Imposing Minimax and Quantile Constraints on Optimal Matching in Observational Studies
Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, the...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 26; no. 1; pp. 66 - 78 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.01.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2016.1152971 |
Cover
Abstract | Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, these methods work well; however, they can exhibit a lack of interest in a small number of pairs with large covariate distances. Here, a new method is proposed for imposing a minimax constraint on a minimum total distance matching. Such a match minimizes the total within-pair distance subject to various constraints including the constraint that the maximum pair difference is as small as possible. In an example with 1391 matched pairs, this constraint eliminates dozens of pairs with moderately large differences in age, but otherwise exhibits the same excellent covariate balance found without this additional constraint. A minimax constraint eliminates edges in the network, and can improve the worst-case time bound for the performance of the minimum cost flow algorithm, that is, a better match from a practical perspective may take less time to construct. The technique adapts ideas for a different problem, the bottleneck assignment problem, whose sole objective is to minimize the maximum within-pair difference; however, here, that objective becomes a constraint on the minimum cost flow problem. The method generalizes. Rather than constrain the maximum distance, it can constrain an order statistic. Alternatively, the method can minimize the maximum difference in propensity scores, and subject to doing that, minimize the maximum robust Mahalanobis distance. An example from labor economics is used to illustrate. Supplementary materials for this article are available online. |
---|---|
AbstractList | Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, these methods work well; however, they can exhibit a lack of interest in a small number of pairs with large covariate distances. Here, a new method is proposed for imposing a minimax constraint on a minimum total distance matching. Such a match minimizes the total within-pair distance subject to various constraints including the constraint that the maximum pair difference is as small as possible. In an example with 1391 matched pairs, this constraint eliminates dozens of pairs with moderately large differences in age, but otherwise exhibits the same excellent covariate balance found without this additional constraint. A minimax constraint eliminates edges in the network, and can improve the worst-case time bound for the performance of the minimum cost flow algorithm, that is, a better match from a practical perspective may take less time to construct. The technique adapts ideas for a different problem, the bottleneck assignment problem, whose sole objective is to minimize the maximum within-pair difference; however, here, that objective becomes a constraint on the minimum cost flow problem. The method generalizes. Rather than constrain the maximum distance, it can constrain an order statistic. Alternatively, the method can minimize the maximum difference in propensity scores, and subject to doing that, minimize the maximum robust Mahalanobis distance. An example from labor economics is used to illustrate. Supplementary materials for this article are available online. |
Author | Rosenbaum, Paul R. |
Author_xml | – sequence: 1 givenname: Paul R. surname: Rosenbaum fullname: Rosenbaum, Paul R. email: rosenbaum@wharton.upenn.edu organization: Department of Statistics, The Wharton School, University of Pennsylvania |
BookMark | eNqFkF1PwyAUhomZidv0J5g08boT2lIg3mgWP5ZsWYwft4S2oCwdTKDq_r3UzRsv9IoTzvOenPOMwMBYIwE4RXCCIIXnCJaIlhBOMojKCUI4YwQdgCHCOUkzgvAg1pFJe-gIjLxfQRhRRobgebbeWK_NS7LQRq_FZyJMk9x3wgTdymRqjQ9OaBN8Yk2y3ITItMlChPq1D-n4V3np3kXQ1sTOQ-gaLf0xOFSi9fJk_47B08314_QunS9vZ9OreVrnFIcUQ6EKUiEiaVWUREhGYdYoWKqiYFLWKi9YRhEqsChRRTDBEFOsMMsaRqsG52Nwtpu7cfatkz7wle1cXMRzRAmkBaOURArvqNpZ751UfOPiHW7LEeS9Qv6jkPcK-V5hzF38ytU6fF_aO2n_TV_u0too69biw7q24UFsW-uUE6bWnud_j_gCdaiLSQ |
CitedBy_id | crossref_primary_10_1080_2330443X_2021_1919260 crossref_primary_10_1214_19_STS740 crossref_primary_10_1146_annurev_statistics_031219_041058 crossref_primary_10_1017_pan_2020_32 crossref_primary_10_3390_analytics3010009 crossref_primary_10_1007_s11009_019_09718_4 crossref_primary_10_1061_JMENEA_MEENG_5521 crossref_primary_10_1080_10618600_2022_2058001 crossref_primary_10_1111_biom_13098 crossref_primary_10_1214_20_STS790 crossref_primary_10_1007_s10618_022_00886_5 crossref_primary_10_3390_polym15071719 crossref_primary_10_1111_rssb_12545 crossref_primary_10_1080_24725579_2024_2447715 crossref_primary_10_1093_biomet_asaa032 |
Cites_doi | 10.1287/opre.19.7.1747 10.1198/000313005X42831 10.1001/jama.2013.8272 10.1080/01621459.2012.742018 10.1111/j.2517-6161.1991.tb01848.x 10.1007/978-1-84800-998-1 10.1111/j.1467-937X.2006.00406.x 10.1007/BF02288322 10.1093/biostatistics/2.2.217 10.1080/01621459.1989.10478868 10.1198/106186006X137047 10.1137/S0097539799361208 10.1017/CBO9781139644501 10.1001/jama.2014.6499 10.1214/13-AOAS713 10.1137/1.9780898717754 10.1111/j.1541-0420.2011.01691.x 10.1214/09-STS313 10.1080/01621459.2012.703874 10.1080/01621459.2014.997879 10.1111/1475-6773.12156 10.1198/tast.2011.08294 10.1093/biomet/asv034 |
ContentType | Journal Article |
Copyright | 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017 Copyright American Statistical Association 2017 |
Copyright_xml | – notice: 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017 – notice: Copyright American Statistical Association 2017 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1080/10618600.2016.1152971 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 78 |
ExternalDocumentID | 4316677211 10_1080_10618600_2016_1152971 1152971 |
Genre | Article Feature |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAJMT AAKYL AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH ARCSS AVBZW AWYRJ BHOJU BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IAO IEA IGG IGS IOF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAWIL AAYXX ABAWQ ACHJO ADXHL AFRVT AGLNM AIHAF AMVHM CITATION TASJS JQ2 |
ID | FETCH-LOGICAL-c385t-50af47b17e8b467ae9802df06f449eecf349281145a61b75750585f592d98bd53 |
ISSN | 1061-8600 |
IngestDate | Wed Aug 13 09:38:33 EDT 2025 Sun Aug 03 02:39:31 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Wed Dec 25 09:00:41 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-50af47b17e8b467ae9802df06f449eecf349281145a61b75750585f592d98bd53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://figshare.com/articles/dataset/Imposing_minimax_and_quantile_constraints_on_optimal_matching_in_observational_studies/2599927 |
PQID | 1870849887 |
PQPubID | 29738 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1870849887 crossref_primary_10_1080_10618600_2016_1152971 informaworld_taylorfrancis_310_1080_10618600_2016_1152971 crossref_citationtrail_10_1080_10618600_2016_1152971 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-02 |
PublicationDateYYYYMMDD | 2017-01-02 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | (cit0017) 1991; 53 Hansen B. B. (cit0006) 2007; 7 cit0012 cit0010 (cit0019) 2010 cit0018 cit0015 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Keele L. (cit0011) 2015; 34 Cahuc P. (cit0004) 2014 cit0008 cit0009 cit0007 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0005 doi: 10.1287/opre.19.7.1747 – ident: cit0018 doi: 10.1198/000313005X42831 – ident: cit0021 doi: 10.1001/jama.2013.8272 – ident: cit0008 doi: 10.1080/01621459.2012.742018 – volume: 7 start-page: 18 year: 2007 ident: cit0006 publication-title: R News – volume: 53 start-page: 597 year: 1991 ident: cit0017 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1991.tb01848.x – ident: cit0001 doi: 10.1007/978-1-84800-998-1 – ident: cit0012 doi: 10.1111/j.1467-937X.2006.00406.x – ident: cit0002 doi: 10.1007/BF02288322 – ident: cit0020 doi: 10.1093/biostatistics/2.2.217 – ident: cit0016 doi: 10.1080/01621459.1989.10478868 – ident: cit0007 doi: 10.1198/106186006X137047 – ident: cit0010 doi: 10.1137/S0097539799361208 – volume: 34 start-page: 4070--4082 year: 2015 ident: cit0011 publication-title: Statistics in Medicine – ident: cit0024 doi: 10.1017/CBO9781139644501 – ident: cit0014 doi: 10.1001/jama.2014.6499 – ident: cit0027 doi: 10.1214/13-AOAS713 – ident: cit0003 doi: 10.1137/1.9780898717754 – ident: cit0025 doi: 10.1111/j.1541-0420.2011.01691.x – ident: cit0023 doi: 10.1214/09-STS313 – ident: cit0026 doi: 10.1080/01621459.2012.703874 – ident: cit0015 doi: 10.1080/01621459.2014.997879 – volume-title: Design of Observational Studies year: 2010 ident: cit0019 – volume-title: Labor Economics year: 2014 ident: cit0004 – ident: cit0022 doi: 10.1111/1475-6773.12156 – ident: cit0013 doi: 10.1198/tast.2011.08294 – ident: cit0009 doi: 10.1093/biomet/asv034 |
SSID | ssj0001697 |
Score | 2.2672262 |
Snippet | Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Algorithms Assignment problem Bottleneck assignment Bottlenecks Fine balance Labor economics Statistical methods Studies Threshold algorithm |
Title | Imposing Minimax and Quantile Constraints on Optimal Matching in Observational Studies |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1152971 https://www.proquest.com/docview/1870849887 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXMYBjQFisCEfuGbky45zRNOmDa2tECnqzbJdW1Si2UQzCfHX8_yVJurEgEsUObXT-P38_J7fF0LvtVnKjDGSgIYiklJTuKNGJKa2qWOMUVTZaOTJlF7Oy08LsthadF10SSdP1a9740r-h6rQBnS1UbL_QNl-UGiAe6AvXIHCcP0rGl-trc8V6PqTVbtai5_OEvD5DiYL1rqrxekqQHiTwAyYw9pG4gLz_RYiWWayP5S1WUEGPoW78qpy9R_ib-2bXLJrH1Zp213G560BZ6NbKXwVZet-GDwTwwFDVrkDhq062uzU-hg4HFmWCRJBwmjqrSs6stEqySsfqBn5rI-MH-HJM01fdmWHl3vnRzu8Hd164VFg8CSvfc2Wce7s6YxfzK-veXO-aMZP3V5tA_5pZbXdx-hJXlXOol-k037TzkIdnvgxMdiLpR_u_QcjMWaU5HZnU3eSSnOAngWS4Y8eL8_RI90eoqeTPj_v5hDtf-kJ9gJ9jTDCAUYYiIsjjPAARvimxQFGOMIIr6BtCCMcYPQSzS_Om7PLJJTbSFTBSJeQVJiyklmlmYTtU-iapfnSpNSUZa21MjaRJQP9mQiayQrk_BR0TUPqfFkzuSTFK7TX3rT6NcJCCJXDSi9UqkqVK6lqkemcMGNg7NIcoTLOHlchF739ku88Cylr46RzO-k8TPoROu273fpkLA91qIek4Z3DsvEw5sUDfY8jHXlY8xuewfbGyhp25jd_fvwW7W_X0jHa637c6RMQXzv5zgHvN5HKln8 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iB_XgW3ybg9et-0i2yVFEqY9WBCu9hSRNpGhXsVsQf70z-yitIh68LbvM7CY7-TIzTL4h5MT5vomE4AFEKDpgLoWr1OvAS6SO8d6mFk8jtztpq8uue7w3dRYGyyoxhvYlUUSB1bi4MRldl8SdYhgjYKfGyqwUFj2PJR4jX-Dgu6OVJ2FngsZR1WAFRAKUqU_x_KZmZn-aYS_9gdbFFnS5Smz98WXlyXNjnJuG_fzG6_i_0a2RlcpDpWelSa2TOZdtkOX2hN51tEGW0EUtGZ43yePVECu_sifaHmSDof6g8Gp6P4ZfBohDsSNo0YciH9HXjN4BRA1BPegrqjjpAO6ZSWoYnlSVjVuke3nxcN4Kqm4NgU0EzwMeas-aJmo6YQB9tZMijPs-TD1j0jnrkQdRQPjFdRqZJriJIYQqnsu4L4Xp82SbzGevmdshVGttYzCUxIaW2dgaK3XkYi68B93M7xJW_yNlKypzHMmLiirG03oOFc6hquZwlzQmYm8ll8dfAnLaAFReJFF82fFEJX_IHtTWoipYGKkI0FEwCcC-9w_Vx2Sx9dC-VbdXnZt9shSjo4FJofiAzOfvY3cIblJujop18AXLoANN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqkKrlUMpLvAo-cM2Sh521jwhYsdDdUqlb9WbZjo1WdANis1LVX89M4qy6RYgDtyjRTBI_Ps9Yn78h5MT5wiRC8AgyFB0xl8NV7nXkJUrHeG9zi6eRh6P8asyuf_GWTTgLtErMoX0jFFFjNU7ux8K3jLhTzGIELNRIzMphzvNU4iny1RzCE2T1ZfFoAcZJqK8CJhHatId4XnOztDwtiZe-AOt6BeqvE9N-e0M8ue_OK9O1f_-TdXzXz30mn0J8Ss-aAbVBPrhyk6wNF-Kus03SwQC10XfeIj8HU-R9lXd0OCknU_2Hwpvp9zl0GOANxXqgdRWKakYfSvoNAGoK7sFfzeGkE7hnFhvD8CTwGrfJuH_54_wqCrUaIpsJXkU81p71TNJzwgD2aidFnBY-zj1j0jnrUQVRQPLFdZ6YHgSJMSQqnsu0kMIUPNshK-VD6XYJ1VrbFIZJZmPLbGqNlTpxKRfeg2_m9whru0jZIGSOf_JbJUHvtG1DhW2oQhvuke7C7LFR8njLQP7b_6qqt1B8U-9EZW_YHraDRQVQmKkEsFEwCbC-_w7Xx-Tj7UVffR2Mbg5IJ8UoA3eE0kOyUj3N3ReIkSpzVM-CZ4uQAfE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imposing+Minimax+and+Quantile+Constraints+on+Optimal+Matching+in+Observational+Studies&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Rosenbaum%2C+Paul+R&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=26&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1080%2F10618600.2016.1152971&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4316677211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |