Information-Theoretic Lower Bounds on Bayes Risk in Decentralized Estimation

We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 63; no. 3; pp. 1580 - 1600
Main Authors Aolin Xu, Raginsky, Maxim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are subject to communication constraints due to the quantization and the noisy communication channels from the processors to the estimator. We first derive general lower bounds on the Bayes risk using information-theoretic quantities, such as mutual information, information density, small ball probability, and differential entropy. We then apply these lower bounds to the decentralized case, using strong data processing inequalities to quantify the contraction of information due to communication constraints. We treat the cases of a single processor and of multiple processors, where the samples observed by different processors may be conditionally dependent given the parameter, for noninteractive and interactive communication protocols. Our results recover and improve recent lower bounds on the Bayes risk and the minimax risk for certain decentralized estimation problems, where previously only conditionally independent sample sets and noiseless channels have been considered. Moreover, our results provide a general way to quantify the degradation of estimation performance caused by distributing resources to multiple processors, which is only discussed for specific examples in existing works.
AbstractList We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are subject to communication constraints due to the quantization and the noisy communication channels from the processors to the estimator. We first derive general lower bounds on the Bayes risk using information-theoretic quantities, such as mutual information, information density, small ball probability, and differential entropy. We then apply these lower bounds to the decentralized case, using strong data processing inequalities to quantify the contraction of information due to communication constraints. We treat the cases of a single processor and of multiple processors, where the samples observed by different processors may be conditionally dependent given the parameter, for noninteractive and interactive communication protocols. Our results recover and improve recent lower bounds on the Bayes risk and the minimax risk for certain decentralized estimation problems, where previously only conditionally independent sample sets and noiseless channels have been considered. Moreover, our results provide a general way to quantify the degradation of estimation performance caused by distributing resources to multiple processors, which is only discussed for specific examples in existing works.
Author Raginsky, Maxim
Aolin Xu
Author_xml – sequence: 1
  surname: Aolin Xu
  fullname: Aolin Xu
  email: aolinxu2@illinois.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA
– sequence: 2
  givenname: Maxim
  surname: Raginsky
  fullname: Raginsky, Maxim
  email: maxim@illinois.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA
BookMark eNp9kE1Lw0AQhhdRsK3eBS8Bz6n7mWyOtlYtBASJ52WzmeDWult3U6T-elNTPHjoaRh4n3eYZ4xOnXeA0BXBU0JwcVstqynFJJvSjGeM0xM0IkLkaZEJfopGGBOZFpzLczSOcdWvXBA6QuXStT586M56l1Zv4AN01iSl_4KQzPzWNTHxLpnpHcTkxcb3xLrkHgy4Lui1_YYmWcTODgUX6KzV6wiXhzlBrw-Lav6Uls-Py_ldmRomRZfyFmtNGAeuG5MXUGswrJaFoVqAaGjTUE40l5oz3da1NhRkxkzWQt4QUXA2QTdD7yb4zy3ETq38Nrj-pKIk54xmjBXHUkTmWHKZy30KDykTfIwBWrUJ_TthpwhWe7OqN6v2ZtXBbI9k_xBju18BvRO7PgZeD6AFgL87ucSkEIz9AFsOh9s
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2020_3028439
crossref_primary_10_1109_TIT_2022_3150599
crossref_primary_10_1109_JSAIT_2020_3042094
crossref_primary_10_3390_e22111327
crossref_primary_10_1109_JSAIT_2024_3481296
crossref_primary_10_1587_transfun_2023TAP0002
crossref_primary_10_1109_JSAIT_2022_3231459
crossref_primary_10_1109_TIT_2025_3541987
crossref_primary_10_3390_e20080618
crossref_primary_10_1109_JSTSP_2018_2827303
crossref_primary_10_1109_TIT_2021_3058663
crossref_primary_10_1109_TSP_2018_2876325
crossref_primary_10_1109_TCOMM_2019_2957080
crossref_primary_10_1109_TIT_2019_2913384
crossref_primary_10_1214_23_AOS2269
crossref_primary_10_1109_JSAIT_2024_3409426
crossref_primary_10_1109_TIT_2021_3108952
crossref_primary_10_1109_TIT_2022_3174409
crossref_primary_10_1109_TIT_2021_3075415
crossref_primary_10_3389_fncom_2020_00058
crossref_primary_10_1109_TIT_2020_3028440
crossref_primary_10_1109_TIT_2024_3411600
Cites_doi 10.1109/18.54897
10.1145/2897518.2897582
10.1017/CBO9780511921889
10.1109/18.335943
10.1109/ALLERTON.2010.5707067
10.1214/aop/1176995937
10.1016/0024-3795(93)90331-H
10.1109/18.476322
10.1109/ISIT.2013.6620288
10.1109/18.796377
10.1007/BF02018661
10.1109/ALLERTON.2015.7447151
10.1109/18.669153
10.1109/18.490552
10.1109/18.720540
10.1109/TIT.1962.1057738
10.1109/TIT.2010.2043769
10.1109/TIT.1971.1054717
10.1016/0378-3758(94)90153-8
10.1109/ISIT.2014.6875229
10.1109/TIT.2016.2549542
10.1007/978-1-4757-4015-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2017
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2017
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2016.2646342
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1600
ExternalDocumentID 4316675251
10_1109_TIT_2016_2646342
7801953
Genre orig-research
Feature
GrantInformation_xml – fundername: NSF
  grantid: CCF-1017564
  funderid: 10.13039/100000001
– fundername: CAREER
  grantid: CCF-1254041
  funderid: 10.13039/100000143
– fundername: Center for Science of Information, an NSF Science and Technology Center
  grantid: CCF-0939370
  funderid: 10.13039/100000143
– fundername: ONR
  grantid: N00014-12-1-0998
  funderid: 10.13039/100000006
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-4f0aa134e4adc79ebaec3b89c2a5e5d2dd241a48a43afbbac2e863c6fe7d15943
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 14:33:29 EDT 2025
Sun Jun 29 15:41:41 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Tue Jul 01 02:16:08 EDT 2025
Tue Aug 26 16:43:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-4f0aa134e4adc79ebaec3b89c2a5e5d2dd241a48a43afbbac2e863c6fe7d15943
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-5586-9219
PQID 1870848789
PQPubID 36024
PageCount 21
ParticipantIDs ieee_primary_7801953
crossref_primary_10_1109_TIT_2016_2646342
proquest_journals_2174326339
proquest_journals_1870848789
crossref_citationtrail_10_1109_TIT_2016_2646342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref14
ref31
feller (ref38) 1968; 1
ref30
polyanskiy (ref36) 2016
ref33
ref11
ref32
ref10
anantharam (ref21) 2013
polyanskiy (ref26) 2015
cover (ref27) 2006
wu (ref19) 2016
ref18
garg (ref4) 2014
duchi (ref15) 0
han (ref1) 1998; 44
gray (ref17) 1990
ref24
ref23
ref25
ref20
calabro (ref28) 2009
ref22
xu (ref16) 2016
shamir (ref6) 2014
zhang (ref2) 2013
polyanskiy (ref37) 2010
duchi (ref3) 2014
ref7
ref9
gallager (ref29) 1968
ref5
chen (ref8) 2014
kallenberg (ref39) 2002
han (ref13) 1994; 40
References_xml – ident: ref11
  doi: 10.1109/18.54897
– year: 0
  ident: ref15
  publication-title: Distance-based and continuum Fano inequalities with applications to statistical estimation
– start-page: 163
  year: 2014
  ident: ref6
  article-title: Fundamental limits of online and distributed algorithms for statistical learning and estimation
  publication-title: Proc 28th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref5
  doi: 10.1145/2897518.2897582
– start-page: 2328
  year: 2013
  ident: ref2
  article-title: Information-theoretic lower bounds for distributed statistical estimation with communication constraints
  publication-title: Proc 27th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref31
  doi: 10.1017/CBO9780511921889
– volume: 40
  start-page: 1247
  year: 1994
  ident: ref13
  article-title: Generalizing the Fano inequality
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.335943
– year: 2006
  ident: ref27
  publication-title: Elements of Information Theory
– year: 2013
  ident: ref21
  article-title: On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover
– ident: ref35
  doi: 10.1109/ALLERTON.2010.5707067
– year: 2010
  ident: ref37
  article-title: Channel coding: Non-asymptotic fundamental limits
– ident: ref22
  doi: 10.1214/aop/1176995937
– start-page: 2726
  year: 2014
  ident: ref4
  article-title: On communication cost of distributed statistical estimation and dimensionality
  publication-title: Proc 28th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref24
  doi: 10.1016/0024-3795(93)90331-H
– ident: ref14
  doi: 10.1109/18.476322
– year: 1968
  ident: ref29
  publication-title: Information Theory and Reliable Communications
– ident: ref33
  doi: 10.1109/ISIT.2013.6620288
– year: 2016
  ident: ref16
  article-title: Information-theoretic limitations of distributed information processing
– ident: ref25
  doi: 10.1109/18.796377
– ident: ref9
  doi: 10.1007/BF02018661
– year: 2014
  ident: ref8
  article-title: On Bayes risk lower bounds
– year: 2016
  ident: ref19
  publication-title: Lecture Notes for ECE598 (UIUC) Information-Theoretic Methods High-Dimensional Statistics
– ident: ref34
  doi: 10.1109/ALLERTON.2015.7447151
– year: 2009
  ident: ref28
  article-title: The exponential complexity of satisfiability problems
– ident: ref23
  doi: 10.1109/18.669153
– volume: 1
  year: 1968
  ident: ref38
  publication-title: An Introduction to Probability Theory and Its Applications
– ident: ref32
  doi: 10.1109/18.490552
– volume: 44
  start-page: 2300
  year: 1998
  ident: ref1
  article-title: Statistical inference under multiterminal data compression
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.720540
– ident: ref30
  doi: 10.1109/TIT.1962.1057738
– ident: ref12
  doi: 10.1109/TIT.2010.2043769
– ident: ref18
  doi: 10.1109/TIT.1971.1054717
– year: 1990
  ident: ref17
  publication-title: Source Coding Theory
– ident: ref10
  doi: 10.1016/0378-3758(94)90153-8
– ident: ref7
  doi: 10.1109/ISIT.2014.6875229
– ident: ref20
  doi: 10.1109/TIT.2016.2549542
– year: 2002
  ident: ref39
  publication-title: Foundations of Modern Probability
  doi: 10.1007/978-1-4757-4015-8
– year: 2016
  ident: ref36
  publication-title: Lecture Notes on Information Theory Lecture Notes for ECE 563 (UIUC) and 6 441 (MIT)
– year: 2014
  ident: ref3
  article-title: Optimality guarantees for distributed statistical estimation
– year: 2015
  ident: ref26
  article-title: Strong data-processing inequalities for channels and Bayesian networks
SSID ssj0014512
Score 2.4775805
Snippet We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1580
SubjectTerms Bayes risk
Bayesian analysis
Channels
Communication
Communication channels
Data processing
decentralized estimation
Distortion
Entropy
Estimation
Information theory
Lower bounds
Microprocessors
Minimax technique
Mutual information
Neyman-Pearson converse
Processors
Program processors
Risk
Risk assessment
small ball probability
strong data processing inequalities
Title Information-Theoretic Lower Bounds on Bayes Risk in Decentralized Estimation
URI https://ieeexplore.ieee.org/document/7801953
https://www.proquest.com/docview/1870848789
https://www.proquest.com/docview/2174326339
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzgwGCAGA-XABYlubZO2yZGnAAEHNCRuVR6uNIE6xLYD-_UkbTrxEuJWqWkU5Ytju7Y_AxwaJTIjChPEWSEDxgQPVKR0YFSUYJgWNOOudvjuPr16ZDdPyVMLjhe1MIhYJZ9h3z1WsXwz1jP3q2yQcVfeRpdgyTpuda3WImLAkqhmBo-sAFufowlJhmIwvB66HK60b5V_Sln8RQVVPVV-XMSVdrlsw12zrjqp5Lk_m6q-nn-jbPzvwtdhzZuZ5KQ-FxvQwrID7aaFA_ES3YHVT3yEm3Dri5McWMGwKXEkt66TGjl1DZgmZFySU_mOE_IwmjyTUUnO0Sd4juZoyIW9MuoJtuDx8mJ4dhX4dguBpjyZBqwIpYwoQyaNzgQqiZoqLnQsE0xMbIzV9pJxyagslJI6Rp5SnRaYGWsUMboNy-W4xB0gJnFMflFi7G47gjRpzagCHRF4pEPDWBcGDQK59lzkriXGS175JKHILWa5wyz3mHXhaPHFa83D8cfYTQfBYpzf_S70GpBzL6iTPLL3FbdOGxe_vq4ctjilVOz-PukerMRO0VdZaT1Ynr7NcN-aKVN1UJ3PD5Ck5FY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPRQOpbzEtrT1gQtSs5vEdmIfy0sL7HKogsQt8mMirUBZxO4e4NdjJ86qLQj1FimOZfnzeGYyM98AHFotcysrG6V5pSLGpIh0ok1kdcIxziqaC187PL7Ohjfs8pbfrsDPZS0MIjbJZ9j3j00s307Nwv8qG-TCl7fRVfjg9D5P22qtZcyA8aTlBk-cCDuvowtKxnJQXBQ-iyvrO_WfUZb-pYSariqvruJGv5xvwrhbWZtWctdfzHXfPP9D2vi_S_8Mn4KhSX61J2MLVrDehs2uiQMJMr0NG38wEu7AKJQnebiioityJCPfS40c-xZMMzKtybF6whn5PZndkUlNTjGkeE6e0ZIzd2m0E-zCzflZcTKMQsOFyFDB5xGrYqUSypApa3KJWqGhWkiTKo7cptY6fa-YUIyqSmtlUhQZNVmFuXVmEaN7sFZPa9wHYrnn8ku4dbvtKdKUM6Qq9FTgiYktYz0YdAiUJrCR-6YY92XjlcSydJiVHrMyYNaDo-UXDy0TxztjdzwEy3Fh93tw0IFcBlGdlYm7sYRz24R883XjsqUZpfLL25P-gI_DYjwqRxfXV19hPfVqv8lRO4C1-eMCvzmjZa6_N2f1BaQJ56A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-Theoretic+Lower+Bounds+on+Bayes+Risk+in+Decentralized+Estimation&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Xu%2C+Aolin&rft.au=Raginsky%2C+Maxim&rft.date=2017-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=3&rft.spage=1580&rft_id=info:doi/10.1109%2Ftit.2016.2646342&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4316675251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon