Prethermalization without Temperature
While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can...
Saved in:
Published in | Physical review. X Vol. 10; no. 2; p. 021046 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude. |
---|---|
AbstractList | While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.180603] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude. While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude. |
ArticleNumber | 021046 |
Author | Sondhi, S. L. Moessner, Roderich Khemani, Vedika Luitz, David J. |
Author_xml | – sequence: 1 givenname: David J. orcidid: 0000-0003-0099-5696 surname: Luitz fullname: Luitz, David J. – sequence: 2 givenname: Roderich surname: Moessner fullname: Moessner, Roderich – sequence: 3 givenname: S. L. surname: Sondhi fullname: Sondhi, S. L. – sequence: 4 givenname: Vedika surname: Khemani fullname: Khemani, Vedika |
BookMark | eNp9kEtLAzEUhYNUsNb-AVcFcdl685yZpRQfhYJFKrgLSSaxU6aTmsko9dc77VgQF97NvRzuORy-c9SrfGURusQwwRjozWK1q5_tx-ukFYBgYOIE9QkWMKYU0t6v-wwN63oN7QjALEn66HoRbFzZsFFl8aVi4avRZxFXvomjpd1sbVCxCfYCnTpV1nb4swfo5f5uOX0cz58eZtPb-djQlMcxM5nW1GSUUG214I4BGCCQUOwS7TTngmcZdSbNXWZTzZQiwmEngKjcKkcHaNbl5l6t5TYUGxV20qtCHgQf3qQKsTCllSyhXJMcWKY5yxRkuWHaYUiETrBOeZt11WVtg39vbB3l2jehautLwjkIKjAT7VfafZng6zpYJ00RDxxiUEUpMcg9Y3lkvBc6xq2V_LEeC_9j-gYuyYKU |
CitedBy_id | crossref_primary_10_1103_PhysRevB_107_235421 crossref_primary_10_1103_PhysRevB_103_054305 crossref_primary_10_1103_PhysRevB_107_214302 crossref_primary_10_1103_PhysRevB_108_174303 crossref_primary_10_1103_PhysRevX_15_011064 crossref_primary_10_1103_PhysRevB_102_224309 crossref_primary_10_1103_PhysRevB_107_134201 crossref_primary_10_21468_SciPostPhysCore_4_3_021 crossref_primary_10_1103_PhysRevB_104_134308 crossref_primary_10_1103_PhysRevB_106_134301 crossref_primary_10_1103_PhysRevLett_130_266401 crossref_primary_10_1103_PhysRevX_14_041070 crossref_primary_10_1103_PhysRevB_108_L100203 crossref_primary_10_1103_PhysRevB_106_144312 crossref_primary_10_1103_PhysRevE_102_052107 crossref_primary_10_21468_SciPostPhys_11_2_021 crossref_primary_10_1103_PhysRevB_109_165116 crossref_primary_10_1103_PhysRevB_102_214207 crossref_primary_10_1103_PhysRevX_13_041016 crossref_primary_10_1103_PRXQuantum_2_030346 crossref_primary_10_1103_PhysRevLett_127_140602 crossref_primary_10_1103_PhysRevX_11_021008 crossref_primary_10_1103_PhysRevLett_130_120403 crossref_primary_10_1103_RevModPhys_93_041002 crossref_primary_10_1103_PhysRevB_111_L100304 crossref_primary_10_1103_PhysRevResearch_4_023025 crossref_primary_10_1103_PhysRevResearch_3_043133 crossref_primary_10_1103_PhysRevB_108_104309 crossref_primary_10_1103_PhysRevB_102_024201 crossref_primary_10_1103_PhysRevB_111_075113 crossref_primary_10_21468_SciPostPhys_17_1_011 crossref_primary_10_1103_PhysRevA_105_012418 crossref_primary_10_1103_PhysRevLett_129_133001 crossref_primary_10_1103_PhysRevX_12_031037 crossref_primary_10_1103_RevModPhys_95_031001 crossref_primary_10_1103_PhysRevB_109_224301 crossref_primary_10_1103_PhysRevLett_127_170603 crossref_primary_10_1103_PhysRevB_105_195118 crossref_primary_10_1103_PhysRevLett_126_040601 crossref_primary_10_1088_1361_648X_ada860 crossref_primary_10_1103_PhysRevB_104_094308 crossref_primary_10_1103_PRXQuantum_3_020331 crossref_primary_10_1103_PhysRevB_104_104306 crossref_primary_10_1088_1367_2630_ab9d54 crossref_primary_10_1103_PhysRevResearch_3_013117 crossref_primary_10_1103_PhysRevLett_133_030401 |
Cites_doi | 10.1103/PhysRevB.97.245122 10.1007/s10955-016-1508-x 10.1103/PhysRevB.95.014112 10.21468/SciPostPhys.3.4.029 10.1103/PhysRev.109.1492 10.1103/PhysRevLett.119.010602 10.1137/S00361445024180 10.1103/PhysRevLett.120.180603 10.1007/s00220-017-2930-x 10.1103/PhysRevB.77.064426 10.1103/PhysRevB.96.115127 10.1088/1361-6633/aa8b38 10.1103/PhysRevB.97.184301 10.1103/PhysRevLett.102.110403 10.1146/annurev-conmatphys-031214-014726 10.1016/j.aop.2005.11.014 10.1103/RevModPhys.91.021001 10.1103/PhysRevLett.117.090402 10.1038/nphys4106 10.1103/PhysRevB.91.081103 10.1103/PhysRevB.90.174202 10.1016/j.aop.2016.01.012 10.1103/PhysRevLett.114.140401 10.1103/PhysRevLett.116.250401 10.1016/j.aop.2016.03.010 10.1103/PhysRevLett.122.043603 10.1103/PhysRevX.4.041048 10.1103/PhysRevLett.115.256803 10.1103/PhysRevLett.95.206603 10.1103/PhysRevB.75.155111 10.1103/PhysRevLett.115.030402 10.1038/nature21426 10.1103/PhysRevB.94.085112 10.1103/PhysRevLett.51.2238 10.1103/PhysRevB.82.174411 10.1038/nature21413 10.1103/PhysRevX.7.011026 10.1103/PhysRevE.90.012110 10.1103/PhysRevE.97.062129 10.1103/PhysRevLett.116.120401 10.1103/PhysRevLett.111.127201 10.1002/andp.201600350 10.1016/j.aop.2014.11.008 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.10.021046 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_4735b2d049b549a09dc4bf1076b71b85 10_1103_PhysRevX_10_021046 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c385t-4c9bb3c9323beb65f400c020731f7bfb5565993fc8df9e8b4aa26f1f602adeaf3 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Fri Jul 25 11:38:21 EDT 2025 Tue Jul 01 01:33:19 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-4c9bb3c9323beb65f400c020731f7bfb5565993fc8df9e8b4aa26f1f602adeaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0099-5696 |
OpenAccessLink | https://doaj.org/article/4735b2d049b549a09dc4bf1076b71b85 |
PQID | 2550636146 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4735b2d049b549a09dc4bf1076b71b85 proquest_journals_2550636146 crossref_citationtrail_10_1103_PhysRevX_10_021046 crossref_primary_10_1103_PhysRevX_10_021046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2020 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.10.021046Cc41R1 PhysRevX.10.021046Cc40R1 PhysRevX.10.021046Cc20R1 PhysRevX.10.021046Cc21R1 PhysRevX.10.021046Cc42R1 PhysRevX.10.021046Cc22R1 PhysRevX.10.021046Cc45R1 PhysRevX.10.021046Cc23R1 PhysRevX.10.021046Cc44R1 PhysRevX.10.021046Cc24R1 PhysRevX.10.021046Cc25R1 PhysRevX.10.021046Cc46R1 PhysRevX.10.021046Cc26R1 PhysRevX.10.021046Cc27R1 PhysRevX.10.021046Cc28R1 PhysRevX.10.021046Cc29R1 PhysRevX.10.021046Cc30R1 PhysRevX.10.021046Cc32R1 PhysRevX.10.021046Cc10R1 PhysRevX.10.021046Cc31R1 PhysRevX.10.021046Cc11R1 PhysRevX.10.021046Cc34R1 PhysRevX.10.021046Cc12R1 PhysRevX.10.021046Cc33R1 PhysRevX.10.021046Cc13R1 PhysRevX.10.021046Cc36R1 PhysRevX.10.021046Cc14R1 PhysRevX.10.021046Cc35R1 PhysRevX.10.021046Cc15R1 PhysRevX.10.021046Cc38R1 PhysRevX.10.021046Cc16R1 PhysRevX.10.021046Cc37R1 PhysRevX.10.021046Cc1R1 PhysRevX.10.021046Cc17R1 PhysRevX.10.021046Cc18R1 PhysRevX.10.021046Cc39R1 PhysRevX.10.021046Cc3R1 PhysRevX.10.021046Cc19R1 PhysRevX.10.021046Cc2R1 PhysRevX.10.021046Cc9R1 PhysRevX.10.021046Cc8R1 PhysRevX.10.021046Cc4R1 PhysRevX.10.021046Cc7R1 |
References_xml | – ident: PhysRevX.10.021046Cc46R1 doi: 10.1103/PhysRevB.97.245122 – ident: PhysRevX.10.021046Cc21R1 doi: 10.1007/s10955-016-1508-x – ident: PhysRevX.10.021046Cc26R1 doi: 10.1103/PhysRevB.95.014112 – ident: PhysRevX.10.021046Cc40R1 doi: 10.21468/SciPostPhys.3.4.029 – ident: PhysRevX.10.021046Cc14R1 doi: 10.1103/PhysRev.109.1492 – ident: PhysRevX.10.021046Cc35R1 doi: 10.1103/PhysRevLett.119.010602 – ident: PhysRevX.10.021046Cc42R1 doi: 10.1137/S00361445024180 – ident: PhysRevX.10.021046Cc31R1 doi: 10.1103/PhysRevLett.120.180603 – ident: PhysRevX.10.021046Cc27R1 doi: 10.1007/s00220-017-2930-x – ident: PhysRevX.10.021046Cc18R1 doi: 10.1103/PhysRevB.77.064426 – ident: PhysRevX.10.021046Cc24R1 doi: 10.1103/PhysRevB.96.115127 – ident: PhysRevX.10.021046Cc7R1 doi: 10.1088/1361-6633/aa8b38 – ident: PhysRevX.10.021046Cc32R1 doi: 10.1103/PhysRevB.97.184301 – ident: PhysRevX.10.021046Cc37R1 doi: 10.1103/PhysRevLett.102.110403 – ident: PhysRevX.10.021046Cc22R1 doi: 10.1146/annurev-conmatphys-031214-014726 – ident: PhysRevX.10.021046Cc15R1 doi: 10.1016/j.aop.2005.11.014 – ident: PhysRevX.10.021046Cc23R1 doi: 10.1103/RevModPhys.91.021001 – ident: PhysRevX.10.021046Cc2R1 doi: 10.1103/PhysRevLett.117.090402 – ident: PhysRevX.10.021046Cc4R1 doi: 10.1038/nphys4106 – ident: PhysRevX.10.021046Cc20R1 doi: 10.1103/PhysRevB.91.081103 – ident: PhysRevX.10.021046Cc44R1 doi: 10.1103/PhysRevB.90.174202 – ident: PhysRevX.10.021046Cc29R1 doi: 10.1016/j.aop.2016.01.012 – ident: PhysRevX.10.021046Cc12R1 doi: 10.1103/PhysRevLett.114.140401 – ident: PhysRevX.10.021046Cc1R1 doi: 10.1103/PhysRevLett.116.250401 – ident: PhysRevX.10.021046Cc13R1 doi: 10.1016/j.aop.2016.03.010 – ident: PhysRevX.10.021046Cc36R1 doi: 10.1103/PhysRevLett.122.043603 – ident: PhysRevX.10.021046Cc8R1 doi: 10.1103/PhysRevX.4.041048 – ident: PhysRevX.10.021046Cc25R1 doi: 10.1103/PhysRevLett.115.256803 – ident: PhysRevX.10.021046Cc16R1 doi: 10.1103/PhysRevLett.95.206603 – ident: PhysRevX.10.021046Cc19R1 doi: 10.1103/PhysRevB.75.155111 – ident: PhysRevX.10.021046Cc11R1 doi: 10.1103/PhysRevLett.115.030402 – ident: PhysRevX.10.021046Cc33R1 doi: 10.1038/nature21426 – ident: PhysRevX.10.021046Cc3R1 doi: 10.1103/PhysRevB.94.085112 – ident: PhysRevX.10.021046Cc41R1 doi: 10.1103/PhysRevLett.51.2238 – ident: PhysRevX.10.021046Cc17R1 doi: 10.1103/PhysRevB.82.174411 – ident: PhysRevX.10.021046Cc34R1 doi: 10.1038/nature21413 – ident: PhysRevX.10.021046Cc30R1 doi: 10.1103/PhysRevX.7.011026 – ident: PhysRevX.10.021046Cc9R1 doi: 10.1103/PhysRevE.90.012110 – ident: PhysRevX.10.021046Cc38R1 doi: 10.1103/PhysRevE.97.062129 – ident: PhysRevX.10.021046Cc28R1 doi: 10.1103/PhysRevLett.116.120401 – ident: PhysRevX.10.021046Cc45R1 doi: 10.1103/PhysRevLett.111.127201 – ident: PhysRevX.10.021046Cc39R1 doi: 10.1002/andp.201600350 – ident: PhysRevX.10.021046Cc10R1 doi: 10.1016/j.aop.2014.11.008 |
SSID | ssj0000601477 |
Score | 2.5584762 |
Snippet | While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do so very slowly exhibiting what is known as a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 021046 |
SubjectTerms | Autocorrelation functions Clean energy Crystal structure Crystallinity Crystals Energy absorption Experiments NMR Nuclear magnetic resonance Optimization Signatures Thermalization (energy absorption) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfAiPrFaJQc9SWyTzeZxEistRbCU0kJvYWez60Wb2qb-fmeSTUWEXnLY7EIy-5jvm50HY3daKMiQ7riBAN9FDcFdVAueG0o_80EiQ9AUnPw2Coez4HUu5tbgtrZulfWZWB7UWa7IRt5B6IvaFJVJ-LT8cqlqFN2u2hIa-6yJR3CM5KvZ64_Gk62VhbKNBFFUR8t0eYccKyf6e_5IPl0-3XD-0Uhl4v5_53KpbAbH7MiiROe5mtYTtqcXp-yg9NZU6zN2P16Vcbqf8sOGUTpkT803hTPViIOrPMnnbDboT1-Grq134Coei8INVALAFSIqDhpCYXB_KYRzEfdMBAYEgi-EE0bFmUl0DIGUfmg8E3Z9mWlp-AVrLPKFvmSO4AISg9L2ElI_EBscHHoSnxl1bzGv_udU2WTgVJPiIy1JQZentZyooZJTiz1sxyyrVBg7e_dIlNuelMa6bMhX76ndFSnVPQY_Q5YCyFNlN8lUAAYZaQj00aLF2vVEpHZvrdPflXC1-_U1O_SJHZfuiW3WKFYbfYMQooBbu05-APHgxaE priority: 102 providerName: ProQuest |
Title | Prethermalization without Temperature |
URI | https://www.proquest.com/docview/2550636146 https://doaj.org/article/4735b2d049b549a09dc4bf1076b71b85 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEB20IngRP7FaSw56kthkN59HK61FsJTSQm9hZ7N7qq20qb_f2U1SKoJevOSw7JJkJpt5L5l5A3CnQok50R03CJG5FCG4S2HBdyPBcoaCGIIyxclvw2gwDV5n4Wyn1ZfJCSvlgUvDdUxrXGQ5AVkkKiO8NJcBaiItEcY-Jla9lGLeDpkq38EE_eO4rpLxeMckVI7V5-zR5HIx82fzWySygv0_3sc2yPRP4LhCh85TeVWnsKcWZ3BoszTl-hzuRytbn_su5lX5pGO-oy43hTNRhH9LfeQLmPZ7k-eBW_U5cCVPwsINZIrIJSEpjgqjUNO-kgTjYu7rGDWGBLoIRmiZ5DpVCQZCsEj7OvKYyJXQ_BIai-VCXYETkrFSTVb2UxN2MNG0OPIFHXMzvQl-fc-ZrETATS-KeWbJgMez2k5moLRTEx62az5KCYxfZ3eNKbczjXy1HSCnZpVTs7-c2oRW7Yis2lPrjMgP4SmCE9H1f5zjBo6Y4c42ebEFjWK1UbcEMApsw37Sf2nDQbc3HI3b9sn6Al5tzpg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4qmyZ2mTYGomxsObATCmvsOE0OCDG2rmNrhVAn9Rb8HJtL15Y2A_FP8TfynpMUoUm97ZKDY0fJ83O-99nvB8AbqwwWRHfCWKEICSFkSLAQhYkWhUBNDMFycPJgmPRv489jNW7BnyYWht0qm3-i_1EXM8N75Kdk-hKaEpgkH-Y_Qq4axaerTQmNSi2u7e9fRNmW76_OaX5PhOhdjD71w7qqQGhkqsowNhmiNGS3SLSYKEdabMho6srIddGhIhOHQNuZtHCZTTHWWiQucklH6MJqJ-m5T2AzljLjFZX2Lld7OpzbJO52m9icjjxlN86v9uf4HXuQCT5P_Q__fJmAByjgoa23Czu1TRp8rJRoD1p2-gy2vG-oWe7DyZeFjwq-05M6aDPg3dvZfRmMLFndVVbm53D7KHJ4ARvT2dS-hEBJhZmjuY0yBjtMHQ1OIk3Xgru3IWq-OTd16nGugDHJPQXpyLyREzdUcmrD29WYeZV4Y23vMxblqicnzfYNs8X3vF6DOVdZRlEQJ0JixbqTFSZGR_w3QX5p1YbDZiLyeiUv839692r97WN42h8NbvKbq-H1AWwL5uXeMfIQNsrFvX1NxkuJR15jAvj22Cr6FwG7AnY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prethermalization+without+Temperature&rft.jtitle=Physical+review.+X&rft.au=Luitz%2C+David+J.&rft.au=Moessner%2C+Roderich&rft.au=Sondhi%2C+S.%E2%80%89L.&rft.au=Khemani%2C+Vedika&rft.date=2020-05-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.10.021046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_10_021046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |