Imposing Minimax and Quantile Constraints on Optimal Matching in Observational Studies

Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 26; no. 1; pp. 66 - 78
Main Author Rosenbaum, Paul R.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.01.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2016.1152971

Cover

Abstract Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, these methods work well; however, they can exhibit a lack of interest in a small number of pairs with large covariate distances. Here, a new method is proposed for imposing a minimax constraint on a minimum total distance matching. Such a match minimizes the total within-pair distance subject to various constraints including the constraint that the maximum pair difference is as small as possible. In an example with 1391 matched pairs, this constraint eliminates dozens of pairs with moderately large differences in age, but otherwise exhibits the same excellent covariate balance found without this additional constraint. A minimax constraint eliminates edges in the network, and can improve the worst-case time bound for the performance of the minimum cost flow algorithm, that is, a better match from a practical perspective may take less time to construct. The technique adapts ideas for a different problem, the bottleneck assignment problem, whose sole objective is to minimize the maximum within-pair difference; however, here, that objective becomes a constraint on the minimum cost flow problem. The method generalizes. Rather than constrain the maximum distance, it can constrain an order statistic. Alternatively, the method can minimize the maximum difference in propensity scores, and subject to doing that, minimize the maximum robust Mahalanobis distance. An example from labor economics is used to illustrate. Supplementary materials for this article are available online.
AbstractList Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, these methods work well; however, they can exhibit a lack of interest in a small number of pairs with large covariate distances. Here, a new method is proposed for imposing a minimax constraint on a minimum total distance matching. Such a match minimizes the total within-pair distance subject to various constraints including the constraint that the maximum pair difference is as small as possible. In an example with 1391 matched pairs, this constraint eliminates dozens of pairs with moderately large differences in age, but otherwise exhibits the same excellent covariate balance found without this additional constraint. A minimax constraint eliminates edges in the network, and can improve the worst-case time bound for the performance of the minimum cost flow algorithm, that is, a better match from a practical perspective may take less time to construct. The technique adapts ideas for a different problem, the bottleneck assignment problem, whose sole objective is to minimize the maximum within-pair difference; however, here, that objective becomes a constraint on the minimum cost flow problem. The method generalizes. Rather than constrain the maximum distance, it can constrain an order statistic. Alternatively, the method can minimize the maximum difference in propensity scores, and subject to doing that, minimize the maximum robust Mahalanobis distance. An example from labor economics is used to illustrate. Supplementary materials for this article are available online.
Author Rosenbaum, Paul R.
Author_xml – sequence: 1
  givenname: Paul R.
  surname: Rosenbaum
  fullname: Rosenbaum, Paul R.
  email: rosenbaum@wharton.upenn.edu
  organization: Department of Statistics, The Wharton School, University of Pennsylvania
BookMark eNqFkF1PwyAUhomZidv0J5g08boT2lIg3mgWP5ZsWYwft4S2oCwdTKDq_r3UzRsv9IoTzvOenPOMwMBYIwE4RXCCIIXnCJaIlhBOMojKCUI4YwQdgCHCOUkzgvAg1pFJe-gIjLxfQRhRRobgebbeWK_NS7LQRq_FZyJMk9x3wgTdymRqjQ9OaBN8Yk2y3ITItMlChPq1D-n4V3np3kXQ1sTOQ-gaLf0xOFSi9fJk_47B08314_QunS9vZ9OreVrnFIcUQ6EKUiEiaVWUREhGYdYoWKqiYFLWKi9YRhEqsChRRTDBEFOsMMsaRqsG52Nwtpu7cfatkz7wle1cXMRzRAmkBaOURArvqNpZ751UfOPiHW7LEeS9Qv6jkPcK-V5hzF38ytU6fF_aO2n_TV_u0too69biw7q24UFsW-uUE6bWnud_j_gCdaiLSQ
CitedBy_id crossref_primary_10_1080_2330443X_2021_1919260
crossref_primary_10_1214_19_STS740
crossref_primary_10_1146_annurev_statistics_031219_041058
crossref_primary_10_1017_pan_2020_32
crossref_primary_10_3390_analytics3010009
crossref_primary_10_1007_s11009_019_09718_4
crossref_primary_10_1061_JMENEA_MEENG_5521
crossref_primary_10_1080_10618600_2022_2058001
crossref_primary_10_1111_biom_13098
crossref_primary_10_1214_20_STS790
crossref_primary_10_1007_s10618_022_00886_5
crossref_primary_10_3390_polym15071719
crossref_primary_10_1111_rssb_12545
crossref_primary_10_1080_24725579_2024_2447715
crossref_primary_10_1093_biomet_asaa032
Cites_doi 10.1287/opre.19.7.1747
10.1198/000313005X42831
10.1001/jama.2013.8272
10.1080/01621459.2012.742018
10.1111/j.2517-6161.1991.tb01848.x
10.1007/978-1-84800-998-1
10.1111/j.1467-937X.2006.00406.x
10.1007/BF02288322
10.1093/biostatistics/2.2.217
10.1080/01621459.1989.10478868
10.1198/106186006X137047
10.1137/S0097539799361208
10.1017/CBO9781139644501
10.1001/jama.2014.6499
10.1214/13-AOAS713
10.1137/1.9780898717754
10.1111/j.1541-0420.2011.01691.x
10.1214/09-STS313
10.1080/01621459.2012.703874
10.1080/01621459.2014.997879
10.1111/1475-6773.12156
10.1198/tast.2011.08294
10.1093/biomet/asv034
ContentType Journal Article
Copyright 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017
Copyright American Statistical Association 2017
Copyright_xml – notice: 2017 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2017
– notice: Copyright American Statistical Association 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2016.1152971
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 78
ExternalDocumentID 4316677211
10_1080_10618600_2016_1152971
1152971
Genre Article
Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAJMT
AAKYL
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
ARCSS
AVBZW
AWYRJ
BHOJU
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
AAYXX
ABAWQ
ACHJO
ADXHL
AFRVT
AGLNM
AIHAF
AMVHM
CITATION
TASJS
JQ2
ID FETCH-LOGICAL-c385t-50af47b17e8b467ae9802df06f449eecf349281145a61b75750585f592d98bd53
ISSN 1061-8600
IngestDate Wed Aug 13 09:38:33 EDT 2025
Sun Aug 03 02:39:31 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Dec 25 09:00:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-50af47b17e8b467ae9802df06f449eecf349281145a61b75750585f592d98bd53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://figshare.com/articles/dataset/Imposing_minimax_and_quantile_constraints_on_optimal_matching_in_observational_studies/2599927
PQID 1870849887
PQPubID 29738
PageCount 13
ParticipantIDs proquest_journals_1870849887
crossref_primary_10_1080_10618600_2016_1152971
informaworld_taylorfrancis_310_1080_10618600_2016_1152971
crossref_citationtrail_10_1080_10618600_2016_1152971
PublicationCentury 2000
PublicationDate 2017-01-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References (cit0017) 1991; 53
Hansen B. B. (cit0006) 2007; 7
cit0012
cit0010
(cit0019) 2010
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Keele L. (cit0011) 2015; 34
Cahuc P. (cit0004) 2014
cit0008
cit0009
cit0007
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0005
  doi: 10.1287/opre.19.7.1747
– ident: cit0018
  doi: 10.1198/000313005X42831
– ident: cit0021
  doi: 10.1001/jama.2013.8272
– ident: cit0008
  doi: 10.1080/01621459.2012.742018
– volume: 7
  start-page: 18
  year: 2007
  ident: cit0006
  publication-title: R News
– volume: 53
  start-page: 597
  year: 1991
  ident: cit0017
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1991.tb01848.x
– ident: cit0001
  doi: 10.1007/978-1-84800-998-1
– ident: cit0012
  doi: 10.1111/j.1467-937X.2006.00406.x
– ident: cit0002
  doi: 10.1007/BF02288322
– ident: cit0020
  doi: 10.1093/biostatistics/2.2.217
– ident: cit0016
  doi: 10.1080/01621459.1989.10478868
– ident: cit0007
  doi: 10.1198/106186006X137047
– ident: cit0010
  doi: 10.1137/S0097539799361208
– volume: 34
  start-page: 4070--4082
  year: 2015
  ident: cit0011
  publication-title: Statistics in Medicine
– ident: cit0024
  doi: 10.1017/CBO9781139644501
– ident: cit0014
  doi: 10.1001/jama.2014.6499
– ident: cit0027
  doi: 10.1214/13-AOAS713
– ident: cit0003
  doi: 10.1137/1.9780898717754
– ident: cit0025
  doi: 10.1111/j.1541-0420.2011.01691.x
– ident: cit0023
  doi: 10.1214/09-STS313
– ident: cit0026
  doi: 10.1080/01621459.2012.703874
– ident: cit0015
  doi: 10.1080/01621459.2014.997879
– volume-title: Design of Observational Studies
  year: 2010
  ident: cit0019
– volume-title: Labor Economics
  year: 2014
  ident: cit0004
– ident: cit0022
  doi: 10.1111/1475-6773.12156
– ident: cit0013
  doi: 10.1198/tast.2011.08294
– ident: cit0009
  doi: 10.1093/biomet/asv034
SSID ssj0001697
Score 2.2672262
Snippet Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Algorithms
Assignment problem
Bottleneck assignment
Bottlenecks
Fine balance
Labor economics
Statistical methods
Studies
Threshold algorithm
Title Imposing Minimax and Quantile Constraints on Optimal Matching in Observational Studies
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1152971
https://www.proquest.com/docview/1870849887
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXMYBjQFisCEfuGbky45zRNOmDa2tECnqzbJdW1Si2UQzCfHX8_yVJurEgEsUObXT-P38_J7fF0LvtVnKjDGSgIYiklJTuKNGJKa2qWOMUVTZaOTJlF7Oy08LsthadF10SSdP1a9740r-h6rQBnS1UbL_QNl-UGiAe6AvXIHCcP0rGl-trc8V6PqTVbtai5_OEvD5DiYL1rqrxekqQHiTwAyYw9pG4gLz_RYiWWayP5S1WUEGPoW78qpy9R_ib-2bXLJrH1Zp213G560BZ6NbKXwVZet-GDwTwwFDVrkDhq062uzU-hg4HFmWCRJBwmjqrSs6stEqySsfqBn5rI-MH-HJM01fdmWHl3vnRzu8Hd164VFg8CSvfc2Wce7s6YxfzK-veXO-aMZP3V5tA_5pZbXdx-hJXlXOol-k037TzkIdnvgxMdiLpR_u_QcjMWaU5HZnU3eSSnOAngWS4Y8eL8_RI90eoqeTPj_v5hDtf-kJ9gJ9jTDCAUYYiIsjjPAARvimxQFGOMIIr6BtCCMcYPQSzS_Om7PLJJTbSFTBSJeQVJiyklmlmYTtU-iapfnSpNSUZa21MjaRJQP9mQiayQrk_BR0TUPqfFkzuSTFK7TX3rT6NcJCCJXDSi9UqkqVK6lqkemcMGNg7NIcoTLOHlchF739ku88Cylr46RzO-k8TPoROu273fpkLA91qIek4Z3DsvEw5sUDfY8jHXlY8xuewfbGyhp25jd_fvwW7W_X0jHa637c6RMQXzv5zgHvN5HKln8
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iB_XgW3ybg9et-0i2yVFEqY9WBCu9hSRNpGhXsVsQf70z-yitIh68LbvM7CY7-TIzTL4h5MT5vomE4AFEKDpgLoWr1OvAS6SO8d6mFk8jtztpq8uue7w3dRYGyyoxhvYlUUSB1bi4MRldl8SdYhgjYKfGyqwUFj2PJR4jX-Dgu6OVJ2FngsZR1WAFRAKUqU_x_KZmZn-aYS_9gdbFFnS5Smz98WXlyXNjnJuG_fzG6_i_0a2RlcpDpWelSa2TOZdtkOX2hN51tEGW0EUtGZ43yePVECu_sifaHmSDof6g8Gp6P4ZfBohDsSNo0YciH9HXjN4BRA1BPegrqjjpAO6ZSWoYnlSVjVuke3nxcN4Kqm4NgU0EzwMeas-aJmo6YQB9tZMijPs-TD1j0jnrkQdRQPjFdRqZJriJIYQqnsu4L4Xp82SbzGevmdshVGttYzCUxIaW2dgaK3XkYi68B93M7xJW_yNlKypzHMmLiirG03oOFc6hquZwlzQmYm8ll8dfAnLaAFReJFF82fFEJX_IHtTWoipYGKkI0FEwCcC-9w_Vx2Sx9dC-VbdXnZt9shSjo4FJofiAzOfvY3cIblJujop18AXLoANN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqkKrlUMpLvAo-cM2Sh521jwhYsdDdUqlb9WbZjo1WdANis1LVX89M4qy6RYgDtyjRTBI_Ps9Yn78h5MT5wiRC8AgyFB0xl8NV7nXkJUrHeG9zi6eRh6P8asyuf_GWTTgLtErMoX0jFFFjNU7ux8K3jLhTzGIELNRIzMphzvNU4iny1RzCE2T1ZfFoAcZJqK8CJhHatId4XnOztDwtiZe-AOt6BeqvE9N-e0M8ue_OK9O1f_-TdXzXz30mn0J8Ss-aAbVBPrhyk6wNF-Kus03SwQC10XfeIj8HU-R9lXd0OCknU_2Hwpvp9zl0GOANxXqgdRWKakYfSvoNAGoK7sFfzeGkE7hnFhvD8CTwGrfJuH_54_wqCrUaIpsJXkU81p71TNJzwgD2aidFnBY-zj1j0jnrUQVRQPLFdZ6YHgSJMSQqnsu0kMIUPNshK-VD6XYJ1VrbFIZJZmPLbGqNlTpxKRfeg2_m9whru0jZIGSOf_JbJUHvtG1DhW2oQhvuke7C7LFR8njLQP7b_6qqt1B8U-9EZW_YHraDRQVQmKkEsFEwCbC-_w7Xx-Tj7UVffR2Mbg5IJ8UoA3eE0kOyUj3N3ReIkSpzVM-CZ4uQAfE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imposing+Minimax+and+Quantile+Constraints+on+Optimal+Matching+in+Observational+Studies&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Rosenbaum%2C+Paul+R&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=26&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1080%2F10618600.2016.1152971&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4316677211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon