Information-Theoretic Lower Bounds on Bayes Risk in Decentralized Estimation
We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are...
Saved in:
Published in | IEEE transactions on information theory Vol. 63; no. 3; pp. 1580 - 1600 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are subject to communication constraints due to the quantization and the noisy communication channels from the processors to the estimator. We first derive general lower bounds on the Bayes risk using information-theoretic quantities, such as mutual information, information density, small ball probability, and differential entropy. We then apply these lower bounds to the decentralized case, using strong data processing inequalities to quantify the contraction of information due to communication constraints. We treat the cases of a single processor and of multiple processors, where the samples observed by different processors may be conditionally dependent given the parameter, for noninteractive and interactive communication protocols. Our results recover and improve recent lower bounds on the Bayes risk and the minimax risk for certain decentralized estimation problems, where previously only conditionally independent sample sets and noiseless channels have been considered. Moreover, our results provide a general way to quantify the degradation of estimation performance caused by distributing resources to multiple processors, which is only discussed for specific examples in existing works. |
---|---|
AbstractList | We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are subject to communication constraints due to the quantization and the noisy communication channels from the processors to the estimator. We first derive general lower bounds on the Bayes risk using information-theoretic quantities, such as mutual information, information density, small ball probability, and differential entropy. We then apply these lower bounds to the decentralized case, using strong data processing inequalities to quantify the contraction of information due to communication constraints. We treat the cases of a single processor and of multiple processors, where the samples observed by different processors may be conditionally dependent given the parameter, for noninteractive and interactive communication protocols. Our results recover and improve recent lower bounds on the Bayes risk and the minimax risk for certain decentralized estimation problems, where previously only conditionally independent sample sets and noiseless channels have been considered. Moreover, our results provide a general way to quantify the degradation of estimation performance caused by distributing resources to multiple processors, which is only discussed for specific examples in existing works. |
Author | Raginsky, Maxim Aolin Xu |
Author_xml | – sequence: 1 surname: Aolin Xu fullname: Aolin Xu email: aolinxu2@illinois.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA – sequence: 2 givenname: Maxim surname: Raginsky fullname: Raginsky, Maxim email: maxim@illinois.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA |
BookMark | eNp9kE1Lw0AQhhdRsK3eBS8Bz6n7mWyOtlYtBASJ52WzmeDWult3U6T-elNTPHjoaRh4n3eYZ4xOnXeA0BXBU0JwcVstqynFJJvSjGeM0xM0IkLkaZEJfopGGBOZFpzLczSOcdWvXBA6QuXStT586M56l1Zv4AN01iSl_4KQzPzWNTHxLpnpHcTkxcb3xLrkHgy4Lui1_YYmWcTODgUX6KzV6wiXhzlBrw-Lav6Uls-Py_ldmRomRZfyFmtNGAeuG5MXUGswrJaFoVqAaGjTUE40l5oz3da1NhRkxkzWQt4QUXA2QTdD7yb4zy3ETq38Nrj-pKIk54xmjBXHUkTmWHKZy30KDykTfIwBWrUJ_TthpwhWe7OqN6v2ZtXBbI9k_xBju18BvRO7PgZeD6AFgL87ucSkEIz9AFsOh9s |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2020_3028439 crossref_primary_10_1109_TIT_2022_3150599 crossref_primary_10_1109_JSAIT_2020_3042094 crossref_primary_10_3390_e22111327 crossref_primary_10_1109_JSAIT_2024_3481296 crossref_primary_10_1587_transfun_2023TAP0002 crossref_primary_10_1109_JSAIT_2022_3231459 crossref_primary_10_1109_TIT_2025_3541987 crossref_primary_10_3390_e20080618 crossref_primary_10_1109_JSTSP_2018_2827303 crossref_primary_10_1109_TIT_2021_3058663 crossref_primary_10_1109_TSP_2018_2876325 crossref_primary_10_1109_TCOMM_2019_2957080 crossref_primary_10_1109_TIT_2019_2913384 crossref_primary_10_1214_23_AOS2269 crossref_primary_10_1109_JSAIT_2024_3409426 crossref_primary_10_1109_TIT_2021_3108952 crossref_primary_10_1109_TIT_2022_3174409 crossref_primary_10_1109_TIT_2021_3075415 crossref_primary_10_3389_fncom_2020_00058 crossref_primary_10_1109_TIT_2020_3028440 crossref_primary_10_1109_TIT_2024_3411600 |
Cites_doi | 10.1109/18.54897 10.1145/2897518.2897582 10.1017/CBO9780511921889 10.1109/18.335943 10.1109/ALLERTON.2010.5707067 10.1214/aop/1176995937 10.1016/0024-3795(93)90331-H 10.1109/18.476322 10.1109/ISIT.2013.6620288 10.1109/18.796377 10.1007/BF02018661 10.1109/ALLERTON.2015.7447151 10.1109/18.669153 10.1109/18.490552 10.1109/18.720540 10.1109/TIT.1962.1057738 10.1109/TIT.2010.2043769 10.1109/TIT.1971.1054717 10.1016/0378-3758(94)90153-8 10.1109/ISIT.2014.6875229 10.1109/TIT.2016.2549542 10.1007/978-1-4757-4015-8 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2017 Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2017 – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2016.2646342 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 1600 |
ExternalDocumentID | 4316675251 10_1109_TIT_2016_2646342 7801953 |
Genre | orig-research Feature |
GrantInformation_xml | – fundername: NSF grantid: CCF-1017564 funderid: 10.13039/100000001 – fundername: CAREER grantid: CCF-1254041 funderid: 10.13039/100000143 – fundername: Center for Science of Information, an NSF Science and Technology Center grantid: CCF-0939370 funderid: 10.13039/100000143 – fundername: ONR grantid: N00014-12-1-0998 funderid: 10.13039/100000006 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c385t-4f0aa134e4adc79ebaec3b89c2a5e5d2dd241a48a43afbbac2e863c6fe7d15943 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Sun Jun 29 14:33:29 EDT 2025 Sun Jun 29 15:41:41 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Tue Jul 01 02:16:08 EDT 2025 Tue Aug 26 16:43:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-4f0aa134e4adc79ebaec3b89c2a5e5d2dd241a48a43afbbac2e863c6fe7d15943 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-5586-9219 |
PQID | 1870848789 |
PQPubID | 36024 |
PageCount | 21 |
ParticipantIDs | ieee_primary_7801953 crossref_primary_10_1109_TIT_2016_2646342 proquest_journals_2174326339 proquest_journals_1870848789 crossref_citationtrail_10_1109_TIT_2016_2646342 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref14 ref31 feller (ref38) 1968; 1 ref30 polyanskiy (ref36) 2016 ref33 ref11 ref32 ref10 anantharam (ref21) 2013 polyanskiy (ref26) 2015 cover (ref27) 2006 wu (ref19) 2016 ref18 garg (ref4) 2014 duchi (ref15) 0 han (ref1) 1998; 44 gray (ref17) 1990 ref24 ref23 ref25 ref20 calabro (ref28) 2009 ref22 xu (ref16) 2016 shamir (ref6) 2014 zhang (ref2) 2013 polyanskiy (ref37) 2010 duchi (ref3) 2014 ref7 ref9 gallager (ref29) 1968 ref5 chen (ref8) 2014 kallenberg (ref39) 2002 han (ref13) 1994; 40 |
References_xml | – ident: ref11 doi: 10.1109/18.54897 – year: 0 ident: ref15 publication-title: Distance-based and continuum Fano inequalities with applications to statistical estimation – start-page: 163 year: 2014 ident: ref6 article-title: Fundamental limits of online and distributed algorithms for statistical learning and estimation publication-title: Proc 28th Annu Conf Neural Inf Process Syst (NIPS) – ident: ref5 doi: 10.1145/2897518.2897582 – start-page: 2328 year: 2013 ident: ref2 article-title: Information-theoretic lower bounds for distributed statistical estimation with communication constraints publication-title: Proc 27th Annu Conf Neural Inf Process Syst (NIPS) – ident: ref31 doi: 10.1017/CBO9780511921889 – volume: 40 start-page: 1247 year: 1994 ident: ref13 article-title: Generalizing the Fano inequality publication-title: IEEE Trans Inf Theory doi: 10.1109/18.335943 – year: 2006 ident: ref27 publication-title: Elements of Information Theory – year: 2013 ident: ref21 article-title: On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover – ident: ref35 doi: 10.1109/ALLERTON.2010.5707067 – year: 2010 ident: ref37 article-title: Channel coding: Non-asymptotic fundamental limits – ident: ref22 doi: 10.1214/aop/1176995937 – start-page: 2726 year: 2014 ident: ref4 article-title: On communication cost of distributed statistical estimation and dimensionality publication-title: Proc 28th Annu Conf Neural Inf Process Syst (NIPS) – ident: ref24 doi: 10.1016/0024-3795(93)90331-H – ident: ref14 doi: 10.1109/18.476322 – year: 1968 ident: ref29 publication-title: Information Theory and Reliable Communications – ident: ref33 doi: 10.1109/ISIT.2013.6620288 – year: 2016 ident: ref16 article-title: Information-theoretic limitations of distributed information processing – ident: ref25 doi: 10.1109/18.796377 – ident: ref9 doi: 10.1007/BF02018661 – year: 2014 ident: ref8 article-title: On Bayes risk lower bounds – year: 2016 ident: ref19 publication-title: Lecture Notes for ECE598 (UIUC) Information-Theoretic Methods High-Dimensional Statistics – ident: ref34 doi: 10.1109/ALLERTON.2015.7447151 – year: 2009 ident: ref28 article-title: The exponential complexity of satisfiability problems – ident: ref23 doi: 10.1109/18.669153 – volume: 1 year: 1968 ident: ref38 publication-title: An Introduction to Probability Theory and Its Applications – ident: ref32 doi: 10.1109/18.490552 – volume: 44 start-page: 2300 year: 1998 ident: ref1 article-title: Statistical inference under multiterminal data compression publication-title: IEEE Trans Inf Theory doi: 10.1109/18.720540 – ident: ref30 doi: 10.1109/TIT.1962.1057738 – ident: ref12 doi: 10.1109/TIT.2010.2043769 – ident: ref18 doi: 10.1109/TIT.1971.1054717 – year: 1990 ident: ref17 publication-title: Source Coding Theory – ident: ref10 doi: 10.1016/0378-3758(94)90153-8 – ident: ref7 doi: 10.1109/ISIT.2014.6875229 – ident: ref20 doi: 10.1109/TIT.2016.2549542 – year: 2002 ident: ref39 publication-title: Foundations of Modern Probability doi: 10.1007/978-1-4757-4015-8 – year: 2016 ident: ref36 publication-title: Lecture Notes on Information Theory Lecture Notes for ECE 563 (UIUC) and 6 441 (MIT) – year: 2014 ident: ref3 article-title: Optimality guarantees for distributed statistical estimation – year: 2015 ident: ref26 article-title: Strong data-processing inequalities for channels and Bayesian networks |
SSID | ssj0014512 |
Score | 2.4775805 |
Snippet | We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1580 |
SubjectTerms | Bayes risk Bayesian analysis Channels Communication Communication channels Data processing decentralized estimation Distortion Entropy Estimation Information theory Lower bounds Microprocessors Minimax technique Mutual information Neyman-Pearson converse Processors Program processors Risk Risk assessment small ball probability strong data processing inequalities |
Title | Information-Theoretic Lower Bounds on Bayes Risk in Decentralized Estimation |
URI | https://ieeexplore.ieee.org/document/7801953 https://www.proquest.com/docview/1870848789 https://www.proquest.com/docview/2174326339 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzgwGCAGA-XABYlubZO2yZGnAAEHNCRuVR6uNIE6xLYD-_UkbTrxEuJWqWkU5Ytju7Y_AxwaJTIjChPEWSEDxgQPVKR0YFSUYJgWNOOudvjuPr16ZDdPyVMLjhe1MIhYJZ9h3z1WsXwz1jP3q2yQcVfeRpdgyTpuda3WImLAkqhmBo-sAFufowlJhmIwvB66HK60b5V_Sln8RQVVPVV-XMSVdrlsw12zrjqp5Lk_m6q-nn-jbPzvwtdhzZuZ5KQ-FxvQwrID7aaFA_ES3YHVT3yEm3Dri5McWMGwKXEkt66TGjl1DZgmZFySU_mOE_IwmjyTUUnO0Sd4juZoyIW9MuoJtuDx8mJ4dhX4dguBpjyZBqwIpYwoQyaNzgQqiZoqLnQsE0xMbIzV9pJxyagslJI6Rp5SnRaYGWsUMboNy-W4xB0gJnFMflFi7G47gjRpzagCHRF4pEPDWBcGDQK59lzkriXGS175JKHILWa5wyz3mHXhaPHFa83D8cfYTQfBYpzf_S70GpBzL6iTPLL3FbdOGxe_vq4ctjilVOz-PukerMRO0VdZaT1Ynr7NcN-aKVN1UJ3PD5Ck5FY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPRQOpbzEtrT1gQtSs5vEdmIfy0sL7HKogsQt8mMirUBZxO4e4NdjJ86qLQj1FimOZfnzeGYyM98AHFotcysrG6V5pSLGpIh0ok1kdcIxziqaC187PL7Ohjfs8pbfrsDPZS0MIjbJZ9j3j00s307Nwv8qG-TCl7fRVfjg9D5P22qtZcyA8aTlBk-cCDuvowtKxnJQXBQ-iyvrO_WfUZb-pYSariqvruJGv5xvwrhbWZtWctdfzHXfPP9D2vi_S_8Mn4KhSX61J2MLVrDehs2uiQMJMr0NG38wEu7AKJQnebiioityJCPfS40c-xZMMzKtybF6whn5PZndkUlNTjGkeE6e0ZIzd2m0E-zCzflZcTKMQsOFyFDB5xGrYqUSypApa3KJWqGhWkiTKo7cptY6fa-YUIyqSmtlUhQZNVmFuXVmEaN7sFZPa9wHYrnn8ku4dbvtKdKUM6Qq9FTgiYktYz0YdAiUJrCR-6YY92XjlcSydJiVHrMyYNaDo-UXDy0TxztjdzwEy3Fh93tw0IFcBlGdlYm7sYRz24R883XjsqUZpfLL25P-gI_DYjwqRxfXV19hPfVqv8lRO4C1-eMCvzmjZa6_N2f1BaQJ56A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information-Theoretic+Lower+Bounds+on+Bayes+Risk+in+Decentralized+Estimation&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Xu%2C+Aolin&rft.au=Raginsky%2C+Maxim&rft.date=2017-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=3&rft.spage=1580&rft_id=info:doi/10.1109%2Ftit.2016.2646342&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4316675251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |