A review of deep learning algorithms for computer vision systems in livestock
•Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles. In livestock oper...
Saved in:
Published in | Livestock science Vol. 253; p. 104700 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1871-1413 1878-0490 |
DOI | 10.1016/j.livsci.2021.104700 |
Cover
Loading…
Abstract | •Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles.
In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions. |
---|---|
AbstractList | In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions. •Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles. In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions. |
ArticleNumber | 104700 |
Author | Bresolin, Tiago Reboucas Dorea, Joao Ricardo Pontes Ferreira, Rafael Ehrich Borges Oliveira, Dario Augusto Ribeiro Pereira, Luiz Gustavo |
Author_xml | – sequence: 1 givenname: Dario Augusto surname: Borges Oliveira fullname: Borges Oliveira, Dario Augusto organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205 – sequence: 2 givenname: Luiz Gustavo surname: Ribeiro Pereira fullname: Ribeiro Pereira, Luiz Gustavo organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205 – sequence: 3 givenname: Tiago surname: Bresolin fullname: Bresolin, Tiago organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205 – sequence: 4 givenname: Rafael Ehrich surname: Pontes Ferreira fullname: Pontes Ferreira, Rafael Ehrich organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205 – sequence: 5 givenname: Joao Ricardo surname: Reboucas Dorea fullname: Reboucas Dorea, Joao Ricardo email: joao.dorea@wisc.edu organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205 |
BookMark | eNqFkLtuGzEQRQlDBvz8gxQs3azMWT52N4UBw_ALUJDGrgmKO3SorJYySSnQ35vKukrhVDOYuXcu5pyR2RhGJOQbsDkwUNer-eB3yfp5zWooI9EwdkROoW3aiomOzf72UIEAfkLOUloxJoVoxSn5cUsj7jz-ocHRHnFDBzRx9OMbNcNbiD7_WifqQqQ2rDfbjJHufPJhpGmfMpadH2lJx5SD_X1Bjp0ZEl5-1nPy-nD_cvdULX4-Pt_dLirLW5kryRsByirWQy_Z0sjeKCk71YFrYMmXwDqsVa1c07jeMdmyJXSuNoZLLjg4fk6uprubGN63JVuvfbI4DGbEsE26VlxJYHUHRfp9ktoYUorotPXZ5PJBjsYPGpg-MNQrPTHUB4Z6YljM4h_zJvq1ifv_2W4mGxYGBW7URYGjxd5HtFn3wX994AOxrI86 |
CitedBy_id | crossref_primary_10_1016_j_aiia_2025_01_001 crossref_primary_10_3390_drones6050119 crossref_primary_10_3390_ani13071184 crossref_primary_10_2118_218881_PA crossref_primary_10_3390_ani12010015 crossref_primary_10_1098_rsos_230269 crossref_primary_10_1016_j_compag_2024_109054 crossref_primary_10_1016_j_inffus_2022_08_010 crossref_primary_10_1016_j_compag_2023_108000 crossref_primary_10_1016_j_compag_2023_108167 crossref_primary_10_1111_age_13302 crossref_primary_10_1016_j_compag_2024_109459 crossref_primary_10_3390_agriculture12091314 crossref_primary_10_1016_j_compag_2022_106693 crossref_primary_10_1093_jas_skac111 crossref_primary_10_21603_2308_4057_2026_1_657 crossref_primary_10_1093_jas_skad249 crossref_primary_10_3390_agriculture14101785 crossref_primary_10_20965_jaciii_2022_p0930 crossref_primary_10_3390_agriculture12081207 crossref_primary_10_4236_gep_2024_1210016 crossref_primary_10_5187_jast_2024_e111 crossref_primary_10_1109_ACCESS_2023_3338540 crossref_primary_10_3390_ani13132078 crossref_primary_10_1093_tas_txad064 crossref_primary_10_3390_agriculture13102011 crossref_primary_10_3390_ani14010159 crossref_primary_10_3390_s22072689 crossref_primary_10_3390_agriculture13071349 crossref_primary_10_1093_jas_skac242 crossref_primary_10_1007_s10499_024_01422_6 crossref_primary_10_1093_bfgp_elae032 crossref_primary_10_3390_electronics11223791 crossref_primary_10_1016_j_biosystemseng_2022_09_003 crossref_primary_10_48175_IJARSCT_22061 crossref_primary_10_21015_vtse_v12i3_1909 crossref_primary_10_3390_computation11120244 crossref_primary_10_46632_jdaai_2_3_9 crossref_primary_10_3390_agriculture13101895 crossref_primary_10_1002_ps_8055 crossref_primary_10_3390_agriculture13102027 crossref_primary_10_1016_j_heliyon_2023_e17332 crossref_primary_10_12968_live_2023_28_6_254 crossref_primary_10_3389_fmolb_2022_1009099 crossref_primary_10_2478_aoas_2024_0098 crossref_primary_10_1038_s41598_023_45772_2 crossref_primary_10_1016_j_ecoinf_2024_102842 crossref_primary_10_3390_vetsci10010032 crossref_primary_10_3389_frai_2024_1299169 crossref_primary_10_1111_vde_13221 crossref_primary_10_1038_s41598_022_11842_0 crossref_primary_10_2478_amns_2021_2_00245 crossref_primary_10_1371_journal_pone_0260510 crossref_primary_10_1049_ipr2_13327 |
Cites_doi | 10.1016/j.biosystemseng.2019.01.003 10.3168/jds.2019-17478 10.1016/j.biosystemseng.2019.12.002 10.1007/s11263-013-0620-5 10.3168/jds.2012-6107 10.1007/s11263-019-01251-8 10.3390/s19040852 10.3389/frobt.2018.00107 10.1109/ICCV.2017.324 10.1016/j.compag.2018.01.023 10.1016/j.compag.2019.104884 10.1016/j.compag.2020.105706 10.1109/CVPR.2016.308 10.1007/s11263-009-0275-4 10.1109/TPAMI.2017.2699184 10.1038/s41598-020-70688-6 10.1109/TASE.2019.2960106 10.1016/j.biosystemseng.2020.03.013 10.1109/CVPR.2017.195 10.1016/j.compag.2019.05.049 10.1016/j.measurement.2017.10.064 10.1016/j.compag.2019.104885 10.1038/s41598-020-74511-0 10.1016/j.biosystemseng.2020.05.010 10.1093/jas/skaa250 10.1016/j.compag.2020.105386 10.1109/TPAMI.2016.2644615 10.1109/TPAMI.2015.2437384 10.1016/j.compind.2018.02.016 10.1016/j.compag.2020.105580 10.1109/ACCESS.2019.2955761 10.1109/CVPR.2019.00244 10.1109/ACCESS.2019.2953099 10.1016/j.livsci.2017.05.014 10.1016/j.compag.2020.105391 10.3389/fgene.2020.00513 10.1609/aaai.v31i1.11231 10.1109/ACCESS.2019.2933060 10.1371/journal.pmed.1000097 10.1109/CVPR.2015.7298594 10.1371/journal.pone.0226669 10.3390/ani9070470 10.1016/j.compag.2019.104958 10.3389/fgene.2020.00923 10.1016/j.compag.2020.105345 10.1016/j.vetpar.2017.01.020 10.1016/j.biosystemseng.2018.09.011 10.1016/j.isprsjprs.2019.11.023 10.1016/j.biosystemseng.2020.01.012 10.1016/j.compag.2019.104982 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2016.91 10.3168/jds.2016-11715 10.1016/j.compag.2020.105642 10.3382/ps/pez564 10.1109/CVPR.2016.90 10.1016/j.sbsr.2016.11.004 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.livsci.2021.104700 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1878-0490 |
ExternalDocumentID | 10_1016_j_livsci_2021_104700 S1871141321003085 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABGRD ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 QYZTP RIG ROL RPZ SDF SDG SEL SES SEW SNL SPCBC SSA SSH SSZ T5K Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-537416c60d1d50ba5da6559691f71b3b109e2626f77fdf0580b19f2aa353431f3 |
IEDL.DBID | .~1 |
ISSN | 1871-1413 |
IngestDate | Thu Jul 10 17:50:09 EDT 2025 Tue Jul 01 03:16:22 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Fri Feb 23 02:46:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precision farming Cattle Swine Artificial intelligence Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-537416c60d1d50ba5da6559691f71b3b109e2626f77fdf0580b19f2aa353431f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S1871141321003085?via%3Dihub |
PQID | 2636510291 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636510291 crossref_citationtrail_10_1016_j_livsci_2021_104700 crossref_primary_10_1016_j_livsci_2021_104700 elsevier_sciencedirect_doi_10_1016_j_livsci_2021_104700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Livestock science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Cai, Xiao, Li, Xiong (bib0110) 2019 Chen, Zhu, Papandreou, Schroff, Adam (bib0025) 2018 Qiao, Truman, Sukkarieh (bib0085) 2019; 165 Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0114) 2015 Jiang, Wu, Yin, Wu, Song, He (bib0049) 2019 Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial autoencoders. Chollet, F., 2016. Xception: deep learning with depthwise separable convolutions. Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., Dean, J., 2018. Efficient neural architecture search via parameter sharing. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y., 2019. Semantic image synthesis with spatially-adaptive normalization. Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0021) 2018; 40 Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2015. You only look once: unified, real-time object detection. . Goodfellow, Bengio, Courville (bib0039) 2016 Andrew, Greatwood, Burghardt (bib0003) 2017 Noh, Hong, Han (bib0077) 2015 Everingham, Gool, Williams, Winn, Zisserman (bib0029) 2010; 88 Neethirajan (bib0076) 2017; 12 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions. Hochreiter, Schmidhuber (bib0046) 1997; 9 Fang, Huang, Cuan, Zhuang, Zhang (bib0030) 2020 Bezen, Edan, Halachmi (bib0010) 2020; 172 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014a. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062. Nasirahmadi, A., Edwards, S. A., Sturm, B., 2017. Implementation of machine vision for detecting behaviour of cattle and pigs. 10.1016/j.livsci.2017.05.014. Moher, Liberati, Tetzlaff, Altman (bib0074) 2009; 6 Yang, Huang, Zhu, Yang, Chen, Li, Xue (bib0108) 2018 Kumar, Pandey, Sai Ram Satwik, Kumar, Singh, Singh, Mohan (bib0055) 2018; 116 Benitez Pereira, L. S., Koskela, O., Plnen, I., Kunttu, I., 2020. Data set of labeled scenes in a barn in front of automatic milking system. 10.5281/zenodo.3981400. Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0066) 2016 (bib0031) 1998 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. Ronneberger, Fischer, Brox (bib0090) 2015 Tsai, Hsu, Ding, Rustia, Lin (bib0101) 2020 Alameer, A., 2020. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. 10.25405/data.ncl.13042619.v1. Andrew, Hannuna, Campbell, Burghardt (bib0005) 2016 Kingma, D. P., Ba, J., 2017. Adam: a method for stochastic optimization. Geffen, Yitzhaky, Barchilon, Druyan, Halachmi (bib0035) 2020 Li, Wan, Cheng, Meng, Han (bib0058) 2020; 159 Oliveira (bib0079) 2020 Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0065) 2014 Li, Cai, Zhang, Ju, He (bib0059) 2019 Andrew, W., Burghardt, T., Campbell, N., Gao, J., 2020. Opencows2020. 10.5523/bris.10m32xl88x2b61zlkkgz3fml17. Bhole, A., Falzon, O., Biehl, M., Azzopardi, G., 2021. Holstein Cattle Recognition. 10.34894/O1ZBSA. Cernek, Bollig, Anklam, rte Dã (bib0016) 2020 Lee, Ahn, Seo, Chung, Park, Pan (bib0057) 2019 Lin, Shen, van den Hengel, Reid (bib0060) 2016 Nye, Zingaretti, Pérez-Enciso (bib0078) 2020 Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. Long, Shelhamer, Darrell (bib0069) 2015 Chen, Zhu, Oczak, Maschat, Baumgartner, Larsen, Norton (bib0017) 2020 Guzhva, Ardö, Nilsson, Herlin, Tufvesson (bib0041) 2018; 5 Marsot, Mei, Shan, Ye, Feng, Yan, Li, Zhao (bib0072) 2020 Psota, Mittek, Pérez, Schmidt, Mote (bib0082) 2019 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0028) 2009 Cowton, Kyriazakis, Bacardit (bib0027) 2019; 7 Vougioukas, K., Petridis, S., Pantic, M., 2019. Realistic speech-driven facial animation with GANs. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception architecture for computer vision. Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0063) 2017 Zhuang, Zhang (bib0115) 2019 Girshick (bib0037) 2015 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0040) 2014; 27 Lin, M., Chen, Q., Yan, S., 2013. Network in network. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. Zhao, Shi, Qi, Wang, Jia (bib0111) 2017 Hansen, Smith, Smith, Salter, Baxter, Farish, Grieve (bib0042) 2018; 98 Chen, Zhu, Steibel, Siegford, Wurtz, Han, Norton (bib0020) 2020 Ren, He, Girshick, Sun (bib0087) 2015 Lecun, Bottou, Bengio, Haffner (bib0056) 1998 Cai, Vasconcelos (bib0014) 2018 Jiang, Rao, Zhang, Shen (bib0050) 2020 Uijlings, van de Sande, Gevers, Smeulders (bib0102) 2013 Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. Cang, He, Qiao (bib0015) 2019 Badrinarayanan, Kendall, Cipolla (bib0007) 2017; 39 Chen, Zhu, Steibel, Siegford, Han, Norton (bib0018) 2020 Geng, Wang, Xiao, Zhang, Wu, Liu (bib0036) 2019 Kang, Zhang, Liu (bib0051) 2020; 0 Zhao, He (bib0112) 2015 Liu, Liang, Wang, Li, Pei (bib0067) 2016 Atkinson, Smith, Smith, Reynolds, Humphries, Moorby, Leemans, Kingston-Smith (bib0006) 2020; 10 Sun, Wang, Tang (bib0096) 2013 Fernandes, Dorea, Rosa (bib116) 2020; 11 McKenna, Amaral, Kyriazakis (bib0073) 2020; 17 Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks. Ye, Yousaf, Qi, Liu, Chen (bib0109) 2020 Rodenburg (bib0089) 2017; 100 Liu, Li, Luo, Loy, Tang (bib0068) 2015 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0103) 2010; 11 Fernandes, Dórea, Valente, Fitzgerald, Herring, Rosa (bib0032) 2020; 98 Girshick, Donahue, Darrell, Malik (bib0038) 2016; 38 Bruenger, Gentz, Traulsen, Koch (bib0013) 2020; 20 He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition. arXiv:1512.03385. Qiao, Su, Kong, Sukkarieh, Lomax, Clark (bib0083) 2019 Wu, Yin, Jiang, Jiang, Li, Song (bib0106) 2020; 192 Chen, Zhu, Steibel, Siegford, Han, Norton (bib0019) 2020 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0062) 2017 Bresolin, Dorea (bib0012) 2020; 11 Rutten, C. J., Velthuis, A. G., Steeneveld, W., Hogeveen, H., 2013. Invited review: sensors to support health management on dairy farms. 10.3168/jds.2012-6107. Gao, J., Burghardt, T., Andrew, W., Dowsey, A. W., Campbell, N. W., 2021. Towards self-supervision for video identification of individual Holstein-Friesian cattle: The cows2021 dataset. Barbedo, Gomes, Cardoso, Domingues, Ramos, McManus (bib0008) 2017; 235 de Freitas, Camargo, Comin, Domingues, Gaspar, Cardoso (bib0033) 2019; 11 Krizhevsky, Sutskever, Hinton (bib0054) 2012; 25 Seo, Ahn, Kim, Lee, Chung, Park (bib0093) 2020 Wurtz, Camerlink, D’Eath, Fernández, Norton, Steibel, Siegford (bib0107) 2019; 14 Andrew, Greatwood, Burghardt (bib0004) 2019 Zheng, Zhu, Yang, Wang, Tu, Xue (bib0113) 2018 Wang, Liu, Xiao (bib0105) 2018 Riekert, Klein, Adrion, Hoffmann, Gallmann (bib0088) 2020 Huang, Hu, Wang, Yang, Zhang, Shi (bib0048) 2019 Tian, Guo, Chen, Wang, Long, Ma (bib0100) 2019 He, Gkioxari, Dollár, Girshick (bib0043) 2017 Jiang (10.1016/j.livsci.2021.104700_bib0049) 2019 Zhao (10.1016/j.livsci.2021.104700_bib0112) 2015 Bezen (10.1016/j.livsci.2021.104700_bib0010) 2020; 172 Girshick (10.1016/j.livsci.2021.104700_bib0037) 2015 Nye (10.1016/j.livsci.2021.104700_bib0078) 2020 Barbedo (10.1016/j.livsci.2021.104700_bib0008) 2017; 235 Lee (10.1016/j.livsci.2021.104700_bib0057) 2019 Cowton (10.1016/j.livsci.2021.104700_bib0027) 2019; 7 Zhang (10.1016/j.livsci.2021.104700_bib0110) 2019 Guzhva (10.1016/j.livsci.2021.104700_bib0041) 2018; 5 Ronneberger (10.1016/j.livsci.2021.104700_bib0090) 2015 10.1016/j.livsci.2021.104700_bib0061 10.1016/j.livsci.2021.104700_bib0064 Chen (10.1016/j.livsci.2021.104700_bib0017) 2020 Riekert (10.1016/j.livsci.2021.104700_bib0088) 2020 Lin (10.1016/j.livsci.2021.104700_bib0060) 2016 Lin (10.1016/j.livsci.2021.104700_bib0063) 2017 Uijlings (10.1016/j.livsci.2021.104700_bib0102) 2013 Zheng (10.1016/j.livsci.2021.104700_bib0113) 2018 Marsot (10.1016/j.livsci.2021.104700_bib0072) 2020 10.1016/j.livsci.2021.104700_bib0047 Cai (10.1016/j.livsci.2021.104700_bib0014) 2018 10.1016/j.livsci.2021.104700_bib0044 Cang (10.1016/j.livsci.2021.104700_bib0015) 2019 10.1016/j.livsci.2021.104700_bib0053 10.1016/j.livsci.2021.104700_bib0052 He (10.1016/j.livsci.2021.104700_bib0043) 2017 Oliveira (10.1016/j.livsci.2021.104700_bib0079) 2020 Li (10.1016/j.livsci.2021.104700_bib0058) 2020; 159 Liu (10.1016/j.livsci.2021.104700_bib0066) 2016 Long (10.1016/j.livsci.2021.104700_bib0069) 2015 Andrew (10.1016/j.livsci.2021.104700_bib0003) 2017 Jiang (10.1016/j.livsci.2021.104700_bib0050) 2020 Chen (10.1016/j.livsci.2021.104700_bib0019) 2020 Hochreiter (10.1016/j.livsci.2021.104700_bib0046) 1997; 9 Tian (10.1016/j.livsci.2021.104700_bib0100) 2019 Girshick (10.1016/j.livsci.2021.104700_bib0038) 2016; 38 Chen (10.1016/j.livsci.2021.104700_bib0025) 2018 10.1016/j.livsci.2021.104700_bib0034 Deng (10.1016/j.livsci.2021.104700_bib0028) 2009 Kumar (10.1016/j.livsci.2021.104700_bib0055) 2018; 116 Geffen (10.1016/j.livsci.2021.104700_bib0035) 2020 Fernandes (10.1016/j.livsci.2021.104700_bib116) 2020; 11 Wu (10.1016/j.livsci.2021.104700_bib0106) 2020; 192 Zhao (10.1016/j.livsci.2021.104700_bib0111) 2017 Chen (10.1016/j.livsci.2021.104700_bib0021) 2018; 40 Fernandes (10.1016/j.livsci.2021.104700_bib0032) 2020; 98 Goodfellow (10.1016/j.livsci.2021.104700_bib0040) 2014; 27 Psota (10.1016/j.livsci.2021.104700_bib0082) 2019 Moher (10.1016/j.livsci.2021.104700_bib0074) 2009; 6 10.1016/j.livsci.2021.104700_bib0026 Noh (10.1016/j.livsci.2021.104700_bib0077) 2015 Neethirajan (10.1016/j.livsci.2021.104700_bib0076) 2017; 12 Wang (10.1016/j.livsci.2021.104700_bib0105) 2018 10.1016/j.livsci.2021.104700_bib0022 10.1016/j.livsci.2021.104700_bib0024 Kang (10.1016/j.livsci.2021.104700_bib0051) 2020; 0 Liu (10.1016/j.livsci.2021.104700_bib0068) 2015 Bresolin (10.1016/j.livsci.2021.104700_bib0012) 2020; 11 Ye (10.1016/j.livsci.2021.104700_bib0109) 2020 Cernek (10.1016/j.livsci.2021.104700_bib0016) 2020 Chen (10.1016/j.livsci.2021.104700_bib0018) 2020 Huang (10.1016/j.livsci.2021.104700_bib0048) 2019 Wurtz (10.1016/j.livsci.2021.104700_bib0107) 2019; 14 Fang (10.1016/j.livsci.2021.104700_bib0030) 2020 Zheng (10.1016/j.livsci.2021.104700_bib0114) 2015 10.1016/j.livsci.2021.104700_bib0011 10.1016/j.livsci.2021.104700_bib0099 Zhuang (10.1016/j.livsci.2021.104700_bib0115) 2019 Atkinson (10.1016/j.livsci.2021.104700_bib0006) 2020; 10 10.1016/j.livsci.2021.104700_bib0098 Liu (10.1016/j.livsci.2021.104700_bib0067) 2016 Vincent (10.1016/j.livsci.2021.104700_bib0103) 2010; 11 Qiao (10.1016/j.livsci.2021.104700_bib0085) 2019; 165 Yang (10.1016/j.livsci.2021.104700_bib0108) 2018 Hansen (10.1016/j.livsci.2021.104700_bib0042) 2018; 98 Qiao (10.1016/j.livsci.2021.104700_bib0083) 2019 10.1016/j.livsci.2021.104700_bib0009 Rodenburg (10.1016/j.livsci.2021.104700_bib0089) 2017; 100 10.1016/j.livsci.2021.104700_bib0002 10.1016/j.livsci.2021.104700_bib0001 10.1016/j.livsci.2021.104700_bib0095 de Freitas (10.1016/j.livsci.2021.104700_bib0033) 2019; 11 10.1016/j.livsci.2021.104700_bib0094 Tsai (10.1016/j.livsci.2021.104700_bib0101) 2020 10.1016/j.livsci.2021.104700_bib0097 10.1016/j.livsci.2021.104700_bib0091 Lin (10.1016/j.livsci.2021.104700_bib0062) 2017 10.1016/j.livsci.2021.104700_bib0092 Li (10.1016/j.livsci.2021.104700_bib0059) 2019 Sun (10.1016/j.livsci.2021.104700_bib0096) 2013 Lin (10.1016/j.livsci.2021.104700_bib0065) 2014 Lecun (10.1016/j.livsci.2021.104700_bib0056) 1998 Badrinarayanan (10.1016/j.livsci.2021.104700_bib0007) 2017; 39 10.1016/j.livsci.2021.104700_bib0086 10.1016/j.livsci.2021.104700_bib0080 Seo (10.1016/j.livsci.2021.104700_bib0093) 2020 Krizhevsky (10.1016/j.livsci.2021.104700_bib0054) 2012; 25 10.1016/j.livsci.2021.104700_bib0081 Andrew (10.1016/j.livsci.2021.104700_bib0004) 2019 Andrew (10.1016/j.livsci.2021.104700_bib0005) 2016 Goodfellow (10.1016/j.livsci.2021.104700_sbref0039) 2016 (10.1016/j.livsci.2021.104700_bib0031) 1998 Geng (10.1016/j.livsci.2021.104700_bib0036) 2019 10.1016/j.livsci.2021.104700_bib0104 Everingham (10.1016/j.livsci.2021.104700_bib0029) 2010; 88 Chen (10.1016/j.livsci.2021.104700_bib0020) 2020 10.1016/j.livsci.2021.104700_bib0075 10.1016/j.livsci.2021.104700_bib0071 Bruenger (10.1016/j.livsci.2021.104700_bib0013) 2020; 20 10.1016/j.livsci.2021.104700_bib0070 Ren (10.1016/j.livsci.2021.104700_bib0087) 2015 McKenna (10.1016/j.livsci.2021.104700_bib0073) 2020; 17 |
References_xml | – start-page: 234 year: 2015 end-page: 241 ident: bib0090 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 – year: 2020 ident: bib0019 article-title: Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method publication-title: Comput. Electron. Agric. – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bib0021 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: bib0108 article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features publication-title: Biosyst. Eng. – start-page: 2278 year: 1998 end-page: 2324 ident: bib0056 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – start-page: 936 year: 2017 end-page: 944 ident: bib0062 article-title: Feature pyramid networks for object detection publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 484 year: 2016 end-page: 488 ident: bib0005 article-title: Automatic individual Holstein Friesian cattle identification via selective local coat pattern matching in RGB-D imagery publication-title: 2016 IEEE International Conference on Image Processing (ICIP) – year: 2019 ident: bib0015 article-title: An intelligent pig weights estimate method based on deep learning in sow stall environments publication-title: IEEE Access – reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. – volume: 14 start-page: e0226669 year: 2019 ident: bib0107 article-title: Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review publication-title: PLoS One – reference: Nasirahmadi, A., Edwards, S. A., Sturm, B., 2017. Implementation of machine vision for detecting behaviour of cattle and pigs. 10.1016/j.livsci.2017.05.014. – volume: 165 start-page: 104958 year: 2019 ident: bib0085 article-title: Cattle segmentation and contour extraction based on mask R-CNN for precision livestock farming publication-title: Comput. Electron. Agric. – start-page: 1 year: 2020 end-page: 7 ident: bib0035 article-title: A machine vision system to detect and count laying hens in battery cages publication-title: Animal – volume: 11 start-page: 2 year: 2020 end-page: 20 ident: bib116 article-title: Image Analysis and Computer Vision Applications in Animal Sciences: An Overview publication-title: Front. vet. sci. – volume: 116 start-page: 1 year: 2018 end-page: 17 ident: bib0055 article-title: Deep learning framework for recognition of cattle using muzzle point image pattern publication-title: Measurement – year: 2019 ident: bib0100 article-title: Automated pig counting using deep learning publication-title: Comput. Electron. Agric. – start-page: 1520 year: 2015 end-page: 1528 ident: bib0077 article-title: Learning deconvolution network for semantic segmentation publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – start-page: 1377 year: 2015 end-page: 1385 ident: bib0068 article-title: Semantic image segmentation via deep parsing network publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – reference: Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks. – reference: Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning. – year: 2013 ident: bib0102 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. – volume: 10 start-page: 17557 year: 2020 ident: bib0006 article-title: A computer vision approach to improving cattle digestive health by the monitoring of faecal samples publication-title: Sci. Rep. – start-page: 2980 year: 2017 end-page: 2988 ident: bib0043 article-title: Mask R-CNN publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) – year: 2019 ident: bib0048 article-title: An improved single shot multibox detector method applied in body condition score for dairy cows publication-title: Animals – reference: Lin, M., Chen, Q., Yan, S., 2013. Network in network. – year: 2020 ident: bib0018 article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method publication-title: Biosyst. Eng. – year: 2019 ident: bib0110 article-title: Real-time sow behavior detection based on deep learning publication-title: Comput. Electron. Agric. – reference: Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks. – start-page: 3476 year: 2013 end-page: 3483 ident: bib0096 article-title: Deep convolutional network cascade for facial point detection publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib0020 article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory publication-title: Comput. Electron. Agric. – reference: Alameer, A., 2020. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. 10.25405/data.ncl.13042619.v1. – volume: 7 start-page: 108049 year: 2019 end-page: 108060 ident: bib0027 article-title: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning publication-title: IEEE Access – year: 2020 ident: bib0016 article-title: Hot topic: detecting digital dermatitis with computer vision publication-title: J. Dairy Sci. – start-page: 6230 year: 2017 end-page: 6239 ident: bib0111 article-title: Pyramid scene parsing network publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., Dean, J., 2018. Efficient neural architecture search via parameter sharing. – volume: 192 start-page: 72 year: 2020 end-page: 89 ident: bib0106 article-title: Detection of the respiratory rate of standing cows by combining the DeepLab V3+ semantic segmentation model with the phase-based video magnification algorithm publication-title: Biosyst. Eng. – start-page: 237 year: 2019 end-page: 243 ident: bib0004 article-title: Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference publication-title: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – year: 2019 ident: bib0059 article-title: Deep cascaded convolutional models for cattle pose estimation publication-title: Comput. Electron. Agric. – year: 2020 ident: bib0109 article-title: Broiler stunned state detection based on an improved fast region based convolutional neural network algorithm publication-title: Poult. Sci. – volume: 11 start-page: 923 year: 2020 ident: bib0012 article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems publication-title: Front. Genet. – volume: 11 start-page: 3371 year: 2010 end-page: -3408 ident: bib0103 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – start-page: 318 year: 2019 end-page: 323 ident: bib0083 article-title: Individual cattle identification using a deep learning based framework publication-title: IFAC-PapersOnLine – volume: 98 start-page: 1 year: 2020 end-page: 9 ident: bib0032 article-title: Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images publication-title: J. Anim. Sci. – reference: Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y., 2019. Semantic image synthesis with spatially-adaptive normalization. – year: 2019 ident: bib0082 article-title: Multi-pig part detection and association with a fully-convolutional network publication-title: Sensors (Switzerland) – volume: 17 start-page: 1005 year: 2020 end-page: 1016 ident: bib0073 article-title: Automated classification for visual-only postmortem inspection of porcine pathology publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2020 ident: bib0017 article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects publication-title: Comput. Electron. Agric. – start-page: 1440 year: 2015 end-page: -1448 ident: bib0037 article-title: Fast r-cnn publication-title: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) – year: 2020 ident: bib0093 article-title: Embeddedpigdet-fast and accurate pig detection for embedded board implementations publication-title: Appl. Sci. (Switzerland) – reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014a. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062. – start-page: 1798 year: 2020 end-page: 1802 ident: bib0079 article-title: Controllable skin lesion synthesis using texture patches, Bzier curves and conditional GANs publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) – year: 2019 ident: bib0049 article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection publication-title: Comput. Electron. Agric. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib0007 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Benitez Pereira, L. S., Koskela, O., Plnen, I., Kunttu, I., 2020. Data set of labeled scenes in a barn in front of automatic milking system. 10.5281/zenodo.3981400. – year: 2019 ident: bib0036 article-title: Fully convolutional network with gated recurrent unit for hatching egg activity classification publication-title: IEEE Access – volume: 0 year: 2020 ident: bib0051 article-title: Accurate detection of lameness in dairy cattle with computer vision: a new and individualized detection strategy based on the analysis of the supporting phase publication-title: J. Dairy Sci. – reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2015. You only look once: unified, real-time object detection. – volume: 5 start-page: 107 year: 2018 ident: bib0041 article-title: Now you see me: convolutional neural network based tracker for dairy cows publication-title: Front. Robot. AI – volume: 88 start-page: 303 year: 2010 end-page: -338 ident: bib0029 article-title: The pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vis. – start-page: 3431 year: 2015 end-page: 3440 ident: bib0069 article-title: Fully convolutional networks for semantic segmentation publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 6154 year: 2018 end-page: 6162 ident: bib0014 article-title: Cascade R-CNN: delving into high quality object detection publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1289 year: 2016 end-page: 1293 ident: bib0067 article-title: 3D head pose estimation with convolutional neural network trained on synthetic images publication-title: 2016 IEEE International Conference on Image Processing (ICIP) – start-page: 740 year: 2014 end-page: 755 ident: bib0065 article-title: Microsoft coco: common objects in context publication-title: European Conference on Computer Vision (ECCV) – volume: 11 start-page: 133 year: 2019 end-page: 145 ident: bib0033 article-title: Recognition of bovine infectious keratoconjunctivitis using thermographic imaging and convolutional neural networks publication-title: Braz. J. Appl. Comput. – start-page: 21 year: 2016 end-page: 37 ident: bib0066 article-title: SSD: single shot multibox detector publication-title: ECCV – reference: Chollet, F., 2016. Xception: deep learning with depthwise separable convolutions. – year: 2020 ident: bib0101 article-title: Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system publication-title: Biosyst. Eng. – year: 2015 ident: bib0112 article-title: Recognition of individual dairy cattle based on convolutional neural networks publication-title: Trans. Chin. Soc. Agric. Eng. – reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. – reference: Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. – year: 2020 ident: bib0030 article-title: Comparative study on poultry target tracking algorithms based on a deep regression network publication-title: Biosyst. Eng. – volume: 172 start-page: 105345 year: 2020 ident: bib0010 article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms publication-title: Comput. Electron. Agric. – reference: Kingma, D. P., Ba, J., 2017. Adam: a method for stochastic optimization. – year: 2020 ident: bib0078 article-title: Estimating conformational traits in dairy cattle with deepaps: a two-step deep learning automated phenotyping and segmentation approach publication-title: Front. Genet. – start-page: 936 year: 2017 end-page: 944 ident: bib0063 article-title: Feature pyramid networks for object detection publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2020 ident: bib0088 article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning publication-title: Comput. Electron. Agric. – reference: Gao, J., Burghardt, T., Andrew, W., Dowsey, A. W., Campbell, N. W., 2021. Towards self-supervision for video identification of individual Holstein-Friesian cattle: The cows2021 dataset. – volume: 159 start-page: 296 year: 2020 end-page: -307 ident: bib0058 article-title: Object detection in optical remote sensing images: asurvey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0046 article-title: Long short-term memory publication-title: Neural Comput. – reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. – year: 2018 ident: bib0113 article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector publication-title: Comput. Electron. Agric. – volume: 100 start-page: 7729 year: 2017 end-page: 7738 ident: bib0089 article-title: Robotic milking: technology, farm design, and effects on work flow publication-title: J. Dairy Sci. – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception architecture for computer vision. – start-page: 833 year: 2018 end-page: 851 ident: bib0025 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Computer Vision – ECCV 2018 – volume: 38 start-page: 142 year: 2016 end-page: -158 ident: bib0038 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 ident: bib0115 article-title: Detection of sick broilers by digital image processing and deep learning publication-title: Biosyst. Eng. – year: 1998 ident: bib0031 article-title: WordNet: An Electronic Lexical Database, Language, Speech, and Communication – start-page: 620 year: 2018 end-page: 631 ident: bib0105 article-title: Video-based pig recognition with feature-integrated transfer learning publication-title: Biometric Recognition – reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. – volume: 6 start-page: e1000097 year: 2009 ident: bib0074 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib0054 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 15 year: 2017 end-page: 29 ident: bib0076 article-title: Recent advances in wearable sensors for animal health management publication-title: Sens. Bio-Sensing Res. – start-page: 248 year: 2009 end-page: 255 ident: bib0028 article-title: Imagenet: a large-scale hierarchical image database publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: Vougioukas, K., Petridis, S., Pantic, M., 2019. Realistic speech-driven facial animation with GANs. – year: 2020 ident: bib0050 article-title: Automatic behavior recognition of group-housed goats using deep learning publication-title: Comput. Electron. Agric. – volume: 235 start-page: 106 year: 2017 end-page: 112 ident: bib0008 article-title: The use of infrared images to detect ticks in cattle and proposal of an algorithm for quantifying the infestation publication-title: Vet. Parasitol. – volume: 20 year: 2020 ident: bib0013 article-title: Panoptic segmentation of individual pigs for posture recognition publication-title: Sensors – reference: Bhole, A., Falzon, O., Biehl, M., Azzopardi, G., 2021. Holstein Cattle Recognition. 10.34894/O1ZBSA. – volume: 98 start-page: 145 year: 2018 end-page: 152 ident: bib0042 article-title: Towards on-farm pig face recognition using convolutional neural networks publication-title: Comput. Ind. – year: 2020 ident: bib0072 article-title: An adaptive pig face recognition approach using convolutional neural networks publication-title: Comput. Electron. Agric. – start-page: 1529 year: 2015 end-page: 1537 ident: bib0114 article-title: Conditional random fields as recurrent neural networks publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – start-page: 91 year: 2015 end-page: 99 ident: bib0087 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems 28 – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition. arXiv:1512.03385. – volume: 27 start-page: 2672 year: 2014 end-page: 2680 ident: bib0040 article-title: Generative Adversarial Nets publication-title: Advances in Neural Information Processing Systems – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions. – start-page: 2850 year: 2017 end-page: 2859 ident: bib0003 article-title: Visual localisation and individual identification of Holstein Friesian cattle via deep learning publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) – start-page: 3194 year: 2016 end-page: 3203 ident: bib0060 article-title: Efficient piecewise training of deep structured models for semantic segmentation publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: Andrew, W., Burghardt, T., Campbell, N., Gao, J., 2020. Opencows2020. 10.5523/bris.10m32xl88x2b61zlkkgz3fml17. – reference: . – year: 2016 ident: bib0039 article-title: Deep Learning – reference: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. – year: 2019 ident: bib0057 article-title: Practical monitoring of undergrown pigs for IoT-based large-scale smart farm publication-title: IEEE Access – reference: Rutten, C. J., Velthuis, A. G., Steeneveld, W., Hogeveen, H., 2013. Invited review: sensors to support health management on dairy farms. 10.3168/jds.2012-6107. – reference: Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial autoencoders. – start-page: 1 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0035 article-title: A machine vision system to detect and count laying hens in battery cages publication-title: Animal – start-page: 1798 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0079 article-title: Controllable skin lesion synthesis using texture patches, Bzier curves and conditional GANs – volume: 27 start-page: 2672 year: 2014 ident: 10.1016/j.livsci.2021.104700_bib0040 article-title: Generative Adversarial Nets – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0115 article-title: Detection of sick broilers by digital image processing and deep learning publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.01.003 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0016 article-title: Hot topic: detecting digital dermatitis with computer vision publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17478 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0030 article-title: Comparative study on poultry target tracking algorithms based on a deep regression network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.12.002 – year: 2013 ident: 10.1016/j.livsci.2021.104700_bib0102 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.livsci.2021.104700_bib0054 article-title: Imagenet classification with deep convolutional neural networks – start-page: 6154 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0014 article-title: Cascade R-CNN: delving into high quality object detection – ident: 10.1016/j.livsci.2021.104700_bib0009 – ident: 10.1016/j.livsci.2021.104700_bib0091 doi: 10.3168/jds.2012-6107 – ident: 10.1016/j.livsci.2021.104700_bib0104 doi: 10.1007/s11263-019-01251-8 – ident: 10.1016/j.livsci.2021.104700_bib0053 – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0082 article-title: Multi-pig part detection and association with a fully-convolutional network publication-title: Sensors (Switzerland) doi: 10.3390/s19040852 – volume: 5 start-page: 107 issue: SEP year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0041 article-title: Now you see me: convolutional neural network based tracker for dairy cows publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00107 – start-page: 3194 year: 2016 ident: 10.1016/j.livsci.2021.104700_bib0060 article-title: Efficient piecewise training of deep structured models for semantic segmentation – ident: 10.1016/j.livsci.2021.104700_bib0070 – ident: 10.1016/j.livsci.2021.104700_bib0064 doi: 10.1109/ICCV.2017.324 – start-page: 740 year: 2014 ident: 10.1016/j.livsci.2021.104700_bib0065 article-title: Microsoft coco: common objects in context – year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0113 article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.023 – start-page: 1529 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0114 article-title: Conditional random fields as recurrent neural networks – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0110 article-title: Real-time sow behavior detection based on deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104884 – start-page: 1377 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0068 article-title: Semantic image segmentation via deep parsing network – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0050 article-title: Automatic behavior recognition of group-housed goats using deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105706 – start-page: 1289 year: 2016 ident: 10.1016/j.livsci.2021.104700_bib0067 article-title: 3D head pose estimation with convolutional neural network trained on synthetic images – ident: 10.1016/j.livsci.2021.104700_bib0081 – ident: 10.1016/j.livsci.2021.104700_bib0099 doi: 10.1109/CVPR.2016.308 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.livsci.2021.104700_bib0029 article-title: The pascal visual object classes (VOC) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0020 article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory publication-title: Comput. Electron. Agric. – ident: 10.1016/j.livsci.2021.104700_bib0052 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0093 article-title: Embeddedpigdet-fast and accurate pig detection for embedded board implementations publication-title: Appl. Sci. (Switzerland) – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0021 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: 10.1016/j.livsci.2021.104700_bib0001 doi: 10.1038/s41598-020-70688-6 – volume: 17 start-page: 1005 issue: 2 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0073 article-title: Automated classification for visual-only postmortem inspection of porcine pathology publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2960106 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0101 article-title: Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.013 – ident: 10.1016/j.livsci.2021.104700_bib0026 doi: 10.1109/CVPR.2017.195 – ident: 10.1016/j.livsci.2021.104700_bib0047 – start-page: 3476 year: 2013 ident: 10.1016/j.livsci.2021.104700_bib0096 article-title: Deep convolutional network cascade for facial point detection – ident: 10.1016/j.livsci.2021.104700_bib0024 – start-page: 91 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0087 article-title: Faster R-CNN: towards real-time object detection with region proposal networks – start-page: 6230 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0111 article-title: Pyramid scene parsing network – ident: 10.1016/j.livsci.2021.104700_bib0061 – start-page: 21 year: 2016 ident: 10.1016/j.livsci.2021.104700_bib0066 article-title: SSD: single shot multibox detector – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0100 article-title: Automated pig counting using deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.05.049 – volume: 116 start-page: 1 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0055 article-title: Deep learning framework for recognition of cattle using muzzle point image pattern publication-title: Measurement doi: 10.1016/j.measurement.2017.10.064 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.livsci.2021.104700_bib0103 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.livsci.2021.104700_bib0092 – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0059 article-title: Deep cascaded convolutional models for cattle pose estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104885 – volume: 10 start-page: 17557 issue: 1 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0006 article-title: A computer vision approach to improving cattle digestive health by the monitoring of faecal samples publication-title: Sci. Rep. doi: 10.1038/s41598-020-74511-0 – ident: 10.1016/j.livsci.2021.104700_bib0002 – volume: 11 start-page: 133 issue: 3 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0033 article-title: Recognition of bovine infectious keratoconjunctivitis using thermographic imaging and convolutional neural networks publication-title: Braz. J. Appl. Comput. – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0036 article-title: Fully convolutional network with gated recurrent unit for hatching egg activity classification publication-title: IEEE Access – start-page: 1520 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0077 article-title: Learning deconvolution network for semantic segmentation – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0018 article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.05.010 – volume: 98 start-page: 1 issue: 8 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0032 article-title: Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images publication-title: J. Anim. Sci. doi: 10.1093/jas/skaa250 – start-page: 484 year: 2016 ident: 10.1016/j.livsci.2021.104700_bib0005 article-title: Automatic individual Holstein Friesian cattle identification via selective local coat pattern matching in RGB-D imagery – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0072 article-title: An adaptive pig face recognition approach using convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105386 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0007 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 38 start-page: 142 issue: 1 year: 2016 ident: 10.1016/j.livsci.2021.104700_bib0038 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2437384 – volume: 98 start-page: 145 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0042 article-title: Towards on-farm pig face recognition using convolutional neural networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.02.016 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0017 article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105580 – start-page: 248 year: 2009 ident: 10.1016/j.livsci.2021.104700_bib0028 article-title: Imagenet: a large-scale hierarchical image database – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0057 article-title: Practical monitoring of undergrown pigs for IoT-based large-scale smart farm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955761 – ident: 10.1016/j.livsci.2021.104700_bib0022 – volume: 20 issue: 13 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0013 article-title: Panoptic segmentation of individual pigs for posture recognition publication-title: Sensors – start-page: 936 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0062 article-title: Feature pyramid networks for object detection – ident: 10.1016/j.livsci.2021.104700_bib0080 doi: 10.1109/CVPR.2019.00244 – start-page: 234 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0090 article-title: U-Net: convolutional networks for biomedical image segmentation – start-page: 620 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0105 article-title: Video-based pig recognition with feature-integrated transfer learning – start-page: 237 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0004 article-title: Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference – year: 2016 ident: 10.1016/j.livsci.2021.104700_sbref0039 – start-page: 2850 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0003 article-title: Visual localisation and individual identification of Holstein Friesian cattle via deep learning – start-page: 2980 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0043 article-title: Mask R-CNN – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0015 article-title: An intelligent pig weights estimate method based on deep learning in sow stall environments publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953099 – ident: 10.1016/j.livsci.2021.104700_bib0011 – year: 1998 ident: 10.1016/j.livsci.2021.104700_bib0031 article-title: WordNet: An Electronic Lexical Database, Language, Speech, and Communication – ident: 10.1016/j.livsci.2021.104700_bib0075 doi: 10.1016/j.livsci.2017.05.014 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0088 article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105391 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0078 article-title: Estimating conformational traits in dairy cattle with deepaps: a two-step deep learning automated phenotyping and segmentation approach publication-title: Front. Genet. doi: 10.3389/fgene.2020.00513 – ident: 10.1016/j.livsci.2021.104700_bib0097 doi: 10.1609/aaai.v31i1.11231 – volume: 7 start-page: 108049 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0027 article-title: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933060 – volume: 6 start-page: e1000097 issue: 7 year: 2009 ident: 10.1016/j.livsci.2021.104700_bib0074 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000097 – start-page: 318 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0083 article-title: Individual cattle identification using a deep learning based framework – volume: 0 issue: 0 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0051 article-title: Accurate detection of lameness in dairy cattle with computer vision: a new and individualized detection strategy based on the analysis of the supporting phase publication-title: J. Dairy Sci. – ident: 10.1016/j.livsci.2021.104700_bib0094 – ident: 10.1016/j.livsci.2021.104700_bib0098 doi: 10.1109/CVPR.2015.7298594 – volume: 14 start-page: e0226669 issue: 12 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0107 article-title: Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review publication-title: PLoS One doi: 10.1371/journal.pone.0226669 – volume: 11 start-page: 2 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib116 article-title: Image Analysis and Computer Vision Applications in Animal Sciences: An Overview publication-title: Front. vet. sci. – start-page: 936 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0063 article-title: Feature pyramid networks for object detection – ident: 10.1016/j.livsci.2021.104700_bib0095 – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0048 article-title: An improved single shot multibox detector method applied in body condition score for dairy cows publication-title: Animals doi: 10.3390/ani9070470 – volume: 165 start-page: 104958 year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0085 article-title: Cattle segmentation and contour extraction based on mask R-CNN for precision livestock farming publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104958 – volume: 11 start-page: 923 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0012 article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems publication-title: Front. Genet. doi: 10.3389/fgene.2020.00923 – volume: 172 start-page: 105345 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0010 article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105345 – volume: 235 start-page: 106 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0008 article-title: The use of infrared images to detect ticks in cattle and proposal of an algorithm for quantifying the infestation publication-title: Vet. Parasitol. doi: 10.1016/j.vetpar.2017.01.020 – start-page: 2278 year: 1998 ident: 10.1016/j.livsci.2021.104700_bib0056 article-title: Gradient-based learning applied to document recognition – start-page: 833 year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0025 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – year: 2018 ident: 10.1016/j.livsci.2021.104700_bib0108 article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.09.011 – volume: 159 start-page: 296 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0058 article-title: Object detection in optical remote sensing images: asurvey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.023 – volume: 192 start-page: 72 year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0106 article-title: Detection of the respiratory rate of standing cows by combining the DeepLab V3+ semantic segmentation model with the phase-based video magnification algorithm publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.01.012 – ident: 10.1016/j.livsci.2021.104700_bib0071 – year: 2019 ident: 10.1016/j.livsci.2021.104700_bib0049 article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104982 – start-page: 1440 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0037 article-title: Fast r-cnn – year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0112 article-title: Recognition of individual dairy cattle based on convolutional neural networks publication-title: Trans. Chin. Soc. Agric. Eng. – ident: 10.1016/j.livsci.2021.104700_bib0034 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.livsci.2021.104700_bib0046 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.livsci.2021.104700_bib0086 doi: 10.1109/CVPR.2016.91 – volume: 100 start-page: 7729 issue: 9 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0089 article-title: Robotic milking: technology, farm design, and effects on work flow publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11715 – start-page: 3431 year: 2015 ident: 10.1016/j.livsci.2021.104700_bib0069 article-title: Fully convolutional networks for semantic segmentation – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0019 article-title: Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105642 – year: 2020 ident: 10.1016/j.livsci.2021.104700_bib0109 article-title: Broiler stunned state detection based on an improved fast region based convolutional neural network algorithm publication-title: Poult. Sci. doi: 10.3382/ps/pez564 – ident: 10.1016/j.livsci.2021.104700_bib0044 doi: 10.1109/CVPR.2016.90 – volume: 12 start-page: 15 year: 2017 ident: 10.1016/j.livsci.2021.104700_bib0076 article-title: Recent advances in wearable sensors for animal health management publication-title: Sens. Bio-Sensing Res. doi: 10.1016/j.sbsr.2016.11.004 |
SSID | ssj0054484 |
Score | 2.6095977 |
SecondaryResourceType | review_article |
Snippet | •Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image... In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104700 |
SubjectTerms | animal behavior animal identification animal stress Artificial intelligence biometry body weight Cattle computer vision data collection farm management feed intake image analysis information management livestock livestock and meat industry Machine learning phenotype Precision farming Swine |
Title | A review of deep learning algorithms for computer vision systems in livestock |
URI | https://dx.doi.org/10.1016/j.livsci.2021.104700 https://www.proquest.com/docview/2636510291 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWvdptmkzXERZVX0ooK30LzWytpddrse_e1OmlRQBMFjQxLKJPkyQ-b7BqEzkiqhuIYV4I4l_cKkiehTnVhlilwUVPFWu_Pung-f-jfP7HkJXXRcGJ9WGbE_YHqL1rGlF63Zm1ZV74GAr08AgyFo8aIrnmju1etgT59_fKV5MAg_2pdl6Jz43h19rs3xGlfvMDVEiRnxj52557n9fj39AOr29rnaQOvRbcSD8GebaMnWW2htMJpF6Qy7je4GOPBQ8MRhY-0Ux4oQI1yOR5NZ1by8zTH4qFjHSg44EMtxUHOe46rGY69C2wBG7qCnq8vHi2ESiyUkmhasSRj1vpXmqSGGpapkpuQQLXBBXE4UVSQVNoPoxeW5My5lRaqIcFlZUkbBiXB0Fy3Xk9ruIZxRawvheCE062uvXJyZ3FA42lwrl6l9RDsbSR2VxH1Bi7HsUsZeZbCs9JaVwbL7KPkaNQ1KGn_0zzvzy287QgLY_zHytFstCYfFv4CUtZ0s5jLjlAMIZYIc_Hv2Q7TqvwIf8QgtN7OFPQbHpFEn7c47QSuD69vh_SfP9-GU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oJaHKFBqJK7RxnHsxMdVRbWl3b3QSr1Z8WtJtWRXuym_n3HsIIGQKnGNPVY0tj_PaGa-AfhMcy21MLgDwvOsrG2eyZKZzGlbV7JmWgzcnYulmN-WX-_43QGcj7UwIa0yYX_E9AGt05dp0uZ027bTbxRtfYoYjE5LIF3hT-AwsFOVEzicXV7NlyMgc_RAhuAyzs-CwFhBN6R5rdufuDo6igUN8c4qlLr9-4X6C6uHB-jiCF4ky5HM4s8dw4HrXsLz2WqX2DPcK1jMSCxFIRtPrHNbkppCrEizXm12bf_9x56gmUpMauZAYm05iYTOe9J2ZB2IaHuEyddwe_Hl5nyepX4JmWE17zPOgnllRG6p5bluuG0EOgxCUl9RzTTNpSvQgfFV5a3PeZ1rKn3RNIwztCM8ewOTbtO5t0AK5lwtvail4aUJ5MWFrSzD2y2M9oU-ATbqSJlEJh56WqzVmDV2r6JmVdCsipo9gey31DaSaTwyvxrVr_44FArx_hHJT-NuKbwvIQjSdG7zsFeFYAJxqJD03X-vfgZP5zeLa3V9ubx6D8_CSCxP_ACTfvfgTtFO6fXHdA5_AZUL5EU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+deep+learning+algorithms+for+computer+vision+systems+in+livestock&rft.jtitle=Livestock+science&rft.au=Borges+Oliveira%2C+Dario+Augusto&rft.au=Ribeiro+Pereira%2C+Luiz+Gustavo&rft.au=Bresolin%2C+Tiago&rft.au=Pontes+Ferreira%2C+Rafael+Ehrich&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1871-1413&rft.eissn=1878-0490&rft.volume=253&rft_id=info:doi/10.1016%2Fj.livsci.2021.104700&rft.externalDocID=S1871141321003085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-1413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-1413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-1413&client=summon |