_1_3_4_77_2 doi: 10.1074/jbc.M113.504779 – ident: e_1_3_4_6_2 doi: 10.1523/JNEUROSCI.14-03-01091.1994 – volume: 42 start-page: 2414 year: 2001 ident: e_1_3_4_60_2 article-title: Localization of the alpha(1F) calcium channel subunit in the rat retina publication-title: Invest. Ophthalmol. Vis. Sci. – ident: e_1_3_4_78_2 doi: 10.1016/j.str.2015.06.022 – ident: e_1_3_4_2_2 doi: 10.1016/j.preteyeres.2014.06.003 – ident: e_1_3_4_42_2 doi: 10.1038/s41467-019-12780-8 – ident: e_1_3_4_66_2 doi: 10.7554/eLife.54443 – ident: e_1_3_4_69_2 doi: 10.1038/ncomms11184 – ident: e_1_3_4_40_2 doi: 10.1159/000266260 – ident: e_1_3_4_72_2 doi: 10.1016/j.celrep.2013.09.045 – ident: e_1_3_4_41_2 doi: 10.1126/science.aav7969 – volume: 28 start-page: 205 year: 1984 ident: e_1_3_4_39_2 article-title: Binding sites of peanut agglutinin in mammalian retina publication-title: Jpn. J. Ophthalmol. – ident: e_1_3_4_35_2 doi: 10.1371/journal.pbio.3000200 – ident: e_1_3_4_43_2 doi: 10.1016/j.neuron.2019.04.010 – ident: e_1_3_4_46_2 doi: 10.1016/j.cell.2016.01.029 – ident: e_1_3_4_74_2 doi: 10.1146/annurev-cellbio-100617-062826 – ident: e_1_3_4_75_2 doi: 10.1016/j.celrep.2019.01.040 – ident: e_1_3_4_49_2 doi: 10.1016/j.neuron.2012.01.018 – ident: e_1_3_4_67_2 doi: 10.1371/journal.pbio.1002322 – ident: e_1_3_4_52_2 doi: 10.1016/j.cell.2019.12.014 – ident: e_1_3_4_3_2 doi: 10.1016/j.neuron.2005.10.014 – ident: e_1_3_4_24_2 doi: 10.1016/j.preteyeres.2012.04.003 – ident: e_1_3_4_34_2 doi: 10.1152/jn.1991.65.5.1197 – ident: e_1_3_4_55_2 doi: 10.1523/JNEUROSCI.23-36-11332.2003 – ident: e_1_3_4_25_2 doi: 10.1016/0042-6989(71)90134-9 – ident: e_1_3_4_30_2 doi: 10.1016/0042-6989(86)90069-6 – ident: e_1_3_4_13_2 doi: 10.1152/jn.00634.2011 – ident: e_1_3_4_31_2 doi: 10.1126/science.1060101 – ident: e_1_3_4_4_2 doi: 10.1113/JP272556 – ident: e_1_3_4_63_2 doi: 10.1016/j.neuron.2005.09.011 – ident: e_1_3_4_12_2 doi: 10.1038/940 – ident: e_1_3_4_80_2 doi: 10.1016/j.cell.2020.04.010 |
SSID | ssj0009580 |
Score | 2.4099572 |
Snippet | This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This question is... Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to... Significance This study addresses a fundamental question in neuroscience: how do neurons functionally specify and diversify their synaptic connections? This... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Adhesion Alternative Splicing Animals Biological Sciences Calcium channels Calcium channels (voltage-gated) Calcium Channels - metabolism Channel gating Cones Dendrites G protein-coupled receptors Horizontal cells Life Sciences Mice Mice, Knockout Modulation Negative feedback Neurotransmitter release Neurotransmitters Photoreception Photoreceptors Protein Isoforms - metabolism Proteome Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Receptors, Peptide - genetics Receptors, Peptide - metabolism Retinal Cone Photoreceptor Cells - metabolism Splicing Synapses Synapses - metabolism Synaptic transmission Vertebrates |
Title | Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34732574 https://www.proquest.com/docview/2596626501 https://www.proquest.com/docview/2593598664 https://hal.science/hal-04994630 https://pubmed.ncbi.nlm.nih.gov/PMC8609308 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6y4ULYnkWFmQQh0VRShInTnKsqt2tUCkVakX3FDmOq1Ra0qptOPCH-JvMxHkuywq4RFX8qOX5Op6Zjr8h5J2Q0pciFKZyXGa6iYzN2OXMtB0rWCnQmrp0wqcpHy_cj0tv2ev9bGUt5Yd4IH_ceq_kf6QK70CueEv2HyRbTwov4DPIF54gYXj-lYyHSaow2mVczkZfjAmGtbcYIMkMZux0kXm1R1ICsUVeVjzDKgMR3GBlbNMNuNwKM1uw5g6ME1gzItub9ZhvAmtztU3YWX3k7asEg2kVURw291NKpbE3TGM2baodfy3j01c5oKUG5kgUEdurBqpjoRE2AuNeZMlOGHWUelIkU2u24HQdi_zQDl04dnGHr1GQdy2urbMdOEddfdN6oLSaBivH5K4uNFrr8UaR5xVJZamW7VsPC9BuWOE4E_sBOL4cr_SWU3Rouaefo4vFZBLNz5fzI3LPAX8ET4DLpd1idw70XadyqRWHlM8-3Ji-Y_4cpZh8-7tnczNBt2XxzB-SB6WrQocadyekp7JH5KTaOnpWMpa_f0zWFRApApG2gEgZrYFIK1DRCoh0s6IIRNoFIoVxgnaBSDUQn5DFxfl8NDbLGh6mZIF3MD1PuD6LRRBKsN2VE69A44swFiG4-vZKWrGwJHQCz0PZru9aQiSO9BIHTFlM12JPyXEGC3lOaCIdpFEGDz-xXbCjgxCs23iVSJieh1z2yaDa2kiWBPdYZ-U6KhItfBahLKJGFn1yVg_Yam6XP3d9C7KqeyEn-3g4ifAdxgxAu1nf7T45rUQZlVoC5vBCzh3wg6D5Td0MOhz_mBOZ2uRFHyTS5Nztk2da8vVXMdg-OFahxe9gorOWbku2Tgue-IBbIbOCF3cv6yW53_w2T8nxYZerV2BoH-LXBch_AUKA10M |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adhesion+GPCR+Latrophilin+3+regulates+synaptic+function+of+cone+photoreceptors+in+a+trans-synaptic+manner&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yuchen&rft.au=Cao%2C+Yan&rft.au=Hays%2C+Cassandra+L&rft.au=Laboute%2C+Thibaut&rft.date=2021-11-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=45&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2106694118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |