A review of deep learning algorithms for computer vision systems in livestock

•Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles. In livestock oper...

Full description

Saved in:
Bibliographic Details
Published inLivestock science Vol. 253; p. 104700
Main Authors Borges Oliveira, Dario Augusto, Ribeiro Pereira, Luiz Gustavo, Bresolin, Tiago, Pontes Ferreira, Rafael Ehrich, Reboucas Dorea, Joao Ricardo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text
ISSN1871-1413
1878-0490
DOI10.1016/j.livsci.2021.104700

Cover

Loading…
Abstract •Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles. In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions.
AbstractList In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions.
•Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior..•Swine was the most frequent species found in the reviewed articles. In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an improved predictive ability in livestock applications and a faster inference. However, only a few articles fully described the deep learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions.
ArticleNumber 104700
Author Bresolin, Tiago
Reboucas Dorea, Joao Ricardo
Pontes Ferreira, Rafael Ehrich
Borges Oliveira, Dario Augusto
Ribeiro Pereira, Luiz Gustavo
Author_xml – sequence: 1
  givenname: Dario Augusto
  surname: Borges Oliveira
  fullname: Borges Oliveira, Dario Augusto
  organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205
– sequence: 2
  givenname: Luiz Gustavo
  surname: Ribeiro Pereira
  fullname: Ribeiro Pereira, Luiz Gustavo
  organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205
– sequence: 3
  givenname: Tiago
  surname: Bresolin
  fullname: Bresolin, Tiago
  organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205
– sequence: 4
  givenname: Rafael Ehrich
  surname: Pontes Ferreira
  fullname: Pontes Ferreira, Rafael Ehrich
  organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205
– sequence: 5
  givenname: Joao Ricardo
  surname: Reboucas Dorea
  fullname: Reboucas Dorea, Joao Ricardo
  email: joao.dorea@wisc.edu
  organization: Department of Animal and Dairy Sciences, 1675 Observatory Drive, 266 Animal Sciences Building, Madison, WI 53706-1205
BookMark eNqFkLtuGzEQRQlDBvz8gxQs3azMWT52N4UBw_ALUJDGrgmKO3SorJYySSnQ35vKukrhVDOYuXcu5pyR2RhGJOQbsDkwUNer-eB3yfp5zWooI9EwdkROoW3aiomOzf72UIEAfkLOUloxJoVoxSn5cUsj7jz-ocHRHnFDBzRx9OMbNcNbiD7_WifqQqQ2rDfbjJHufPJhpGmfMpadH2lJx5SD_X1Bjp0ZEl5-1nPy-nD_cvdULX4-Pt_dLirLW5kryRsByirWQy_Z0sjeKCk71YFrYMmXwDqsVa1c07jeMdmyJXSuNoZLLjg4fk6uprubGN63JVuvfbI4DGbEsE26VlxJYHUHRfp9ktoYUorotPXZ5PJBjsYPGpg-MNQrPTHUB4Z6YljM4h_zJvq1ifv_2W4mGxYGBW7URYGjxd5HtFn3wX994AOxrI86
CitedBy_id crossref_primary_10_1016_j_aiia_2025_01_001
crossref_primary_10_3390_drones6050119
crossref_primary_10_3390_ani13071184
crossref_primary_10_2118_218881_PA
crossref_primary_10_3390_ani12010015
crossref_primary_10_1098_rsos_230269
crossref_primary_10_1016_j_compag_2024_109054
crossref_primary_10_1016_j_inffus_2022_08_010
crossref_primary_10_1016_j_compag_2023_108000
crossref_primary_10_1016_j_compag_2023_108167
crossref_primary_10_1111_age_13302
crossref_primary_10_1016_j_compag_2024_109459
crossref_primary_10_3390_agriculture12091314
crossref_primary_10_1016_j_compag_2022_106693
crossref_primary_10_1093_jas_skac111
crossref_primary_10_21603_2308_4057_2026_1_657
crossref_primary_10_1093_jas_skad249
crossref_primary_10_3390_agriculture14101785
crossref_primary_10_20965_jaciii_2022_p0930
crossref_primary_10_3390_agriculture12081207
crossref_primary_10_4236_gep_2024_1210016
crossref_primary_10_5187_jast_2024_e111
crossref_primary_10_1109_ACCESS_2023_3338540
crossref_primary_10_3390_ani13132078
crossref_primary_10_1093_tas_txad064
crossref_primary_10_3390_agriculture13102011
crossref_primary_10_3390_ani14010159
crossref_primary_10_3390_s22072689
crossref_primary_10_3390_agriculture13071349
crossref_primary_10_1093_jas_skac242
crossref_primary_10_1007_s10499_024_01422_6
crossref_primary_10_1093_bfgp_elae032
crossref_primary_10_3390_electronics11223791
crossref_primary_10_1016_j_biosystemseng_2022_09_003
crossref_primary_10_48175_IJARSCT_22061
crossref_primary_10_21015_vtse_v12i3_1909
crossref_primary_10_3390_computation11120244
crossref_primary_10_46632_jdaai_2_3_9
crossref_primary_10_3390_agriculture13101895
crossref_primary_10_1002_ps_8055
crossref_primary_10_3390_agriculture13102027
crossref_primary_10_1016_j_heliyon_2023_e17332
crossref_primary_10_12968_live_2023_28_6_254
crossref_primary_10_3389_fmolb_2022_1009099
crossref_primary_10_2478_aoas_2024_0098
crossref_primary_10_1038_s41598_023_45772_2
crossref_primary_10_1016_j_ecoinf_2024_102842
crossref_primary_10_3390_vetsci10010032
crossref_primary_10_3389_frai_2024_1299169
crossref_primary_10_1111_vde_13221
crossref_primary_10_1038_s41598_022_11842_0
crossref_primary_10_2478_amns_2021_2_00245
crossref_primary_10_1371_journal_pone_0260510
crossref_primary_10_1049_ipr2_13327
Cites_doi 10.1016/j.biosystemseng.2019.01.003
10.3168/jds.2019-17478
10.1016/j.biosystemseng.2019.12.002
10.1007/s11263-013-0620-5
10.3168/jds.2012-6107
10.1007/s11263-019-01251-8
10.3390/s19040852
10.3389/frobt.2018.00107
10.1109/ICCV.2017.324
10.1016/j.compag.2018.01.023
10.1016/j.compag.2019.104884
10.1016/j.compag.2020.105706
10.1109/CVPR.2016.308
10.1007/s11263-009-0275-4
10.1109/TPAMI.2017.2699184
10.1038/s41598-020-70688-6
10.1109/TASE.2019.2960106
10.1016/j.biosystemseng.2020.03.013
10.1109/CVPR.2017.195
10.1016/j.compag.2019.05.049
10.1016/j.measurement.2017.10.064
10.1016/j.compag.2019.104885
10.1038/s41598-020-74511-0
10.1016/j.biosystemseng.2020.05.010
10.1093/jas/skaa250
10.1016/j.compag.2020.105386
10.1109/TPAMI.2016.2644615
10.1109/TPAMI.2015.2437384
10.1016/j.compind.2018.02.016
10.1016/j.compag.2020.105580
10.1109/ACCESS.2019.2955761
10.1109/CVPR.2019.00244
10.1109/ACCESS.2019.2953099
10.1016/j.livsci.2017.05.014
10.1016/j.compag.2020.105391
10.3389/fgene.2020.00513
10.1609/aaai.v31i1.11231
10.1109/ACCESS.2019.2933060
10.1371/journal.pmed.1000097
10.1109/CVPR.2015.7298594
10.1371/journal.pone.0226669
10.3390/ani9070470
10.1016/j.compag.2019.104958
10.3389/fgene.2020.00923
10.1016/j.compag.2020.105345
10.1016/j.vetpar.2017.01.020
10.1016/j.biosystemseng.2018.09.011
10.1016/j.isprsjprs.2019.11.023
10.1016/j.biosystemseng.2020.01.012
10.1016/j.compag.2019.104982
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2016.91
10.3168/jds.2016-11715
10.1016/j.compag.2020.105642
10.3382/ps/pez564
10.1109/CVPR.2016.90
10.1016/j.sbsr.2016.11.004
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.livsci.2021.104700
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1878-0490
ExternalDocumentID 10_1016_j_livsci_2021_104700
S1871141321003085
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
QYZTP
RIG
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNL
SPCBC
SSA
SSH
SSZ
T5K
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c385t-537416c60d1d50ba5da6559691f71b3b109e2626f77fdf0580b19f2aa353431f3
IEDL.DBID .~1
ISSN 1871-1413
IngestDate Thu Jul 10 17:50:09 EDT 2025
Tue Jul 01 03:16:22 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Fri Feb 23 02:46:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Precision farming
Cattle
Swine
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-537416c60d1d50ba5da6559691f71b3b109e2626f77fdf0580b19f2aa353431f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S1871141321003085?via%3Dihub
PQID 2636510291
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636510291
crossref_citationtrail_10_1016_j_livsci_2021_104700
crossref_primary_10_1016_j_livsci_2021_104700
elsevier_sciencedirect_doi_10_1016_j_livsci_2021_104700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Livestock science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Cai, Xiao, Li, Xiong (bib0110) 2019
Chen, Zhu, Papandreou, Schroff, Adam (bib0025) 2018
Qiao, Truman, Sukkarieh (bib0085) 2019; 165
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0114) 2015
Jiang, Wu, Yin, Wu, Song, He (bib0049) 2019
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial autoencoders.
Chollet, F., 2016. Xception: deep learning with depthwise separable convolutions.
Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., Dean, J., 2018. Efficient neural architecture search via parameter sharing.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.
Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y., 2019. Semantic image synthesis with spatially-adaptive normalization.
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0021) 2018; 40
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2015. You only look once: unified, real-time object detection.
.
Goodfellow, Bengio, Courville (bib0039) 2016
Andrew, Greatwood, Burghardt (bib0003) 2017
Noh, Hong, Han (bib0077) 2015
Everingham, Gool, Williams, Winn, Zisserman (bib0029) 2010; 88
Neethirajan (bib0076) 2017; 12
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions.
Hochreiter, Schmidhuber (bib0046) 1997; 9
Fang, Huang, Cuan, Zhuang, Zhang (bib0030) 2020
Bezen, Edan, Halachmi (bib0010) 2020; 172
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014a. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062.
Nasirahmadi, A., Edwards, S. A., Sturm, B., 2017. Implementation of machine vision for detecting behaviour of cattle and pigs. 10.1016/j.livsci.2017.05.014.
Moher, Liberati, Tetzlaff, Altman (bib0074) 2009; 6
Yang, Huang, Zhu, Yang, Chen, Li, Xue (bib0108) 2018
Kumar, Pandey, Sai Ram Satwik, Kumar, Singh, Singh, Mohan (bib0055) 2018; 116
Benitez Pereira, L. S., Koskela, O., Plnen, I., Kunttu, I., 2020. Data set of labeled scenes in a barn in front of automatic milking system. 10.5281/zenodo.3981400.
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0066) 2016
(bib0031) 1998
Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation.
Ronneberger, Fischer, Brox (bib0090) 2015
Tsai, Hsu, Ding, Rustia, Lin (bib0101) 2020
Alameer, A., 2020. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. 10.25405/data.ncl.13042619.v1.
Andrew, Hannuna, Campbell, Burghardt (bib0005) 2016
Kingma, D. P., Ba, J., 2017. Adam: a method for stochastic optimization.
Geffen, Yitzhaky, Barchilon, Druyan, Halachmi (bib0035) 2020
Li, Wan, Cheng, Meng, Han (bib0058) 2020; 159
Oliveira (bib0079) 2020
Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes.
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0065) 2014
Li, Cai, Zhang, Ju, He (bib0059) 2019
Andrew, W., Burghardt, T., Campbell, N., Gao, J., 2020. Opencows2020. 10.5523/bris.10m32xl88x2b61zlkkgz3fml17.
Bhole, A., Falzon, O., Biehl, M., Azzopardi, G., 2021. Holstein Cattle Recognition. 10.34894/O1ZBSA.
Cernek, Bollig, Anklam, rte Dã (bib0016) 2020
Lee, Ahn, Seo, Chung, Park, Pan (bib0057) 2019
Lin, Shen, van den Hengel, Reid (bib0060) 2016
Nye, Zingaretti, Pérez-Enciso (bib0078) 2020
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning.
Long, Shelhamer, Darrell (bib0069) 2015
Chen, Zhu, Oczak, Maschat, Baumgartner, Larsen, Norton (bib0017) 2020
Guzhva, Ardö, Nilsson, Herlin, Tufvesson (bib0041) 2018; 5
Marsot, Mei, Shan, Ye, Feng, Yan, Li, Zhao (bib0072) 2020
Psota, Mittek, Pérez, Schmidt, Mote (bib0082) 2019
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0028) 2009
Cowton, Kyriazakis, Bacardit (bib0027) 2019; 7
Vougioukas, K., Petridis, S., Pantic, M., 2019. Realistic speech-driven facial animation with GANs.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception architecture for computer vision.
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0063) 2017
Zhuang, Zhang (bib0115) 2019
Girshick (bib0037) 2015
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0040) 2014; 27
Lin, M., Chen, Q., Yan, S., 2013. Network in network.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications.
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition.
Zhao, Shi, Qi, Wang, Jia (bib0111) 2017
Hansen, Smith, Smith, Salter, Baxter, Farish, Grieve (bib0042) 2018; 98
Chen, Zhu, Steibel, Siegford, Wurtz, Han, Norton (bib0020) 2020
Ren, He, Girshick, Sun (bib0087) 2015
Lecun, Bottou, Bengio, Haffner (bib0056) 1998
Cai, Vasconcelos (bib0014) 2018
Jiang, Rao, Zhang, Shen (bib0050) 2020
Uijlings, van de Sande, Gevers, Smeulders (bib0102) 2013
Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks.
Cang, He, Qiao (bib0015) 2019
Badrinarayanan, Kendall, Cipolla (bib0007) 2017; 39
Chen, Zhu, Steibel, Siegford, Han, Norton (bib0018) 2020
Geng, Wang, Xiao, Zhang, Wu, Liu (bib0036) 2019
Kang, Zhang, Liu (bib0051) 2020; 0
Zhao, He (bib0112) 2015
Liu, Liang, Wang, Li, Pei (bib0067) 2016
Atkinson, Smith, Smith, Reynolds, Humphries, Moorby, Leemans, Kingston-Smith (bib0006) 2020; 10
Sun, Wang, Tang (bib0096) 2013
Fernandes, Dorea, Rosa (bib116) 2020; 11
McKenna, Amaral, Kyriazakis (bib0073) 2020; 17
Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks.
Ye, Yousaf, Qi, Liu, Chen (bib0109) 2020
Rodenburg (bib0089) 2017; 100
Liu, Li, Luo, Loy, Tang (bib0068) 2015
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0103) 2010; 11
Fernandes, Dórea, Valente, Fitzgerald, Herring, Rosa (bib0032) 2020; 98
Girshick, Donahue, Darrell, Malik (bib0038) 2016; 38
Bruenger, Gentz, Traulsen, Koch (bib0013) 2020; 20
He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition. arXiv:1512.03385.
Qiao, Su, Kong, Sukkarieh, Lomax, Clark (bib0083) 2019
Wu, Yin, Jiang, Jiang, Li, Song (bib0106) 2020; 192
Chen, Zhu, Steibel, Siegford, Han, Norton (bib0019) 2020
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0062) 2017
Bresolin, Dorea (bib0012) 2020; 11
Rutten, C. J., Velthuis, A. G., Steeneveld, W., Hogeveen, H., 2013. Invited review: sensors to support health management on dairy farms. 10.3168/jds.2012-6107.
Gao, J., Burghardt, T., Andrew, W., Dowsey, A. W., Campbell, N. W., 2021. Towards self-supervision for video identification of individual Holstein-Friesian cattle: The cows2021 dataset.
Barbedo, Gomes, Cardoso, Domingues, Ramos, McManus (bib0008) 2017; 235
de Freitas, Camargo, Comin, Domingues, Gaspar, Cardoso (bib0033) 2019; 11
Krizhevsky, Sutskever, Hinton (bib0054) 2012; 25
Seo, Ahn, Kim, Lee, Chung, Park (bib0093) 2020
Wurtz, Camerlink, D’Eath, Fernández, Norton, Steibel, Siegford (bib0107) 2019; 14
Andrew, Greatwood, Burghardt (bib0004) 2019
Zheng, Zhu, Yang, Wang, Tu, Xue (bib0113) 2018
Wang, Liu, Xiao (bib0105) 2018
Riekert, Klein, Adrion, Hoffmann, Gallmann (bib0088) 2020
Huang, Hu, Wang, Yang, Zhang, Shi (bib0048) 2019
Tian, Guo, Chen, Wang, Long, Ma (bib0100) 2019
He, Gkioxari, Dollár, Girshick (bib0043) 2017
Jiang (10.1016/j.livsci.2021.104700_bib0049) 2019
Zhao (10.1016/j.livsci.2021.104700_bib0112) 2015
Bezen (10.1016/j.livsci.2021.104700_bib0010) 2020; 172
Girshick (10.1016/j.livsci.2021.104700_bib0037) 2015
Nye (10.1016/j.livsci.2021.104700_bib0078) 2020
Barbedo (10.1016/j.livsci.2021.104700_bib0008) 2017; 235
Lee (10.1016/j.livsci.2021.104700_bib0057) 2019
Cowton (10.1016/j.livsci.2021.104700_bib0027) 2019; 7
Zhang (10.1016/j.livsci.2021.104700_bib0110) 2019
Guzhva (10.1016/j.livsci.2021.104700_bib0041) 2018; 5
Ronneberger (10.1016/j.livsci.2021.104700_bib0090) 2015
10.1016/j.livsci.2021.104700_bib0061
10.1016/j.livsci.2021.104700_bib0064
Chen (10.1016/j.livsci.2021.104700_bib0017) 2020
Riekert (10.1016/j.livsci.2021.104700_bib0088) 2020
Lin (10.1016/j.livsci.2021.104700_bib0060) 2016
Lin (10.1016/j.livsci.2021.104700_bib0063) 2017
Uijlings (10.1016/j.livsci.2021.104700_bib0102) 2013
Zheng (10.1016/j.livsci.2021.104700_bib0113) 2018
Marsot (10.1016/j.livsci.2021.104700_bib0072) 2020
10.1016/j.livsci.2021.104700_bib0047
Cai (10.1016/j.livsci.2021.104700_bib0014) 2018
10.1016/j.livsci.2021.104700_bib0044
Cang (10.1016/j.livsci.2021.104700_bib0015) 2019
10.1016/j.livsci.2021.104700_bib0053
10.1016/j.livsci.2021.104700_bib0052
He (10.1016/j.livsci.2021.104700_bib0043) 2017
Oliveira (10.1016/j.livsci.2021.104700_bib0079) 2020
Li (10.1016/j.livsci.2021.104700_bib0058) 2020; 159
Liu (10.1016/j.livsci.2021.104700_bib0066) 2016
Long (10.1016/j.livsci.2021.104700_bib0069) 2015
Andrew (10.1016/j.livsci.2021.104700_bib0003) 2017
Jiang (10.1016/j.livsci.2021.104700_bib0050) 2020
Chen (10.1016/j.livsci.2021.104700_bib0019) 2020
Hochreiter (10.1016/j.livsci.2021.104700_bib0046) 1997; 9
Tian (10.1016/j.livsci.2021.104700_bib0100) 2019
Girshick (10.1016/j.livsci.2021.104700_bib0038) 2016; 38
Chen (10.1016/j.livsci.2021.104700_bib0025) 2018
10.1016/j.livsci.2021.104700_bib0034
Deng (10.1016/j.livsci.2021.104700_bib0028) 2009
Kumar (10.1016/j.livsci.2021.104700_bib0055) 2018; 116
Geffen (10.1016/j.livsci.2021.104700_bib0035) 2020
Fernandes (10.1016/j.livsci.2021.104700_bib116) 2020; 11
Wu (10.1016/j.livsci.2021.104700_bib0106) 2020; 192
Zhao (10.1016/j.livsci.2021.104700_bib0111) 2017
Chen (10.1016/j.livsci.2021.104700_bib0021) 2018; 40
Fernandes (10.1016/j.livsci.2021.104700_bib0032) 2020; 98
Goodfellow (10.1016/j.livsci.2021.104700_bib0040) 2014; 27
Psota (10.1016/j.livsci.2021.104700_bib0082) 2019
Moher (10.1016/j.livsci.2021.104700_bib0074) 2009; 6
10.1016/j.livsci.2021.104700_bib0026
Noh (10.1016/j.livsci.2021.104700_bib0077) 2015
Neethirajan (10.1016/j.livsci.2021.104700_bib0076) 2017; 12
Wang (10.1016/j.livsci.2021.104700_bib0105) 2018
10.1016/j.livsci.2021.104700_bib0022
10.1016/j.livsci.2021.104700_bib0024
Kang (10.1016/j.livsci.2021.104700_bib0051) 2020; 0
Liu (10.1016/j.livsci.2021.104700_bib0068) 2015
Bresolin (10.1016/j.livsci.2021.104700_bib0012) 2020; 11
Ye (10.1016/j.livsci.2021.104700_bib0109) 2020
Cernek (10.1016/j.livsci.2021.104700_bib0016) 2020
Chen (10.1016/j.livsci.2021.104700_bib0018) 2020
Huang (10.1016/j.livsci.2021.104700_bib0048) 2019
Wurtz (10.1016/j.livsci.2021.104700_bib0107) 2019; 14
Fang (10.1016/j.livsci.2021.104700_bib0030) 2020
Zheng (10.1016/j.livsci.2021.104700_bib0114) 2015
10.1016/j.livsci.2021.104700_bib0011
10.1016/j.livsci.2021.104700_bib0099
Zhuang (10.1016/j.livsci.2021.104700_bib0115) 2019
Atkinson (10.1016/j.livsci.2021.104700_bib0006) 2020; 10
10.1016/j.livsci.2021.104700_bib0098
Liu (10.1016/j.livsci.2021.104700_bib0067) 2016
Vincent (10.1016/j.livsci.2021.104700_bib0103) 2010; 11
Qiao (10.1016/j.livsci.2021.104700_bib0085) 2019; 165
Yang (10.1016/j.livsci.2021.104700_bib0108) 2018
Hansen (10.1016/j.livsci.2021.104700_bib0042) 2018; 98
Qiao (10.1016/j.livsci.2021.104700_bib0083) 2019
10.1016/j.livsci.2021.104700_bib0009
Rodenburg (10.1016/j.livsci.2021.104700_bib0089) 2017; 100
10.1016/j.livsci.2021.104700_bib0002
10.1016/j.livsci.2021.104700_bib0001
10.1016/j.livsci.2021.104700_bib0095
de Freitas (10.1016/j.livsci.2021.104700_bib0033) 2019; 11
10.1016/j.livsci.2021.104700_bib0094
Tsai (10.1016/j.livsci.2021.104700_bib0101) 2020
10.1016/j.livsci.2021.104700_bib0097
10.1016/j.livsci.2021.104700_bib0091
Lin (10.1016/j.livsci.2021.104700_bib0062) 2017
10.1016/j.livsci.2021.104700_bib0092
Li (10.1016/j.livsci.2021.104700_bib0059) 2019
Sun (10.1016/j.livsci.2021.104700_bib0096) 2013
Lin (10.1016/j.livsci.2021.104700_bib0065) 2014
Lecun (10.1016/j.livsci.2021.104700_bib0056) 1998
Badrinarayanan (10.1016/j.livsci.2021.104700_bib0007) 2017; 39
10.1016/j.livsci.2021.104700_bib0086
10.1016/j.livsci.2021.104700_bib0080
Seo (10.1016/j.livsci.2021.104700_bib0093) 2020
Krizhevsky (10.1016/j.livsci.2021.104700_bib0054) 2012; 25
10.1016/j.livsci.2021.104700_bib0081
Andrew (10.1016/j.livsci.2021.104700_bib0004) 2019
Andrew (10.1016/j.livsci.2021.104700_bib0005) 2016
Goodfellow (10.1016/j.livsci.2021.104700_sbref0039) 2016
(10.1016/j.livsci.2021.104700_bib0031) 1998
Geng (10.1016/j.livsci.2021.104700_bib0036) 2019
10.1016/j.livsci.2021.104700_bib0104
Everingham (10.1016/j.livsci.2021.104700_bib0029) 2010; 88
Chen (10.1016/j.livsci.2021.104700_bib0020) 2020
10.1016/j.livsci.2021.104700_bib0075
10.1016/j.livsci.2021.104700_bib0071
Bruenger (10.1016/j.livsci.2021.104700_bib0013) 2020; 20
10.1016/j.livsci.2021.104700_bib0070
Ren (10.1016/j.livsci.2021.104700_bib0087) 2015
McKenna (10.1016/j.livsci.2021.104700_bib0073) 2020; 17
References_xml – start-page: 234
  year: 2015
  end-page: 241
  ident: bib0090
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
– year: 2020
  ident: bib0019
  article-title: Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method
  publication-title: Comput. Electron. Agric.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0021
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: bib0108
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosyst. Eng.
– start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0056
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– start-page: 936
  year: 2017
  end-page: 944
  ident: bib0062
  article-title: Feature pyramid networks for object detection
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 484
  year: 2016
  end-page: 488
  ident: bib0005
  article-title: Automatic individual Holstein Friesian cattle identification via selective local coat pattern matching in RGB-D imagery
  publication-title: 2016 IEEE International Conference on Image Processing (ICIP)
– year: 2019
  ident: bib0015
  article-title: An intelligent pig weights estimate method based on deep learning in sow stall environments
  publication-title: IEEE Access
– reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection.
– volume: 14
  start-page: e0226669
  year: 2019
  ident: bib0107
  article-title: Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review
  publication-title: PLoS One
– reference: Nasirahmadi, A., Edwards, S. A., Sturm, B., 2017. Implementation of machine vision for detecting behaviour of cattle and pigs. 10.1016/j.livsci.2017.05.014.
– volume: 165
  start-page: 104958
  year: 2019
  ident: bib0085
  article-title: Cattle segmentation and contour extraction based on mask R-CNN for precision livestock farming
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib0035
  article-title: A machine vision system to detect and count laying hens in battery cages
  publication-title: Animal
– volume: 11
  start-page: 2
  year: 2020
  end-page: 20
  ident: bib116
  article-title: Image Analysis and Computer Vision Applications in Animal Sciences: An Overview
  publication-title: Front. vet. sci.
– volume: 116
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib0055
  article-title: Deep learning framework for recognition of cattle using muzzle point image pattern
  publication-title: Measurement
– year: 2019
  ident: bib0100
  article-title: Automated pig counting using deep learning
  publication-title: Comput. Electron. Agric.
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0077
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– start-page: 1377
  year: 2015
  end-page: 1385
  ident: bib0068
  article-title: Semantic image segmentation via deep parsing network
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– reference: Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks.
– reference: Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-resnet and the impact of residual connections on learning.
– year: 2013
  ident: bib0102
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
– volume: 10
  start-page: 17557
  year: 2020
  ident: bib0006
  article-title: A computer vision approach to improving cattle digestive health by the monitoring of faecal samples
  publication-title: Sci. Rep.
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0043
  article-title: Mask R-CNN
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– year: 2019
  ident: bib0048
  article-title: An improved single shot multibox detector method applied in body condition score for dairy cows
  publication-title: Animals
– reference: Lin, M., Chen, Q., Yan, S., 2013. Network in network.
– year: 2020
  ident: bib0018
  article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method
  publication-title: Biosyst. Eng.
– year: 2019
  ident: bib0110
  article-title: Real-time sow behavior detection based on deep learning
  publication-title: Comput. Electron. Agric.
– reference: Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using adversarial networks.
– start-page: 3476
  year: 2013
  end-page: 3483
  ident: bib0096
  article-title: Deep convolutional network cascade for facial point detection
  publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0020
  article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
  publication-title: Comput. Electron. Agric.
– reference: Alameer, A., 2020. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. 10.25405/data.ncl.13042619.v1.
– volume: 7
  start-page: 108049
  year: 2019
  end-page: 108060
  ident: bib0027
  article-title: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning
  publication-title: IEEE Access
– year: 2020
  ident: bib0016
  article-title: Hot topic: detecting digital dermatitis with computer vision
  publication-title: J. Dairy Sci.
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: bib0111
  article-title: Pyramid scene parsing network
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., Dean, J., 2018. Efficient neural architecture search via parameter sharing.
– volume: 192
  start-page: 72
  year: 2020
  end-page: 89
  ident: bib0106
  article-title: Detection of the respiratory rate of standing cows by combining the DeepLab V3+ semantic segmentation model with the phase-based video magnification algorithm
  publication-title: Biosyst. Eng.
– start-page: 237
  year: 2019
  end-page: 243
  ident: bib0004
  article-title: Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference
  publication-title: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– year: 2019
  ident: bib0059
  article-title: Deep cascaded convolutional models for cattle pose estimation
  publication-title: Comput. Electron. Agric.
– year: 2020
  ident: bib0109
  article-title: Broiler stunned state detection based on an improved fast region based convolutional neural network algorithm
  publication-title: Poult. Sci.
– volume: 11
  start-page: 923
  year: 2020
  ident: bib0012
  article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems
  publication-title: Front. Genet.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: -3408
  ident: bib0103
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 318
  year: 2019
  end-page: 323
  ident: bib0083
  article-title: Individual cattle identification using a deep learning based framework
  publication-title: IFAC-PapersOnLine
– volume: 98
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0032
  article-title: Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images
  publication-title: J. Anim. Sci.
– reference: Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y., 2019. Semantic image synthesis with spatially-adaptive normalization.
– year: 2019
  ident: bib0082
  article-title: Multi-pig part detection and association with a fully-convolutional network
  publication-title: Sensors (Switzerland)
– volume: 17
  start-page: 1005
  year: 2020
  end-page: 1016
  ident: bib0073
  article-title: Automated classification for visual-only postmortem inspection of porcine pathology
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2020
  ident: bib0017
  article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects
  publication-title: Comput. Electron. Agric.
– start-page: 1440
  year: 2015
  end-page: -1448
  ident: bib0037
  article-title: Fast r-cnn
  publication-title: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV)
– year: 2020
  ident: bib0093
  article-title: Embeddedpigdet-fast and accurate pig detection for embedded board implementations
  publication-title: Appl. Sci. (Switzerland)
– reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014a. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062.
– start-page: 1798
  year: 2020
  end-page: 1802
  ident: bib0079
  article-title: Controllable skin lesion synthesis using texture patches, Bzier curves and conditional GANs
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– year: 2019
  ident: bib0049
  article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0007
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Benitez Pereira, L. S., Koskela, O., Plnen, I., Kunttu, I., 2020. Data set of labeled scenes in a barn in front of automatic milking system. 10.5281/zenodo.3981400.
– year: 2019
  ident: bib0036
  article-title: Fully convolutional network with gated recurrent unit for hatching egg activity classification
  publication-title: IEEE Access
– volume: 0
  year: 2020
  ident: bib0051
  article-title: Accurate detection of lameness in dairy cattle with computer vision: a new and individualized detection strategy based on the analysis of the supporting phase
  publication-title: J. Dairy Sci.
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2015. You only look once: unified, real-time object detection.
– volume: 5
  start-page: 107
  year: 2018
  ident: bib0041
  article-title: Now you see me: convolutional neural network based tracker for dairy cows
  publication-title: Front. Robot. AI
– volume: 88
  start-page: 303
  year: 2010
  end-page: -338
  ident: bib0029
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0069
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 6154
  year: 2018
  end-page: 6162
  ident: bib0014
  article-title: Cascade R-CNN: delving into high quality object detection
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1289
  year: 2016
  end-page: 1293
  ident: bib0067
  article-title: 3D head pose estimation with convolutional neural network trained on synthetic images
  publication-title: 2016 IEEE International Conference on Image Processing (ICIP)
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0065
  article-title: Microsoft coco: common objects in context
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 11
  start-page: 133
  year: 2019
  end-page: 145
  ident: bib0033
  article-title: Recognition of bovine infectious keratoconjunctivitis using thermographic imaging and convolutional neural networks
  publication-title: Braz. J. Appl. Comput.
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0066
  article-title: SSD: single shot multibox detector
  publication-title: ECCV
– reference: Chollet, F., 2016. Xception: deep learning with depthwise separable convolutions.
– year: 2020
  ident: bib0101
  article-title: Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system
  publication-title: Biosyst. Eng.
– year: 2015
  ident: bib0112
  article-title: Recognition of individual dairy cattle based on convolutional neural networks
  publication-title: Trans. Chin. Soc. Agric. Eng.
– reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation.
– reference: Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes.
– year: 2020
  ident: bib0030
  article-title: Comparative study on poultry target tracking algorithms based on a deep regression network
  publication-title: Biosyst. Eng.
– volume: 172
  start-page: 105345
  year: 2020
  ident: bib0010
  article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms
  publication-title: Comput. Electron. Agric.
– reference: Kingma, D. P., Ba, J., 2017. Adam: a method for stochastic optimization.
– year: 2020
  ident: bib0078
  article-title: Estimating conformational traits in dairy cattle with deepaps: a two-step deep learning automated phenotyping and segmentation approach
  publication-title: Front. Genet.
– start-page: 936
  year: 2017
  end-page: 944
  ident: bib0063
  article-title: Feature pyramid networks for object detection
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2020
  ident: bib0088
  article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning
  publication-title: Comput. Electron. Agric.
– reference: Gao, J., Burghardt, T., Andrew, W., Dowsey, A. W., Campbell, N. W., 2021. Towards self-supervision for video identification of individual Holstein-Friesian cattle: The cows2021 dataset.
– volume: 159
  start-page: 296
  year: 2020
  end-page: -307
  ident: bib0058
  article-title: Object detection in optical remote sensing images: asurvey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0046
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition.
– year: 2018
  ident: bib0113
  article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector
  publication-title: Comput. Electron. Agric.
– volume: 100
  start-page: 7729
  year: 2017
  end-page: 7738
  ident: bib0089
  article-title: Robotic milking: technology, farm design, and effects on work flow
  publication-title: J. Dairy Sci.
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception architecture for computer vision.
– start-page: 833
  year: 2018
  end-page: 851
  ident: bib0025
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Computer Vision – ECCV 2018
– volume: 38
  start-page: 142
  year: 2016
  end-page: -158
  ident: bib0038
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: bib0115
  article-title: Detection of sick broilers by digital image processing and deep learning
  publication-title: Biosyst. Eng.
– year: 1998
  ident: bib0031
  article-title: WordNet: An Electronic Lexical Database, Language, Speech, and Communication
– start-page: 620
  year: 2018
  end-page: 631
  ident: bib0105
  article-title: Video-based pig recognition with feature-integrated transfer learning
  publication-title: Biometric Recognition
– reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.
– volume: 6
  start-page: e1000097
  year: 2009
  ident: bib0074
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0054
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 15
  year: 2017
  end-page: 29
  ident: bib0076
  article-title: Recent advances in wearable sensors for animal health management
  publication-title: Sens. Bio-Sensing Res.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0028
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Vougioukas, K., Petridis, S., Pantic, M., 2019. Realistic speech-driven facial animation with GANs.
– year: 2020
  ident: bib0050
  article-title: Automatic behavior recognition of group-housed goats using deep learning
  publication-title: Comput. Electron. Agric.
– volume: 235
  start-page: 106
  year: 2017
  end-page: 112
  ident: bib0008
  article-title: The use of infrared images to detect ticks in cattle and proposal of an algorithm for quantifying the infestation
  publication-title: Vet. Parasitol.
– volume: 20
  year: 2020
  ident: bib0013
  article-title: Panoptic segmentation of individual pigs for posture recognition
  publication-title: Sensors
– reference: Bhole, A., Falzon, O., Biehl, M., Azzopardi, G., 2021. Holstein Cattle Recognition. 10.34894/O1ZBSA.
– volume: 98
  start-page: 145
  year: 2018
  end-page: 152
  ident: bib0042
  article-title: Towards on-farm pig face recognition using convolutional neural networks
  publication-title: Comput. Ind.
– year: 2020
  ident: bib0072
  article-title: An adaptive pig face recognition approach using convolutional neural networks
  publication-title: Comput. Electron. Agric.
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: bib0114
  article-title: Conditional random fields as recurrent neural networks
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0087
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems 28
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition. arXiv:1512.03385.
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0040
  article-title: Generative Adversarial Nets
  publication-title: Advances in Neural Information Processing Systems
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions.
– start-page: 2850
  year: 2017
  end-page: 2859
  ident: bib0003
  article-title: Visual localisation and individual identification of Holstein Friesian cattle via deep learning
  publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW)
– start-page: 3194
  year: 2016
  end-page: 3203
  ident: bib0060
  article-title: Efficient piecewise training of deep structured models for semantic segmentation
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Andrew, W., Burghardt, T., Campbell, N., Gao, J., 2020. Opencows2020. 10.5523/bris.10m32xl88x2b61zlkkgz3fml17.
– reference: .
– year: 2016
  ident: bib0039
  article-title: Deep Learning
– reference: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications.
– year: 2019
  ident: bib0057
  article-title: Practical monitoring of undergrown pigs for IoT-based large-scale smart farm
  publication-title: IEEE Access
– reference: Rutten, C. J., Velthuis, A. G., Steeneveld, W., Hogeveen, H., 2013. Invited review: sensors to support health management on dairy farms. 10.3168/jds.2012-6107.
– reference: Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial autoencoders.
– start-page: 1
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0035
  article-title: A machine vision system to detect and count laying hens in battery cages
  publication-title: Animal
– start-page: 1798
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0079
  article-title: Controllable skin lesion synthesis using texture patches, Bzier curves and conditional GANs
– volume: 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.livsci.2021.104700_bib0040
  article-title: Generative Adversarial Nets
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0115
  article-title: Detection of sick broilers by digital image processing and deep learning
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.01.003
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0016
  article-title: Hot topic: detecting digital dermatitis with computer vision
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17478
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0030
  article-title: Comparative study on poultry target tracking algorithms based on a deep regression network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.12.002
– year: 2013
  ident: 10.1016/j.livsci.2021.104700_bib0102
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.livsci.2021.104700_bib0054
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 6154
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0014
  article-title: Cascade R-CNN: delving into high quality object detection
– ident: 10.1016/j.livsci.2021.104700_bib0009
– ident: 10.1016/j.livsci.2021.104700_bib0091
  doi: 10.3168/jds.2012-6107
– ident: 10.1016/j.livsci.2021.104700_bib0104
  doi: 10.1007/s11263-019-01251-8
– ident: 10.1016/j.livsci.2021.104700_bib0053
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0082
  article-title: Multi-pig part detection and association with a fully-convolutional network
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19040852
– volume: 5
  start-page: 107
  issue: SEP
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0041
  article-title: Now you see me: convolutional neural network based tracker for dairy cows
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00107
– start-page: 3194
  year: 2016
  ident: 10.1016/j.livsci.2021.104700_bib0060
  article-title: Efficient piecewise training of deep structured models for semantic segmentation
– ident: 10.1016/j.livsci.2021.104700_bib0070
– ident: 10.1016/j.livsci.2021.104700_bib0064
  doi: 10.1109/ICCV.2017.324
– start-page: 740
  year: 2014
  ident: 10.1016/j.livsci.2021.104700_bib0065
  article-title: Microsoft coco: common objects in context
– year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0113
  article-title: Automatic recognition of lactating sow postures from depth images by deep learning detector
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.023
– start-page: 1529
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0114
  article-title: Conditional random fields as recurrent neural networks
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0110
  article-title: Real-time sow behavior detection based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104884
– start-page: 1377
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0068
  article-title: Semantic image segmentation via deep parsing network
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0050
  article-title: Automatic behavior recognition of group-housed goats using deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105706
– start-page: 1289
  year: 2016
  ident: 10.1016/j.livsci.2021.104700_bib0067
  article-title: 3D head pose estimation with convolutional neural network trained on synthetic images
– ident: 10.1016/j.livsci.2021.104700_bib0081
– ident: 10.1016/j.livsci.2021.104700_bib0099
  doi: 10.1109/CVPR.2016.308
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.livsci.2021.104700_bib0029
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0020
  article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
  publication-title: Comput. Electron. Agric.
– ident: 10.1016/j.livsci.2021.104700_bib0052
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0093
  article-title: Embeddedpigdet-fast and accurate pig detection for embedded board implementations
  publication-title: Appl. Sci. (Switzerland)
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0021
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 10.1016/j.livsci.2021.104700_bib0001
  doi: 10.1038/s41598-020-70688-6
– volume: 17
  start-page: 1005
  issue: 2
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0073
  article-title: Automated classification for visual-only postmortem inspection of porcine pathology
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2960106
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0101
  article-title: Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.013
– ident: 10.1016/j.livsci.2021.104700_bib0026
  doi: 10.1109/CVPR.2017.195
– ident: 10.1016/j.livsci.2021.104700_bib0047
– start-page: 3476
  year: 2013
  ident: 10.1016/j.livsci.2021.104700_bib0096
  article-title: Deep convolutional network cascade for facial point detection
– ident: 10.1016/j.livsci.2021.104700_bib0024
– start-page: 91
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0087
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
– start-page: 6230
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0111
  article-title: Pyramid scene parsing network
– ident: 10.1016/j.livsci.2021.104700_bib0061
– start-page: 21
  year: 2016
  ident: 10.1016/j.livsci.2021.104700_bib0066
  article-title: SSD: single shot multibox detector
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0100
  article-title: Automated pig counting using deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.05.049
– volume: 116
  start-page: 1
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0055
  article-title: Deep learning framework for recognition of cattle using muzzle point image pattern
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.10.064
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.livsci.2021.104700_bib0103
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.livsci.2021.104700_bib0092
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0059
  article-title: Deep cascaded convolutional models for cattle pose estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104885
– volume: 10
  start-page: 17557
  issue: 1
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0006
  article-title: A computer vision approach to improving cattle digestive health by the monitoring of faecal samples
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74511-0
– ident: 10.1016/j.livsci.2021.104700_bib0002
– volume: 11
  start-page: 133
  issue: 3
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0033
  article-title: Recognition of bovine infectious keratoconjunctivitis using thermographic imaging and convolutional neural networks
  publication-title: Braz. J. Appl. Comput.
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0036
  article-title: Fully convolutional network with gated recurrent unit for hatching egg activity classification
  publication-title: IEEE Access
– start-page: 1520
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0077
  article-title: Learning deconvolution network for semantic segmentation
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0018
  article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.05.010
– volume: 98
  start-page: 1
  issue: 8
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0032
  article-title: Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skaa250
– start-page: 484
  year: 2016
  ident: 10.1016/j.livsci.2021.104700_bib0005
  article-title: Automatic individual Holstein Friesian cattle identification via selective local coat pattern matching in RGB-D imagery
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0072
  article-title: An adaptive pig face recognition approach using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105386
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0007
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 38
  start-page: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.livsci.2021.104700_bib0038
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2437384
– volume: 98
  start-page: 145
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0042
  article-title: Towards on-farm pig face recognition using convolutional neural networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.02.016
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0017
  article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105580
– start-page: 248
  year: 2009
  ident: 10.1016/j.livsci.2021.104700_bib0028
  article-title: Imagenet: a large-scale hierarchical image database
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0057
  article-title: Practical monitoring of undergrown pigs for IoT-based large-scale smart farm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955761
– ident: 10.1016/j.livsci.2021.104700_bib0022
– volume: 20
  issue: 13
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0013
  article-title: Panoptic segmentation of individual pigs for posture recognition
  publication-title: Sensors
– start-page: 936
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0062
  article-title: Feature pyramid networks for object detection
– ident: 10.1016/j.livsci.2021.104700_bib0080
  doi: 10.1109/CVPR.2019.00244
– start-page: 234
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0090
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: 620
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0105
  article-title: Video-based pig recognition with feature-integrated transfer learning
– start-page: 237
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0004
  article-title: Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference
– year: 2016
  ident: 10.1016/j.livsci.2021.104700_sbref0039
– start-page: 2850
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0003
  article-title: Visual localisation and individual identification of Holstein Friesian cattle via deep learning
– start-page: 2980
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0043
  article-title: Mask R-CNN
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0015
  article-title: An intelligent pig weights estimate method based on deep learning in sow stall environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953099
– ident: 10.1016/j.livsci.2021.104700_bib0011
– year: 1998
  ident: 10.1016/j.livsci.2021.104700_bib0031
  article-title: WordNet: An Electronic Lexical Database, Language, Speech, and Communication
– ident: 10.1016/j.livsci.2021.104700_bib0075
  doi: 10.1016/j.livsci.2017.05.014
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0088
  article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105391
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0078
  article-title: Estimating conformational traits in dairy cattle with deepaps: a two-step deep learning automated phenotyping and segmentation approach
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00513
– ident: 10.1016/j.livsci.2021.104700_bib0097
  doi: 10.1609/aaai.v31i1.11231
– volume: 7
  start-page: 108049
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0027
  article-title: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933060
– volume: 6
  start-page: e1000097
  issue: 7
  year: 2009
  ident: 10.1016/j.livsci.2021.104700_bib0074
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000097
– start-page: 318
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0083
  article-title: Individual cattle identification using a deep learning based framework
– volume: 0
  issue: 0
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0051
  article-title: Accurate detection of lameness in dairy cattle with computer vision: a new and individualized detection strategy based on the analysis of the supporting phase
  publication-title: J. Dairy Sci.
– ident: 10.1016/j.livsci.2021.104700_bib0094
– ident: 10.1016/j.livsci.2021.104700_bib0098
  doi: 10.1109/CVPR.2015.7298594
– volume: 14
  start-page: e0226669
  issue: 12
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0107
  article-title: Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0226669
– volume: 11
  start-page: 2
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib116
  article-title: Image Analysis and Computer Vision Applications in Animal Sciences: An Overview
  publication-title: Front. vet. sci.
– start-page: 936
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0063
  article-title: Feature pyramid networks for object detection
– ident: 10.1016/j.livsci.2021.104700_bib0095
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0048
  article-title: An improved single shot multibox detector method applied in body condition score for dairy cows
  publication-title: Animals
  doi: 10.3390/ani9070470
– volume: 165
  start-page: 104958
  year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0085
  article-title: Cattle segmentation and contour extraction based on mask R-CNN for precision livestock farming
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104958
– volume: 11
  start-page: 923
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0012
  article-title: Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00923
– volume: 172
  start-page: 105345
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0010
  article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105345
– volume: 235
  start-page: 106
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0008
  article-title: The use of infrared images to detect ticks in cattle and proposal of an algorithm for quantifying the infestation
  publication-title: Vet. Parasitol.
  doi: 10.1016/j.vetpar.2017.01.020
– start-page: 2278
  year: 1998
  ident: 10.1016/j.livsci.2021.104700_bib0056
  article-title: Gradient-based learning applied to document recognition
– start-page: 833
  year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0025
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– year: 2018
  ident: 10.1016/j.livsci.2021.104700_bib0108
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.09.011
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0058
  article-title: Object detection in optical remote sensing images: asurvey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.023
– volume: 192
  start-page: 72
  year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0106
  article-title: Detection of the respiratory rate of standing cows by combining the DeepLab V3+ semantic segmentation model with the phase-based video magnification algorithm
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.01.012
– ident: 10.1016/j.livsci.2021.104700_bib0071
– year: 2019
  ident: 10.1016/j.livsci.2021.104700_bib0049
  article-title: FLYOLOv3 deep learning for key parts of dairy cow body detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104982
– start-page: 1440
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0037
  article-title: Fast r-cnn
– year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0112
  article-title: Recognition of individual dairy cattle based on convolutional neural networks
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: 10.1016/j.livsci.2021.104700_bib0034
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.livsci.2021.104700_bib0046
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.livsci.2021.104700_bib0086
  doi: 10.1109/CVPR.2016.91
– volume: 100
  start-page: 7729
  issue: 9
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0089
  article-title: Robotic milking: technology, farm design, and effects on work flow
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11715
– start-page: 3431
  year: 2015
  ident: 10.1016/j.livsci.2021.104700_bib0069
  article-title: Fully convolutional networks for semantic segmentation
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0019
  article-title: Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105642
– year: 2020
  ident: 10.1016/j.livsci.2021.104700_bib0109
  article-title: Broiler stunned state detection based on an improved fast region based convolutional neural network algorithm
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pez564
– ident: 10.1016/j.livsci.2021.104700_bib0044
  doi: 10.1109/CVPR.2016.90
– volume: 12
  start-page: 15
  year: 2017
  ident: 10.1016/j.livsci.2021.104700_bib0076
  article-title: Recent advances in wearable sensors for animal health management
  publication-title: Sens. Bio-Sensing Res.
  doi: 10.1016/j.sbsr.2016.11.004
SSID ssj0054484
Score 2.6095977
SecondaryResourceType review_article
Snippet •Review of animal science studies that used deep learning in computer vision systems.•Greater adoption of deep learning algorithms for image...
In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal behavior, feed bunk, and other difficult-to-measure...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104700
SubjectTerms animal behavior
animal identification
animal stress
Artificial intelligence
biometry
body weight
Cattle
computer vision
data collection
farm management
feed intake
image analysis
information management
livestock
livestock and meat industry
Machine learning
phenotype
Precision farming
Swine
Title A review of deep learning algorithms for computer vision systems in livestock
URI https://dx.doi.org/10.1016/j.livsci.2021.104700
https://www.proquest.com/docview/2636510291
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWvdptmkzXERZVX0ooK30LzWytpddrse_e1OmlRQBMFjQxLKJPkyQ-b7BqEzkiqhuIYV4I4l_cKkiehTnVhlilwUVPFWu_Pung-f-jfP7HkJXXRcGJ9WGbE_YHqL1rGlF63Zm1ZV74GAr08AgyFo8aIrnmju1etgT59_fKV5MAg_2pdl6Jz43h19rs3xGlfvMDVEiRnxj52557n9fj39AOr29rnaQOvRbcSD8GebaMnWW2htMJpF6Qy7je4GOPBQ8MRhY-0Ux4oQI1yOR5NZ1by8zTH4qFjHSg44EMtxUHOe46rGY69C2wBG7qCnq8vHi2ESiyUkmhasSRj1vpXmqSGGpapkpuQQLXBBXE4UVSQVNoPoxeW5My5lRaqIcFlZUkbBiXB0Fy3Xk9ruIZxRawvheCE062uvXJyZ3FA42lwrl6l9RDsbSR2VxH1Bi7HsUsZeZbCs9JaVwbL7KPkaNQ1KGn_0zzvzy287QgLY_zHytFstCYfFv4CUtZ0s5jLjlAMIZYIc_Hv2Q7TqvwIf8QgtN7OFPQbHpFEn7c47QSuD69vh_SfP9-GU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oJaHKFBqJK7RxnHsxMdVRbWl3b3QSr1Z8WtJtWRXuym_n3HsIIGQKnGNPVY0tj_PaGa-AfhMcy21MLgDwvOsrG2eyZKZzGlbV7JmWgzcnYulmN-WX-_43QGcj7UwIa0yYX_E9AGt05dp0uZ027bTbxRtfYoYjE5LIF3hT-AwsFOVEzicXV7NlyMgc_RAhuAyzs-CwFhBN6R5rdufuDo6igUN8c4qlLr9-4X6C6uHB-jiCF4ky5HM4s8dw4HrXsLz2WqX2DPcK1jMSCxFIRtPrHNbkppCrEizXm12bf_9x56gmUpMauZAYm05iYTOe9J2ZB2IaHuEyddwe_Hl5nyepX4JmWE17zPOgnllRG6p5bluuG0EOgxCUl9RzTTNpSvQgfFV5a3PeZ1rKn3RNIwztCM8ewOTbtO5t0AK5lwtvail4aUJ5MWFrSzD2y2M9oU-ATbqSJlEJh56WqzVmDV2r6JmVdCsipo9gey31DaSaTwyvxrVr_44FArx_hHJT-NuKbwvIQjSdG7zsFeFYAJxqJD03X-vfgZP5zeLa3V9ubx6D8_CSCxP_ACTfvfgTtFO6fXHdA5_AZUL5EU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+deep+learning+algorithms+for+computer+vision+systems+in+livestock&rft.jtitle=Livestock+science&rft.au=Borges+Oliveira%2C+Dario+Augusto&rft.au=Ribeiro+Pereira%2C+Luiz+Gustavo&rft.au=Bresolin%2C+Tiago&rft.au=Pontes+Ferreira%2C+Rafael+Ehrich&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1871-1413&rft.eissn=1878-0490&rft.volume=253&rft_id=info:doi/10.1016%2Fj.livsci.2021.104700&rft.externalDocID=S1871141321003085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-1413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-1413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-1413&client=summon