Prethermalization without Temperature

While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 10; no. 2; p. 021046
Main Authors Luitz, David J., Moessner, Roderich, Sondhi, S. L., Khemani, Vedika
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude.
AbstractList While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.180603] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude.
While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude.
ArticleNumber 021046
Author Sondhi, S. L.
Moessner, Roderich
Khemani, Vedika
Luitz, David J.
Author_xml – sequence: 1
  givenname: David J.
  orcidid: 0000-0003-0099-5696
  surname: Luitz
  fullname: Luitz, David J.
– sequence: 2
  givenname: Roderich
  surname: Moessner
  fullname: Moessner, Roderich
– sequence: 3
  givenname: S. L.
  surname: Sondhi
  fullname: Sondhi, S. L.
– sequence: 4
  givenname: Vedika
  surname: Khemani
  fullname: Khemani, Vedika
BookMark eNp9kEtLAzEUhYNUsNb-AVcFcdl685yZpRQfhYJFKrgLSSaxU6aTmsko9dc77VgQF97NvRzuORy-c9SrfGURusQwwRjozWK1q5_tx-ukFYBgYOIE9QkWMKYU0t6v-wwN63oN7QjALEn66HoRbFzZsFFl8aVi4avRZxFXvomjpd1sbVCxCfYCnTpV1nb4swfo5f5uOX0cz58eZtPb-djQlMcxM5nW1GSUUG214I4BGCCQUOwS7TTngmcZdSbNXWZTzZQiwmEngKjcKkcHaNbl5l6t5TYUGxV20qtCHgQf3qQKsTCllSyhXJMcWKY5yxRkuWHaYUiETrBOeZt11WVtg39vbB3l2jehautLwjkIKjAT7VfafZng6zpYJ00RDxxiUEUpMcg9Y3lkvBc6xq2V_LEeC_9j-gYuyYKU
CitedBy_id crossref_primary_10_1103_PhysRevB_107_235421
crossref_primary_10_1103_PhysRevB_103_054305
crossref_primary_10_1103_PhysRevB_107_214302
crossref_primary_10_1103_PhysRevB_108_174303
crossref_primary_10_1103_PhysRevX_15_011064
crossref_primary_10_1103_PhysRevB_102_224309
crossref_primary_10_1103_PhysRevB_107_134201
crossref_primary_10_21468_SciPostPhysCore_4_3_021
crossref_primary_10_1103_PhysRevB_104_134308
crossref_primary_10_1103_PhysRevB_106_134301
crossref_primary_10_1103_PhysRevLett_130_266401
crossref_primary_10_1103_PhysRevX_14_041070
crossref_primary_10_1103_PhysRevB_108_L100203
crossref_primary_10_1103_PhysRevB_106_144312
crossref_primary_10_1103_PhysRevE_102_052107
crossref_primary_10_21468_SciPostPhys_11_2_021
crossref_primary_10_1103_PhysRevB_109_165116
crossref_primary_10_1103_PhysRevB_102_214207
crossref_primary_10_1103_PhysRevX_13_041016
crossref_primary_10_1103_PRXQuantum_2_030346
crossref_primary_10_1103_PhysRevLett_127_140602
crossref_primary_10_1103_PhysRevX_11_021008
crossref_primary_10_1103_PhysRevLett_130_120403
crossref_primary_10_1103_RevModPhys_93_041002
crossref_primary_10_1103_PhysRevB_111_L100304
crossref_primary_10_1103_PhysRevResearch_4_023025
crossref_primary_10_1103_PhysRevResearch_3_043133
crossref_primary_10_1103_PhysRevB_108_104309
crossref_primary_10_1103_PhysRevB_102_024201
crossref_primary_10_1103_PhysRevB_111_075113
crossref_primary_10_21468_SciPostPhys_17_1_011
crossref_primary_10_1103_PhysRevA_105_012418
crossref_primary_10_1103_PhysRevLett_129_133001
crossref_primary_10_1103_PhysRevX_12_031037
crossref_primary_10_1103_RevModPhys_95_031001
crossref_primary_10_1103_PhysRevB_109_224301
crossref_primary_10_1103_PhysRevLett_127_170603
crossref_primary_10_1103_PhysRevB_105_195118
crossref_primary_10_1103_PhysRevLett_126_040601
crossref_primary_10_1088_1361_648X_ada860
crossref_primary_10_1103_PhysRevB_104_094308
crossref_primary_10_1103_PRXQuantum_3_020331
crossref_primary_10_1103_PhysRevB_104_104306
crossref_primary_10_1088_1367_2630_ab9d54
crossref_primary_10_1103_PhysRevResearch_3_013117
crossref_primary_10_1103_PhysRevLett_133_030401
Cites_doi 10.1103/PhysRevB.97.245122
10.1007/s10955-016-1508-x
10.1103/PhysRevB.95.014112
10.21468/SciPostPhys.3.4.029
10.1103/PhysRev.109.1492
10.1103/PhysRevLett.119.010602
10.1137/S00361445024180
10.1103/PhysRevLett.120.180603
10.1007/s00220-017-2930-x
10.1103/PhysRevB.77.064426
10.1103/PhysRevB.96.115127
10.1088/1361-6633/aa8b38
10.1103/PhysRevB.97.184301
10.1103/PhysRevLett.102.110403
10.1146/annurev-conmatphys-031214-014726
10.1016/j.aop.2005.11.014
10.1103/RevModPhys.91.021001
10.1103/PhysRevLett.117.090402
10.1038/nphys4106
10.1103/PhysRevB.91.081103
10.1103/PhysRevB.90.174202
10.1016/j.aop.2016.01.012
10.1103/PhysRevLett.114.140401
10.1103/PhysRevLett.116.250401
10.1016/j.aop.2016.03.010
10.1103/PhysRevLett.122.043603
10.1103/PhysRevX.4.041048
10.1103/PhysRevLett.115.256803
10.1103/PhysRevLett.95.206603
10.1103/PhysRevB.75.155111
10.1103/PhysRevLett.115.030402
10.1038/nature21426
10.1103/PhysRevB.94.085112
10.1103/PhysRevLett.51.2238
10.1103/PhysRevB.82.174411
10.1038/nature21413
10.1103/PhysRevX.7.011026
10.1103/PhysRevE.90.012110
10.1103/PhysRevE.97.062129
10.1103/PhysRevLett.116.120401
10.1103/PhysRevLett.111.127201
10.1002/andp.201600350
10.1016/j.aop.2014.11.008
ContentType Journal Article
Copyright 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.10.021046
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_4735b2d049b549a09dc4bf1076b71b85
10_1103_PhysRevX_10_021046
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c385t-4c9bb3c9323beb65f400c020731f7bfb5565993fc8df9e8b4aa26f1f602adeaf3
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:23:23 EDT 2025
Fri Jul 25 11:38:21 EDT 2025
Tue Jul 01 01:33:19 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-4c9bb3c9323beb65f400c020731f7bfb5565993fc8df9e8b4aa26f1f602adeaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0099-5696
OpenAccessLink https://doaj.org/article/4735b2d049b549a09dc4bf1076b71b85
PQID 2550636146
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_4735b2d049b549a09dc4bf1076b71b85
proquest_journals_2550636146
crossref_citationtrail_10_1103_PhysRevX_10_021046
crossref_primary_10_1103_PhysRevX_10_021046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2020
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.10.021046Cc41R1
PhysRevX.10.021046Cc40R1
PhysRevX.10.021046Cc20R1
PhysRevX.10.021046Cc21R1
PhysRevX.10.021046Cc42R1
PhysRevX.10.021046Cc22R1
PhysRevX.10.021046Cc45R1
PhysRevX.10.021046Cc23R1
PhysRevX.10.021046Cc44R1
PhysRevX.10.021046Cc24R1
PhysRevX.10.021046Cc25R1
PhysRevX.10.021046Cc46R1
PhysRevX.10.021046Cc26R1
PhysRevX.10.021046Cc27R1
PhysRevX.10.021046Cc28R1
PhysRevX.10.021046Cc29R1
PhysRevX.10.021046Cc30R1
PhysRevX.10.021046Cc32R1
PhysRevX.10.021046Cc10R1
PhysRevX.10.021046Cc31R1
PhysRevX.10.021046Cc11R1
PhysRevX.10.021046Cc34R1
PhysRevX.10.021046Cc12R1
PhysRevX.10.021046Cc33R1
PhysRevX.10.021046Cc13R1
PhysRevX.10.021046Cc36R1
PhysRevX.10.021046Cc14R1
PhysRevX.10.021046Cc35R1
PhysRevX.10.021046Cc15R1
PhysRevX.10.021046Cc38R1
PhysRevX.10.021046Cc16R1
PhysRevX.10.021046Cc37R1
PhysRevX.10.021046Cc1R1
PhysRevX.10.021046Cc17R1
PhysRevX.10.021046Cc18R1
PhysRevX.10.021046Cc39R1
PhysRevX.10.021046Cc3R1
PhysRevX.10.021046Cc19R1
PhysRevX.10.021046Cc2R1
PhysRevX.10.021046Cc9R1
PhysRevX.10.021046Cc8R1
PhysRevX.10.021046Cc4R1
PhysRevX.10.021046Cc7R1
References_xml – ident: PhysRevX.10.021046Cc46R1
  doi: 10.1103/PhysRevB.97.245122
– ident: PhysRevX.10.021046Cc21R1
  doi: 10.1007/s10955-016-1508-x
– ident: PhysRevX.10.021046Cc26R1
  doi: 10.1103/PhysRevB.95.014112
– ident: PhysRevX.10.021046Cc40R1
  doi: 10.21468/SciPostPhys.3.4.029
– ident: PhysRevX.10.021046Cc14R1
  doi: 10.1103/PhysRev.109.1492
– ident: PhysRevX.10.021046Cc35R1
  doi: 10.1103/PhysRevLett.119.010602
– ident: PhysRevX.10.021046Cc42R1
  doi: 10.1137/S00361445024180
– ident: PhysRevX.10.021046Cc31R1
  doi: 10.1103/PhysRevLett.120.180603
– ident: PhysRevX.10.021046Cc27R1
  doi: 10.1007/s00220-017-2930-x
– ident: PhysRevX.10.021046Cc18R1
  doi: 10.1103/PhysRevB.77.064426
– ident: PhysRevX.10.021046Cc24R1
  doi: 10.1103/PhysRevB.96.115127
– ident: PhysRevX.10.021046Cc7R1
  doi: 10.1088/1361-6633/aa8b38
– ident: PhysRevX.10.021046Cc32R1
  doi: 10.1103/PhysRevB.97.184301
– ident: PhysRevX.10.021046Cc37R1
  doi: 10.1103/PhysRevLett.102.110403
– ident: PhysRevX.10.021046Cc22R1
  doi: 10.1146/annurev-conmatphys-031214-014726
– ident: PhysRevX.10.021046Cc15R1
  doi: 10.1016/j.aop.2005.11.014
– ident: PhysRevX.10.021046Cc23R1
  doi: 10.1103/RevModPhys.91.021001
– ident: PhysRevX.10.021046Cc2R1
  doi: 10.1103/PhysRevLett.117.090402
– ident: PhysRevX.10.021046Cc4R1
  doi: 10.1038/nphys4106
– ident: PhysRevX.10.021046Cc20R1
  doi: 10.1103/PhysRevB.91.081103
– ident: PhysRevX.10.021046Cc44R1
  doi: 10.1103/PhysRevB.90.174202
– ident: PhysRevX.10.021046Cc29R1
  doi: 10.1016/j.aop.2016.01.012
– ident: PhysRevX.10.021046Cc12R1
  doi: 10.1103/PhysRevLett.114.140401
– ident: PhysRevX.10.021046Cc1R1
  doi: 10.1103/PhysRevLett.116.250401
– ident: PhysRevX.10.021046Cc13R1
  doi: 10.1016/j.aop.2016.03.010
– ident: PhysRevX.10.021046Cc36R1
  doi: 10.1103/PhysRevLett.122.043603
– ident: PhysRevX.10.021046Cc8R1
  doi: 10.1103/PhysRevX.4.041048
– ident: PhysRevX.10.021046Cc25R1
  doi: 10.1103/PhysRevLett.115.256803
– ident: PhysRevX.10.021046Cc16R1
  doi: 10.1103/PhysRevLett.95.206603
– ident: PhysRevX.10.021046Cc19R1
  doi: 10.1103/PhysRevB.75.155111
– ident: PhysRevX.10.021046Cc11R1
  doi: 10.1103/PhysRevLett.115.030402
– ident: PhysRevX.10.021046Cc33R1
  doi: 10.1038/nature21426
– ident: PhysRevX.10.021046Cc3R1
  doi: 10.1103/PhysRevB.94.085112
– ident: PhysRevX.10.021046Cc41R1
  doi: 10.1103/PhysRevLett.51.2238
– ident: PhysRevX.10.021046Cc17R1
  doi: 10.1103/PhysRevB.82.174411
– ident: PhysRevX.10.021046Cc34R1
  doi: 10.1038/nature21413
– ident: PhysRevX.10.021046Cc30R1
  doi: 10.1103/PhysRevX.7.011026
– ident: PhysRevX.10.021046Cc9R1
  doi: 10.1103/PhysRevE.90.012110
– ident: PhysRevX.10.021046Cc38R1
  doi: 10.1103/PhysRevE.97.062129
– ident: PhysRevX.10.021046Cc28R1
  doi: 10.1103/PhysRevLett.116.120401
– ident: PhysRevX.10.021046Cc45R1
  doi: 10.1103/PhysRevLett.111.127201
– ident: PhysRevX.10.021046Cc39R1
  doi: 10.1002/andp.201600350
– ident: PhysRevX.10.021046Cc10R1
  doi: 10.1016/j.aop.2014.11.008
SSID ssj0000601477
Score 2.5584762
Snippet While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 021046
SubjectTerms Autocorrelation functions
Clean energy
Crystal structure
Crystallinity
Crystals
Energy absorption
Experiments
NMR
Nuclear magnetic resonance
Optimization
Signatures
Thermalization (energy absorption)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfAiPrFaJQc9SWyTzeZxEistRbCU0kJvYWez60Wb2qb-fmeSTUWEXnLY7EIy-5jvm50HY3daKMiQ7riBAN9FDcFdVAueG0o_80EiQ9AUnPw2Coez4HUu5tbgtrZulfWZWB7UWa7IRt5B6IvaFJVJ-LT8cqlqFN2u2hIa-6yJR3CM5KvZ64_Gk62VhbKNBFFUR8t0eYccKyf6e_5IPl0-3XD-0Uhl4v5_53KpbAbH7MiiROe5mtYTtqcXp-yg9NZU6zN2P16Vcbqf8sOGUTpkT803hTPViIOrPMnnbDboT1-Grq134Coei8INVALAFSIqDhpCYXB_KYRzEfdMBAYEgi-EE0bFmUl0DIGUfmg8E3Z9mWlp-AVrLPKFvmSO4AISg9L2ElI_EBscHHoSnxl1bzGv_udU2WTgVJPiIy1JQZentZyooZJTiz1sxyyrVBg7e_dIlNuelMa6bMhX76ndFSnVPQY_Q5YCyFNlN8lUAAYZaQj00aLF2vVEpHZvrdPflXC1-_U1O_SJHZfuiW3WKFYbfYMQooBbu05-APHgxaE
  priority: 102
  providerName: ProQuest
Title Prethermalization without Temperature
URI https://www.proquest.com/docview/2550636146
https://doaj.org/article/4735b2d049b549a09dc4bf1076b71b85
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEB20IngRP7FaSw56kthkN59HK61FsJTSQm9hZ7N7qq20qb_f2U1SKoJevOSw7JJkJpt5L5l5A3CnQok50R03CJG5FCG4S2HBdyPBcoaCGIIyxclvw2gwDV5n4Wyn1ZfJCSvlgUvDdUxrXGQ5AVkkKiO8NJcBaiItEcY-Jla9lGLeDpkq38EE_eO4rpLxeMckVI7V5-zR5HIx82fzWySygv0_3sc2yPRP4LhCh85TeVWnsKcWZ3BoszTl-hzuRytbn_su5lX5pGO-oy43hTNRhH9LfeQLmPZ7k-eBW_U5cCVPwsINZIrIJSEpjgqjUNO-kgTjYu7rGDWGBLoIRmiZ5DpVCQZCsEj7OvKYyJXQ_BIai-VCXYETkrFSTVb2UxN2MNG0OPIFHXMzvQl-fc-ZrETATS-KeWbJgMez2k5moLRTEx62az5KCYxfZ3eNKbczjXy1HSCnZpVTs7-c2oRW7Yis2lPrjMgP4SmCE9H1f5zjBo6Y4c42ebEFjWK1UbcEMApsw37Sf2nDQbc3HI3b9sn6Al5tzpg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4qmyZ2mTYGomxsObATCmvsOE0OCDG2rmNrhVAn9Rb8HJtL15Y2A_FP8TfynpMUoUm97ZKDY0fJ83O-99nvB8AbqwwWRHfCWKEICSFkSLAQhYkWhUBNDMFycPJgmPRv489jNW7BnyYWht0qm3-i_1EXM8N75Kdk-hKaEpgkH-Y_Qq4axaerTQmNSi2u7e9fRNmW76_OaX5PhOhdjD71w7qqQGhkqsowNhmiNGS3SLSYKEdabMho6srIddGhIhOHQNuZtHCZTTHWWiQucklH6MJqJ-m5T2AzljLjFZX2Lld7OpzbJO52m9icjjxlN86v9uf4HXuQCT5P_Q__fJmAByjgoa23Czu1TRp8rJRoD1p2-gy2vG-oWe7DyZeFjwq-05M6aDPg3dvZfRmMLFndVVbm53D7KHJ4ARvT2dS-hEBJhZmjuY0yBjtMHQ1OIk3Xgru3IWq-OTd16nGugDHJPQXpyLyREzdUcmrD29WYeZV4Y23vMxblqicnzfYNs8X3vF6DOVdZRlEQJ0JixbqTFSZGR_w3QX5p1YbDZiLyeiUv839692r97WN42h8NbvKbq-H1AWwL5uXeMfIQNsrFvX1NxkuJR15jAvj22Cr6FwG7AnY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prethermalization+without+Temperature&rft.jtitle=Physical+review.+X&rft.au=Luitz%2C+David+J.&rft.au=Moessner%2C+Roderich&rft.au=Sondhi%2C+S.%E2%80%89L.&rft.au=Khemani%2C+Vedika&rft.date=2020-05-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.10.021046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_10_021046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon