Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant gro...
Saved in:
Published in | Plant cell reports Vol. 40; no. 8; pp. 1513 - 1541 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed. |
---|---|
AbstractList | Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed. Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed. |
Author | Mubarik, Muhammad Salman Raza, Ali Siddiqui, Manzer H. Zahid, Zainab Charagh, Sidra Javed, Rida Hasanuzzaman, Mirza |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-5120-2791 surname: Raza fullname: Raza, Ali email: alirazamughal143@gmail.com organization: Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) – sequence: 2 givenname: Sidra orcidid: 0000-0002-8077-7324 surname: Charagh fullname: Charagh, Sidra organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture – sequence: 3 givenname: Zainab surname: Zahid fullname: Zahid, Zainab organization: Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST) – sequence: 4 givenname: Muhammad Salman orcidid: 0000-0001-6522-4660 surname: Mubarik fullname: Mubarik, Muhammad Salman organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture – sequence: 5 givenname: Rida surname: Javed fullname: Javed, Rida organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture – sequence: 6 givenname: Manzer H. orcidid: 0000-0003-2840-4608 surname: Siddiqui fullname: Siddiqui, Manzer H. organization: Department of Botany and Microbiology, College of Science, King Saud University – sequence: 7 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza email: mhzsauag@yahoo.com organization: Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University |
BookMark | eNqNkbtKBDEUQIMouD5-wGrAxmY075nYifhEtFGwC3eyiURnkzXJFuvXm3UFwUIsQoqcE25ydtBmiMEidEDwMcG4O8kYU6VaTHFdkvD2YwNNCGe0pZg9b6IJ7ihpu47wbbST8yvG9bCTE3R_C3kWgzcNGD89baB5s8vGpRiKt6nxoTExOJuSDy8NDD6WiuaSbM5NiaNNEIxdYfMRQsl7aMvBmO3-976Lni4vHs-v27uHq5vzs7vWsF6UVmA6dYxwM0gxDNwJ5kAyrKB3U0FZZ4xixNKBA4ARfQdcdtQBcGaqJSXbRUfre-cpvi9sLnrms7FjHcLGRdZUMikEZvwfKOdKSUyUqujhL_Q1LlKoD9FUCEUEF6qvVL-mTIo5J-u08QWKr1-WwI-aYL1qotdNdG2iv5roj6rSX-o8-Rmk5d8SW0t5vqpg089Uf1ifoU6gdA |
CitedBy_id | crossref_primary_10_3390_agronomy14112510 crossref_primary_10_3390_ijms22168568 crossref_primary_10_1016_j_plaphy_2023_108193 crossref_primary_10_3389_fevo_2022_844274 crossref_primary_10_3389_fpls_2022_961872 crossref_primary_10_1007_s00344_024_11412_w crossref_primary_10_1038_s41438_021_00706_9 crossref_primary_10_3390_f14010007 crossref_primary_10_1016_j_scitotenv_2023_162327 crossref_primary_10_1016_j_stress_2023_100152 crossref_primary_10_3389_fpls_2022_819658 crossref_primary_10_1007_s10725_025_01305_7 crossref_primary_10_1007_s42729_021_00606_w crossref_primary_10_1016_j_scienta_2023_112313 crossref_primary_10_1111_ppl_70111 crossref_primary_10_1007_s42994_022_00085_2 crossref_primary_10_3389_fpls_2024_1467957 crossref_primary_10_1007_s42729_023_01414_0 crossref_primary_10_1007_s00344_024_11469_7 crossref_primary_10_3390_ijms241310671 crossref_primary_10_1016_j_stress_2024_100684 crossref_primary_10_1016_j_scitotenv_2024_169939 crossref_primary_10_1111_ppl_13325 crossref_primary_10_1111_ppl_14416 crossref_primary_10_1038_s41598_024_61576_4 crossref_primary_10_1016_j_rsci_2022_08_002 crossref_primary_10_3389_fpls_2022_1108622 crossref_primary_10_1016_j_bcab_2021_102205 crossref_primary_10_1016_j_indcrop_2022_116174 crossref_primary_10_1111_ppl_14495 crossref_primary_10_1016_j_postharvbio_2025_113481 crossref_primary_10_3389_fpls_2022_1085368 crossref_primary_10_3389_fpls_2022_953398 crossref_primary_10_1007_s40502_022_00656_x crossref_primary_10_1016_j_stress_2024_100652 crossref_primary_10_3390_f15030445 crossref_primary_10_3390_membranes11120984 crossref_primary_10_1021_acs_jafc_3c03876 crossref_primary_10_48130_opr_0025_0004 crossref_primary_10_7235_HORT_20230026 crossref_primary_10_1021_acs_jafc_4c06559 crossref_primary_10_1016_j_envexpbot_2023_105260 crossref_primary_10_1016_j_plaphy_2023_108259 crossref_primary_10_1016_j_ecoenv_2024_116490 crossref_primary_10_1038_s41598_024_61907_5 crossref_primary_10_1016_j_ncrops_2023_11_003 crossref_primary_10_3390_genes13010060 crossref_primary_10_1007_s00344_022_10648_8 crossref_primary_10_1016_j_scienta_2022_111621 crossref_primary_10_3390_ijms232113546 crossref_primary_10_3390_horticulturae10030269 crossref_primary_10_3390_plants10112247 crossref_primary_10_1016_j_scienta_2023_112292 crossref_primary_10_3390_plants14050773 crossref_primary_10_1007_s00425_021_03771_5 crossref_primary_10_1016_j_jhazmat_2023_133163 crossref_primary_10_1016_j_jplph_2024_154237 crossref_primary_10_1093_pcp_pcad163 crossref_primary_10_3389_fpls_2022_857396 crossref_primary_10_3389_fpls_2022_952758 crossref_primary_10_1016_j_plantsci_2023_111688 crossref_primary_10_1007_s42729_025_02354_7 crossref_primary_10_1007_s12298_023_01407_4 crossref_primary_10_1016_j_stress_2024_100700 crossref_primary_10_1007_s11120_023_01074_2 crossref_primary_10_1007_s11738_022_03466_8 crossref_primary_10_1016_j_indcrop_2024_119227 crossref_primary_10_1186_s13007_023_01025_x crossref_primary_10_3390_ijms23073945 crossref_primary_10_13080_z_a_2023_110_039 crossref_primary_10_3390_plants11243473 crossref_primary_10_3389_fpls_2022_1066421 crossref_primary_10_3390_plants10030573 crossref_primary_10_1007_s11368_024_03807_9 crossref_primary_10_1016_j_ecoenv_2025_117886 crossref_primary_10_1111_tpj_15598 crossref_primary_10_3390_ijms241512261 crossref_primary_10_1038_s41598_022_08983_7 crossref_primary_10_3390_cells12071027 crossref_primary_10_1007_s00344_024_11413_9 crossref_primary_10_1016_j_scienta_2024_113575 crossref_primary_10_12677_JOCR_2023_114032 crossref_primary_10_3390_cimb44100318 crossref_primary_10_1080_01904167_2024_2369063 crossref_primary_10_3390_plants12142631 crossref_primary_10_1016_j_micpath_2024_106772 crossref_primary_10_1016_j_sajb_2023_07_034 crossref_primary_10_1093_jxb_erac418 crossref_primary_10_1007_s00425_023_04088_1 crossref_primary_10_1016_j_plaphy_2023_107988 crossref_primary_10_3390_cells14030176 crossref_primary_10_1016_j_plaphy_2023_108261 crossref_primary_10_1016_j_envexpbot_2024_105868 crossref_primary_10_3390_ijms24044069 crossref_primary_10_1007_s00344_023_11218_2 crossref_primary_10_5423_PPJ_OA_12_2021_0189 crossref_primary_10_1007_s11105_023_01423_4 crossref_primary_10_3390_ijms23105438 crossref_primary_10_3390_plants13030462 crossref_primary_10_3389_fgene_2024_1399721 crossref_primary_10_1007_s11104_022_05826_2 crossref_primary_10_1111_ppl_14618 crossref_primary_10_1186_s12870_024_05274_3 crossref_primary_10_3390_genes12101602 crossref_primary_10_3389_fpls_2022_806781 crossref_primary_10_1007_s00344_021_10362_x crossref_primary_10_2298_GENSR2401221S crossref_primary_10_1007_s11356_023_28632_4 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_3389_fpls_2022_866063 crossref_primary_10_3390_plants11131620 crossref_primary_10_1016_j_stress_2024_100692 crossref_primary_10_3389_fpls_2021_691768 crossref_primary_10_3390_horticulturae8121205 crossref_primary_10_3390_ijms24010384 crossref_primary_10_3390_ijms241210368 crossref_primary_10_1111_ppl_14226 crossref_primary_10_1038_s41598_024_55622_4 crossref_primary_10_1007_s11756_024_01679_5 crossref_primary_10_1111_pbi_14343 crossref_primary_10_1111_ppl_13890 crossref_primary_10_1093_plphys_kiac486 crossref_primary_10_3389_fpls_2023_1104874 crossref_primary_10_1016_j_sajb_2023_10_064 crossref_primary_10_1007_s00344_024_11342_7 crossref_primary_10_1093_jxb_erac023 crossref_primary_10_3389_fpls_2021_791124 crossref_primary_10_1016_j_plaphy_2024_109151 crossref_primary_10_1186_s12870_023_04449_8 crossref_primary_10_1016_j_postharvbio_2023_112262 crossref_primary_10_1093_jxb_erae041 crossref_primary_10_1186_s12870_025_06131_7 crossref_primary_10_1016_j_ecoenv_2024_115938 crossref_primary_10_3390_ijms241311020 crossref_primary_10_3390_genes12081256 crossref_primary_10_3389_fpls_2020_627331 crossref_primary_10_3389_fpls_2020_545453 crossref_primary_10_1186_s12870_024_05273_4 crossref_primary_10_3389_fpls_2021_668029 crossref_primary_10_1016_j_foodchem_2024_141885 crossref_primary_10_1016_j_plaphy_2024_108587 crossref_primary_10_3389_fpls_2021_770794 crossref_primary_10_1111_ppl_14476 |
Cites_doi | 10.1111/pce.12214 10.1016/j.ecoenv.2019.02.084 10.1146/annurev-arplant-042817-040047 10.1038/nature06006 10.3390/antiox7070085 10.1007/s00299-013-1508-0 10.1016/j.postharvbio.2016.03.021 10.1016/j.scienta.2015.10.009 10.1111/j.1469-8137.2007.02010.x 10.1016/j.plantsci.2015.11.009 10.1080/03650340.2017.1313406 10.1038/nature05960 10.1111/j.1439-037X.2008.00358.x 10.1093/jxb/erw261 10.3390/ijms21041446 10.1371/journal.pone.0232269 10.1007/s11738-018-2611-1 10.1073/pnas.1103959108 10.1038/embor.2009.103 10.1007/s11104-016-2985-z 10.1105/tpc.112.108548 10.1002/jsfa.6725 10.1016/j.plantsci.2019.01.006 10.1007/s11103-016-0503-6 10.1016/j.scitotenv.2018.07.164 10.3390/ijms20102479 10.1038/nchembio.161 10.1016/j.cj.2016.01.010 10.1016/j.foodchem.2008.09.109 10.1590/S1677-04202011000200008 10.1016/j.cell.2006.05.050 10.1111/ppl.12810 10.1111/j.1745-4549.2012.00805.x 10.3390/agronomy10050699 10.1111/pce.12536 10.1016/j.ecoenv.2015.11.024 10.1093/jxb/erz476 10.1631/jzus.B1700191 10.1093/mp/ssr020 10.1039/C5OB00362H 10.3103/S1068367418030035 10.1371/journal.pone.0183731 10.1016/j.jprot.2015.12.004 10.4161/psb.5.4.11574 10.1007/s13580-015-0117-y 10.1093/jxb/erw159 10.1111/j.1399-3054.2012.01659.x 10.1105/tpc.113.117838 10.1038/cr.2008.53 10.1007/s10725-017-0327-7 10.1111/j.1365-313X.2010.04477.x 10.1016/j.scienta.2017.09.041 10.1007/s10725-020-00571-x 10.1007/s11816-014-0321-8 10.5424/sjar/2019174-15380 10.1007/s00344-008-9051-x 10.1023/B:PLAN.0000019064.55734.52 10.1093/jxb/erx004 10.1016/j.ecoenv.2013.08.019 10.1016/j.ecoenv.2017.09.070 10.1016/j.foodchem.2010.07.036 10.1111/j.1365-313X.2004.02107.x 10.1016/j.postharvbio.2015.10.013 10.1105/tpc.106.048017 10.1016/j.phytochem.2014.09.007 10.1105/tpc.009159 10.1038/nature08854 10.1016/j.rhisph.2018.11.009 10.1111/tpj.12841 10.1111/pbi.13232 10.3390/ijms14059643 10.1111/j.1469-8137.2007.02292.x 10.1016/j.tibtech.2019.05.007 10.1104/pp.110.166876 10.1111/nph.15696 10.1007/s00344-012-9274-8 10.1007/s00709-017-1132-x 10.1007/s13765-017-0316-6 10.1016/j.jplph.2015.11.013 10.1016/j.envexpbot.2017.11.004 10.1016/j.sajb.2017.11.018 10.3390/antiox9080681 10.1105/tpc.113.120394 10.1111/j.1439-037X.2011.00468.x 10.1371/journal.pgen.1007248 10.1105/tpc.18.00405 10.1007/s00344-018-9814-y 10.1002/jsfa.9920 10.1094/MPMI-05-12-0108-FI 10.1016/j.jplph.2018.04.009 10.1104/pp.109.148999 10.3390/plants8020034 10.1093/jxb/ery347 10.3389/fpls.2015.00639 10.1073/pnas.85.10.3382 10.1104/pp.19.00956 10.1105/tpc.111.089300 10.1038/srep21843 10.3389/fpls.2017.01903 10.1016/j.foodchem.2016.05.164 10.1007/s00344-011-9253-5 10.1007/s00425-013-1847-7 10.1007/s00344-018-9854-3 10.1016/j.envexpbot.2013.11.006 10.1105/tpc.113.112631 10.1016/j.plaphy.2015.08.020 10.1111/jac.12134 10.1134/S1021443719050170 10.1104/pp.113.234310 10.3390/ijms19092539 10.1007/s00344-017-9666-x 10.1007/s00709-010-0218-5 10.1016/j.plantsci.2016.09.019 10.1016/j.chom.2015.07.005 10.1007/s11240-020-01880-9 10.1104/pp.15.00677 10.1073/pnas.1103010108 10.1093/pcp/pcr105 10.3389/fpls.2016.01933 10.1016/j.sjbs.2015.06.002 10.1007/s00344-015-9563-0 10.3389/fpls.2018.00899 10.1093/pcp/pcg157 10.1007/s00344-011-9224-x 10.1371/journal.pgen.1003653 10.1105/tpc.110.080788 10.1016/j.jhazmat.2020.122882 10.1016/j.plaphy.2015.02.021 10.1093/jxb/erz233 10.1016/j.scienta.2017.12.039 10.1080/15592324.2018.1451707 10.1007/s12298-017-0451-x 10.3389/fpls.2019.00340 10.1016/j.envexpbot.2018.11.012 10.1007/s12298-015-0320-4 10.1111/jipb.12801 10.1105/tpc.111.083261 10.3389/fpls.2019.00390 10.1111/eea.12269 10.1007/s10535-015-0491-4 10.1017/S0021859613000804 10.1080/14620316.2019.1663135 10.1016/j.devcel.2010.10.024 10.1007/s11240-018-1481-y 10.3390/biology9070177 10.3389/fpls.2016.00591 10.1002/jsfa.6727 10.1104/pp.15.00788 10.1105/tpc.111.093005 10.1023/A:1027311319940 10.1016/0006-291X(83)90330-3 10.1016/j.jplph.2013.12.003 10.3390/ijms19103206 10.3389/fpls.2015.00084 10.1007/978-981-13-6883-7_22 10.1007/s11738-016-2120-z 10.1016/j.envexpbot.2019.103949 10.1016/j.chemosphere.2019.125361 10.1007/978-981-15-2156-0_5 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. 2020. Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. – notice: 2020. Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION 3V. 7QL 7T5 7T7 7TM 7U9 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0K M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00299-020-02614-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) Proquest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1432-203X |
EndPage | 1541 |
ExternalDocumentID | 10_1007_s00299_020_02614_z |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M4Y M7P MA- MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 N~3 O9- O93 O9G O9I O9J OAM P0- P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z8O Z8P Z8Q Z8S Z8W ZMTXR ZOVNA ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QL 7T5 7T7 7TM 7U9 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-502df314cb65bb4f53fa6309a8fd5237cc931e2b4aaac587a4672faa43c314663 |
IEDL.DBID | U2A |
ISSN | 0721-7714 1432-203X |
IngestDate | Thu Jul 10 23:50:06 EDT 2025 Thu Jul 10 17:10:54 EDT 2025 Fri Jul 25 18:54:37 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Tue Jul 01 01:04:48 EDT 2025 Fri Feb 21 02:47:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Stress signaling Abiotic stress Antioxidant enzymes Genetic engineering Jasmonates Plant hormones Molecular crosstalk |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-502df314cb65bb4f53fa6309a8fd5237cc931e2b4aaac587a4672faa43c314663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0461-8743 0000-0002-8077-7324 0000-0001-6522-4660 0000-0003-2840-4608 0000-0002-5120-2791 |
PQID | 2559154598 |
PQPubID | 54035 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_2636550346 proquest_miscellaneous_2449960199 proquest_journals_2559154598 crossref_citationtrail_10_1007_s00299_020_02614_z crossref_primary_10_1007_s00299_020_02614_z springer_journals_10_1007_s00299_020_02614_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210800 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin |
PublicationTitle | Plant cell reports |
PublicationTitleAbbrev | Plant Cell Rep |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Aftab, Khan, Idrees, Naeem, Hashmi (CR3) 2011; 248 Farhangi-Abriz, Ghassemi-Golezani (CR45) 2018; 147 Hou, Lee, Xia, Yan, Yu (CR63) 2010; 19 Van der Does, Leon-Reyes, Koornneef, Van Verk, Rodenburg, Pauwels, Goossens, Körbes, Memelink, Ritsema, Van Wees (CR147) 2013; 25 Lei, Sun, Sun, Zhu, Li, Zheng (CR83) 2020; 62 Spoel, Koornneef, Claessens, Korzelius, Van Pelt, Mueller, Buchala, Métraux, Brown, Kazan, Van Loon (CR136) 2003; 15 Aghdam, Sevillano, Flores, Bodbodak (CR4) 2015; 153 Ilyas, Gull, Mazhar, Saeed, Kanwal, Shabir, Bibi (CR68) 2017; 48 Jang, Choi (CR69) 2018; 13 Sharma, Laxmi (CR128) 2016; 6 Singh, Shah (CR130) 2014; 108 Abidi, Cantín, Jiménez, Giménez, Moreno, Gogorcena (CR1) 2015; 95 Grunewald, Vanholme, Pauwels, Plovie, Inze, Gheysen, Goossens (CR56) 2009; 10 Takeuchi, Gyohda, Tominaga, Kawakatsu, Hatakeyama, Ishii, Shimaya, Nishimura, Riemann, Nick, Hashimoto (CR139) 2011; 52 Siddiqui, Al-Khaishany, Al-Qutami, Al-Whaibi, Grover, Ali, Al-Wahibi (CR123) 2015; 22 Vanhaelewyn, Prinsen, Van Der Straeten, Vandenbussche (CR150) 2016; 67 Cui, Wei, Su, Li, Ge (CR29) 2016; 253 Mohamed, Latif (CR93) 2017; 23 Nahar, Kyndt, Hause, Höfte, Gheysen (CR99) 2013; 26 Chini, Fonseca, Fernández, Adie, Chico (CR27) 2007; 448 de Ollas, Hernando, Arbona, Gómez-Cadenas (CR33) 2013; 147 Bu, Jiang, Li, Zhai, Zhang, Wu, Sun, Xie, Li (CR24) 2008; 18 Kloth, Busscher-Lange, J, Van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA (CR81) 2016; 67 Xu, Liao, Zhang, Liu, Sun, Gao, Sui, Wei (CR157) 2016; 6 Todaka, Shinozaki, Yamaguchi-Shinozaki (CR143) 2015; 6 Avalbaev, Yuldashev, Fedorova, Somov, Vysotskaya, Allagulova, Shakirova (CR15) 2016; 191 Pauwels, Barbero, Geerinck, Tilleman, Grunewald, Pérez (CR107) 2010; 464 Saleh, Withers, Mohan, Marqués, Gu, Yan, Zavaliev, Nomoto, Tada, Dong (CR119) 2015; 18 Ku, Sintaha, Cheung, Lam (CR80) 2018; 19 Moradpour, Abdulah (CR94) 2020; 18 Ullah, Waqas, Khan, Lee, Kim (CR145) 2017; 60 Asghari, Hasanlooe (CR14) 2015; 197 Khan, Bano, Ali, Babar (CR79) 2020; 90 Liu, Du, Deng, Shen, Fang, Chen, Lu, Wang, Li, Zhai (CR88) 2019; 31 Zhu, An, Feng, Li, Xue, Mu, Jiang, Kim, To, Li (CR169) 2011; 108 Hu, Jiang, Wang, Yu (CR66) 2013; 25 Zaid, Mohammad (CR166) 2018; 37 Wang, Yu, Liu (CR151) 2019; 10 Wasternack, Strnad (CR154) 2018; 19 Bali, Kaur, Kohli, Ohri, Thukral, Bhardwaj, Ahmad (CR18) 2018; 645 Bali, Jamwal, Kaur, Kohli, Ohri, Gandhi, Bhardwaj, Al-Huqail, Siddiqui, Ahmad (CR21) 2019; 174 Karaman, Ozturk, Genc, Celik (CR77) 2013; 37 Vos, Moritz, Pieterse, Van Wees (CR149) 2015; 6 Yu, Liu, Shao, Yu, Wei, Ni, Xu, Wang (CR164) 2016; 113 Sánchez-Romera, Ruiz-Lozano, Li, Luu, Martínez-Ballesta, Carvajal, Zamarreño, García-Mina, Maurel, Aroca (CR120) 2014; 37 Ghasemnezhad, Javaherdashti (CR53) 2008; 6 Yan, Zhang, Chen, Li (CR159) 2015; 59 Balbi, Devoto (CR19) 2008; 177 Hu, Jiang, Han, Wang, Pan, Yu (CR65) 2017; 68 Savchenko, Kolla, Wang (CR121) 2014; 164 Ouli-Jun, Zhou-Bin, Ge, Bo-Zhi, Xue-Xiao (CR102) 2017; 49 Müller, Munné-Bosch (CR95) 2015; 169 Meng, Han, Wang, Tian (CR91) 2009; 114 Sirhindi, Mir, Sharma, Gill, Kaur, Mushtaq (CR132) 2015; 21 Qi, Zhang, Lu, Hettenhausen, Tan, Cao, Zhu, Wu, Wu (CR110) 2018; 8 Hasanuzzaman, Nahar, Alam, Roychowdhury, Fujita (CR62) 2013; 14 Li, Zhong, Palva (CR84) 2017; 12 Chen, Fu, Yang, Hsieh (CR26) 2018; 14 Wani, Kumar, Shriram, Sah (CR153) 2016; 4 Vick, Zimmerman (CR148) 1983; 111 Shyu, Figueroa, de Pew, Cooke, Sheard, Moreno, Katsir, Zheng, Browse, Howea (CR129) 2012; 24 Mustafa, Ali, Seymour, Tucker (CR96) 2016; 118 Parmoon, Ebadi, Jahanbakhsh, Hashemi (CR103) 2019; 66 Alam, Nahar, Hasanuzzaman, Fujita (CR8) 2014; 8 Song, Qi, Fan, Zhang, Gao, Huang, Wu, Guo, Xie (CR134) 2013; 9 Sayyari, Babalar, Kalantari, Martínez-Romero, Guillén, Serrano, Valero (CR124) 2011; 124 Ulloa-Inostroza, Alberdi, Meriño-Gergichevich, Reyes-Díaz (CR146) 2017; 412 Qi, Song, Ren, Wu, Huang, Chen, Fan, Peng, Ren, Xie (CR111) 2011; 23 Wasternack, Xie (CR155) 2010; 5 Yang, Wu, Ahammed, Wu, Yang, Wan, Chen (CR161) 2018; 9 Fedina, Nedeva, Georgieva, Velitchkova (CR47) 2009; 195 Alavi-Samani, Kachouei, Pirbalouti (CR9) 2015; 56 Degu, Ayenew, Cramer, Fait (CR34) 2016; 212 Sofy, Seleiman, Alhammad, Alharbi, Mohamed (CR135) 2020; 10 Zhai, Li (CR167) 2019; 70 Kamińska, Tretyn, Trejgell (CR75) 2018; 135 Demkura, Abdala, Baldwin, Ballaré (CR35) 2010; 152 Balfagón, Sengupta, Gómez-Cadenas, Fritschi, Azad, Mittler, Zandalinas (CR20) 2019; 181 Farooq, Islam, Yang, Nawaz, Gill, Ali, Song, Zhou (CR46) 2018; 84 Escobar-Bravo, Chen, Kim, Grosser, van Dam, Leiss, Klinkhamer (CR42) 2019; 70 Siddiqui, Alamri, Khan, Corpas, Al-Amri, Alsubaie, Ali, Kalaji, Ahmad (CR122) 2020; 15 Wu, Wu, Li, Duan, Zhang (CR156) 2012; 31 Arbona, Gómez-Cadenas (CR13) 2008; 27 Ding, Lai, Wu, Zhang, Chen, Dai, Wang, Du, Xiao, Yang (CR37) 2016; 244 Nemhauser, Hong, Chory (CR100) 2006; 126 Pellegrini, Trivellini, Campanella, Francini, Lorenzini, Nali, Vernieri (CR105) 2013; 32 Thines, Katsir, Melotto, Niu, Mandaokar, Liu, Nomura, He, Howe, Browse (CR142) 2007; 448 CR116 Kanna, Tamaoki, Kubo, Nakajima, Rakwal, Agrawal, Tamogami, Ioki, Ogawa, Saji (CR76) 2003; 44 CR113 Edelstein, Ben-Hur (CR40) 2018; 234 Ruan, Zhou, Zhou, Yan, Khurshid, Weng, Cheng, Zhang (CR118) 2019; 20 CR70 Pedranzani, Racagni, Alemano, Miersch, Ramírez, Peña-Cortés, Taleisnik, Machado-Domenech, Abdala (CR104) 2003; 41 Shahzad, Pitann, Ali, Qayyum, Fatima, Bakhat (CR126) 2015; 201 Yosefi, Akbar Mozafari, Javadi (CR162) 2020; 142 Jing, Lin (CR72) 2015; 169 Radhakrishnan, Lee (CR112) 2013; 32 Yang, Zhang, Lu, Jin, Wang (CR160) 2011; 4 Thireault, Shyu, Yoshida, St Aubin, Campos, Howe (CR141) 2015; 82 Ali, Hussain, Shamsi, Jabeen, Siddiqui, Jiang (CR10) 2018; 19 Tayyab, Naz, Yasmin, Nosheen, Keyani, Sajjad, Hassan, Roberts (CR140) 2020; 15 Gao, Venugopal, Navarre, Kachroo (CR54) 2011; 155 Yan, Chen, Li (CR158) 2013; 98 Alisofi, Einali, Sangtarash (CR11) 2020; 95 Azeem (CR16) 2018; 44 Harfouche, Jacobson, Kainer, Romero, Harfouche, Mugnozza, Moshelion, Tuskan, Keurentjes, Altman (CR60) 2019; 37 de Ollas, Arbona, GóMez-Cadenas (CR31) 2015; 38 Nemes, Koltai, Taylor, Suzuki, Gyori, Radak (CR101) 2018; 7 Tuominen, Overmyer, KeinaÈnen, Kollist, Kangasjärvi (CR144) 2004; 39 Brash, Baertschi, Ingram, Harris (CR22) 1988; 85 Abouelsaad, Renault (CR2) 2018; 226 Fonseca, Chini, Hamberg, Adie, Porzel, Kramell, Miersch, Wasternack, Solano (CR49) 2009; 5 Per, Khan, Anjum, Masood, Hussain, Khan (CR109) 2018; 145 Nafie, Hathout, Mokadem, Shyma (CR98) 2011; 23 de Ollas, Dodd (CR32) 2016; 91 Song, Huang, Gao, Wang, Wu, Liu, Yang, Zhai, Li, Qi (CR133) 2014; 26 Talebi, Moghaddam, Pirbalouti (CR137) 2018; 40 Raza, Habib, Kakavand, Zahid, Zahra, Sharif, Hasanuzzaman (CR114) 2020; 9 Faghih, Ghobadi, Zarei (CR43) 2017; 36 Goossens, Mertens, Goossens (CR55) 2017; 68 Ghaffari, Tadayon, Nadeem, Razmjoo, Cheema (CR52) 2020; 17 Hanaka, Wójcik, Dresler, Mroczek-Zdyrska, Maksymiec (CR58) 2016; 124 Breeze (CR23) 2019; 31 Jimenez-Aleman, Machado, Görls, Baldwin, Boland (CR73) 2015; 13 Manan, Ayyub, Pervez, Ahmad (CR89) 2016; 53 Tamaoki, Nakajima, Kubo, Aono, Matsuyama, Saji (CR138) 2003; 53 Mir, Sirhindi, Alyemeni, Alam, Ahmad (CR92) 2018; 37 CR17 Dombrecht, Gang, Sprague (CR39) 2007; 19 Habibi, Ramezanian, Rahemi, Eshghi, Guillén, Serrano, Valero (CR57) 2019; 99 Kamal, Komatsu (CR74) 2016; 133 Choudhary, Agrawal (CR28) 2014; 99 Jiang, Liang, Yang, Yu (CR71) 2014; 26 Fujimoto, Ohta, Usui, Shinshi, Ohme-Takagi (CR51) 2000; 12 Zafar, Zaidi, Gaba, Singla-Pareek, Dhankher, Li, Mansoor, Pareek (CR165) 2020; 71 Huang, Li, Shang, Meng (CR67) 2015; 95 Ding, Shi, Yang (CR38) 2019; 222 Ahmad, Alyemeni, Wijaya, Alam, Ahanger, Alamri (CR6) 2017; 63 Farhangi-Abriz, Alaee, Tavasolee (CR44) 2019; 9 Fukao, Barrera-Figueroa, Juntawong, Peña-Castro (CR50) 2019; 10 Anjum, Wang, Farooq, Khan, Xue (CR12) 2011; 197 Liu, Tang, Dou, Li, Liu, Wang, Ding, Ding (CR87) 2016; 30 CR90 Fernández-Calvo, Chini, Fernández-Barbero (CR48) 2011; 23 Per, Khan, Masood, Fatma (CR108) 2016; 7 Seo, Joo, Kim, Kim, Nahm, Song, Cheong, Lee, Kim, Choi (CR125) 2011; 65 De Domenico, Taurino, Gallo, Poltronieri, Pastor, Flors, Santino (CR30) 2019; 165 Dhakarey, Raorane, Treumann, Peethambaran, Schendel, Sahi, Hause, Bunzel, Henry, Kohli (CR36) 2017; 8 Castagna, Ederli, Pasqualini, Mensuali-Sodi, Baldan, Donnini, Ranieri (CR25) 2007; 174 Ellouzi, Hamed, Asensi-Fabado, Müller, Abdelly, Munné-Bosch (CR41) 2013; 237 Kausch, Nelson-Vasilchik, Hague, Mookkan, Quemada, Dellaporta, Fragoso, Zhang (CR78) 2019; 281 Sirhindi, Mir, Abd-Allah, Ahmad, Gucel (CR131) 2016; 7 Howe, Major, Koo (CR64) 2018; 69 Mustafa, Ali, Seymour, Tucker (CR97) 2018; 231 Lackman, González-Guzmán, Tilleman, Carqueijeiro, Pérez, Moses, Seo, Kanno, Häkkinen, Van Montagu (CR82) 2011; 108 Ren, Sun, Guo, Wang, Li, Ge (CR117) 2015; 154 Liu, Chi, Yue, Zhang, Li, Jia (CR86) 2012; 31 Wang, Song, Gong, Xu, Li (CR152) 2020; 21 Ahmad, Ahanger, Alyemeni, Wijaya, Alam (CR5) 2018; 255 Raza, Razzaq, Mehmood, Zou, Zhang, Lv, Xu (CR115) 2019; 8 Shahzad, Waqas, Khan, Hamayun, Kang, Lee (CR127) 2015; 96 Haque, Abe, Mori, Oyanagi, Komatsu, Kawaguchi (CR59) 2014; 171 Hasanuzzaman, Bhuyan, Zulfiqar, Raza, Mohsin, Mahmud, Fujita, Fotopoulos (CR61) 2020; 9 Li, Zhang, Ahammed, Li, Wei, Yan, Zhang, Han, Han (CR85) 2019; 161 Zhao, Ma, Xu, Li, Hao (CR168) 2016; 35 Pauwels, Goossens (CR106) 2011; 23 Yao, You, Ou, Ma, Wu, Xu (CR163) 2015; 90 Ahmadi, Karimi, Struik (CR7) 2018; 115 M Edelstein (2614_CR40) 2018; 234 IA Vos (2614_CR149) 2015; 6 M Moradpour (2614_CR94) 2020; 18 R Escobar-Bravo (2614_CR42) 2019; 70 MA Mustafa (2614_CR97) 2018; 231 JL Nemhauser (2614_CR100) 2006; 126 M Talebi (2614_CR137) 2018; 40 KJ Kloth (2614_CR81) 2016; 67 AHM Kamal (2614_CR74) 2016; 133 Q Bu (2614_CR24) 2008; 18 D Todaka (2614_CR143) 2015; 6 R Shahzad (2614_CR127) 2015; 96 H Tuominen (2614_CR144) 2004; 39 AP Kausch (2614_CR78) 2019; 281 E Nafie (2614_CR98) 2011; 23 CJ Yang (2614_CR160) 2011; 4 Y Jing (2614_CR72) 2015; 169 T Fukao (2614_CR50) 2019; 10 X Huang (2614_CR67) 2015; 95 G Parmoon (2614_CR103) 2019; 66 X Meng (2614_CR91) 2009; 114 TS Per (2614_CR108) 2016; 7 M Sayyari (2614_CR124) 2011; 124 J Ruan (2614_CR118) 2019; 20 QM Gao (2614_CR54) 2011; 155 L Pauwels (2614_CR107) 2010; 464 M Tamaoki (2614_CR138) 2003; 53 N Tayyab (2614_CR140) 2020; 15 Y Hu (2614_CR66) 2013; 25 P Fernández-Calvo (2614_CR48) 2011; 23 J Qi (2614_CR110) 2018; 8 MH Siddiqui (2614_CR123) 2015; 22 I Singh (2614_CR130) 2014; 108 B Dombrecht (2614_CR39) 2007; 19 S Zhao (2614_CR168) 2016; 35 A Degu (2614_CR34) 2016; 212 B Thines (2614_CR142) 2007; 448 M Hasanuzzaman (2614_CR62) 2013; 14 H Ding (2614_CR37) 2016; 244 B Sánchez-Romera (2614_CR120) 2014; 37 SH Spoel (2614_CR136) 2003; 15 G Sirhindi (2614_CR132) 2015; 21 P Ahmad (2614_CR5) 2018; 255 Y-S Ku (2614_CR80) 2018; 19 Z Yan (2614_CR158) 2013; 98 H-J Chen (2614_CR26) 2018; 14 N Khan (2614_CR79) 2020; 90 BA Vick (2614_CR148) 1983; 111 Y Liu (2614_CR88) 2019; 31 A Avalbaev (2614_CR15) 2016; 191 GJ Lei (2614_CR83) 2020; 62 M Ghasemnezhad (2614_CR53) 2008; 6 H Ghaffari (2614_CR52) 2020; 17 S De Domenico (2614_CR30) 2019; 165 I Abouelsaad (2614_CR2) 2018; 226 SY Fujimoto (2614_CR51) 2000; 12 Y-H Xu (2614_CR157) 2016; 6 M Müller (2614_CR95) 2015; 169 R Nemes (2614_CR101) 2018; 7 GA Howe (2614_CR64) 2018; 69 2614_CR70 M Kamińska (2614_CR75) 2018; 135 S Song (2614_CR133) 2014; 26 SH Wani (2614_CR153) 2016; 4 EM Ulloa-Inostroza (2614_CR146) 2017; 412 PV Demkura (2614_CR35) 2010; 152 D Van der Does (2614_CR147) 2013; 25 J Wang (2614_CR152) 2020; 21 C Wasternack (2614_CR154) 2018; 19 MH Siddiqui (2614_CR122) 2020; 15 E Breeze (2614_CR23) 2019; 31 HI Mohamed (2614_CR93) 2017; 23 MA Mir (2614_CR92) 2018; 37 V Arbona (2614_CR13) 2008; 27 S Farhangi-Abriz (2614_CR45) 2018; 147 T Savchenko (2614_CR121) 2014; 164 Q Ren (2614_CR117) 2015; 154 S Faghih (2614_CR43) 2017; 36 A Castagna (2614_CR25) 2007; 174 MR Sofy (2614_CR135) 2020; 10 G Sirhindi (2614_CR131) 2016; 7 G Jang (2614_CR69) 2018; 13 I Ullah (2614_CR145) 2017; 60 L Yu (2614_CR164) 2016; 113 YX Yang (2614_CR161) 2018; 9 MS Aghdam (2614_CR4) 2015; 153 E Ali (2614_CR10) 2018; 19 S Farhangi-Abriz (2614_CR44) 2019; 9 F Habibi (2614_CR57) 2019; 99 C de Ollas (2614_CR32) 2016; 91 C Shyu (2614_CR129) 2012; 24 X Hou (2614_CR63) 2010; 19 A Shahzad (2614_CR126) 2015; 201 MM Alam (2614_CR8) 2014; 8 R Radhakrishnan (2614_CR112) 2013; 32 Y Hu (2614_CR65) 2017; 68 C Thireault (2614_CR141) 2015; 82 MA Farooq (2614_CR46) 2018; 84 K Takeuchi (2614_CR139) 2011; 52 E Pellegrini (2614_CR105) 2013; 32 S Anjum (2614_CR12) 2011; 197 A Manan (2614_CR89) 2016; 53 KK Choudhary (2614_CR28) 2014; 99 R Dhakarey (2614_CR36) 2017; 8 U Azeem (2614_CR16) 2018; 44 V Balbi (2614_CR19) 2008; 177 C de Ollas (2614_CR31) 2015; 38 H Ellouzi (2614_CR41) 2013; 237 C de Ollas (2614_CR33) 2013; 147 M Hasanuzzaman (2614_CR61) 2020; 9 S Bali (2614_CR21) 2019; 174 2614_CR90 A Raza (2614_CR114) 2020; 9 A Saleh (2614_CR119) 2015; 18 A Hanaka (2614_CR58) 2016; 124 ZCH Ouli-Jun (2614_CR102) 2017; 49 P Ahmad (2614_CR6) 2017; 63 D Balfagón (2614_CR20) 2019; 181 M Sharma (2614_CR128) 2016; 6 S Fonseca (2614_CR49) 2009; 5 X Li (2614_CR85) 2019; 161 SA Zafar (2614_CR165) 2020; 71 2614_CR17 J Goossens (2614_CR55) 2017; 68 JS Seo (2614_CR125) 2011; 65 T Qi (2614_CR111) 2011; 23 GH Jimenez-Aleman (2614_CR73) 2015; 13 K Nahar (2614_CR99) 2013; 26 Y Ding (2614_CR38) 2019; 222 AR Brash (2614_CR22) 1988; 85 A Chini (2614_CR27) 2007; 448 MA Mustafa (2614_CR96) 2016; 118 F Wang (2614_CR151) 2019; 10 Q Zhai (2614_CR167) 2019; 70 M Kanna (2614_CR76) 2003; 44 Y Yao (2614_CR163) 2015; 90 L Vanhaelewyn (2614_CR150) 2016; 67 H Cui (2614_CR29) 2016; 253 J Li (2614_CR84) 2017; 12 P Lackman (2614_CR82) 2011; 108 A Raza (2614_CR115) 2019; 8 S Bali (2614_CR18) 2018; 645 N Ilyas (2614_CR68) 2017; 48 X Liu (2614_CR86) 2012; 31 W Grunewald (2614_CR56) 2009; 10 ME Haque (2614_CR59) 2014; 171 W Abidi (2614_CR1) 2015; 95 F Ahmadi (2614_CR7) 2018; 115 T Aftab (2614_CR3) 2011; 248 A Yosefi (2614_CR162) 2020; 142 Y Jiang (2614_CR71) 2014; 26 H Pedranzani (2614_CR104) 2003; 41 X Liu (2614_CR87) 2016; 30 Z Zhu (2614_CR169) 2011; 108 I Fedina (2614_CR47) 2009; 195 AL Harfouche (2614_CR60) 2019; 37 A Zaid (2614_CR166) 2018; 37 S Alisofi (2614_CR11) 2020; 95 M Asghari (2614_CR14) 2015; 197 S Karaman (2614_CR77) 2013; 37 Z Yan (2614_CR159) 2015; 59 SM Alavi-Samani (2614_CR9) 2015; 56 C Wasternack (2614_CR155) 2010; 5 H Wu (2614_CR156) 2012; 31 L Pauwels (2614_CR106) 2011; 23 2614_CR116 S Song (2614_CR134) 2013; 9 2614_CR113 TS Per (2614_CR109) 2018; 145 |
References_xml | – volume: 37 start-page: 995 year: 2014 end-page: 1008 ident: CR120 article-title: Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process publication-title: Plant Cell Environ doi: 10.1111/pce.12214 – volume: 6 start-page: 73 year: 2008 end-page: 78 ident: CR53 article-title: Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit publication-title: Caspian J Environ Sci – volume: 48 start-page: 2715 year: 2017 end-page: 2723 ident: CR68 article-title: Influence of salicylic acid and jasmonic acid on wheat under drought stress publication-title: Commun Soil Sci Plant Anal – volume: 174 start-page: 283 year: 2019 end-page: 294 ident: CR21 article-title: Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.02.084 – volume: 69 start-page: 387 year: 2018 end-page: 415 ident: CR64 article-title: Modularity in jasmonate signaling for multistress resilience publication-title: Ann Rev Plant Biol doi: 10.1146/annurev-arplant-042817-040047 – volume: 448 start-page: 666 year: 2007 end-page: 671 ident: CR27 article-title: The JAZ family of repressors is the missing link in jasmonate signalling publication-title: Nature doi: 10.1038/nature06006 – volume: 7 start-page: 85 year: 2018 ident: CR101 article-title: Reactive oxygen and nitrogen species regulate key metabolic, anabolic, and catabolic pathways in skeletal muscle publication-title: Antioxidants doi: 10.3390/antiox7070085 – volume: 32 start-page: 1965 year: 2013 end-page: 1980 ident: CR105 article-title: Signaling molecules and cell death in plants exposed to ozone publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1508-0 – volume: 6 start-page: 1129 year: 2016 ident: CR128 article-title: Jasmonates: emerging players in controlling temperature stress tolerance publication-title: Front Plant Sci – volume: 118 start-page: 79 year: 2016 end-page: 86 ident: CR96 article-title: Enhancing the antioxidant content of carambola ( ) during cold storage and methyl jasmonate treatments publication-title: Postharv Biol Technol doi: 10.1016/j.postharvbio.2016.03.021 – volume: 197 start-page: 490 year: 2015 end-page: 495 ident: CR14 article-title: Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Sabrosa” strawberry fruit during storage publication-title: Sci Hortic doi: 10.1016/j.scienta.2015.10.009 – volume: 174 start-page: 342 year: 2007 end-page: 356 ident: CR25 article-title: The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02010.x – volume: 244 start-page: 1 year: 2016 end-page: 7 ident: CR37 article-title: Jasmonate complements the function of lipoxygenase3 in salinity stress response publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.11.009 – volume: 63 start-page: 1889 year: 2017 end-page: 1899 ident: CR6 article-title: Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean ( L.) publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2017.1313406 – volume: 448 start-page: 661 year: 2007 end-page: 665 ident: CR142 article-title: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling publication-title: Nature doi: 10.1038/nature05960 – volume: 53 start-page: 35 year: 2016 end-page: 41 ident: CR89 article-title: Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes publication-title: Pak J Agric Sci – volume: 195 start-page: 204 year: 2009 end-page: 212 ident: CR47 article-title: Methyl jasmonate counteract Uv-B Stress in barley seedlings publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2008.00358.x – volume: 67 start-page: 4469 year: 2016 end-page: 4482 ident: CR150 article-title: Hormone controlled UV-B responses in plants publication-title: J Exp Bot doi: 10.1093/jxb/erw261 – volume: 21 start-page: 1446 year: 2020 ident: CR152 article-title: Functions of jasmonic acid in plant regulation and response to abiotic stress publication-title: Int J Mol Sci doi: 10.3390/ijms21041446 – volume: 15 start-page: e0232269 year: 2020 ident: CR140 article-title: Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize publication-title: PLoS ONE doi: 10.1371/journal.pone.0232269 – volume: 40 start-page: 34 year: 2018 ident: CR137 article-title: Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress publication-title: Acta Physiol Plant doi: 10.1007/s11738-018-2611-1 – volume: 108 start-page: 12539 year: 2011 end-page: 12544 ident: CR169 article-title: Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1103959108 – volume: 10 start-page: 923 year: 2009 end-page: 928 ident: CR56 article-title: Expression of the jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin publication-title: EMBO Rep doi: 10.1038/embor.2009.103 – volume: 412 start-page: 81 year: 2017 end-page: 96 ident: CR146 article-title: Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improve the antioxidant performance of publication-title: Plant Soil doi: 10.1007/s11104-016-2985-z – volume: 25 start-page: 744 year: 2013 end-page: 761 ident: CR147 article-title: Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59 publication-title: Plant Cell doi: 10.1105/tpc.112.108548 – volume: 95 start-page: 337 year: 2015 end-page: 343 ident: CR67 article-title: Effect of methyl jasmonate on the anthocyanin content and antioxidant activity of blueberries during cold storage publication-title: J Sci Food Agric doi: 10.1002/jsfa.6725 – volume: 281 start-page: 186 year: 2019 end-page: 205 ident: CR78 article-title: Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.01.006 – volume: 91 start-page: 641 year: 2016 end-page: 650 ident: CR32 article-title: Physiological impacts of ABA–JA interactions under water-limitation publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0503-6 – volume: 645 start-page: 1344 year: 2018 end-page: 1360 ident: CR18 article-title: Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in under lead stress at different growth stages publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.164 – volume: 20 start-page: 2479 year: 2019 ident: CR118 article-title: Jasmonic acid signaling pathway in plants publication-title: Int J Mol Sci doi: 10.3390/ijms20102479 – volume: 5 start-page: 344 year: 2009 end-page: 350 ident: CR49 article-title: (+)-7-iso-Jasmonoyl- -isoleucine is the endogenous bioactive jasmonate publication-title: Nat Chem Biol doi: 10.1038/nchembio.161 – volume: 4 start-page: 162 year: 2016 end-page: 176 ident: CR153 article-title: Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants publication-title: Crop J doi: 10.1016/j.cj.2016.01.010 – volume: 114 start-page: 1028 year: 2009 end-page: 1035 ident: CR91 article-title: Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress publication-title: Food Chem doi: 10.1016/j.foodchem.2008.09.109 – volume: 23 start-page: 161 year: 2011 end-page: 174 ident: CR98 article-title: Jasmonic acid elicits oxidative defense and detoxification systems in L. cells publication-title: Braz J Plant Physiol doi: 10.1590/S1677-04202011000200008 – volume: 126 start-page: 467 year: 2006 end-page: 475 ident: CR100 article-title: Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses publication-title: Cell doi: 10.1016/j.cell.2006.05.050 – volume: 165 start-page: 198 year: 2019 end-page: 208 ident: CR30 article-title: Oxylipin dynamics in in response to salt and wounding stresses publication-title: Physiol Plant doi: 10.1111/ppl.12810 – volume: 37 start-page: 1049 year: 2013 end-page: 1059 ident: CR77 article-title: Effect of preharvest application of methyl jasmonate on fruit quality of plum ( L. indell cv. “Fortune”) at harvest and during cold storage publication-title: J Food Process Preserv doi: 10.1111/j.1745-4549.2012.00805.x – volume: 10 start-page: 699 year: 2020 ident: CR135 article-title: Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline publication-title: Agronomy doi: 10.3390/agronomy10050699 – volume: 38 start-page: 2157 year: 2015 end-page: 2170 ident: CR31 article-title: Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of under water stress conditions publication-title: Plant Cell Environ doi: 10.1111/pce.12536 – volume: 124 start-page: 480 year: 2016 end-page: 488 ident: CR58 article-title: Does methyl jasmonate modify the oxidative stress response in treated with Cu? publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.11.024 – volume: 71 start-page: 470 year: 2020 end-page: 479 ident: CR165 article-title: Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing publication-title: J Exp Bot doi: 10.1093/jxb/erz476 – volume: 19 start-page: 130 year: 2018 end-page: 146 ident: CR10 article-title: Role of jasmonic acid in improving tolerance of rapeseed ( L.) to Cd toxicity publication-title: J Zhejiang Uni Sci B doi: 10.1631/jzus.B1700191 – volume: 4 start-page: 588 year: 2011 end-page: 600 ident: CR160 article-title: The mechanisms of brassinosteroids' action: from signal transduction to plant development publication-title: Mol Plant doi: 10.1093/mp/ssr020 – volume: 13 start-page: 5885 year: 2015 end-page: 5893 ident: CR73 article-title: Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones publication-title: Org Biomol Chem doi: 10.1039/C5OB00362H – volume: 44 start-page: 209 year: 2018 end-page: 215 ident: CR16 article-title: Ameliorating nickel stress by jasmonic acid treatment in L publication-title: Russ Agric Sci doi: 10.3103/S1068367418030035 – volume: 12 start-page: e0183731 year: 2017 ident: CR84 article-title: WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in publication-title: PLoS ONE doi: 10.1371/journal.pone.0183731 – volume: 133 start-page: 33 year: 2016 end-page: 47 ident: CR74 article-title: Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean publication-title: J Proteom doi: 10.1016/j.jprot.2015.12.004 – volume: 5 start-page: 337 year: 2010 end-page: 340 ident: CR155 article-title: The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required publication-title: Plant Signal Behav doi: 10.4161/psb.5.4.11574 – volume: 56 start-page: 411 year: 2015 end-page: 420 ident: CR9 article-title: Growth, yield, chemical composition, and antioxidant activity of essential oils from two thyme species under foliar application of jasmonic acid and water deficit conditions publication-title: Hortic Environ Biotechnol doi: 10.1007/s13580-015-0117-y – volume: 67 start-page: 3383 year: 2016 end-page: 3396 ident: CR81 article-title: promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling publication-title: J Exp Bot doi: 10.1093/jxb/erw159 – volume: 147 start-page: 296 year: 2013 end-page: 306 ident: CR33 article-title: Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2012.01659.x – volume: 26 start-page: 230 year: 2014 end-page: 245 ident: CR71 article-title: WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence publication-title: Plant Cell doi: 10.1105/tpc.113.117838 – volume: 18 start-page: 756 year: 2008 end-page: 767 ident: CR24 article-title: Role of the NAC transcription factors and in regulating jasmonic acid-signaled defense responses publication-title: Cell Res doi: 10.1038/cr.2008.53 – volume: 84 start-page: 135 year: 2018 end-page: 148 ident: CR46 article-title: Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots publication-title: Plant Growth Regul doi: 10.1007/s10725-017-0327-7 – volume: 65 start-page: 907 year: 2011 end-page: 921 ident: CR125 article-title: OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04477.x – volume: 231 start-page: 89 year: 2018 end-page: 96 ident: CR97 article-title: Treatment of dragonfruit ( ) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.09.041 – volume: 90 start-page: 189 year: 2020 end-page: 203 ident: CR79 article-title: Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00571-x – volume: 8 start-page: 279 year: 2014 end-page: 293 ident: CR8 article-title: Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different species publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-014-0321-8 – volume: 17 start-page: 0805 year: 2020 ident: CR52 article-title: Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet publication-title: Spanish J Agric Res doi: 10.5424/sjar/2019174-15380 – volume: 27 start-page: 241 year: 2008 ident: CR13 article-title: Hormonal modulation of citrus responses to flooding publication-title: J Plant Growth Regul doi: 10.1007/s00344-008-9051-x – volume: 53 start-page: 443 year: 2003 end-page: 456 ident: CR138 article-title: Transcriptome analysis of O 3-exposed reveals that multiple signal pathways act mutually antagonistically to induce gene expression publication-title: Plant Mol Biol doi: 10.1023/B:PLAN.0000019064.55734.52 – volume: 68 start-page: 1361 year: 2017 end-page: 1369 ident: CR65 article-title: Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones publication-title: J Exp Bot doi: 10.1093/jxb/erx004 – volume: 98 start-page: 203 year: 2013 end-page: 209 ident: CR158 article-title: Methyl jasmonate as modulator of Cd toxicity in var. fasciculatum seedlings publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.08.019 – volume: 147 start-page: 1010 year: 2018 end-page: 1016 ident: CR45 article-title: How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.09.070 – volume: 124 start-page: 964 year: 2011 end-page: 970 ident: CR124 article-title: Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates publication-title: Food Chem doi: 10.1016/j.foodchem.2010.07.036 – volume: 39 start-page: 59 year: 2004 end-page: 69 ident: CR144 article-title: Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02107.x – volume: 113 start-page: 8 year: 2016 end-page: 16 ident: CR164 article-title: Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2015.10.013 – volume: 19 start-page: 2225 year: 2007 end-page: 2245 ident: CR39 article-title: MYC2 differentially modulates diverse jasmonate-dependent functions in publication-title: Plant Cell doi: 10.1105/tpc.106.048017 – volume: 108 start-page: 57 year: 2014 end-page: 66 ident: CR130 article-title: Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.007 – volume: 15 start-page: 760 year: 2003 end-page: 770 ident: CR136 article-title: NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol publication-title: Plant Cell doi: 10.1105/tpc.009159 – volume: 464 start-page: 788 year: 2010 end-page: 791 ident: CR107 article-title: NINJA connects the co-repressor TOPLESS to jasmonate signalling publication-title: Nature doi: 10.1038/nature08854 – volume: 9 start-page: 69 year: 2019 end-page: 71 ident: CR44 article-title: Salicylic acid but not jasmonic acid improved canola root response to salinity stress publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.11.009 – volume: 82 start-page: 669 year: 2015 end-page: 679 ident: CR141 article-title: Repression of jasmonate signaling by a non-TIFY JAZ protein in publication-title: Plant J doi: 10.1111/tpj.12841 – volume: 18 start-page: 32 year: 2020 end-page: 44 ident: CR94 article-title: CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing publication-title: Plant Biotechnol J doi: 10.1111/pbi.13232 – volume: 14 start-page: 9643 year: 2013 end-page: 9684 ident: CR62 article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants publication-title: Int J Mol Sci doi: 10.3390/ijms14059643 – volume: 30 start-page: 291 year: 2016 end-page: 303 ident: CR87 article-title: Effects of MeJA on the physiological characteristics of japonica rice wuyunjing 24 and ningjing 3 during early grain filling stage under heat stress publication-title: Chin J Rice Sci – volume: 177 start-page: 301 year: 2008 end-page: 318 ident: CR19 article-title: Jasmonate signalling network in : crucial regulatory nodes and new physiological scenarios publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02292.x – volume: 37 start-page: 1217 year: 2019 end-page: 1235 ident: CR60 article-title: Accelerating climate resilient plant breeding by applying next-generation artificial intelligence publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2019.05.007 – volume: 155 start-page: 464 year: 2011 end-page: 476 ident: CR54 article-title: Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins publication-title: Plant Physiol doi: 10.1104/pp.110.166876 – ident: CR70 – volume: 222 start-page: 1690 year: 2019 end-page: 1704 ident: CR38 article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants publication-title: New Phytol doi: 10.1111/nph.15696 – volume: 12 start-page: 393 year: 2000 end-page: 404 ident: CR51 article-title: ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression publication-title: Plant Cell – volume: 32 start-page: 22 year: 2013 end-page: 30 ident: CR112 article-title: Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean publication-title: J Plant Growth Regul doi: 10.1007/s00344-012-9274-8 – volume: 255 start-page: 79 year: 2018 end-page: 93 ident: CR5 article-title: Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate–glutathione cycle and promotes growth under cadmium stress in tomato publication-title: Protoplasma doi: 10.1007/s00709-017-1132-x – volume: 60 start-page: 603 year: 2017 end-page: 614 ident: CR145 article-title: Exogenous ascorbic acid mitigates flood stress damages of publication-title: Appl Biol Chem doi: 10.1007/s13765-017-0316-6 – volume: 191 start-page: 101 year: 2016 end-page: 110 ident: CR15 article-title: Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity publication-title: J Plant Physiol doi: 10.1016/j.jplph.2015.11.013 – volume: 145 start-page: 104 year: 2018 end-page: 120 ident: CR109 article-title: Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2017.11.004 – volume: 115 start-page: 5 year: 2018 end-page: 11 ident: CR7 article-title: Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of L. cv. Talaye under salinity stress publication-title: South Afr J Bot doi: 10.1016/j.sajb.2017.11.018 – volume: 9 start-page: 681 year: 2020 ident: CR61 article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 26 start-page: 263 year: 2014 end-page: 279 ident: CR133 article-title: Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.120394 – volume: 197 start-page: 296 year: 2011 end-page: 301 ident: CR12 article-title: Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2011.00468.x – volume: 14 start-page: e1007248 year: 2018 ident: CR26 article-title: FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007248 – volume: 31 start-page: 106 year: 2019 end-page: 127 ident: CR88 article-title: MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop publication-title: Plant Cell doi: 10.1105/tpc.18.00405 – volume: 37 start-page: 1195 year: 2018 end-page: 1209 ident: CR92 article-title: Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9814-y – volume: 99 start-page: 6408 year: 2019 end-page: 6417 ident: CR57 article-title: Postharvest treatments with γ-aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage publication-title: J Sci Food Agric doi: 10.1002/jsfa.9920 – volume: 26 start-page: 106 year: 2013 end-page: 115 ident: CR99 article-title: Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway publication-title: Mol Plant Microb Int doi: 10.1094/MPMI-05-12-0108-FI – volume: 226 start-page: 136 year: 2018 end-page: 144 ident: CR2 article-title: Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress publication-title: J Plant Physiol doi: 10.1016/j.jplph.2018.04.009 – volume: 152 start-page: 1084 year: 2010 end-page: 1095 ident: CR35 article-title: Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense publication-title: Plant Physiol doi: 10.1104/pp.109.148999 – volume: 8 start-page: 34 year: 2019 ident: CR115 article-title: Impact of climate change on crops adaptation and strategies to tackle its outcome: a review publication-title: Plants doi: 10.3390/plants8020034 – volume: 70 start-page: 315 year: 2019 end-page: 327 ident: CR42 article-title: Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling publication-title: J Exp Bot doi: 10.1093/jxb/ery347 – volume: 6 start-page: 639 year: 2015 ident: CR149 article-title: Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00639 – volume: 85 start-page: 3382 year: 1988 end-page: 3386 ident: CR22 article-title: Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.85.10.3382 – volume: 181 start-page: 1668 year: 2019 end-page: 1682 ident: CR20 article-title: Jasmonic acid is required for plant acclimation to a combination of high light and heat stress publication-title: Plant Physiol doi: 10.1104/pp.19.00956 – volume: 23 start-page: 3089 year: 2011 end-page: 3100 ident: CR106 article-title: The JAZ proteins: a crucial interface in the jasmonate signaling cascade publication-title: Plant Cell doi: 10.1105/tpc.111.089300 – volume: 49 start-page: 1127 year: 2017 end-page: 1135 ident: CR102 article-title: Mitigation of waterlogging-induced damages to pepper by exogenous MeJA publication-title: Pak J Bot – volume: 6 start-page: 21843 year: 2016 ident: CR157 article-title: Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in publication-title: Sci Rep doi: 10.1038/srep21843 – volume: 8 start-page: 1903 year: 2017 ident: CR36 article-title: Physiological and proteomic analysis of the rice mutant cpm2 suggests a negative regulatory role of jasmonic acid in drought tolerance publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01903 – volume: 212 start-page: 828 year: 2016 end-page: 836 ident: CR34 article-title: Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation publication-title: Food Chem doi: 10.1016/j.foodchem.2016.05.164 – volume: 31 start-page: 436 year: 2012 end-page: 447 ident: CR86 article-title: The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat publication-title: J Plant Growth Regul doi: 10.1007/s00344-011-9253-5 – ident: CR116 – volume: 237 start-page: 1311 year: 2013 end-page: 1323 ident: CR41 article-title: Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in publication-title: Planta doi: 10.1007/s00425-013-1847-7 – volume: 37 start-page: 1331 year: 2018 end-page: 1348 ident: CR166 article-title: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in by regulating physio-biochemical damages and ROS detoxification publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9854-3 – volume: 99 start-page: 122 year: 2014 end-page: 132 ident: CR28 article-title: Cultivar specificity of tropical mung bean ( L.) to elevated ultraviolet-B: Changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.11.006 – volume: 25 start-page: 2907 year: 2013 end-page: 2924 ident: CR66 article-title: Jasmonate regulates the INDUCER OF CBF expression-C-repeat binding factor/dre binding factor1 cascade and freezing tolerance in publication-title: Plant Cell doi: 10.1105/tpc.113.112631 – volume: 96 start-page: 406 year: 2015 end-page: 416 ident: CR127 article-title: Foliar application of methyl jasmonate induced physio-hormonal changes in under diverse temperature regimes publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.020 – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR110 article-title: Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway publication-title: Sci Rep – volume: 201 start-page: 443 year: 2015 end-page: 451 ident: CR126 article-title: Maize genotypes differing in salt resistance vary in jasmonic acid accumulation during the first phase of salt stress publication-title: J Agron Crop Sci doi: 10.1111/jac.12134 – volume: 66 start-page: 795 year: 2019 end-page: 805 ident: CR103 article-title: Physiological response of fennel ( Mill.) to drought stress and plant growth regulators publication-title: Russ J Plant Physiol doi: 10.1134/S1021443719050170 – volume: 164 start-page: 1151 year: 2014 end-page: 1160 ident: CR121 article-title: Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought publication-title: Plant Physiol doi: 10.1104/pp.113.234310 – volume: 19 start-page: 2539 year: 2018 ident: CR154 article-title: Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds publication-title: Int J Mol Sci doi: 10.3390/ijms19092539 – volume: 36 start-page: 651 year: 2017 end-page: 659 ident: CR43 article-title: Response of strawberry plant cv. ‘Camarosa’to salicylic acid and methyl jasmonate application under salt stress condition publication-title: J Plant Growth Regul doi: 10.1007/s00344-017-9666-x – volume: 248 start-page: 601 year: 2011 end-page: 612 ident: CR3 article-title: Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in L publication-title: Protoplasma doi: 10.1007/s00709-010-0218-5 – volume: 253 start-page: 243 year: 2016 end-page: 250 ident: CR29 article-title: Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid for tomato plants publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.09.019 – volume: 18 start-page: 169 year: 2015 end-page: 182 ident: CR119 article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.005 – volume: 142 start-page: 549 year: 2020 end-page: 558 ident: CR162 article-title: Jasmonic acid improved in vitro strawberry ( .) resistance to PEG-induced water stress publication-title: Plant Cell Tiss Org Cult doi: 10.1007/s11240-020-01880-9 – volume: 169 start-page: 32 year: 2015 end-page: 41 ident: CR95 article-title: Ethylene response factors: a key regulatory hub in hormone and stress signaling publication-title: Plant Physiol doi: 10.1104/pp.15.00677 – volume: 108 start-page: 5891 year: 2011 end-page: 5896 ident: CR82 article-title: Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in and tobacco publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1103010108 – volume: 52 start-page: 1686 year: 2011 end-page: 1696 ident: CR139 article-title: expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr105 – volume: 7 start-page: 1933 year: 2016 ident: CR108 article-title: Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01933 – volume: 22 start-page: 656 year: 2015 end-page: 663 ident: CR123 article-title: Morphological and physiological characterization of different genotypes of faba bean under heat stress publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2015.06.002 – volume: 35 start-page: 603 year: 2016 end-page: 610 ident: CR168 article-title: Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress publication-title: J Plant Growth Regul doi: 10.1007/s00344-015-9563-0 – volume: 9 start-page: 899 year: 2018 ident: CR161 article-title: Red light-induced systemic resistance against root-knot nematode is mediated by a coordinated regulation of salicylic acid, jasmonic acid and redox signaling in watermelon publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00899 – volume: 44 start-page: 1301 year: 2003 end-page: 1310 ident: CR76 article-title: Isolation of an ozone-sensitive and jasmonate-semi-insensitive mutant ( ) publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcg157 – volume: 31 start-page: 113 year: 2012 end-page: 123 ident: CR156 article-title: Physiological evaluation of drought stress tolerance and recovery in cauliflower ( L.) seedlings treated with methyl jasmonate and coronatine publication-title: J Plant Growth Regul doi: 10.1007/s00344-011-9224-x – volume: 9 start-page: e1003653 year: 2013 ident: CR134 article-title: The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003653 – volume: 23 start-page: 701 year: 2011 end-page: 715 ident: CR48 article-title: The bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses publication-title: Plant Cell doi: 10.1105/tpc.110.080788 – ident: CR113 – volume: 15 start-page: 122882 year: 2020 ident: CR122 article-title: Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress publication-title: J Hazard Mat doi: 10.1016/j.jhazmat.2020.122882 – volume: 90 start-page: 23 year: 2015 end-page: 31 ident: CR163 article-title: Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.02.021 – volume: 70 start-page: 3415 year: 2019 end-page: 3424 ident: CR167 article-title: The plant Mediator complex and its role in jasmonate signaling publication-title: J Exp Bot doi: 10.1093/jxb/erz233 – volume: 234 start-page: 431 year: 2018 end-page: 444 ident: CR40 article-title: Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.12.039 – volume: 68 start-page: 1333 year: 2017 end-page: 1347 ident: CR55 article-title: Role and functioning of bHLH transcription factors in jasmonate signalling publication-title: J Exp Bot – volume: 31 start-page: 9 year: 2019 end-page: 10 ident: CR23 article-title: Master MYCs: MYC2, the jasmonate signaling “master switch” publication-title: Am Soc Plant Biol – volume: 13 start-page: e1451707 year: 2018 ident: CR69 article-title: Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid publication-title: Plant Signal Behav doi: 10.1080/15592324.2018.1451707 – volume: 23 start-page: 545 year: 2017 end-page: 556 ident: CR93 article-title: Improvement of drought tolerance of soybean plants by using methyl jasmonate publication-title: Physiol Mol Biol Plant doi: 10.1007/s12298-017-0451-x – volume: 10 start-page: 340 year: 2019 ident: CR50 article-title: Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00340 – volume: 161 start-page: 367 year: 2019 end-page: 374 ident: CR85 article-title: Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant ( L.) publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.11.012 – volume: 21 start-page: 559 year: 2015 end-page: 565 ident: CR132 article-title: Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of L. under nickel stress publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-015-0320-4 – volume: 62 start-page: 218 year: 2020 end-page: 227 ident: CR83 article-title: Jasmonic acid alleviates cadmium toxicity in via suppression of cadmium uptake and translocation publication-title: J Integr Plant Biol doi: 10.1111/jipb.12801 – volume: 23 start-page: 1795 year: 2011 end-page: 1814 ident: CR111 article-title: The Jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in publication-title: Plant Cell doi: 10.1105/tpc.111.083261 – volume: 10 start-page: 390 year: 2019 ident: CR151 article-title: Transporter-mediated subcellular distribution in the metabolism and signaling of jasmonates publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00390 – volume: 154 start-page: 188 year: 2015 end-page: 198 ident: CR117 article-title: Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in publication-title: Entomol Exp Appl doi: 10.1111/eea.12269 – volume: 59 start-page: 373 year: 2015 end-page: 381 ident: CR159 article-title: Methyl jasmonate alleviates cadmium toxicity in by regulating metal uptake and antioxidative capacity publication-title: Biol Plant doi: 10.1007/s10535-015-0491-4 – ident: CR90 – volume: 153 start-page: 7 year: 2015 end-page: 24 ident: CR4 article-title: The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins publication-title: J Agric Sci doi: 10.1017/S0021859613000804 – volume: 95 start-page: 247 year: 2020 end-page: 259 ident: CR11 article-title: Jasmonic acid-induced metabolic responses in bitter melon ( ) seedlings under salt stress publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2019.1663135 – ident: CR17 – volume: 19 start-page: 884 year: 2010 end-page: 894 ident: CR63 article-title: DELLAs modulate jasmonate signaling via competitive binding to JAZs publication-title: Dev Cell doi: 10.1016/j.devcel.2010.10.024 – volume: 135 start-page: 487 year: 2018 end-page: 497 ident: CR75 article-title: Effect of jasmonic acid on cold-storage of encapsulated shoot tips publication-title: Plant Cell Tiss Org Cult doi: 10.1007/s11240-018-1481-y – volume: 9 start-page: 177 year: 2020 ident: CR114 article-title: Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms publication-title: Biology doi: 10.3390/biology9070177 – volume: 7 start-page: 591 year: 2016 ident: CR131 article-title: Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in under nickel toxicity publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00591 – volume: 95 start-page: 351 year: 2015 end-page: 358 ident: CR1 article-title: Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach ( (L.) Batsch) progeny publication-title: J Sci Food Agric doi: 10.1002/jsfa.6727 – volume: 169 start-page: 371 year: 2015 end-page: 378 ident: CR72 article-title: The VQ motif-containing protein family of plant-specific transcriptional regulators publication-title: Plant Physiol doi: 10.1104/pp.15.00788 – volume: 24 start-page: 536 year: 2012 end-page: 550 ident: CR129 article-title: JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in publication-title: Plant Cell doi: 10.1105/tpc.111.093005 – volume: 41 start-page: 149 year: 2003 end-page: 158 ident: CR104 article-title: Salt tolerant tomato plants show increased levels of jasmonic acid publication-title: Plant Growth Regul doi: 10.1023/A:1027311319940 – volume: 111 start-page: 470 year: 1983 end-page: 477 ident: CR148 article-title: The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(83)90330-3 – volume: 171 start-page: 602 year: 2014 end-page: 609 ident: CR59 article-title: Characterization of a wheat pathogenesis-related protein, , in seminal roots in response to waterlogging stress publication-title: J Plant Physiol doi: 10.1016/j.jplph.2013.12.003 – volume: 19 start-page: 3206 year: 2018 ident: CR80 article-title: Plant hormone signaling crosstalks between biotic and abiotic stress responses publication-title: Int J Mol Sci doi: 10.3390/ijms19103206 – volume: 6 start-page: 84 year: 2015 ident: CR143 article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00084 – volume: 8 start-page: 279 year: 2014 ident: 2614_CR8 publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-014-0321-8 – volume: 44 start-page: 209 year: 2018 ident: 2614_CR16 publication-title: Russ Agric Sci doi: 10.3103/S1068367418030035 – volume: 14 start-page: 9643 year: 2013 ident: 2614_CR62 publication-title: Int J Mol Sci doi: 10.3390/ijms14059643 – volume: 448 start-page: 661 year: 2007 ident: 2614_CR142 publication-title: Nature doi: 10.1038/nature05960 – volume: 70 start-page: 3415 year: 2019 ident: 2614_CR167 publication-title: J Exp Bot doi: 10.1093/jxb/erz233 – volume: 23 start-page: 701 year: 2011 ident: 2614_CR48 publication-title: Plant Cell doi: 10.1105/tpc.110.080788 – volume: 56 start-page: 411 year: 2015 ident: 2614_CR9 publication-title: Hortic Environ Biotechnol doi: 10.1007/s13580-015-0117-y – volume: 171 start-page: 602 year: 2014 ident: 2614_CR59 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2013.12.003 – volume: 24 start-page: 536 year: 2012 ident: 2614_CR129 publication-title: Plant Cell doi: 10.1105/tpc.111.093005 – volume: 124 start-page: 480 year: 2016 ident: 2614_CR58 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.11.024 – volume: 90 start-page: 23 year: 2015 ident: 2614_CR163 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.02.021 – volume: 67 start-page: 3383 year: 2016 ident: 2614_CR81 publication-title: J Exp Bot doi: 10.1093/jxb/erw159 – volume: 99 start-page: 122 year: 2014 ident: 2614_CR28 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.11.006 – volume: 108 start-page: 5891 year: 2011 ident: 2614_CR82 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1103010108 – volume: 21 start-page: 1446 year: 2020 ident: 2614_CR152 publication-title: Int J Mol Sci doi: 10.3390/ijms21041446 – volume: 464 start-page: 788 year: 2010 ident: 2614_CR107 publication-title: Nature doi: 10.1038/nature08854 – volume: 248 start-page: 601 year: 2011 ident: 2614_CR3 publication-title: Protoplasma doi: 10.1007/s00709-010-0218-5 – volume: 18 start-page: 756 year: 2008 ident: 2614_CR24 publication-title: Cell Res doi: 10.1038/cr.2008.53 – volume: 7 start-page: 85 year: 2018 ident: 2614_CR101 publication-title: Antioxidants doi: 10.3390/antiox7070085 – volume: 237 start-page: 1311 year: 2013 ident: 2614_CR41 publication-title: Planta doi: 10.1007/s00425-013-1847-7 – volume: 95 start-page: 337 year: 2015 ident: 2614_CR67 publication-title: J Sci Food Agric doi: 10.1002/jsfa.6725 – volume: 7 start-page: 1933 year: 2016 ident: 2614_CR108 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01933 – volume: 15 start-page: e0232269 year: 2020 ident: 2614_CR140 publication-title: PLoS ONE doi: 10.1371/journal.pone.0232269 – volume: 174 start-page: 342 year: 2007 ident: 2614_CR25 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02010.x – volume: 66 start-page: 795 year: 2019 ident: 2614_CR103 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443719050170 – volume: 111 start-page: 470 year: 1983 ident: 2614_CR148 publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(83)90330-3 – volume: 98 start-page: 203 year: 2013 ident: 2614_CR158 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.08.019 – volume: 31 start-page: 113 year: 2012 ident: 2614_CR156 publication-title: J Plant Growth Regul doi: 10.1007/s00344-011-9224-x – volume: 48 start-page: 2715 year: 2017 ident: 2614_CR68 publication-title: Commun Soil Sci Plant Anal – volume: 31 start-page: 436 year: 2012 ident: 2614_CR86 publication-title: J Plant Growth Regul doi: 10.1007/s00344-011-9253-5 – volume: 114 start-page: 1028 year: 2009 ident: 2614_CR91 publication-title: Food Chem doi: 10.1016/j.foodchem.2008.09.109 – volume: 68 start-page: 1333 year: 2017 ident: 2614_CR55 publication-title: J Exp Bot – volume: 133 start-page: 33 year: 2016 ident: 2614_CR74 publication-title: J Proteom doi: 10.1016/j.jprot.2015.12.004 – volume: 201 start-page: 443 year: 2015 ident: 2614_CR126 publication-title: J Agron Crop Sci doi: 10.1111/jac.12134 – volume: 91 start-page: 641 year: 2016 ident: 2614_CR32 publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0503-6 – volume: 23 start-page: 3089 year: 2011 ident: 2614_CR106 publication-title: Plant Cell doi: 10.1105/tpc.111.089300 – ident: 2614_CR116 doi: 10.1007/978-981-13-6883-7_22 – volume: 25 start-page: 744 year: 2013 ident: 2614_CR147 publication-title: Plant Cell doi: 10.1105/tpc.112.108548 – volume: 17 start-page: 0805 year: 2020 ident: 2614_CR52 publication-title: Spanish J Agric Res doi: 10.5424/sjar/2019174-15380 – volume: 18 start-page: 32 year: 2020 ident: 2614_CR94 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13232 – volume: 6 start-page: 1129 year: 2016 ident: 2614_CR128 publication-title: Front Plant Sci – volume: 5 start-page: 337 year: 2010 ident: 2614_CR155 publication-title: Plant Signal Behav doi: 10.4161/psb.5.4.11574 – volume: 165 start-page: 198 year: 2019 ident: 2614_CR30 publication-title: Physiol Plant doi: 10.1111/ppl.12810 – volume: 99 start-page: 6408 year: 2019 ident: 2614_CR57 publication-title: J Sci Food Agric doi: 10.1002/jsfa.9920 – volume: 90 start-page: 189 year: 2020 ident: 2614_CR79 publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00571-x – volume: 9 start-page: 177 year: 2020 ident: 2614_CR114 publication-title: Biology doi: 10.3390/biology9070177 – volume: 9 start-page: 681 year: 2020 ident: 2614_CR61 publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 84 start-page: 135 year: 2018 ident: 2614_CR46 publication-title: Plant Growth Regul doi: 10.1007/s10725-017-0327-7 – volume: 124 start-page: 964 year: 2011 ident: 2614_CR124 publication-title: Food Chem doi: 10.1016/j.foodchem.2010.07.036 – volume: 13 start-page: e1451707 year: 2018 ident: 2614_CR69 publication-title: Plant Signal Behav doi: 10.1080/15592324.2018.1451707 – volume: 37 start-page: 1195 year: 2018 ident: 2614_CR92 publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9814-y – volume: 23 start-page: 545 year: 2017 ident: 2614_CR93 publication-title: Physiol Mol Biol Plant doi: 10.1007/s12298-017-0451-x – volume: 142 start-page: 549 year: 2020 ident: 2614_CR162 publication-title: Plant Cell Tiss Org Cult doi: 10.1007/s11240-020-01880-9 – volume: 37 start-page: 1331 year: 2018 ident: 2614_CR166 publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9854-3 – volume: 37 start-page: 995 year: 2014 ident: 2614_CR120 publication-title: Plant Cell Environ doi: 10.1111/pce.12214 – volume: 118 start-page: 79 year: 2016 ident: 2614_CR96 publication-title: Postharv Biol Technol doi: 10.1016/j.postharvbio.2016.03.021 – volume: 60 start-page: 603 year: 2017 ident: 2614_CR145 publication-title: Appl Biol Chem doi: 10.1007/s13765-017-0316-6 – volume: 22 start-page: 656 year: 2015 ident: 2614_CR123 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2015.06.002 – volume: 9 start-page: 69 year: 2019 ident: 2614_CR44 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.11.009 – volume: 6 start-page: 639 year: 2015 ident: 2614_CR149 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00639 – volume: 53 start-page: 443 year: 2003 ident: 2614_CR138 publication-title: Plant Mol Biol doi: 10.1023/B:PLAN.0000019064.55734.52 – volume: 31 start-page: 9 year: 2019 ident: 2614_CR23 publication-title: Am Soc Plant Biol – volume: 49 start-page: 1127 year: 2017 ident: 2614_CR102 publication-title: Pak J Bot – volume: 154 start-page: 188 year: 2015 ident: 2614_CR117 publication-title: Entomol Exp Appl doi: 10.1111/eea.12269 – volume: 6 start-page: 84 year: 2015 ident: 2614_CR143 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00084 – volume: 108 start-page: 57 year: 2014 ident: 2614_CR130 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.007 – volume: 6 start-page: 73 year: 2008 ident: 2614_CR53 publication-title: Caspian J Environ Sci – volume: 37 start-page: 1217 year: 2019 ident: 2614_CR60 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2019.05.007 – volume: 197 start-page: 490 year: 2015 ident: 2614_CR14 publication-title: Sci Hortic doi: 10.1016/j.scienta.2015.10.009 – volume: 15 start-page: 122882 year: 2020 ident: 2614_CR122 publication-title: J Hazard Mat doi: 10.1016/j.jhazmat.2020.122882 – volume: 35 start-page: 603 year: 2016 ident: 2614_CR168 publication-title: J Plant Growth Regul doi: 10.1007/s00344-015-9563-0 – volume: 53 start-page: 35 year: 2016 ident: 2614_CR89 publication-title: Pak J Agric Sci – volume: 32 start-page: 22 year: 2013 ident: 2614_CR112 publication-title: J Plant Growth Regul doi: 10.1007/s00344-012-9274-8 – volume: 255 start-page: 79 year: 2018 ident: 2614_CR5 publication-title: Protoplasma doi: 10.1007/s00709-017-1132-x – volume: 10 start-page: 699 year: 2020 ident: 2614_CR135 publication-title: Agronomy doi: 10.3390/agronomy10050699 – volume: 26 start-page: 263 year: 2014 ident: 2614_CR133 publication-title: Plant Cell doi: 10.1105/tpc.113.120394 – volume: 197 start-page: 296 year: 2011 ident: 2614_CR12 publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2011.00468.x – volume: 147 start-page: 296 year: 2013 ident: 2614_CR33 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2012.01659.x – volume: 412 start-page: 81 year: 2017 ident: 2614_CR146 publication-title: Plant Soil doi: 10.1007/s11104-016-2985-z – ident: 2614_CR70 doi: 10.1007/s11738-016-2120-z – volume: 19 start-page: 3206 year: 2018 ident: 2614_CR80 publication-title: Int J Mol Sci doi: 10.3390/ijms19103206 – volume: 62 start-page: 218 year: 2020 ident: 2614_CR83 publication-title: J Integr Plant Biol doi: 10.1111/jipb.12801 – volume: 4 start-page: 162 year: 2016 ident: 2614_CR153 publication-title: Crop J doi: 10.1016/j.cj.2016.01.010 – volume: 27 start-page: 241 year: 2008 ident: 2614_CR13 publication-title: J Plant Growth Regul doi: 10.1007/s00344-008-9051-x – volume: 95 start-page: 351 year: 2015 ident: 2614_CR1 publication-title: J Sci Food Agric doi: 10.1002/jsfa.6727 – volume: 26 start-page: 230 year: 2014 ident: 2614_CR71 publication-title: Plant Cell doi: 10.1105/tpc.113.117838 – volume: 20 start-page: 2479 year: 2019 ident: 2614_CR118 publication-title: Int J Mol Sci doi: 10.3390/ijms20102479 – volume: 19 start-page: 2539 year: 2018 ident: 2614_CR154 publication-title: Int J Mol Sci doi: 10.3390/ijms19092539 – volume: 70 start-page: 315 year: 2019 ident: 2614_CR42 publication-title: J Exp Bot doi: 10.1093/jxb/ery347 – volume: 169 start-page: 371 year: 2015 ident: 2614_CR72 publication-title: Plant Physiol doi: 10.1104/pp.15.00788 – volume: 26 start-page: 106 year: 2013 ident: 2614_CR99 publication-title: Mol Plant Microb Int doi: 10.1094/MPMI-05-12-0108-FI – volume: 226 start-page: 136 year: 2018 ident: 2614_CR2 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2018.04.009 – ident: 2614_CR90 doi: 10.1016/j.envexpbot.2019.103949 – volume: 31 start-page: 106 year: 2019 ident: 2614_CR88 publication-title: Plant Cell doi: 10.1105/tpc.18.00405 – volume: 71 start-page: 470 year: 2020 ident: 2614_CR165 publication-title: J Exp Bot doi: 10.1093/jxb/erz476 – volume: 161 start-page: 367 year: 2019 ident: 2614_CR85 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.11.012 – volume: 41 start-page: 149 year: 2003 ident: 2614_CR104 publication-title: Plant Growth Regul doi: 10.1023/A:1027311319940 – volume: 253 start-page: 243 year: 2016 ident: 2614_CR29 publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.09.019 – volume: 152 start-page: 1084 year: 2010 ident: 2614_CR35 publication-title: Plant Physiol doi: 10.1104/pp.109.148999 – volume: 6 start-page: 21843 year: 2016 ident: 2614_CR157 publication-title: Sci Rep doi: 10.1038/srep21843 – volume: 10 start-page: 340 year: 2019 ident: 2614_CR50 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00340 – volume: 68 start-page: 1361 year: 2017 ident: 2614_CR65 publication-title: J Exp Bot doi: 10.1093/jxb/erx004 – volume: 36 start-page: 651 year: 2017 ident: 2614_CR43 publication-title: J Plant Growth Regul doi: 10.1007/s00344-017-9666-x – volume: 40 start-page: 34 year: 2018 ident: 2614_CR137 publication-title: Acta Physiol Plant doi: 10.1007/s11738-018-2611-1 – volume: 14 start-page: e1007248 year: 2018 ident: 2614_CR26 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007248 – volume: 19 start-page: 884 year: 2010 ident: 2614_CR63 publication-title: Dev Cell doi: 10.1016/j.devcel.2010.10.024 – volume: 95 start-page: 247 year: 2020 ident: 2614_CR11 publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2019.1663135 – volume: 37 start-page: 1049 year: 2013 ident: 2614_CR77 publication-title: J Food Process Preserv doi: 10.1111/j.1745-4549.2012.00805.x – volume: 19 start-page: 2225 year: 2007 ident: 2614_CR39 publication-title: Plant Cell doi: 10.1105/tpc.106.048017 – volume: 5 start-page: 344 year: 2009 ident: 2614_CR49 publication-title: Nat Chem Biol doi: 10.1038/nchembio.161 – volume: 10 start-page: 923 year: 2009 ident: 2614_CR56 publication-title: EMBO Rep doi: 10.1038/embor.2009.103 – volume: 212 start-page: 828 year: 2016 ident: 2614_CR34 publication-title: Food Chem doi: 10.1016/j.foodchem.2016.05.164 – volume: 8 start-page: 34 year: 2019 ident: 2614_CR115 publication-title: Plants doi: 10.3390/plants8020034 – volume: 69 start-page: 387 year: 2018 ident: 2614_CR64 publication-title: Ann Rev Plant Biol doi: 10.1146/annurev-arplant-042817-040047 – volume: 164 start-page: 1151 year: 2014 ident: 2614_CR121 publication-title: Plant Physiol doi: 10.1104/pp.113.234310 – volume: 30 start-page: 291 year: 2016 ident: 2614_CR87 publication-title: Chin J Rice Sci – volume: 18 start-page: 169 year: 2015 ident: 2614_CR119 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.005 – volume: 63 start-page: 1889 year: 2017 ident: 2614_CR6 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2017.1313406 – volume: 244 start-page: 1 year: 2016 ident: 2614_CR37 publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.11.009 – volume: 96 start-page: 406 year: 2015 ident: 2614_CR127 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.020 – volume: 7 start-page: 591 year: 2016 ident: 2614_CR131 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00591 – volume: 147 start-page: 1010 year: 2018 ident: 2614_CR45 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.09.070 – volume: 21 start-page: 559 year: 2015 ident: 2614_CR132 publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-015-0320-4 – volume: 645 start-page: 1344 year: 2018 ident: 2614_CR18 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.164 – volume: 135 start-page: 487 year: 2018 ident: 2614_CR75 publication-title: Plant Cell Tiss Org Cult doi: 10.1007/s11240-018-1481-y – volume: 177 start-page: 301 year: 2008 ident: 2614_CR19 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02292.x – volume: 9 start-page: 899 year: 2018 ident: 2614_CR161 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00899 – volume: 9 start-page: e1003653 year: 2013 ident: 2614_CR134 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003653 – volume: 115 start-page: 5 year: 2018 ident: 2614_CR7 publication-title: South Afr J Bot doi: 10.1016/j.sajb.2017.11.018 – volume: 25 start-page: 2907 year: 2013 ident: 2614_CR66 publication-title: Plant Cell doi: 10.1105/tpc.113.112631 – volume: 145 start-page: 104 year: 2018 ident: 2614_CR109 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2017.11.004 – volume: 108 start-page: 12539 year: 2011 ident: 2614_CR169 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1103959108 – volume: 10 start-page: 390 year: 2019 ident: 2614_CR151 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00390 – volume: 15 start-page: 760 year: 2003 ident: 2614_CR136 publication-title: Plant Cell doi: 10.1105/tpc.009159 – volume: 4 start-page: 588 year: 2011 ident: 2614_CR160 publication-title: Mol Plant doi: 10.1093/mp/ssr020 – volume: 13 start-page: 5885 year: 2015 ident: 2614_CR73 publication-title: Org Biomol Chem doi: 10.1039/C5OB00362H – volume: 85 start-page: 3382 year: 1988 ident: 2614_CR22 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.85.10.3382 – volume: 8 start-page: 1903 year: 2017 ident: 2614_CR36 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01903 – volume: 12 start-page: e0183731 year: 2017 ident: 2614_CR84 publication-title: PLoS ONE doi: 10.1371/journal.pone.0183731 – volume: 12 start-page: 393 year: 2000 ident: 2614_CR51 publication-title: Plant Cell – volume: 169 start-page: 32 year: 2015 ident: 2614_CR95 publication-title: Plant Physiol doi: 10.1104/pp.15.00677 – volume: 8 start-page: 1 year: 2018 ident: 2614_CR110 publication-title: Sci Rep – volume: 231 start-page: 89 year: 2018 ident: 2614_CR97 publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.09.041 – volume: 82 start-page: 669 year: 2015 ident: 2614_CR141 publication-title: Plant J doi: 10.1111/tpj.12841 – volume: 19 start-page: 130 year: 2018 ident: 2614_CR10 publication-title: J Zhejiang Uni Sci B doi: 10.1631/jzus.B1700191 – volume: 44 start-page: 1301 year: 2003 ident: 2614_CR76 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcg157 – volume: 281 start-page: 186 year: 2019 ident: 2614_CR78 publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.01.006 – volume: 126 start-page: 467 year: 2006 ident: 2614_CR100 publication-title: Cell doi: 10.1016/j.cell.2006.05.050 – volume: 153 start-page: 7 year: 2015 ident: 2614_CR4 publication-title: J Agric Sci doi: 10.1017/S0021859613000804 – volume: 174 start-page: 283 year: 2019 ident: 2614_CR21 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.02.084 – volume: 23 start-page: 1795 year: 2011 ident: 2614_CR111 publication-title: Plant Cell doi: 10.1105/tpc.111.083261 – ident: 2614_CR17 doi: 10.1016/j.chemosphere.2019.125361 – volume: 448 start-page: 666 year: 2007 ident: 2614_CR27 publication-title: Nature doi: 10.1038/nature06006 – volume: 67 start-page: 4469 year: 2016 ident: 2614_CR150 publication-title: J Exp Bot doi: 10.1093/jxb/erw261 – volume: 191 start-page: 101 year: 2016 ident: 2614_CR15 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2015.11.013 – volume: 59 start-page: 373 year: 2015 ident: 2614_CR159 publication-title: Biol Plant doi: 10.1007/s10535-015-0491-4 – volume: 195 start-page: 204 year: 2009 ident: 2614_CR47 publication-title: J Agron Crop Sci doi: 10.1111/j.1439-037X.2008.00358.x – ident: 2614_CR113 doi: 10.1007/978-981-15-2156-0_5 – volume: 155 start-page: 464 year: 2011 ident: 2614_CR54 publication-title: Plant Physiol doi: 10.1104/pp.110.166876 – volume: 222 start-page: 1690 year: 2019 ident: 2614_CR38 publication-title: New Phytol doi: 10.1111/nph.15696 – volume: 65 start-page: 907 year: 2011 ident: 2614_CR125 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04477.x – volume: 181 start-page: 1668 year: 2019 ident: 2614_CR20 publication-title: Plant Physiol doi: 10.1104/pp.19.00956 – volume: 38 start-page: 2157 year: 2015 ident: 2614_CR31 publication-title: Plant Cell Environ doi: 10.1111/pce.12536 – volume: 234 start-page: 431 year: 2018 ident: 2614_CR40 publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.12.039 – volume: 52 start-page: 1686 year: 2011 ident: 2614_CR139 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr105 – volume: 113 start-page: 8 year: 2016 ident: 2614_CR164 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2015.10.013 – volume: 23 start-page: 161 year: 2011 ident: 2614_CR98 publication-title: Braz J Plant Physiol doi: 10.1590/S1677-04202011000200008 – volume: 32 start-page: 1965 year: 2013 ident: 2614_CR105 publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1508-0 – volume: 39 start-page: 59 year: 2004 ident: 2614_CR144 publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02107.x |
SSID | ssj0014376 |
Score | 2.65408 |
SecondaryResourceType | review_article |
Snippet | Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1513 |
SubjectTerms | Abiotic stress Acclimatization antioxidant activity Antioxidants Biomedical and Life Sciences Biosynthesis Biotechnology Cell Biology Crosstalk Defense mechanisms Environmental stress genes growth and development Growth regulators Insects Intermediates Jasmonic acid Life Sciences pathogens Plant Biochemistry Plant cells Plant growth Plant Growth Regulators and Signalling Molecules: Crosstalk in abiotic and biotic stress responses Plant hormones Plant Sciences protective effect Proteins regulatory proteins Review Signal transduction Signaling stress tolerance Stresses Wounding |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA6-Dl7EJ9YXEbxpsLt57MaLqFiKoCeF3pbZPKBQd6ttD_rrzaTbFgV73kk2zCSZbzIvQi4ymdrEcMWEyNDNKBXTvA2s9EHGmTc2jZJ-flHdN_HUk73mwW3UhFXO7sR4Udva4Bv5NUJfVPc6vx1-MOwahd7VpoXGKlnH0mW4q7Pe3OAKUCA2l8MSYAFFJqJJmompc-iO0gyNJ7RCBPv-rZgWaPOPgzTqnc422WoAI72bSniHrLhql2zc1wHUfe2RlycYvWN1Wwqmb28o0HAoqceqBEHf0X5FTUzpw7kplP06zEKn-SF0XA8cttVwSDYcYEDMPnnrPL4-dFnTIoEZnssxk-3Uep4IUypZlsJL7kHxtobc22BiZsZonri0FABgZJ5BuBdTDyC4CaMC2jgga1VduUNCUytBJU5r77mwwoLhqbROQpJrq6xpkWTGn8I09cOxjcWgmFc-jjwtAk-LyNPiu0Uu52OG0-oZS6lPZmwvmpM0KhZyb5Hz-edwBtCxAZWrJ4FGCCwyk2i9hEZxFawxLlSLXM1EuvjN_6s6Wr6qY7KZYphLjAk8IWvjz4k7DThlXJ7FzfgDuYvilQ priority: 102 providerName: ProQuest |
Title | Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants |
URI | https://link.springer.com/article/10.1007/s00299-020-02614-z https://www.proquest.com/docview/2559154598 https://www.proquest.com/docview/2449960199 https://www.proquest.com/docview/2636550346 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RlgMXxFMESrRI3MBSvC97uSUooSoiQohI4WSt9yFFCnZF0kP76zuzsV2BoBInHzy7tmb28Y1m5huAt4XiPndCZ1IWFGZUOjNiYrM6oo2L6DxPlv6y1Gcreb5W664obNdnu_chyXRSD8VuFEAyGbk75DfI7PoIThT67pTIteLTIXYgRWopR8RfiB1z2ZXK_H2O36-jW4z5R1g03TaLR_Cwg4lserDrY7gXmidwf9YilLt6Cstzu_tJnLbMuo3_wCzDrcgicRHgLcc2DXOpkI_mZrbetDgLO1SFsH27DdRMI5DYxZbSYJ7BajH__vEs6xojZE6Uap-pCfdR5NLVWtW1jEpEq8XE2DJ6dCwL54zIA6-ltdapsrB4GvJorRQORyHGeA7HTduEF8C4V1bnwZgYhfTSWye48kHZvDReezeCvNdP5TrWcGpesa0GvuOk0wp1WiWdVtcjeDeMuThwZtwpfdqrver2z64iR4fAnSlH8GZ4jSufwhm2Ce0lykhJ1DK5MXfIaKHRBxNSj-B9b9Lbz_z7r17-n_greMAp2SVlBp7C8f7XZXiNaGVfj-GoWBdjOJkuZrMlPT_9-DzH52y-_PptnJbuDWT-5Xc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZihNBsFhXQV_EE6OrtqBPOpjpa6YFEa8le-VpF_I29vQBgTgTTRbZ_Si_0arOTIKCedvnqT6oqq5j6gJ4WSjucyd0JmVBYUalMyOGNqsj0riIzvNE6ZOxHp3Jw4ma7MDvvhaG0ip7mZgEtW8d_SN_S6YvqXtTfpj_yGhqFEVX-xEaK7Y4Che_0GVbvD_4gvR9xfn-19PPo6ybKpA5UaplpobcR5FLV2tV1zIqEa0WQ2PL6NErK5wzIg-8ltZap8rCoijh0VopHK5CBY37XoPrqHiH5OwVk7WDh6ZHGmZHLcfQas1lV6STSvUo_GUyctbI65HZ5d-KcGPd_hOQTXpu_w7c7gxU9nHFUXdhJzT34ManFo3Ii_swPrSL79RNl1k39e-YZSgEWKQuCKhf2bRhLpUQ0t7M1tMWd2GrehS2bGeBxngEApvPKAHnAZxdCfIewm7TNuERMO6V1XkwJkYhvfTWCa58UDYvjdfeDSDv8VO5rl85jc2YVetOywmnFeK0SjitLgfwer1mvurWsRV6r0d71b3cRbXhswG8WH_GN0eBFNuE9hxhpKSmNrkxW2C00Oj9CakH8KYn6eaY_9_q8fZbPYebo9OT4-r4YHz0BG5xSrFJ-Yh7sLv8eR6eoo20rJ8lxmTw7apfwh9Amx-B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRQcKhbEV_EK65WPYI-aejm3JIjiFjbpRddiljoW3pyLrCwJtvuFmk_za9zJpvsouC-9TmTk8PcJ3MDeJMp7lMndCJlRmlGpRMjBjYpI9I4i87zhtLfRnr_RB6eqtMN-N31wlBZZacTG0Xta0f_yLfJ9SVzb_Lt2JZFHO8OP03PE9ogRZnWbp3GgkWOwtUvDN9mHw92kdZvOR_u_fiyn7QbBhIncjVP1ID7KFLpSq3KUkYlotViYGwePUZomXNGpIGX0lrrVJ5ZVCs8WiuFw7fQWOO5t2Azo6ioB5s7e6Pj78schhTNajsaQIY-bCrblp2mcY-SYSah0I1iIJlc_20WV77uP-nZxuoN78O91l1lnxf89QA2QvUQbu_U6FJePYLRoZ39pNm6zLqx_8AsQ5XAIs1EQGvLxhVzTUMhnc1sOa7xFLboTmHzehJoqUcgsOmEynEew8mNoO8J9Kq6Ck-Bca-sToMxMQrppbdOcOWDsmluvPauD2mHn8K108tpicakWM5dbnBaIE6LBqfFdR_eLd-ZLmZ3rIXe6tBetHI8K1Zc14fXy8cogZRWsVWoLxFGShpxkxqzBkYLjbGgkLoP7zuSrj7z_1s9W3-rV3AHpaD4ejA6eg53OdXbNMWJW9CbX1yGF-gwzcuXLWcyOLtpYfgDrmklHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jasmonic+acid%3A+a+key+frontier+in+conferring+abiotic+stress+tolerance+in+plants&rft.jtitle=Plant+cell+reports&rft.au=Raza%2C+Ali&rft.au=Charagh%2C+Sidra&rft.au=Zahid%2C+Zainab&rft.au=Mubarik%2C+Muhammad+Salman&rft.date=2021-08-01&rft.issn=0721-7714&rft.eissn=1432-203X&rft.volume=40&rft.issue=8&rft.spage=1513&rft.epage=1541&rft_id=info:doi/10.1007%2Fs00299-020-02614-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00299_020_02614_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0721-7714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0721-7714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0721-7714&client=summon |