Thermochemical oxidation of methane by manganese oxides in hydrothermal sediments
Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO 2 , derived from continental weathering and riverine transport has been proposed as a globally important sink of methane. However, the potential role of hydrothermal Mn(IV) oxide-rich sediments as a met...
Saved in:
Published in | Communications earth & environment Vol. 4; no. 1; pp. 224 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group
01.12.2023
Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2662-4435 2662-4435 |
DOI | 10.1038/s43247-023-00891-6 |
Cover
Loading…
Abstract | Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO
2
, derived from continental weathering and riverine transport has been proposed as a globally important sink of methane. However, the potential role of hydrothermal Mn(IV) oxide-rich sediments as a methane sink, and the mechanisms of underpinning methane oxidation at high-temperature hydrothermal fields remain poorly understood. Here, we report the occurrence of almost pure rhodochrosite with extremely negative δ
13
C
PDB
values (as low as –76.4‰) in direct association with hausmannite formed through hydrothermal activity in the Late Triassic Heqing Mn deposit in Southern China. Based on detailed petrography and geochemistry, this rhodochrosite is interpreted as the result of the thermochemical oxidation of methane by hausmannite during early diagenesis. Given high hydrothermal Mn
2+
and CH
4
release coupled to low sulfate concentration observed in the Archean oceans, we propose that hydrothermal Mn(IV) oxides may have been effective methane sinks in Earth’s ancient oceans. |
---|---|
AbstractList | Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO2, derived from continental weathering and riverine transport has been proposed as a globally important sink of methane. However, the potential role of hydrothermal Mn(IV) oxide-rich sediments as a methane sink, and the mechanisms of underpinning methane oxidation at high-temperature hydrothermal fields remain poorly understood. Here, we report the occurrence of almost pure rhodochrosite with extremely negative δ13CPDB values (as low as –76.4‰) in direct association with hausmannite formed through hydrothermal activity in the Late Triassic Heqing Mn deposit in Southern China. Based on detailed petrography and geochemistry, this rhodochrosite is interpreted as the result of the thermochemical oxidation of methane by hausmannite during early diagenesis. Given high hydrothermal Mn2+ and CH4 release coupled to low sulfate concentration observed in the Archean oceans, we propose that hydrothermal Mn(IV) oxides may have been effective methane sinks in Earth’s ancient oceans.Rhodochrosite with very negative carbon isotope values is identified in association with hausmannite in manganese ores from the Late Triassic Heqing deposit, China, and could have formed from high-temperature oxidation of methane during early diagenesis. Abstract Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO2, derived from continental weathering and riverine transport has been proposed as a globally important sink of methane. However, the potential role of hydrothermal Mn(IV) oxide-rich sediments as a methane sink, and the mechanisms of underpinning methane oxidation at high-temperature hydrothermal fields remain poorly understood. Here, we report the occurrence of almost pure rhodochrosite with extremely negative δ13CPDB values (as low as –76.4‰) in direct association with hausmannite formed through hydrothermal activity in the Late Triassic Heqing Mn deposit in Southern China. Based on detailed petrography and geochemistry, this rhodochrosite is interpreted as the result of the thermochemical oxidation of methane by hausmannite during early diagenesis. Given high hydrothermal Mn2+ and CH4 release coupled to low sulfate concentration observed in the Archean oceans, we propose that hydrothermal Mn(IV) oxides may have been effective methane sinks in Earth’s ancient oceans. Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO 2 , derived from continental weathering and riverine transport has been proposed as a globally important sink of methane. However, the potential role of hydrothermal Mn(IV) oxide-rich sediments as a methane sink, and the mechanisms of underpinning methane oxidation at high-temperature hydrothermal fields remain poorly understood. Here, we report the occurrence of almost pure rhodochrosite with extremely negative δ 13 C PDB values (as low as –76.4‰) in direct association with hausmannite formed through hydrothermal activity in the Late Triassic Heqing Mn deposit in Southern China. Based on detailed petrography and geochemistry, this rhodochrosite is interpreted as the result of the thermochemical oxidation of methane by hausmannite during early diagenesis. Given high hydrothermal Mn 2+ and CH 4 release coupled to low sulfate concentration observed in the Archean oceans, we propose that hydrothermal Mn(IV) oxides may have been effective methane sinks in Earth’s ancient oceans. |
ArticleNumber | 224 |
Author | Jiang, Shao-Yong Wen, Xing-Ping Huang, Qin Yan, Hao Konhauser, Kurt O. Pi, Dao-Hui Lu, Liu-Yi |
Author_xml | – sequence: 1 givenname: Qin surname: Huang fullname: Huang, Qin – sequence: 2 givenname: Shao-Yong orcidid: 0000-0003-3921-739X surname: Jiang fullname: Jiang, Shao-Yong – sequence: 3 givenname: Dao-Hui surname: Pi fullname: Pi, Dao-Hui – sequence: 4 givenname: Kurt O. orcidid: 0000-0001-7722-7068 surname: Konhauser fullname: Konhauser, Kurt O. – sequence: 5 givenname: Xing-Ping surname: Wen fullname: Wen, Xing-Ping – sequence: 6 givenname: Liu-Yi surname: Lu fullname: Lu, Liu-Yi – sequence: 7 givenname: Hao surname: Yan fullname: Yan, Hao |
BookMark | eNp9kU9LAzEQxYNUsNZ-AU8LnleTSbK7OUrxT0EQoZ5DNjvbpnQ3NUnBfnu3rYJ4EAKZGd7vMcy7JKPe90jINaO3jPLqLgoOoswp8JzSSrG8OCNjKArIheBy9Ku-INMY15RSkAwYlGPytlhh6LxdYees2WT-0zUmOd9nvs06TCvTY1bvs870y6GMeFRgzFyfrfZN8OnAD2DExnXYp3hFzluziTj9_ifk_fFhMXvOX16f5rP7l9zySqZcApbKSlFYo2pTY1NCA4i2NhVjsqYokJacD0_WtsQWCyGwBSORN0yomk_I_OTbeLPW2-A6E_baG6ePAx-W2oTk7AZ1owSABAG8QCFMqRB4i0NDW6W4OHjdnLy2wX_sMCa99rvQD-trqEAxVsqqGlTVSWWDjzFgq61Lx2OlYNxGM6oPeehTHnrIQx_z0MWAwh_0Z-F_oC9tMI-t |
CitedBy_id | crossref_primary_10_1038_s43247_024_01897_4 crossref_primary_10_1016_j_gca_2025_01_014 crossref_primary_10_1098_rsif_2023_0386 |
Cites_doi | 10.1029/92JB01414 10.1128/AEM.69.3.1680-1686.2003 10.1021/cr050362v 10.2475/05.2015.01 10.2343/geochemj.38.129 10.1346/000986002760833783 10.1126/science.1064878 10.1111/j.1462-2920.2012.02825.x 10.1126/science.285.5432.1386 10.1007/s00531-018-1584-z 10.1016/j.gca.2009.04.018 10.1016/j.epsl.2006.04.013 10.1038/19751 10.1016/j.oregeorev.2011.10.001 10.1016/S0016-7037(01)00819-5 10.1016/S0009-2541(98)00142-9 10.1038/s41561-020-0579-0 10.1111/j.1751-908X.2011.00120.x 10.1016/j.gca.2014.04.040 10.1038/ngeo1926 10.1016/j.gca.2017.03.019 10.1016/j.chemgeo.2008.08.004 10.1073/pnas.1916673117 10.1111/j.1751-908X.2005.tb00901.x 10.11759/hykx20191221001 10.1016/j.gca.2015.10.027 10.1016/0016-7037(63)90071-1 10.1130/0091-7613(1987)15<722:BMDOFC>2.0.CO;2 10.2973/dsdp.proc.29.117.1975 10.1016/j.dsr.2016.06.010 10.1126/science.1072502 10.1126/science.1224126 10.1016/j.chemgeo.2011.03.007 10.1016/j.gca.2017.10.029 10.1016/j.gca.2011.09.025 10.1016/S0012-821X(04)00107-4 10.1146/annurev.micro.61.080706.093130 10.1029/2017GC007385 10.1016/j.marpetgeo.2013.08.006 10.1016/j.epsl.2019.02.005 10.1016/j.gca.2007.03.024 10.1130/G48553.1 10.1016/j.chemgeo.2003.12.025 10.1016/j.oregeorev.2015.05.016 10.1029/2018GC008127 10.1038/ncomms12274 10.1002/rcm.8678 10.1016/j.gexplo.2010.04.005 10.1016/j.oregeorev.2011.06.001 10.1016/j.coal.2018.03.007 10.1016/j.epsl.2013.11.014 10.1073/pnas.1609534113 10.1016/0016-7037(91)90105-E 10.1016/j.chemgeo.2009.03.023 10.1016/j.chemgeo.2019.07.025 10.1038/ncomms8020 10.1016/j.chemgeo.2014.05.004 10.1017/S143192761601182X 10.1016/j.epsl.2018.07.044 10.1016/j.gca.2005.11.014 10.1016/j.epsl.2012.07.021 10.1111/iar.12057 10.1016/S0012-8252(02)00117-4 10.1016/j.epsl.2019.116057 10.1007/s11434-013-5819-x 10.1016/j.margeo.2008.01.003 10.1038/s41467-018-07267-x 10.1111/gbi.12288 10.1126/science.1169984 10.1016/S0009-2541(96)00078-2 10.1128/AEM.70.2.1231-1233.2004 10.1016/j.gca.2016.11.028 10.1016/0016-7037(88)90036-1 10.2113/gsecongeo.105.3.535 10.1038/35036572 10.1038/ismej.2011.164 10.1016/S0012-821X(00)00322-8 10.1016/j.gca.2015.02.027 10.1016/S0009-2541(99)00092-3 10.1016/j.chemgeo.2019.07.014 10.1016/j.oregeorev.2013.06.012 10.1016/j.jsames.2021.103207 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1038/s43247-023-00891-6 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Proquest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2662-4435 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_d9422524236e44a79e23fe36e0f9934b 10_1038_s43247_023_00891_6 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ AAFWJ AAJSJ AASML AAYXX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI C6C CCPQU CITATION EBLON EBS GROUPED_DOAJ HCIFZ M~E NAO OK1 PATMY PHGZM PHGZT PIMPY PYCSY SNYQT AARCD ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c385t-52e79c546ca9babed72d2eecba8115b0e4e07337335bc7efe644ef2a5e3d149b3 |
IEDL.DBID | BENPR |
ISSN | 2662-4435 |
IngestDate | Wed Aug 27 01:09:19 EDT 2025 Wed Aug 13 11:31:28 EDT 2025 Thu Apr 24 22:53:55 EDT 2025 Tue Jul 01 03:35:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-52e79c546ca9babed72d2eecba8115b0e4e07337335bc7efe644ef2a5e3d149b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7722-7068 0000-0003-3921-739X |
OpenAccessLink | https://www.proquest.com/docview/2829117588?pq-origsite=%requestingapplication% |
PQID | 2829117588 |
PQPubID | 5061813 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d9422524236e44a79e23fe36e0f9934b proquest_journals_2829117588 crossref_citationtrail_10_1038_s43247_023_00891_6 crossref_primary_10_1038_s43247_023_00891_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications earth & environment |
PublicationYear | 2023 |
Publisher | Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group – name: Nature Portfolio |
References | M Egger (891_CR14) 2017; 207 SJ Loyd (891_CR51) 2016; 7 891_CR61 YS Liu (891_CR77) 2008; 257 RX Zhang (891_CR74) 2016; 22 R Mills (891_CR21) 1993; 98 G Aloisi (891_CR45) 2000; 184 WS Reeburgh (891_CR3) 2007; 107 AA Krylov (891_CR48) 2018; 107 EJ Beal (891_CR13) 2009; 325 KP Jochum (891_CR76) 2005; 29 Y Kiyosu (891_CR23) 1996; 133 BH Passey (891_CR54) 2012; 351 S D’Hondt (891_CR2) 2002; 295 Q Lin (891_CR46) 2016; 115 S Bodei (891_CR71) 2008; 250 M Jakubowicz (891_CR69) 2015; 156 P Ghosh (891_CR50) 2006; 70 ZL Sun (891_CR16) 2019; 525 T Neumann (891_CR67) 2002; 66 A Sasmaz (891_CR32) 2014; 56 BA Chang (891_CR80) 2020; 34 GA Henkes (891_CR53) 2014; 139 H Drake (891_CR12) 2015; 6 YF Zheng (891_CR38) 1991; 55 YD Sun (891_CR37) 2012; 338 T Maekawa (891_CR68) 2004; 38 KM Sutherland (891_CR36) 2018; 16 CF Cai (891_CR17) 2021; 49 M Bau (891_CR30) 2014; 381 PM Okita (891_CR42) 1988; 52 S Guggenheim (891_CR59) 2002; 50 B Chang (891_CR62) 2020; 117 A Boetius (891_CR73) 2013; 6 IA Muller (891_CR85) 2019; 525 M Bonifacie (891_CR84) 2017; 200 KU Hinrichs (891_CR5) 1999; 398 A Gartman (891_CR19) 2020; 13 M Bau (891_CR70) 1999; 155 SJ Yu (891_CR34) 2000; 20 SV Petersen (891_CR83) 2019; 20 JW Li (891_CR18) 2018; 222 S Schouten (891_CR22) 2003; 69 891_CR40 WX Hu (891_CR25) 2018; 9 NZ Zhang (891_CR52) 2019; 512 KP Jochum (891_CR75) 2011; 35 J Peckmann (891_CR11) 2004; 205 ST Kim (891_CR64) 2009; 73 JE Johnson (891_CR41) 2016; 173 BK Baludikay (891_CR60) 2018; 191 DA Stolper (891_CR63) 2015; 315 A Boetius (891_CR6) 2000; 407 JC McElwain (891_CR55) 1999; 285 JB Maynard (891_CR26) 2010; 105 SD Wankel (891_CR9) 2012; 14 D Chetty (891_CR31) 2012; 47 891_CR39 L Chen (891_CR78) 2011; 284 K Knittel (891_CR4) 2009; 63 891_CR35 Y Fu (891_CR56) 2015; 71 J Kallmeyer (891_CR7) 2004; 70 891_CR33 R Hesse (891_CR66) 2003; 61 J Deng (891_CR57) 2010; 105 KF Ettwig (891_CR15) 2016; 113 M Polgári (891_CR27) 2012; 47 JR Hein (891_CR43) 1987; 15 LA Berbesi (891_CR1) 2014; 387 F Ossa (891_CR28) 2018; 500 WM Clayton (891_CR79) 1963; 27 CF Cai (891_CR10) 2013; 48 MJ Whiticar (891_CR44) 1999; 161 Y Kouketsu (891_CR58) 2014; 23 R Luff (891_CR47) 2004; 221 W Michaelis (891_CR49) 2002; 297 CC Pan (891_CR24) 2006; 246 891_CR29 VM Dekov (891_CR20) 2009; 264 XQ Han (891_CR65) 2013; 58 E Hrischeva (891_CR72) 2007; 71 KJ Dennis (891_CR81) 2011; 75 SM Bernasconi (891_CR82) 2018; 19 JF Biddle (891_CR8) 2012; 6 |
References_xml | – volume: 98 start-page: 9671 year: 1993 ident: 891_CR21 publication-title: J. Geophys. Res. Sol Earth doi: 10.1029/92JB01414 – volume: 69 start-page: 1680 year: 2003 ident: 891_CR22 publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.69.3.1680-1686.2003 – volume: 107 start-page: 486 year: 2007 ident: 891_CR3 publication-title: Chem. Rev. doi: 10.1021/cr050362v – volume: 315 start-page: 363 year: 2015 ident: 891_CR63 publication-title: Am. J. Sci. doi: 10.2475/05.2015.01 – volume: 38 start-page: 129 year: 2004 ident: 891_CR68 publication-title: Geochem. J. doi: 10.2343/geochemj.38.129 – volume: 50 start-page: 406 year: 2002 ident: 891_CR59 publication-title: Clay Miner. doi: 10.1346/000986002760833783 – volume: 295 start-page: 2067 year: 2002 ident: 891_CR2 publication-title: Science doi: 10.1126/science.1064878 – volume: 14 start-page: 2726 year: 2012 ident: 891_CR9 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02825.x – volume: 285 start-page: 1386 year: 1999 ident: 891_CR55 publication-title: Science doi: 10.1126/science.285.5432.1386 – volume: 107 start-page: 2011 year: 2018 ident: 891_CR48 publication-title: Int. J. Earth Sci. doi: 10.1007/s00531-018-1584-z – volume: 73 start-page: 4400 year: 2009 ident: 891_CR64 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.04.018 – volume: 246 start-page: 70 year: 2006 ident: 891_CR24 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.04.013 – volume: 398 start-page: 802 year: 1999 ident: 891_CR5 publication-title: Nature doi: 10.1038/19751 – volume: 47 start-page: 87 year: 2012 ident: 891_CR27 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2011.10.001 – volume: 66 start-page: 867 year: 2002 ident: 891_CR67 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00819-5 – volume: 155 start-page: 77 year: 1999 ident: 891_CR70 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00142-9 – volume: 13 start-page: 396 year: 2020 ident: 891_CR19 publication-title: Nat. Geosci. doi: 10.1038/s41561-020-0579-0 – volume: 35 start-page: 397 year: 2011 ident: 891_CR75 publication-title: Geostand. Geoanal. Res. doi: 10.1111/j.1751-908X.2011.00120.x – volume: 139 start-page: 362 year: 2014 ident: 891_CR53 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.04.040 – volume: 20 start-page: 30 year: 2000 ident: 891_CR34 publication-title: J. Mineral. Petrol. – volume: 6 start-page: 725 year: 2013 ident: 891_CR73 publication-title: Nat. Geosci. doi: 10.1038/ngeo1926 – volume: 207 start-page: 256 year: 2017 ident: 891_CR14 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.03.019 – volume: 257 start-page: 34 year: 2008 ident: 891_CR77 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.08.004 – volume: 117 start-page: 14005 year: 2020 ident: 891_CR62 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1916673117 – volume: 29 start-page: 285 year: 2005 ident: 891_CR76 publication-title: Geostand. Geoanal. Res. doi: 10.1111/j.1751-908X.2005.tb00901.x – ident: 891_CR40 doi: 10.11759/hykx20191221001 – volume: 173 start-page: 210 year: 2016 ident: 891_CR41 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.10.027 – volume: 27 start-page: 43 year: 1963 ident: 891_CR79 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(63)90071-1 – volume: 15 start-page: 722 year: 1987 ident: 891_CR43 publication-title: Geology doi: 10.1130/0091-7613(1987)15<722:BMDOFC>2.0.CO;2 – ident: 891_CR61 doi: 10.2973/dsdp.proc.29.117.1975 – ident: 891_CR33 – volume: 115 start-page: 210 year: 2016 ident: 891_CR46 publication-title: Deep Sea Res. Part I doi: 10.1016/j.dsr.2016.06.010 – volume: 297 start-page: 1013 year: 2002 ident: 891_CR49 publication-title: Science doi: 10.1126/science.1072502 – volume: 338 start-page: 366 year: 2012 ident: 891_CR37 publication-title: Science doi: 10.1126/science.1224126 – volume: 284 start-page: 283 year: 2011 ident: 891_CR78 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2011.03.007 – volume: 222 start-page: 363 year: 2018 ident: 891_CR18 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.10.029 – volume: 75 start-page: 7117 year: 2011 ident: 891_CR81 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.09.025 – volume: 221 start-page: 337 year: 2004 ident: 891_CR47 publication-title: Earth Planet Sci. Lett. doi: 10.1016/S0012-821X(04)00107-4 – volume: 63 start-page: 311 year: 2009 ident: 891_CR4 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.61.080706.093130 – volume: 19 start-page: 2895 year: 2018 ident: 891_CR82 publication-title: Geochem. Geophy. Geosyst. doi: 10.1029/2017GC007385 – volume: 48 start-page: 100 year: 2013 ident: 891_CR10 publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2013.08.006 – volume: 512 start-page: 207 year: 2019 ident: 891_CR52 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.02.005 – volume: 71 start-page: 3476 year: 2007 ident: 891_CR72 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.03.024 – volume: 49 start-page: 761 year: 2021 ident: 891_CR17 publication-title: Geology doi: 10.1130/G48553.1 – volume: 205 start-page: 443 year: 2004 ident: 891_CR11 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2003.12.025 – volume: 71 start-page: 138 year: 2015 ident: 891_CR56 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.05.016 – volume: 20 start-page: 3495 year: 2019 ident: 891_CR83 publication-title: Geochem. Geophy. Geosyst. doi: 10.1029/2018GC008127 – volume: 7 year: 2016 ident: 891_CR51 publication-title: Nat. Commun. doi: 10.1038/ncomms12274 – volume: 34 start-page: e8678 year: 2020 ident: 891_CR80 publication-title: Rapid Commun. Mass. Spectrom doi: 10.1002/rcm.8678 – volume: 105 start-page: 95 year: 2010 ident: 891_CR57 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2010.04.005 – volume: 47 start-page: 126 year: 2012 ident: 891_CR31 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2011.06.001 – volume: 191 start-page: 80 year: 2018 ident: 891_CR60 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2018.03.007 – volume: 387 start-page: 219 year: 2014 ident: 891_CR1 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.11.014 – volume: 113 start-page: 12792 year: 2016 ident: 891_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1609534113 – volume: 55 start-page: 2299 year: 1991 ident: 891_CR38 publication-title: Geochim. Cosmochim. Ac doi: 10.1016/0016-7037(91)90105-E – volume: 264 start-page: 347 year: 2009 ident: 891_CR20 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2009.03.023 – volume: 525 start-page: 190 year: 2019 ident: 891_CR16 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2019.07.025 – volume: 6 year: 2015 ident: 891_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms8020 – volume: 381 start-page: 1 year: 2014 ident: 891_CR30 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2014.05.004 – volume: 22 start-page: 1374 year: 2016 ident: 891_CR74 publication-title: Microsc. Microanal. doi: 10.1017/S143192761601182X – volume: 500 start-page: 28 year: 2018 ident: 891_CR28 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.07.044 – volume: 70 start-page: 1439 year: 2006 ident: 891_CR50 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.11.014 – volume: 351 start-page: 223 year: 2012 ident: 891_CR54 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.07.021 – volume: 23 start-page: 33 year: 2014 ident: 891_CR58 publication-title: Island Arc doi: 10.1111/iar.12057 – volume: 61 start-page: 149 year: 2003 ident: 891_CR66 publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(02)00117-4 – ident: 891_CR35 doi: 10.1016/j.epsl.2019.116057 – volume: 58 start-page: 3689 year: 2013 ident: 891_CR65 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-5819-x – volume: 250 start-page: 128 year: 2008 ident: 891_CR71 publication-title: Mar. Geol. doi: 10.1016/j.margeo.2008.01.003 – ident: 891_CR39 – volume: 9 year: 2018 ident: 891_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07267-x – volume: 16 start-page: 399 year: 2018 ident: 891_CR36 publication-title: Geobiology doi: 10.1111/gbi.12288 – volume: 325 start-page: 184 year: 2009 ident: 891_CR13 publication-title: Science doi: 10.1126/science.1169984 – volume: 133 start-page: 279 year: 1996 ident: 891_CR23 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(96)00078-2 – volume: 70 start-page: 1231 year: 2004 ident: 891_CR7 publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.70.2.1231-1233.2004 – volume: 200 start-page: 255 year: 2017 ident: 891_CR84 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.11.028 – volume: 52 start-page: 2679 year: 1988 ident: 891_CR42 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90036-1 – volume: 105 start-page: 535 year: 2010 ident: 891_CR26 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.105.3.535 – volume: 407 start-page: 623 year: 2000 ident: 891_CR6 publication-title: Nature doi: 10.1038/35036572 – volume: 6 start-page: 1018 year: 2012 ident: 891_CR8 publication-title: ISME J. doi: 10.1038/ismej.2011.164 – volume: 184 start-page: 321 year: 2000 ident: 891_CR45 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(00)00322-8 – volume: 156 start-page: 50 year: 2015 ident: 891_CR69 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.02.027 – volume: 161 start-page: 291 year: 1999 ident: 891_CR44 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(99)00092-3 – volume: 525 start-page: 1 year: 2019 ident: 891_CR85 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2019.07.014 – volume: 56 start-page: 352 year: 2014 ident: 891_CR32 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2013.06.012 – ident: 891_CR29 doi: 10.1016/j.jsames.2021.103207 |
SSID | ssj0002512127 |
Score | 2.2740495 |
Snippet | Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO
2
, derived from continental weathering and riverine... Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO2, derived from continental weathering and riverine transport... Abstract Microbial anaerobic oxidation of methane coupled to the reduction of Mn(IV)-oxides, typically MnO2, derived from continental weathering and riverine... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 224 |
SubjectTerms | Anaerobic microorganisms Carbon isotopes Diagenesis Geochemistry Hausmannite High temperature Manganese Manganese dioxide Manganese ores Manganese oxides Methane Microorganisms Oceans Oxidation Oxides Petrography Sediments Triassic |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66ukoM3CdtHmqRHFddFUBAUvIWkneqC25XtCu6_dyatiyLoReilJX0wmc43QzLfx9gJZhyxzBItMFVWQkpXCpNFXnhdyRRkXGhH3cg3t2r0IK8fs8cvUl-0J6ylB24NNyhziS5HqK8AH6VzSNIK8CSqEFqlp-iLmPelmKIYTKgdJ7rrkolSM2iIek4LhCiBsJfHQn1DokDY_yMeB5AZbrKNLjvkZ-1XbbEVqLfZ2lVQ313ssDuc1NmENK5Ckz-fvo9bSSQ-rThpQbsauF_wiaufHElLhhHQ8HHNnxflLHRbTfDGBiEr9Lbtsofh5f3FSHSaCKJITTbHuhF0XmRSFS73zkOpkzIBKLwzmNv5CCSQDCMemS80VID5DlSJyyAtsRjy6R5brac17DNuShVVWkmXUH2sc5PrwsSRK1OlAeNgj8Wf9rFFRxhOuhUvNixcp8a2NrVoUxtsalWPnS7veW3pMn4dfU5mX44kqutwAR3Adg5g_3KAHut_Tprt_r_G0vowkZAac_Af7zhk6yQz325j6bPV-ewNjjAZmfvj4HcfXnrYKw priority: 102 providerName: Directory of Open Access Journals |
Title | Thermochemical oxidation of methane by manganese oxides in hydrothermal sediments |
URI | https://www.proquest.com/docview/2829117588 https://doaj.org/article/d9422524236e44a79e23fe36e0f9934b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA_aIniRqhWf1pKDNwndj2ySPUlbWotgacVCbyEfs7Xg261vn-D77zuTzXtFhMJedndymSQzv5lk5sfYR0QcpWwqLRAqKyGli8I0hRded7IGWQbtqBr527k6u5Jfr5vrnHAb87XKtU1MhjoOgXLkB3TiR20ljfl891sQaxSdrmYKjadsG02wweBr--jk_OL7JstC3rusdK6WKWpzMFILOi3QVQl0f20p1D8eKTXu_88uJ2dzusNeZJTID6dpfcmeQP-KPfuSWHhXr9klTu5iTlxXqdifD39vJ2okPnScOKFdD9yv-Nz1N44oJpMEjPy25z9XcZGqruY4cETXlWrcdtnV6cmP4zORuRFEqE2zxPgRdBsaqYJrvfMQdRUrgOCdQYznC5BAdIz4ND5o6ABxD3SVa6COGBT5-g3b6oce3jJuoio6raSrKE7WrWl1MGXhYq00oD2csXKtHxty43Dir_hl0wF2beykU4s6tUmnVs3Yp82Yu6ltxqPSR6T2jSS1vE4fhsWNzTvIxlai7SH4pwDXlG6hqjvAl6JDjCX9jO2tJ83mfTjah1Xz7vHf79lzIpKfLqrssa3l4g98QLix9Pt5Te2ncP0e2w3TCQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xUMAHOCGreTixc0CIQsuWtitArdSbsZNJqcRmy2YR7J_iNzLjJIsQUm-Vckls5zAez3xje-YDeE6II1ZZoiVB5Vwq5SppsshLr2uVoopL7Tgb-WiaT07Uh9PsdAN-D7kwfK1ysInBUFfzkvfIt_nEj8tKGvP64rtk1ig-XR0oNDq1OMDVTwrZ2lf772h-XyTJ3u7x24nsWQVkmZpsSZEX6qLMVF66wjuPlU6qBLH0zhA68hEqZCJDejJfaqyREAPWicswrSic8Cn99xpsqpRCmRFs7uxOP35e7-owWogT3WfnRKnZbrnknZbkGiW52yKW-T8eMBAF_OcHgnPbuw23elQq3nRqdAc2sLkL198H1t_VPfhEyrSYMbdWKC4g5r_OOyomMa8Fc1C7BoVfiZlrzhxTWoYe2IrzRnxdVYuQ5TWjgS25ypBTdx9OrkRqD2DUzBt8CMJUeVTrXLmE43JdmEKXJo5cleYayf6OIR7kY8u-UDnzZXyz4cA8NbaTqSWZ2iBTm4_h5XrMRVem49LeOyz2dU8usR0-zBdntl-xtioU2TqGmzmSDusCk7RGeolqwnTKj2FrmDTbr_vW_tXSR5c3P4Mbk-OjQ3u4Pz14DDeZxL67JLMFo-XiBz4hqLP0T3v9EvDlqlX6D_NnEKI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermochemical+oxidation+of+methane+by+manganese+oxides+in+hydrothermal+sediments&rft.jtitle=Communications+earth+%26+environment&rft.au=Huang%2C+Qin&rft.au=Jiang%2C+Shao-Yong&rft.au=Pi%2C+Dao-Hui&rft.au=Konhauser%2C+Kurt+O.&rft.date=2023-12-01&rft.issn=2662-4435&rft.eissn=2662-4435&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs43247-023-00891-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s43247_023_00891_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4435&client=summon |