Application of Laser Deposition to Mechanical Characterization of Advanced High Strength Steels Subject to Non-Proportional Loading

Background Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method...

Full description

Saved in:
Bibliographic Details
Published inExperimental mechanics Vol. 62; no. 4; pp. 685 - 700
Main Authors Min, J., Kong, J., Hou, Y., Liu, Z., Lin, J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes. Objective Experimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits. Methods Hardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition. Results Complex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history. Conclusions It appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape.
AbstractList Background Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes. Objective Experimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits. Methods Hardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition. Results Complex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history. Conclusions It appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape.
BackgroundCharacterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes.ObjectiveExperimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits.MethodsHardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition.ResultsComplex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history.ConclusionsIt appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape.
Author Lin, J.
Hou, Y.
Liu, Z.
Min, J.
Kong, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Min
  fullname: Min, J.
  organization: School of Mechanical Engineering, Tongji University
– sequence: 2
  givenname: J.
  surname: Kong
  fullname: Kong, J.
  organization: School of Mechanical Engineering, Tongji University
– sequence: 3
  givenname: Y.
  surname: Hou
  fullname: Hou, Y.
  email: houyong_1019@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University
– sequence: 4
  givenname: Z.
  surname: Liu
  fullname: Liu, Z.
  organization: School of Mechanical Engineering, Tongji University
– sequence: 5
  givenname: J.
  surname: Lin
  fullname: Lin, J.
  organization: School of Mechanical Engineering, Tongji University
BookMark eNp9kM1rGzEQxUVIII7Tf6CnhZzVjD52tT4a9yMFNwkkOQtZO2vLbKWtJAfaa__xyHZJoIecZhje7zHvXZBTHzwS8pHBJwagrhNjQgIFzilAy4HyEzJhSjLKVVOfkgkAk1S2NTsnFyltoUBC8Qn5Ox_HwVmTXfBV6KulSRirzziG5A63HKofaDfGF9FQLTYmGpsxuj-vyLx7Nt5iV9249aZ6yBH9Ou8XxCFVD7vVFm3e-9wGT-9jGEPco8VtGUzn_PqSnPVmSPjh35ySp69fHhc3dHn37ftivqRWtHWmUglpJbRQr2xjGDa25AHRdIgd1KpB4LKfsdkMhKo7sVoJRKGsRNG3fckvpuTq6DvG8GuHKett2MXySNK8kTVreavqomqPKhtDShF7bV0-hM3RuEEz0PvK9bFyXSrXh8o1Lyj_Dx2j-2ni7_chcYRSEfs1xrev3qFeACEwlng
CitedBy_id crossref_primary_10_1016_j_ijplas_2024_104158
crossref_primary_10_1016_j_ijmecsci_2024_109897
crossref_primary_10_1016_j_mtcomm_2024_110222
crossref_primary_10_3390_met13040823
crossref_primary_10_1016_j_jmatprotec_2022_117737
crossref_primary_10_2320_matertrans_MT_L2024010
crossref_primary_10_1016_j_ijplas_2023_103653
crossref_primary_10_1016_j_euromechsol_2024_105311
crossref_primary_10_1016_j_ijplas_2022_103347
crossref_primary_10_1016_j_jmst_2022_05_040
Cites_doi 10.1016/j.ijplas.2020.102808
10.1007/BF02917542
10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087
10.1088/1742-6596/1063/1/012161
10.1016/j.engfracmech.2016.07.007
10.1016/j.cirp.2020.05.005
10.1016/j.actamat.2008.04.035
10.1016/j.ijplas.2018.02.013
10.1016/j.ijsolstr.2018.04.010
10.1016/0013-7944(73)90013-1
10.1016/j.ijmecsci.2020.105769
10.1063/1.4963620
10.1016/s0924-0136(98)00308-2
10.3390/jmmp2010006
10.1007/s11340-007-9039-7
10.1088/1757-899x/651/1/012020
10.1016/j.jmatprotec.2019.116314
10.1016/j.cirp.2015.04.087
10.1016/j.ijplas.2020.102838
10.1016/j.ijplas.2012.05.003
10.1016/j.cirp.2020.03.009
10.1073/pnas.1911815116
10.1088/1757-899x/651/1/012099
10.1016/j.ijplas.2011.03.003
10.1007/s12289-020-01583-8
10.1007/s11340-021-00744-3
10.1016/j.ijmecsci.2020.105715
10.1016/j.ijsolstr.2020.11.011
10.1016/j.cirp.2014.05.005
10.1007/s11340-020-00597-2
10.1016/0025-5416(85)90173-9
10.1016/j.ijplas.2020.102913
10.1016/j.ijmecsci.2016.08.008
10.1007/s12289-015-1242-y
10.1016/j.ijmecsci.2020.105618
10.1016/j.ijplas.2008.04.007
10.1016/j.msea.2016.07.090
10.1016/j.ijmecsci.2020.105672
10.1016/j.jmatprotec.2020.116979
10.1016/j.msea.2015.01.077
10.1016/j.actamat.2014.11.010
10.1007/bf03027256
10.1016/j.msea.2018.01.011
10.1016/j.cirp.2018.04.026
10.1016/j.jmatprotec.2010.06.008
10.1016/j.ijplas.2007.07.010
10.1016/j.ijmecsci.2019.105321
10.1088/1742-6596/1063/1/012160
10.1016/j.matdes.2014.06.003
10.1007/s12289-018-01468-x
10.1016/j.ijplas.2012.12.003
10.1016/j.ijplas.2018.07.010
10.1016/j.cirp.2019.05.007
10.1016/j.ijsolstr.2020.05.014
ContentType Journal Article
Copyright Society for Experimental Mechanics 2022
Society for Experimental Mechanics 2022.
Copyright_xml – notice: Society for Experimental Mechanics 2022
– notice: Society for Experimental Mechanics 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11340-022-00820-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-2765
EndPage 700
ExternalDocumentID 10_1007_s11340_022_00820_2
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2017YFB0304400
  funderid: http://dx.doi.org/10.13039/501100002855
GroupedDBID -5B
-5G
-BR
-EM
-XX
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDEX
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IGS
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4V
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c385t-4734c40805bc6a1e6c485036deed0576e024f91990375d3bb3ee37c4e3f8f0013
IEDL.DBID U2A
ISSN 0014-4851
IngestDate Fri Jul 25 11:13:34 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Jul 01 04:20:00 EDT 2025
Fri Feb 21 02:47:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hardening
Strain path change
Fracture limit
Mechanical characterization
Sheet metal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-4734c40805bc6a1e6c485036deed0576e024f91990375d3bb3ee37c4e3f8f0013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2645182875
PQPubID 2044465
PageCount 16
ParticipantIDs proquest_journals_2645182875
crossref_citationtrail_10_1007_s11340_022_00820_2
crossref_primary_10_1007_s11340_022_00820_2
springer_journals_10_1007_s11340_022_00820_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures
PublicationTitle Experimental mechanics
PublicationTitleAbbrev Exp Mech
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hama T, Yagi S, Tatsukawa K, Maeda Y, Maeda Y, Takuda H (2021) Evolution of plastic deformation behavior upon strain-path changes in an A6022-T4 Al alloy sheet. Int J Plast 137. https://doi.org/10.1016/j.ijplas.2020.102913
He Z, Zhang K, Lin Y, Yuan S (2020) An accurate determination method for constitutive model of anisotropic tubular materials with DIC-based controlled biaxial tensile test. Int J Mech Sci 181. https://doi.org/10.1016/j.ijmecsci.2020.105715
Hou Y, Min J, Lin J, Carsley JE, Stoughton TB, editors. Cruciform specimen design for large plastic strain during biaxial tensile testing. J Phys Conf Ser 2018: IOP Publishing. https://doi.org/10.1088/1742-6596/1063/1/012160
Lenzen M, Merklein M (2018) Improvement of Numerical Modelling Considering Plane Strain Material Characterization with an Elliptic Hydraulic Bulge Test. J Manuf Mat Process 2. https://doi.org/10.3390/jmmp2010006
Min J, Stoughton TB, Carsley JE, Lin J (2016) Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci 117: 115–134. https://doi.org/10.1016/j.ijmecsci.2016.08.008
Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels: Massachusetts Institute of Technology
Min J, Hector LG, Zhang L, Lin J, Carsley JE, Sun L (2016) Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel. Mat Sci Eng A 673: 423–429. https://doi.org/10.1016/j.msea.2016.07.090
Ishiwatari A, Sumikawa S, Hiramoto J, Kitani Y, Kuwabara T (2016) Enlargement of measurable strain range in biaxial cruciform test. https://doi.org/10.1063/1.4963620
Schmitt JH, Aernoudt E, Baudelet B (1985) Yield loci for polycrystalline metals without texture. Mat Sci Eng 75: 13–20. https://doi.org/10.1016/0025-5416(85)90173-9
Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116: 26414–26420. https://doi.org/10.1073/pnas.1911815116
Abedini A, Butcher C, Worswick MJ (2018) Experimental fracture characterisation of an anisotropic magnesium alloy sheet in proportional and non-proportional loading conditions. Int J Solids Struct 144–145: 1–19. https://doi.org/10.1016/j.ijsolstr.2018.04.010
Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27: 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003
Volk W, Norz R, Eder M, Hoffmann H (2020) Influence of non-proportional load paths and change in loading direction on the failure mode of sheet metals. CIRP Annals 69: 273–276. https://doi.org/10.1016/j.cirp.2020.03.009
Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form 9: 573–584. https://doi.org/10.1007/s12289-015-1242-y
Yin Q, Tekkaya AE, Traphöner H (2015) Determining cyclic flow curves using the in-plane torsion test. CIRP Annals 64: 261–264. https://doi.org/10.1016/j.cirp.2015.04.087
Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE (2020) A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast 135. https://doi.org/10.1016/j.ijplas.2020.102808
Yoshida K, Tsuchimoto T (2018) Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model. Int J Plast 104: 214–229. https://doi.org/10.1016/j.ijplas.2018.02.013
Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111: 85–106. https://doi.org/10.1016/j.ijplas.2018.07.010
Zou DQ, Li SH, He J, Gu B, Li YF (2018) The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Mat Sci Eng A 715: 243–256. https://doi.org/10.1016/j.msea.2018.01.011
Kim D, Lee M-G, Kim C, Wenner ML, Wagoner RH, Barlat F, et al. (2003) Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals Mat Int 9: 561–570. https://doi.org/10.1007/bf03027256
Zhang K, He Z, Zheng K, Yuan S (2020) Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states. Int J Mech Sci 178. https://doi.org/10.1016/j.ijmecsci.2020.105618
Noder J, Abedini A, Butcher C (2020) Evaluation of the VDA 238–100 tight radius bend test for plane strain fracture characterization of automotive sheet metals. Exp Mech 60: 787–800. https://doi.org/10.1007/s11340-020-00597-2
Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans A B 2: 2135–2141. https://doi.org/10.1007/BF02917542
Wang ZJ, Zheng LH, Wang Z (2020) Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test. Int J Mech Sci 184. https://doi.org/10.1016/j.ijmecsci.2020.105672
Mohr D, Henn S (2007) Calibration of Stress-triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental–Numerical Method. Exp Mech 47: 805–820. https://doi.org/10.1007/s11340-007-9039-7
Mahmudi R (1999) A novel technique for plane-strain tension testing of sheet metals. J Mater Process Technol 86: 237–244. https://doi.org/10.1016/s0924-0136(98)00308-2
ISO 16842:2014 Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece.
Min J, Guo N, Hou Y, Jiang K, Chen X, Carsley JE, et al. (2020) Effect of tension-compression testing strategy on kinematic model calibration and springback simulation of advanced high strength steels. Int J Mater Form 14: 435–448. https://doi.org/10.1007/s12289-020-01583-8
Benzerga AA, Surovik D, Keralavarma SM (2012) On the path-dependence of the fracture locus in ductile materials – Analysis. Int J Plast 37: 157–170. https://doi.org/10.1016/j.ijplas.2012.05.003
Flores P, Tuninetti V, Gilles G, Gonry P, Duchêne L, Habraken AM (2010) Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J Mater Process Technol 210: 1772–1779. https://doi.org/10.1016/j.jmatprotec.2010.06.008
Hou Y, Min JY, Guo N, Shen YF, Lin JP (2021) Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling. J Mater Process Technol 290. https://doi.org/10.1016/j.jmatprotec.2020.116979
Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, et al. (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals 63: 727–749. https://doi.org/10.1016/j.cirp.2014.05.005
Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, et al. (2019) Models and modelling for process limits in metal forming. CIRP Annals 68: 775–798. https://doi.org/10.1016/j.cirp.2019.05.007
Lenzen M, Merklein M (2018) Improvement of the drawing ratio of the anisotropic material behaviour under near plane strain conditions for DP600 characterized in elliptic hydraulic bulge test. J Phys Conf Ser 1063. https://doi.org/10.1088/1742-6596/1063/1/012161
Yu HY, Shen JY (2014) Evolution of mechanical properties for a dual-phase steel subjected to different loading paths. Mat Des 63: 412–418. https://doi.org/10.1016/j.matdes.2014.06.003
Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Materialia 56: 3900–3913. https://doi.org/10.1016/j.actamat.2008.04.035
Brosius A, Küsters N, Lenzen M (2018) New method for stress determination based on digital image correlation data. CIRP Annals 67: 269–272. https://doi.org/10.1016/j.cirp.2018.04.026
Tekkaya AE, Bouchard PO, Bruschi S, Tasan CC (2020) Damage in metal forming. CIRP Annals 69: 600–623. https://doi.org/10.1016/j.cirp.2020.05.005
Song X, Leotoing L, Guines D, Ragneau E (2016) Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Eng Fract Mech 163: 130–140. https://doi.org/10.1016/j.engfracmech.2016.07.007
Hou Y, Min J, Guo N, Lin J, Carsley JE, Stoughton TB, et al. (2021) Investigation of evolving yield surfaces of dual-phase steels. J Mater Process Technol 287. https://doi.org/10.1016/j.jmatprotec.2019.116314
Roth CC, Grolleau V, Mohr D. A robust experimental technique to determine the strain to fracture for plane strain tension. In: VanDenBoogaard T, Hazrati J, Langerak N, editors. 38th International Deep Drawing Research Group Annual Conference. IOP Conference Series: Mat Sci Eng 6512019. https://doi.org/10.1088/1757-899x/651/1/012099
Lee S-Y, Kim J-M, Kim J-H, Barlat F (2020) Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. Int J Mech Sci 183. https://doi.org/10.1016/j.ijmecsci.2020.105769
Cao J, Lee W, Cheng HS, Seniw M, Wang H-P, Chung K (2009) Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int J Plast 25: 942–972. https://doi.org/10.1016/j.ijplas.2008.04.007
Fast-Irvine C, Abedini A, Noder J, Butcher C (2021) An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Exp Mech. https://doi.org/10.1007/s11340-021-00744-3
Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45: 103–118. https://doi.org/10.1016/j.ijplas.2012.12.003
He Z, Zhu H, Lin Y, Politis DJ, Wang L, Yuan S (2020) A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies. Int J Mech Sci 169. https://doi.org/10.1016/j.ijmecsci.2019.105321
de Diego-Calderón I, De Knijf D, Monclús MA, Molina-Aldareg
820_CR15
820_CR16
820_CR17
820_CR18
820_CR11
820_CR55
820_CR12
820_CR56
820_CR13
820_CR14
820_CR51
820_CR52
820_CR53
820_CR10
820_CR54
820_CR50
820_CR9
820_CR8
820_CR7
820_CR48
820_CR6
820_CR49
820_CR5
820_CR4
820_CR3
820_CR44
820_CR2
820_CR45
820_CR1
820_CR46
820_CR47
820_CR40
820_CR41
820_CR42
820_CR43
820_CR37
820_CR38
820_CR39
820_CR33
820_CR34
820_CR35
820_CR36
820_CR30
820_CR31
820_CR32
820_CR26
820_CR27
820_CR28
820_CR29
820_CR22
820_CR23
820_CR24
820_CR25
820_CR20
820_CR21
820_CR19
References_xml – reference: Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE (2020) A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast 135. https://doi.org/10.1016/j.ijplas.2020.102808
– reference: Hou Y, Min J, Guo N, Lin J, Carsley JE, Stoughton TB, et al. (2021) Investigation of evolving yield surfaces of dual-phase steels. J Mater Process Technol 287. https://doi.org/10.1016/j.jmatprotec.2019.116314
– reference: Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, et al. (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals 63: 727–749. https://doi.org/10.1016/j.cirp.2014.05.005
– reference: Nazari Tiji SA, Park T, Asgharzadeh A, Kim H, Athale M, Kim JH, et al. (2020) Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method. Int J Plast 133. https://doi.org/10.1016/j.ijplas.2020.102838
– reference: Abedini A, Butcher C, Worswick MJ (2018) Experimental fracture characterisation of an anisotropic magnesium alloy sheet in proportional and non-proportional loading conditions. Int J Solids Struct 144–145: 1–19. https://doi.org/10.1016/j.ijsolstr.2018.04.010
– reference: Mahmudi R (1999) A novel technique for plane-strain tension testing of sheet metals. J Mater Process Technol 86: 237–244. https://doi.org/10.1016/s0924-0136(98)00308-2
– reference: Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111: 85–106. https://doi.org/10.1016/j.ijplas.2018.07.010
– reference: Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels: Massachusetts Institute of Technology
– reference: Hou Y, Min JY, Guo N, Shen YF, Lin JP (2021) Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling. J Mater Process Technol 290. https://doi.org/10.1016/j.jmatprotec.2020.116979
– reference: He Z, Zhang K, Lin Y, Yuan S (2020) An accurate determination method for constitutive model of anisotropic tubular materials with DIC-based controlled biaxial tensile test. Int J Mech Sci 181. https://doi.org/10.1016/j.ijmecsci.2020.105715
– reference: Tekkaya AE, Bouchard PO, Bruschi S, Tasan CC (2020) Damage in metal forming. CIRP Annals 69: 600–623. https://doi.org/10.1016/j.cirp.2020.05.005
– reference: ISO 16842:2014 Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece.
– reference: He Z, Zhu H, Lin Y, Politis DJ, Wang L, Yuan S (2020) A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies. Int J Mech Sci 169. https://doi.org/10.1016/j.ijmecsci.2019.105321
– reference: Yu HY, Shen JY (2014) Evolution of mechanical properties for a dual-phase steel subjected to different loading paths. Mat Des 63: 412–418. https://doi.org/10.1016/j.matdes.2014.06.003
– reference: Barnwal VK, Lee S-Y, Kim J-H, Barlat F (2019) Failure characteristics of advanced high strength steels at macro and micro scales. Mat Sci Eng A 754: 411–427. https://doi.org/10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087
– reference: Mohr D, Henn S (2007) Calibration of Stress-triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental–Numerical Method. Exp Mech 47: 805–820. https://doi.org/10.1007/s11340-007-9039-7
– reference: Ishiwatari A, Sumikawa S, Hiramoto J, Kitani Y, Kuwabara T (2016) Enlargement of measurable strain range in biaxial cruciform test. https://doi.org/10.1063/1.4963620
– reference: Baral M, Korkolis YP (2021) Ductile fracture under proportional and non-proportional multiaxial loading. Int J Solids Struct 210–211: 88–108. https://doi.org/10.1016/j.ijsolstr.2020.11.011
– reference: Lenzen M, Merklein M (2018) Improvement of Numerical Modelling Considering Plane Strain Material Characterization with an Elliptic Hydraulic Bulge Test. J Manuf Mat Process 2. https://doi.org/10.3390/jmmp2010006
– reference: Volk W, Norz R, Eder M, Hoffmann H (2020) Influence of non-proportional load paths and change in loading direction on the failure mode of sheet metals. CIRP Annals 69: 273–276. https://doi.org/10.1016/j.cirp.2020.03.009
– reference: Fast-Irvine C, Abedini A, Noder J, Butcher C (2021) An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Exp Mech. https://doi.org/10.1007/s11340-021-00744-3
– reference: Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, et al. (2019) Models and modelling for process limits in metal forming. CIRP Annals 68: 775–798. https://doi.org/10.1016/j.cirp.2019.05.007
– reference: Hou Y, Min J, Lin J, Carsley JE, Stoughton TB, editors. Cruciform specimen design for large plastic strain during biaxial tensile testing. J Phys Conf Ser 2018: IOP Publishing. https://doi.org/10.1088/1742-6596/1063/1/012160
– reference: Min J, Stoughton TB, Carsley JE, Lin J (2016) Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci 117: 115–134. https://doi.org/10.1016/j.ijmecsci.2016.08.008
– reference: Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45: 103–118. https://doi.org/10.1016/j.ijplas.2012.12.003
– reference: Brosius A, Küsters N, Lenzen M (2018) New method for stress determination based on digital image correlation data. CIRP Annals 67: 269–272. https://doi.org/10.1016/j.cirp.2018.04.026
– reference: Lin J, Hou Y, Min J, Tang H, Carsley JE, Stoughton TB (2019) Effect of constitutive model on springback prediction of MP980 and AA6022-T4. Int J Mater Form 13: 1–13. https://doi.org/10.1007/s12289-018-01468-x
– reference: Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans A B 2: 2135–2141. https://doi.org/10.1007/BF02917542
– reference: Yin Q, Tekkaya AE, Traphöner H (2015) Determining cyclic flow curves using the in-plane torsion test. CIRP Annals 64: 261–264. https://doi.org/10.1016/j.cirp.2015.04.087
– reference: Yoshida K, Tsuchimoto T (2018) Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model. Int J Plast 104: 214–229. https://doi.org/10.1016/j.ijplas.2018.02.013
– reference: Lenzen M, Merklein M (2018) Improvement of the drawing ratio of the anisotropic material behaviour under near plane strain conditions for DP600 characterized in elliptic hydraulic bulge test. J Phys Conf Ser 1063. https://doi.org/10.1088/1742-6596/1063/1/012161
– reference: Wang M-M, Tasan CC, Ponge D, Dippel A-C, Raabe D (2015) Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Materialia 85: 216–228. https://doi.org/10.1016/j.actamat.2014.11.010
– reference: Lee S-Y, Kim J-M, Kim J-H, Barlat F (2020) Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. Int J Mech Sci 183. https://doi.org/10.1016/j.ijmecsci.2020.105769
– reference: Min J, Guo N, Hou Y, Jiang K, Chen X, Carsley JE, et al. (2020) Effect of tension-compression testing strategy on kinematic model calibration and springback simulation of advanced high strength steels. Int J Mater Form 14: 435–448. https://doi.org/10.1007/s12289-020-01583-8
– reference: Cao J, Lee W, Cheng HS, Seniw M, Wang H-P, Chung K (2009) Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int J Plast 25: 942–972. https://doi.org/10.1016/j.ijplas.2008.04.007
– reference: Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27: 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003
– reference: Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Materialia 56: 3900–3913. https://doi.org/10.1016/j.actamat.2008.04.035
– reference: de Diego-Calderón I, De Knijf D, Monclús MA, Molina-Aldareguia JM, Sabirov I, Föjer C, et al. (2015) Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel. Mat Sci Eng A 630: 27–35. https://doi.org/10.1016/j.msea.2015.01.077
– reference: Zou DQ, Li SH, He J, Gu B, Li YF (2018) The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Mat Sci Eng A 715: 243–256. https://doi.org/10.1016/j.msea.2018.01.011
– reference: Norz R, Volk W (2019) Investigation of non-proportional load paths by using a cruciform specimen in a conventional Nakajima test. IOP Conference Series: Mat Sci Eng 651. https://doi.org/10.1088/1757-899x/651/1/012020
– reference: Barlat F, Yoon S-Y, Lee S-Y, Wi M-S, Kim J-H (2020) Distortional plasticity framework with application to advanced high strength steel. Int J Solids Struct 202: 947–962. https://doi.org/10.1016/j.ijsolstr.2020.05.014
– reference: Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116: 26414–26420. https://doi.org/10.1073/pnas.1911815116
– reference: Wang ZJ, Zheng LH, Wang Z (2020) Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test. Int J Mech Sci 184. https://doi.org/10.1016/j.ijmecsci.2020.105672
– reference: Roth CC, Grolleau V, Mohr D. A robust experimental technique to determine the strain to fracture for plane strain tension. In: VanDenBoogaard T, Hazrati J, Langerak N, editors. 38th International Deep Drawing Research Group Annual Conference. IOP Conference Series: Mat Sci Eng 6512019. https://doi.org/10.1088/1757-899x/651/1/012099
– reference: Hama T, Yagi S, Tatsukawa K, Maeda Y, Maeda Y, Takuda H (2021) Evolution of plastic deformation behavior upon strain-path changes in an A6022-T4 Al alloy sheet. Int J Plast 137. https://doi.org/10.1016/j.ijplas.2020.102913
– reference: Noder J, Abedini A, Butcher C (2020) Evaluation of the VDA 238–100 tight radius bend test for plane strain fracture characterization of automotive sheet metals. Exp Mech 60: 787–800. https://doi.org/10.1007/s11340-020-00597-2
– reference: Schmitt JH, Aernoudt E, Baudelet B (1985) Yield loci for polycrystalline metals without texture. Mat Sci Eng 75: 13–20. https://doi.org/10.1016/0025-5416(85)90173-9
– reference: Zhang K, He Z, Zheng K, Yuan S (2020) Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states. Int J Mech Sci 178. https://doi.org/10.1016/j.ijmecsci.2020.105618
– reference: Flores P, Tuninetti V, Gilles G, Gonry P, Duchêne L, Habraken AM (2010) Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J Mater Process Technol 210: 1772–1779. https://doi.org/10.1016/j.jmatprotec.2010.06.008
– reference: Min J, Hector LG, Zhang L, Lin J, Carsley JE, Sun L (2016) Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel. Mat Sci Eng A 673: 423–429. https://doi.org/10.1016/j.msea.2016.07.090
– reference: Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form 9: 573–584. https://doi.org/10.1007/s12289-015-1242-y
– reference: Benzerga AA, Surovik D, Keralavarma SM (2012) On the path-dependence of the fracture locus in ductile materials – Analysis. Int J Plast 37: 157–170. https://doi.org/10.1016/j.ijplas.2012.05.003
– reference: Song X, Leotoing L, Guines D, Ragneau E (2016) Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Eng Fract Mech 163: 130–140. https://doi.org/10.1016/j.engfracmech.2016.07.007
– reference: Parker E, Zackay V (1973) Enhancement of fracture toughness in high strength steel by microstructural control. Eng Fract Mech 5: 147–165. https://doi.org/10.1016/0013-7944(73)90013-1
– reference: Korkolis Y, Kyriakides S (2008) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24: 509–543. https://doi.org/10.1016/j.ijplas.2007.07.010
– reference: Kim D, Lee M-G, Kim C, Wenner ML, Wagoner RH, Barlat F, et al. (2003) Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals Mat Int 9: 561–570. https://doi.org/10.1007/bf03027256
– ident: 820_CR36
  doi: 10.1016/j.ijplas.2020.102808
– ident: 820_CR56
  doi: 10.1007/BF02917542
– ident: 820_CR52
  doi: 10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087
– ident: 820_CR18
  doi: 10.1088/1742-6596/1063/1/012161
– ident: 820_CR34
  doi: 10.1016/j.engfracmech.2016.07.007
– ident: 820_CR46
  doi: 10.1016/j.cirp.2020.05.005
– ident: 820_CR53
  doi: 10.1016/j.actamat.2008.04.035
– ident: 820_CR13
  doi: 10.1016/j.ijplas.2018.02.013
– ident: 820_CR35
  doi: 10.1016/j.ijsolstr.2018.04.010
– ident: 820_CR54
  doi: 10.1016/0013-7944(73)90013-1
– ident: 820_CR6
  doi: 10.1016/j.ijmecsci.2020.105769
– ident: 820_CR21
  doi: 10.1063/1.4963620
– ident: 820_CR8
  doi: 10.1016/s0924-0136(98)00308-2
– ident: 820_CR19
  doi: 10.3390/jmmp2010006
– ident: 820_CR40
  doi: 10.1007/s11340-007-9039-7
– ident: 820_CR28
  doi: 10.1088/1757-899x/651/1/012020
– ident: 820_CR22
  doi: 10.1016/j.jmatprotec.2019.116314
– ident: 820_CR4
  doi: 10.1016/j.cirp.2015.04.087
– ident: 820_CR17
  doi: 10.1016/j.ijplas.2020.102838
– ident: 820_CR47
  doi: 10.1016/j.ijplas.2012.05.003
– ident: 820_CR29
  doi: 10.1016/j.cirp.2020.03.009
– ident: 820_CR2
  doi: 10.1073/pnas.1911815116
– ident: 820_CR32
  doi: 10.1088/1757-899x/651/1/012099
– ident: 820_CR42
  doi: 10.1016/j.ijplas.2011.03.003
– ident: 820_CR5
  doi: 10.1007/s12289-020-01583-8
– ident: 820_CR11
  doi: 10.1007/s11340-021-00744-3
– ident: 820_CR15
  doi: 10.1016/j.ijmecsci.2020.105715
– ident: 820_CR30
  doi: 10.1016/j.ijsolstr.2020.11.011
– ident: 820_CR1
  doi: 10.1016/j.cirp.2014.05.005
– ident: 820_CR33
  doi: 10.1007/s11340-020-00597-2
– ident: 820_CR44
  doi: 10.1016/0025-5416(85)90173-9
– ident: 820_CR20
– ident: 820_CR24
  doi: 10.1016/j.ijplas.2020.102913
– ident: 820_CR41
  doi: 10.1016/j.ijmecsci.2016.08.008
– ident: 820_CR7
  doi: 10.1007/s12289-015-1242-y
– ident: 820_CR16
  doi: 10.1016/j.ijmecsci.2020.105618
– ident: 820_CR3
  doi: 10.1016/j.ijplas.2008.04.007
– ident: 820_CR48
  doi: 10.1016/j.msea.2016.07.090
– ident: 820_CR31
  doi: 10.1016/j.ijmecsci.2020.105672
– ident: 820_CR37
  doi: 10.1016/j.jmatprotec.2020.116979
– ident: 820_CR50
  doi: 10.1016/j.msea.2015.01.077
– ident: 820_CR51
  doi: 10.1016/j.actamat.2014.11.010
– ident: 820_CR45
  doi: 10.1007/bf03027256
– ident: 820_CR49
  doi: 10.1016/j.msea.2018.01.011
– ident: 820_CR9
  doi: 10.1016/j.cirp.2018.04.026
– ident: 820_CR10
  doi: 10.1016/j.jmatprotec.2010.06.008
– ident: 820_CR14
  doi: 10.1016/j.ijplas.2007.07.010
– ident: 820_CR26
  doi: 10.1016/j.ijmecsci.2019.105321
– ident: 820_CR38
  doi: 10.1088/1742-6596/1063/1/012160
– ident: 820_CR23
  doi: 10.1016/j.matdes.2014.06.003
– ident: 820_CR39
  doi: 10.1007/s12289-018-01468-x
– ident: 820_CR12
  doi: 10.1016/j.ijplas.2012.12.003
– ident: 820_CR25
  doi: 10.1016/j.ijplas.2018.07.010
– ident: 820_CR27
  doi: 10.1016/j.cirp.2019.05.007
– ident: 820_CR55
– ident: 820_CR43
  doi: 10.1016/j.ijsolstr.2020.05.014
SSID ssj0007372
Score 2.385318
Snippet Background Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly...
BackgroundCharacterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 685
SubjectTerms Axial stress
Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Compression tests
Control
Cruciform tests
Dual phase steels
Dynamical Systems
Engineering
High strength steels
Laser applications
Laser deposition
Lasers
Load history
Mechanical properties
Metal forming
Metal sheets
Nonproportional loads
Optical Devices
Optics
Photonics
Plane strain
Research Paper
Solid Mechanics
Tensile tests
TRIP steels
Vibration
Title Application of Laser Deposition to Mechanical Characterization of Advanced High Strength Steels Subject to Non-Proportional Loading
URI https://link.springer.com/article/10.1007/s11340-022-00820-2
https://www.proquest.com/docview/2645182875
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCqTywgaUmtvMYoz6ooK2QoFKZosR2WFCC2rCw8se5y6MBBEhMiRTbg-9y32ffi5ALNwZOLyKbOZFjmLB0n_m-rZhnRJJYyvaTGC_0Z3NnshA3S7msksLWdbR77ZIsLHWT7GZxDEWEw1OBWwwMb1vi2R20eGEHG_uLjVdK-yuYAEJRpcr8vMZXOGo45je3aIE24z2yW9FEGpRy3SdbJj0gO5-KBx6S96DxPdMsoVPAoxUdmjoMi-YZnRlM7EU50MGmMvPbZkpQBQBQjPag6KBOn3J8MYCYFGwKXtLgOvMsZXfYT2FVXh3SaVbE3h-RxXj0MJiwqqUCU9yTORMuF0oAS5SxciLLOAp2CEBMA1QCc3MMQHbiWwBR3JWaxzE3hrtKGJ54CdLFY9JKs9ScEGqkMR6M6UsdCan7nhZ2pCPXj6PE0cLvEKve2VBV9cax7cVz2FRKRmmEII2wkEZod8jlZs5LWW3jz9HdWmBh9eetQyB40sIq_rJDrmohNp9_X-30f8PPyLZd6BEG8XRJK1-9mnPgJ3ncI-1gOJve4_P68XbUK9TzAwWM3qA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIpCAQ9sYKmJ7TzGqFAVSCuGVupmJbHDghLUhoWVP85dnoAAiS1SbA8-574vvu_uCLl0Y-D0IrKZEzmGCUsPmO_bCfOMSFMrsf00xgv9ydQZz8X9Qi7qpLBVo3ZvQpKlp-6S3SyOUkT4eSpxi4Hj3QAy4KGQa24Hrf_FxiuV_xVMAKGoU2V-XuMrHHUc81tYtESb0S7ZqWkiDSq77pE1k-2T7U_FAw_Ie9DFnmme0hDwaElvTCPDokVOJwYTe9EOdNhWZn5rpwS1AICi2oNigDp7KvDBAGJS8Cl4SYPrTPOMPWI_hWV1dUjDvNTeH5L56HY2HLO6pQJLuCcLJlwuEgEsUcaJE1nGSWCHAMQ0QCUwN8cAZKe-BRDFXal5HHNjuJsIw1MvRbp4RNazPDPHhBppjAdjBlJHQuqBp4Ud6cj14yh1tPB7xGp2ViV1vXFse_GsukrJaA0F1lClNZTdI1ftnJeq2safo_uNwVT95a0UEDxpYRV_2SPXjRG717-vdvK_4RdkczybhCq8mz6cki27PFMo6OmT9WL5as6AqxTxeXk0PwC1nt5r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoFPDABlab2M5jjFoqHm3VgUrdoiS2WVBSlbCw8se5y6MpCJDYIsX24HPu--K7-46QKzcGTi8imzmRo5mwVI_5vp0wTwtjrMT2TYwX-uOJczcTD3M5X6viL7Ld65BkWdOAKk1p3l0o020K3yyOaYnwI1VgGAMnvAnu2MJzPbODlS_GJiylLxZMALmoymZ-XuMrNDV881uItECe4R7ZrSgjDUob75MNnR6QnTUhwUPyETRxaJoZOgJsWtKBrlOyaJ7RscYiX7QJ7a9Umt9XU4IqGYBi5gfFYHX6nOODBvSk4F_wwgbXmWQpm2JvhWV5jUhHWZGHf0Rmw9un_h2r2iuwhHsyZ8LlIhHAGGWcOJGlnQR2CABNAWwCi3M0wLfxLYAr7krF45hrzd1EaG48g9TxmLTSLNUnhGqptQdjelJFQqqep4Qdqcj148g4SvhtYtU7GyaV9ji2wHgJG9VktEYI1ggLa4R2m1yv5ixK5Y0_R3dqg4XVV_gaAtmTFir6yza5qY3YvP59tdP_Db8kW9PBMBzdTx7PyLZdHCnM7emQVr580-dAW_L4ojiZn6w04qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Laser+Deposition+to+Mechanical+Characterization+of+Advanced+High+Strength+Steels+Subject+to+Non-Proportional+Loading&rft.jtitle=Experimental+mechanics&rft.au=Min%2C+J.&rft.au=Kong%2C+J.&rft.au=Hou%2C+Y.&rft.au=Liu%2C+Z.&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=62&rft.issue=4&rft.spage=685&rft.epage=700&rft_id=info:doi/10.1007%2Fs11340-022-00820-2&rft.externalDocID=10_1007_s11340_022_00820_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon