Application of Laser Deposition to Mechanical Characterization of Advanced High Strength Steels Subject to Non-Proportional Loading
Background Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method...
Saved in:
Published in | Experimental mechanics Vol. 62; no. 4; pp. 685 - 700 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes.
Objective
Experimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits.
Methods
Hardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition.
Results
Complex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history.
Conclusions
It appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape. |
---|---|
AbstractList | Background
Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes.
Objective
Experimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits.
Methods
Hardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition.
Results
Complex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history.
Conclusions
It appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape. BackgroundCharacterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly challenging for plane strain condition, which commonly occurs in sheet metal forming. There is a need for a simple, engineering-friendly method to characterize materials subjected to complex loading paths that mimic stress conditions in actual forming processes.ObjectiveExperimental additive manufacturing techniques have been applied to reinforce AHSS specimens subjected to SPCs in order to broaden capabilities for characterizing hardening behavior and fracture limits.MethodsHardening curves subject to SPCs (e.g. uniaxial tension or equi-biaxial tension followed by plane strain) have been obtained with a programmable biaxial tensile testing system using cruciform-shaped specimens with load-bearing arms reinforced by laser deposition. A notched specimen selectively reinforced by laser deposition was newly designed to characterize fracture limits subjected to SPCs ending with plane strain condition.ResultsComplex loading histories were successfully enabled by applying laser deposition technology. Results show that both hardening behavior and fracture limits of a TRIP-assisted steel and a dual-phase steel are dependent on loading history.ConclusionsIt appears that the laser deposition technique can be used for material characterization under specific SPCs. Hardening behavior of AHSSs under SPCs ending with plane strain is quite different from traditional uniaxial tension-uniaxial compression tests. For materials sensitive to SPCs, multi-step forming can be a great option to reach the targeted forming shape. |
Author | Lin, J. Hou, Y. Liu, Z. Min, J. Kong, J. |
Author_xml | – sequence: 1 givenname: J. surname: Min fullname: Min, J. organization: School of Mechanical Engineering, Tongji University – sequence: 2 givenname: J. surname: Kong fullname: Kong, J. organization: School of Mechanical Engineering, Tongji University – sequence: 3 givenname: Y. surname: Hou fullname: Hou, Y. email: houyong_1019@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University – sequence: 4 givenname: Z. surname: Liu fullname: Liu, Z. organization: School of Mechanical Engineering, Tongji University – sequence: 5 givenname: J. surname: Lin fullname: Lin, J. organization: School of Mechanical Engineering, Tongji University |
BookMark | eNp9kM1rGzEQxUVIII7Tf6CnhZzVjD52tT4a9yMFNwkkOQtZO2vLbKWtJAfaa__xyHZJoIecZhje7zHvXZBTHzwS8pHBJwagrhNjQgIFzilAy4HyEzJhSjLKVVOfkgkAk1S2NTsnFyltoUBC8Qn5Ox_HwVmTXfBV6KulSRirzziG5A63HKofaDfGF9FQLTYmGpsxuj-vyLx7Nt5iV9249aZ6yBH9Ou8XxCFVD7vVFm3e-9wGT-9jGEPco8VtGUzn_PqSnPVmSPjh35ySp69fHhc3dHn37ftivqRWtHWmUglpJbRQr2xjGDa25AHRdIgd1KpB4LKfsdkMhKo7sVoJRKGsRNG3fckvpuTq6DvG8GuHKett2MXySNK8kTVreavqomqPKhtDShF7bV0-hM3RuEEz0PvK9bFyXSrXh8o1Lyj_Dx2j-2ni7_chcYRSEfs1xrev3qFeACEwlng |
CitedBy_id | crossref_primary_10_1016_j_ijplas_2024_104158 crossref_primary_10_1016_j_ijmecsci_2024_109897 crossref_primary_10_1016_j_mtcomm_2024_110222 crossref_primary_10_3390_met13040823 crossref_primary_10_1016_j_jmatprotec_2022_117737 crossref_primary_10_2320_matertrans_MT_L2024010 crossref_primary_10_1016_j_ijplas_2023_103653 crossref_primary_10_1016_j_euromechsol_2024_105311 crossref_primary_10_1016_j_ijplas_2022_103347 crossref_primary_10_1016_j_jmst_2022_05_040 |
Cites_doi | 10.1016/j.ijplas.2020.102808 10.1007/BF02917542 10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087 10.1088/1742-6596/1063/1/012161 10.1016/j.engfracmech.2016.07.007 10.1016/j.cirp.2020.05.005 10.1016/j.actamat.2008.04.035 10.1016/j.ijplas.2018.02.013 10.1016/j.ijsolstr.2018.04.010 10.1016/0013-7944(73)90013-1 10.1016/j.ijmecsci.2020.105769 10.1063/1.4963620 10.1016/s0924-0136(98)00308-2 10.3390/jmmp2010006 10.1007/s11340-007-9039-7 10.1088/1757-899x/651/1/012020 10.1016/j.jmatprotec.2019.116314 10.1016/j.cirp.2015.04.087 10.1016/j.ijplas.2020.102838 10.1016/j.ijplas.2012.05.003 10.1016/j.cirp.2020.03.009 10.1073/pnas.1911815116 10.1088/1757-899x/651/1/012099 10.1016/j.ijplas.2011.03.003 10.1007/s12289-020-01583-8 10.1007/s11340-021-00744-3 10.1016/j.ijmecsci.2020.105715 10.1016/j.ijsolstr.2020.11.011 10.1016/j.cirp.2014.05.005 10.1007/s11340-020-00597-2 10.1016/0025-5416(85)90173-9 10.1016/j.ijplas.2020.102913 10.1016/j.ijmecsci.2016.08.008 10.1007/s12289-015-1242-y 10.1016/j.ijmecsci.2020.105618 10.1016/j.ijplas.2008.04.007 10.1016/j.msea.2016.07.090 10.1016/j.ijmecsci.2020.105672 10.1016/j.jmatprotec.2020.116979 10.1016/j.msea.2015.01.077 10.1016/j.actamat.2014.11.010 10.1007/bf03027256 10.1016/j.msea.2018.01.011 10.1016/j.cirp.2018.04.026 10.1016/j.jmatprotec.2010.06.008 10.1016/j.ijplas.2007.07.010 10.1016/j.ijmecsci.2019.105321 10.1088/1742-6596/1063/1/012160 10.1016/j.matdes.2014.06.003 10.1007/s12289-018-01468-x 10.1016/j.ijplas.2012.12.003 10.1016/j.ijplas.2018.07.010 10.1016/j.cirp.2019.05.007 10.1016/j.ijsolstr.2020.05.014 |
ContentType | Journal Article |
Copyright | Society for Experimental Mechanics 2022 Society for Experimental Mechanics 2022. |
Copyright_xml | – notice: Society for Experimental Mechanics 2022 – notice: Society for Experimental Mechanics 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11340-022-00820-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-2765 |
EndPage | 700 |
ExternalDocumentID | 10_1007_s11340_022_00820_2 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2017YFB0304400 funderid: http://dx.doi.org/10.13039/501100002855 |
GroupedDBID | -5B -5G -BR -EM -XX -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDEX ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IAO IEA IGS IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC KOV LAS LLZTM M4V M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c385t-4734c40805bc6a1e6c485036deed0576e024f91990375d3bb3ee37c4e3f8f0013 |
IEDL.DBID | U2A |
ISSN | 0014-4851 |
IngestDate | Fri Jul 25 11:13:34 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 04:20:00 EDT 2025 Fri Feb 21 02:47:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Hardening Strain path change Fracture limit Mechanical characterization Sheet metal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-4734c40805bc6a1e6c485036deed0576e024f91990375d3bb3ee37c4e3f8f0013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2645182875 |
PQPubID | 2044465 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2645182875 crossref_citationtrail_10_1007_s11340_022_00820_2 crossref_primary_10_1007_s11340_022_00820_2 springer_journals_10_1007_s11340_022_00820_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures |
PublicationTitle | Experimental mechanics |
PublicationTitleAbbrev | Exp Mech |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hama T, Yagi S, Tatsukawa K, Maeda Y, Maeda Y, Takuda H (2021) Evolution of plastic deformation behavior upon strain-path changes in an A6022-T4 Al alloy sheet. Int J Plast 137. https://doi.org/10.1016/j.ijplas.2020.102913 He Z, Zhang K, Lin Y, Yuan S (2020) An accurate determination method for constitutive model of anisotropic tubular materials with DIC-based controlled biaxial tensile test. Int J Mech Sci 181. https://doi.org/10.1016/j.ijmecsci.2020.105715 Hou Y, Min J, Lin J, Carsley JE, Stoughton TB, editors. Cruciform specimen design for large plastic strain during biaxial tensile testing. J Phys Conf Ser 2018: IOP Publishing. https://doi.org/10.1088/1742-6596/1063/1/012160 Lenzen M, Merklein M (2018) Improvement of Numerical Modelling Considering Plane Strain Material Characterization with an Elliptic Hydraulic Bulge Test. J Manuf Mat Process 2. https://doi.org/10.3390/jmmp2010006 Min J, Stoughton TB, Carsley JE, Lin J (2016) Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci 117: 115–134. https://doi.org/10.1016/j.ijmecsci.2016.08.008 Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels: Massachusetts Institute of Technology Min J, Hector LG, Zhang L, Lin J, Carsley JE, Sun L (2016) Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel. Mat Sci Eng A 673: 423–429. https://doi.org/10.1016/j.msea.2016.07.090 Ishiwatari A, Sumikawa S, Hiramoto J, Kitani Y, Kuwabara T (2016) Enlargement of measurable strain range in biaxial cruciform test. https://doi.org/10.1063/1.4963620 Schmitt JH, Aernoudt E, Baudelet B (1985) Yield loci for polycrystalline metals without texture. Mat Sci Eng 75: 13–20. https://doi.org/10.1016/0025-5416(85)90173-9 Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116: 26414–26420. https://doi.org/10.1073/pnas.1911815116 Abedini A, Butcher C, Worswick MJ (2018) Experimental fracture characterisation of an anisotropic magnesium alloy sheet in proportional and non-proportional loading conditions. Int J Solids Struct 144–145: 1–19. https://doi.org/10.1016/j.ijsolstr.2018.04.010 Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27: 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003 Volk W, Norz R, Eder M, Hoffmann H (2020) Influence of non-proportional load paths and change in loading direction on the failure mode of sheet metals. CIRP Annals 69: 273–276. https://doi.org/10.1016/j.cirp.2020.03.009 Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form 9: 573–584. https://doi.org/10.1007/s12289-015-1242-y Yin Q, Tekkaya AE, Traphöner H (2015) Determining cyclic flow curves using the in-plane torsion test. CIRP Annals 64: 261–264. https://doi.org/10.1016/j.cirp.2015.04.087 Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE (2020) A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast 135. https://doi.org/10.1016/j.ijplas.2020.102808 Yoshida K, Tsuchimoto T (2018) Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model. Int J Plast 104: 214–229. https://doi.org/10.1016/j.ijplas.2018.02.013 Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111: 85–106. https://doi.org/10.1016/j.ijplas.2018.07.010 Zou DQ, Li SH, He J, Gu B, Li YF (2018) The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Mat Sci Eng A 715: 243–256. https://doi.org/10.1016/j.msea.2018.01.011 Kim D, Lee M-G, Kim C, Wenner ML, Wagoner RH, Barlat F, et al. (2003) Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals Mat Int 9: 561–570. https://doi.org/10.1007/bf03027256 Zhang K, He Z, Zheng K, Yuan S (2020) Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states. Int J Mech Sci 178. https://doi.org/10.1016/j.ijmecsci.2020.105618 Noder J, Abedini A, Butcher C (2020) Evaluation of the VDA 238–100 tight radius bend test for plane strain fracture characterization of automotive sheet metals. Exp Mech 60: 787–800. https://doi.org/10.1007/s11340-020-00597-2 Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans A B 2: 2135–2141. https://doi.org/10.1007/BF02917542 Wang ZJ, Zheng LH, Wang Z (2020) Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test. Int J Mech Sci 184. https://doi.org/10.1016/j.ijmecsci.2020.105672 Mohr D, Henn S (2007) Calibration of Stress-triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental–Numerical Method. Exp Mech 47: 805–820. https://doi.org/10.1007/s11340-007-9039-7 Mahmudi R (1999) A novel technique for plane-strain tension testing of sheet metals. J Mater Process Technol 86: 237–244. https://doi.org/10.1016/s0924-0136(98)00308-2 ISO 16842:2014 Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece. Min J, Guo N, Hou Y, Jiang K, Chen X, Carsley JE, et al. (2020) Effect of tension-compression testing strategy on kinematic model calibration and springback simulation of advanced high strength steels. Int J Mater Form 14: 435–448. https://doi.org/10.1007/s12289-020-01583-8 Benzerga AA, Surovik D, Keralavarma SM (2012) On the path-dependence of the fracture locus in ductile materials – Analysis. Int J Plast 37: 157–170. https://doi.org/10.1016/j.ijplas.2012.05.003 Flores P, Tuninetti V, Gilles G, Gonry P, Duchêne L, Habraken AM (2010) Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J Mater Process Technol 210: 1772–1779. https://doi.org/10.1016/j.jmatprotec.2010.06.008 Hou Y, Min JY, Guo N, Shen YF, Lin JP (2021) Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling. J Mater Process Technol 290. https://doi.org/10.1016/j.jmatprotec.2020.116979 Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, et al. (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals 63: 727–749. https://doi.org/10.1016/j.cirp.2014.05.005 Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, et al. (2019) Models and modelling for process limits in metal forming. CIRP Annals 68: 775–798. https://doi.org/10.1016/j.cirp.2019.05.007 Lenzen M, Merklein M (2018) Improvement of the drawing ratio of the anisotropic material behaviour under near plane strain conditions for DP600 characterized in elliptic hydraulic bulge test. J Phys Conf Ser 1063. https://doi.org/10.1088/1742-6596/1063/1/012161 Yu HY, Shen JY (2014) Evolution of mechanical properties for a dual-phase steel subjected to different loading paths. Mat Des 63: 412–418. https://doi.org/10.1016/j.matdes.2014.06.003 Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Materialia 56: 3900–3913. https://doi.org/10.1016/j.actamat.2008.04.035 Brosius A, Küsters N, Lenzen M (2018) New method for stress determination based on digital image correlation data. CIRP Annals 67: 269–272. https://doi.org/10.1016/j.cirp.2018.04.026 Tekkaya AE, Bouchard PO, Bruschi S, Tasan CC (2020) Damage in metal forming. CIRP Annals 69: 600–623. https://doi.org/10.1016/j.cirp.2020.05.005 Song X, Leotoing L, Guines D, Ragneau E (2016) Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Eng Fract Mech 163: 130–140. https://doi.org/10.1016/j.engfracmech.2016.07.007 Hou Y, Min J, Guo N, Lin J, Carsley JE, Stoughton TB, et al. (2021) Investigation of evolving yield surfaces of dual-phase steels. J Mater Process Technol 287. https://doi.org/10.1016/j.jmatprotec.2019.116314 Roth CC, Grolleau V, Mohr D. A robust experimental technique to determine the strain to fracture for plane strain tension. In: VanDenBoogaard T, Hazrati J, Langerak N, editors. 38th International Deep Drawing Research Group Annual Conference. IOP Conference Series: Mat Sci Eng 6512019. https://doi.org/10.1088/1757-899x/651/1/012099 Lee S-Y, Kim J-M, Kim J-H, Barlat F (2020) Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. Int J Mech Sci 183. https://doi.org/10.1016/j.ijmecsci.2020.105769 Cao J, Lee W, Cheng HS, Seniw M, Wang H-P, Chung K (2009) Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int J Plast 25: 942–972. https://doi.org/10.1016/j.ijplas.2008.04.007 Fast-Irvine C, Abedini A, Noder J, Butcher C (2021) An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Exp Mech. https://doi.org/10.1007/s11340-021-00744-3 Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45: 103–118. https://doi.org/10.1016/j.ijplas.2012.12.003 He Z, Zhu H, Lin Y, Politis DJ, Wang L, Yuan S (2020) A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies. Int J Mech Sci 169. https://doi.org/10.1016/j.ijmecsci.2019.105321 de Diego-Calderón I, De Knijf D, Monclús MA, Molina-Aldareg 820_CR15 820_CR16 820_CR17 820_CR18 820_CR11 820_CR55 820_CR12 820_CR56 820_CR13 820_CR14 820_CR51 820_CR52 820_CR53 820_CR10 820_CR54 820_CR50 820_CR9 820_CR8 820_CR7 820_CR48 820_CR6 820_CR49 820_CR5 820_CR4 820_CR3 820_CR44 820_CR2 820_CR45 820_CR1 820_CR46 820_CR47 820_CR40 820_CR41 820_CR42 820_CR43 820_CR37 820_CR38 820_CR39 820_CR33 820_CR34 820_CR35 820_CR36 820_CR30 820_CR31 820_CR32 820_CR26 820_CR27 820_CR28 820_CR29 820_CR22 820_CR23 820_CR24 820_CR25 820_CR20 820_CR21 820_CR19 |
References_xml | – reference: Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE (2020) A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast 135. https://doi.org/10.1016/j.ijplas.2020.102808 – reference: Hou Y, Min J, Guo N, Lin J, Carsley JE, Stoughton TB, et al. (2021) Investigation of evolving yield surfaces of dual-phase steels. J Mater Process Technol 287. https://doi.org/10.1016/j.jmatprotec.2019.116314 – reference: Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, et al. (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals 63: 727–749. https://doi.org/10.1016/j.cirp.2014.05.005 – reference: Nazari Tiji SA, Park T, Asgharzadeh A, Kim H, Athale M, Kim JH, et al. (2020) Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method. Int J Plast 133. https://doi.org/10.1016/j.ijplas.2020.102838 – reference: Abedini A, Butcher C, Worswick MJ (2018) Experimental fracture characterisation of an anisotropic magnesium alloy sheet in proportional and non-proportional loading conditions. Int J Solids Struct 144–145: 1–19. https://doi.org/10.1016/j.ijsolstr.2018.04.010 – reference: Mahmudi R (1999) A novel technique for plane-strain tension testing of sheet metals. J Mater Process Technol 86: 237–244. https://doi.org/10.1016/s0924-0136(98)00308-2 – reference: Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111: 85–106. https://doi.org/10.1016/j.ijplas.2018.07.010 – reference: Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels: Massachusetts Institute of Technology – reference: Hou Y, Min JY, Guo N, Shen YF, Lin JP (2021) Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling. J Mater Process Technol 290. https://doi.org/10.1016/j.jmatprotec.2020.116979 – reference: He Z, Zhang K, Lin Y, Yuan S (2020) An accurate determination method for constitutive model of anisotropic tubular materials with DIC-based controlled biaxial tensile test. Int J Mech Sci 181. https://doi.org/10.1016/j.ijmecsci.2020.105715 – reference: Tekkaya AE, Bouchard PO, Bruschi S, Tasan CC (2020) Damage in metal forming. CIRP Annals 69: 600–623. https://doi.org/10.1016/j.cirp.2020.05.005 – reference: ISO 16842:2014 Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece. – reference: He Z, Zhu H, Lin Y, Politis DJ, Wang L, Yuan S (2020) A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies. Int J Mech Sci 169. https://doi.org/10.1016/j.ijmecsci.2019.105321 – reference: Yu HY, Shen JY (2014) Evolution of mechanical properties for a dual-phase steel subjected to different loading paths. Mat Des 63: 412–418. https://doi.org/10.1016/j.matdes.2014.06.003 – reference: Barnwal VK, Lee S-Y, Kim J-H, Barlat F (2019) Failure characteristics of advanced high strength steels at macro and micro scales. Mat Sci Eng A 754: 411–427. https://doi.org/10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087 – reference: Mohr D, Henn S (2007) Calibration of Stress-triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental–Numerical Method. Exp Mech 47: 805–820. https://doi.org/10.1007/s11340-007-9039-7 – reference: Ishiwatari A, Sumikawa S, Hiramoto J, Kitani Y, Kuwabara T (2016) Enlargement of measurable strain range in biaxial cruciform test. https://doi.org/10.1063/1.4963620 – reference: Baral M, Korkolis YP (2021) Ductile fracture under proportional and non-proportional multiaxial loading. Int J Solids Struct 210–211: 88–108. https://doi.org/10.1016/j.ijsolstr.2020.11.011 – reference: Lenzen M, Merklein M (2018) Improvement of Numerical Modelling Considering Plane Strain Material Characterization with an Elliptic Hydraulic Bulge Test. J Manuf Mat Process 2. https://doi.org/10.3390/jmmp2010006 – reference: Volk W, Norz R, Eder M, Hoffmann H (2020) Influence of non-proportional load paths and change in loading direction on the failure mode of sheet metals. CIRP Annals 69: 273–276. https://doi.org/10.1016/j.cirp.2020.03.009 – reference: Fast-Irvine C, Abedini A, Noder J, Butcher C (2021) An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Exp Mech. https://doi.org/10.1007/s11340-021-00744-3 – reference: Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, et al. (2019) Models and modelling for process limits in metal forming. CIRP Annals 68: 775–798. https://doi.org/10.1016/j.cirp.2019.05.007 – reference: Hou Y, Min J, Lin J, Carsley JE, Stoughton TB, editors. Cruciform specimen design for large plastic strain during biaxial tensile testing. J Phys Conf Ser 2018: IOP Publishing. https://doi.org/10.1088/1742-6596/1063/1/012160 – reference: Min J, Stoughton TB, Carsley JE, Lin J (2016) Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci 117: 115–134. https://doi.org/10.1016/j.ijmecsci.2016.08.008 – reference: Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45: 103–118. https://doi.org/10.1016/j.ijplas.2012.12.003 – reference: Brosius A, Küsters N, Lenzen M (2018) New method for stress determination based on digital image correlation data. CIRP Annals 67: 269–272. https://doi.org/10.1016/j.cirp.2018.04.026 – reference: Lin J, Hou Y, Min J, Tang H, Carsley JE, Stoughton TB (2019) Effect of constitutive model on springback prediction of MP980 and AA6022-T4. Int J Mater Form 13: 1–13. https://doi.org/10.1007/s12289-018-01468-x – reference: Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans A B 2: 2135–2141. https://doi.org/10.1007/BF02917542 – reference: Yin Q, Tekkaya AE, Traphöner H (2015) Determining cyclic flow curves using the in-plane torsion test. CIRP Annals 64: 261–264. https://doi.org/10.1016/j.cirp.2015.04.087 – reference: Yoshida K, Tsuchimoto T (2018) Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model. Int J Plast 104: 214–229. https://doi.org/10.1016/j.ijplas.2018.02.013 – reference: Lenzen M, Merklein M (2018) Improvement of the drawing ratio of the anisotropic material behaviour under near plane strain conditions for DP600 characterized in elliptic hydraulic bulge test. J Phys Conf Ser 1063. https://doi.org/10.1088/1742-6596/1063/1/012161 – reference: Wang M-M, Tasan CC, Ponge D, Dippel A-C, Raabe D (2015) Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Materialia 85: 216–228. https://doi.org/10.1016/j.actamat.2014.11.010 – reference: Lee S-Y, Kim J-M, Kim J-H, Barlat F (2020) Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. Int J Mech Sci 183. https://doi.org/10.1016/j.ijmecsci.2020.105769 – reference: Min J, Guo N, Hou Y, Jiang K, Chen X, Carsley JE, et al. (2020) Effect of tension-compression testing strategy on kinematic model calibration and springback simulation of advanced high strength steels. Int J Mater Form 14: 435–448. https://doi.org/10.1007/s12289-020-01583-8 – reference: Cao J, Lee W, Cheng HS, Seniw M, Wang H-P, Chung K (2009) Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int J Plast 25: 942–972. https://doi.org/10.1016/j.ijplas.2008.04.007 – reference: Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27: 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003 – reference: Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Materialia 56: 3900–3913. https://doi.org/10.1016/j.actamat.2008.04.035 – reference: de Diego-Calderón I, De Knijf D, Monclús MA, Molina-Aldareguia JM, Sabirov I, Föjer C, et al. (2015) Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel. Mat Sci Eng A 630: 27–35. https://doi.org/10.1016/j.msea.2015.01.077 – reference: Zou DQ, Li SH, He J, Gu B, Li YF (2018) The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Mat Sci Eng A 715: 243–256. https://doi.org/10.1016/j.msea.2018.01.011 – reference: Norz R, Volk W (2019) Investigation of non-proportional load paths by using a cruciform specimen in a conventional Nakajima test. IOP Conference Series: Mat Sci Eng 651. https://doi.org/10.1088/1757-899x/651/1/012020 – reference: Barlat F, Yoon S-Y, Lee S-Y, Wi M-S, Kim J-H (2020) Distortional plasticity framework with application to advanced high strength steel. Int J Solids Struct 202: 947–962. https://doi.org/10.1016/j.ijsolstr.2020.05.014 – reference: Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116: 26414–26420. https://doi.org/10.1073/pnas.1911815116 – reference: Wang ZJ, Zheng LH, Wang Z (2020) Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test. Int J Mech Sci 184. https://doi.org/10.1016/j.ijmecsci.2020.105672 – reference: Roth CC, Grolleau V, Mohr D. A robust experimental technique to determine the strain to fracture for plane strain tension. In: VanDenBoogaard T, Hazrati J, Langerak N, editors. 38th International Deep Drawing Research Group Annual Conference. IOP Conference Series: Mat Sci Eng 6512019. https://doi.org/10.1088/1757-899x/651/1/012099 – reference: Hama T, Yagi S, Tatsukawa K, Maeda Y, Maeda Y, Takuda H (2021) Evolution of plastic deformation behavior upon strain-path changes in an A6022-T4 Al alloy sheet. Int J Plast 137. https://doi.org/10.1016/j.ijplas.2020.102913 – reference: Noder J, Abedini A, Butcher C (2020) Evaluation of the VDA 238–100 tight radius bend test for plane strain fracture characterization of automotive sheet metals. Exp Mech 60: 787–800. https://doi.org/10.1007/s11340-020-00597-2 – reference: Schmitt JH, Aernoudt E, Baudelet B (1985) Yield loci for polycrystalline metals without texture. Mat Sci Eng 75: 13–20. https://doi.org/10.1016/0025-5416(85)90173-9 – reference: Zhang K, He Z, Zheng K, Yuan S (2020) Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states. Int J Mech Sci 178. https://doi.org/10.1016/j.ijmecsci.2020.105618 – reference: Flores P, Tuninetti V, Gilles G, Gonry P, Duchêne L, Habraken AM (2010) Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J Mater Process Technol 210: 1772–1779. https://doi.org/10.1016/j.jmatprotec.2010.06.008 – reference: Min J, Hector LG, Zhang L, Lin J, Carsley JE, Sun L (2016) Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel. Mat Sci Eng A 673: 423–429. https://doi.org/10.1016/j.msea.2016.07.090 – reference: Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form 9: 573–584. https://doi.org/10.1007/s12289-015-1242-y – reference: Benzerga AA, Surovik D, Keralavarma SM (2012) On the path-dependence of the fracture locus in ductile materials – Analysis. Int J Plast 37: 157–170. https://doi.org/10.1016/j.ijplas.2012.05.003 – reference: Song X, Leotoing L, Guines D, Ragneau E (2016) Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Eng Fract Mech 163: 130–140. https://doi.org/10.1016/j.engfracmech.2016.07.007 – reference: Parker E, Zackay V (1973) Enhancement of fracture toughness in high strength steel by microstructural control. Eng Fract Mech 5: 147–165. https://doi.org/10.1016/0013-7944(73)90013-1 – reference: Korkolis Y, Kyriakides S (2008) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24: 509–543. https://doi.org/10.1016/j.ijplas.2007.07.010 – reference: Kim D, Lee M-G, Kim C, Wenner ML, Wagoner RH, Barlat F, et al. (2003) Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals Mat Int 9: 561–570. https://doi.org/10.1007/bf03027256 – ident: 820_CR36 doi: 10.1016/j.ijplas.2020.102808 – ident: 820_CR56 doi: 10.1007/BF02917542 – ident: 820_CR52 doi: 10.1016/j.actamat.2014.11.01010.1016/j.msea.2019.03.087 – ident: 820_CR18 doi: 10.1088/1742-6596/1063/1/012161 – ident: 820_CR34 doi: 10.1016/j.engfracmech.2016.07.007 – ident: 820_CR46 doi: 10.1016/j.cirp.2020.05.005 – ident: 820_CR53 doi: 10.1016/j.actamat.2008.04.035 – ident: 820_CR13 doi: 10.1016/j.ijplas.2018.02.013 – ident: 820_CR35 doi: 10.1016/j.ijsolstr.2018.04.010 – ident: 820_CR54 doi: 10.1016/0013-7944(73)90013-1 – ident: 820_CR6 doi: 10.1016/j.ijmecsci.2020.105769 – ident: 820_CR21 doi: 10.1063/1.4963620 – ident: 820_CR8 doi: 10.1016/s0924-0136(98)00308-2 – ident: 820_CR19 doi: 10.3390/jmmp2010006 – ident: 820_CR40 doi: 10.1007/s11340-007-9039-7 – ident: 820_CR28 doi: 10.1088/1757-899x/651/1/012020 – ident: 820_CR22 doi: 10.1016/j.jmatprotec.2019.116314 – ident: 820_CR4 doi: 10.1016/j.cirp.2015.04.087 – ident: 820_CR17 doi: 10.1016/j.ijplas.2020.102838 – ident: 820_CR47 doi: 10.1016/j.ijplas.2012.05.003 – ident: 820_CR29 doi: 10.1016/j.cirp.2020.03.009 – ident: 820_CR2 doi: 10.1073/pnas.1911815116 – ident: 820_CR32 doi: 10.1088/1757-899x/651/1/012099 – ident: 820_CR42 doi: 10.1016/j.ijplas.2011.03.003 – ident: 820_CR5 doi: 10.1007/s12289-020-01583-8 – ident: 820_CR11 doi: 10.1007/s11340-021-00744-3 – ident: 820_CR15 doi: 10.1016/j.ijmecsci.2020.105715 – ident: 820_CR30 doi: 10.1016/j.ijsolstr.2020.11.011 – ident: 820_CR1 doi: 10.1016/j.cirp.2014.05.005 – ident: 820_CR33 doi: 10.1007/s11340-020-00597-2 – ident: 820_CR44 doi: 10.1016/0025-5416(85)90173-9 – ident: 820_CR20 – ident: 820_CR24 doi: 10.1016/j.ijplas.2020.102913 – ident: 820_CR41 doi: 10.1016/j.ijmecsci.2016.08.008 – ident: 820_CR7 doi: 10.1007/s12289-015-1242-y – ident: 820_CR16 doi: 10.1016/j.ijmecsci.2020.105618 – ident: 820_CR3 doi: 10.1016/j.ijplas.2008.04.007 – ident: 820_CR48 doi: 10.1016/j.msea.2016.07.090 – ident: 820_CR31 doi: 10.1016/j.ijmecsci.2020.105672 – ident: 820_CR37 doi: 10.1016/j.jmatprotec.2020.116979 – ident: 820_CR50 doi: 10.1016/j.msea.2015.01.077 – ident: 820_CR51 doi: 10.1016/j.actamat.2014.11.010 – ident: 820_CR45 doi: 10.1007/bf03027256 – ident: 820_CR49 doi: 10.1016/j.msea.2018.01.011 – ident: 820_CR9 doi: 10.1016/j.cirp.2018.04.026 – ident: 820_CR10 doi: 10.1016/j.jmatprotec.2010.06.008 – ident: 820_CR14 doi: 10.1016/j.ijplas.2007.07.010 – ident: 820_CR26 doi: 10.1016/j.ijmecsci.2019.105321 – ident: 820_CR38 doi: 10.1088/1742-6596/1063/1/012160 – ident: 820_CR23 doi: 10.1016/j.matdes.2014.06.003 – ident: 820_CR39 doi: 10.1007/s12289-018-01468-x – ident: 820_CR12 doi: 10.1016/j.ijplas.2012.12.003 – ident: 820_CR25 doi: 10.1016/j.ijplas.2018.07.010 – ident: 820_CR27 doi: 10.1016/j.cirp.2019.05.007 – ident: 820_CR55 – ident: 820_CR43 doi: 10.1016/j.ijsolstr.2020.05.014 |
SSID | ssj0007372 |
Score | 2.385318 |
Snippet | Background
Characterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly... BackgroundCharacterization of hardening and fracture limits of advanced high strength steels (AHSSs) undergoing strain path changes (SPCs) are particularly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 685 |
SubjectTerms | Axial stress Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Compression tests Control Cruciform tests Dual phase steels Dynamical Systems Engineering High strength steels Laser applications Laser deposition Lasers Load history Mechanical properties Metal forming Metal sheets Nonproportional loads Optical Devices Optics Photonics Plane strain Research Paper Solid Mechanics Tensile tests TRIP steels Vibration |
Title | Application of Laser Deposition to Mechanical Characterization of Advanced High Strength Steels Subject to Non-Proportional Loading |
URI | https://link.springer.com/article/10.1007/s11340-022-00820-2 https://www.proquest.com/docview/2645182875 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCqTywgaUmtvMYoz6ooK2QoFKZosR2WFCC2rCw8se5y6MBBEhMiRTbg-9y32ffi5ALNwZOLyKbOZFjmLB0n_m-rZhnRJJYyvaTGC_0Z3NnshA3S7msksLWdbR77ZIsLHWT7GZxDEWEw1OBWwwMb1vi2R20eGEHG_uLjVdK-yuYAEJRpcr8vMZXOGo45je3aIE24z2yW9FEGpRy3SdbJj0gO5-KBx6S96DxPdMsoVPAoxUdmjoMi-YZnRlM7EU50MGmMvPbZkpQBQBQjPag6KBOn3J8MYCYFGwKXtLgOvMsZXfYT2FVXh3SaVbE3h-RxXj0MJiwqqUCU9yTORMuF0oAS5SxciLLOAp2CEBMA1QCc3MMQHbiWwBR3JWaxzE3hrtKGJ54CdLFY9JKs9ScEGqkMR6M6UsdCan7nhZ2pCPXj6PE0cLvEKve2VBV9cax7cVz2FRKRmmEII2wkEZod8jlZs5LWW3jz9HdWmBh9eetQyB40sIq_rJDrmohNp9_X-30f8PPyLZd6BEG8XRJK1-9mnPgJ3ncI-1gOJve4_P68XbUK9TzAwWM3qA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIpCAQ9sYKmJ7TzGqFAVSCuGVupmJbHDghLUhoWVP85dnoAAiS1SbA8-574vvu_uCLl0Y-D0IrKZEzmGCUsPmO_bCfOMSFMrsf00xgv9ydQZz8X9Qi7qpLBVo3ZvQpKlp-6S3SyOUkT4eSpxi4Hj3QAy4KGQa24Hrf_FxiuV_xVMAKGoU2V-XuMrHHUc81tYtESb0S7ZqWkiDSq77pE1k-2T7U_FAw_Ie9DFnmme0hDwaElvTCPDokVOJwYTe9EOdNhWZn5rpwS1AICi2oNigDp7KvDBAGJS8Cl4SYPrTPOMPWI_hWV1dUjDvNTeH5L56HY2HLO6pQJLuCcLJlwuEgEsUcaJE1nGSWCHAMQ0QCUwN8cAZKe-BRDFXal5HHNjuJsIw1MvRbp4RNazPDPHhBppjAdjBlJHQuqBp4Ud6cj14yh1tPB7xGp2ViV1vXFse_GsukrJaA0F1lClNZTdI1ftnJeq2safo_uNwVT95a0UEDxpYRV_2SPXjRG717-vdvK_4RdkczybhCq8mz6cki27PFMo6OmT9WL5as6AqxTxeXk0PwC1nt5r |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoFPDABlab2M5jjFoqHm3VgUrdoiS2WVBSlbCw8se5y6MpCJDYIsX24HPu--K7-46QKzcGTi8imzmRo5mwVI_5vp0wTwtjrMT2TYwX-uOJczcTD3M5X6viL7Ld65BkWdOAKk1p3l0o020K3yyOaYnwI1VgGAMnvAnu2MJzPbODlS_GJiylLxZMALmoymZ-XuMrNDV881uItECe4R7ZrSgjDUob75MNnR6QnTUhwUPyETRxaJoZOgJsWtKBrlOyaJ7RscYiX7QJ7a9Umt9XU4IqGYBi5gfFYHX6nOODBvSk4F_wwgbXmWQpm2JvhWV5jUhHWZGHf0Rmw9un_h2r2iuwhHsyZ8LlIhHAGGWcOJGlnQR2CABNAWwCi3M0wLfxLYAr7krF45hrzd1EaG48g9TxmLTSLNUnhGqptQdjelJFQqqep4Qdqcj148g4SvhtYtU7GyaV9ji2wHgJG9VktEYI1ggLa4R2m1yv5ixK5Y0_R3dqg4XVV_gaAtmTFir6yza5qY3YvP59tdP_Db8kW9PBMBzdTx7PyLZdHCnM7emQVr580-dAW_L4ojiZn6w04qc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Laser+Deposition+to+Mechanical+Characterization+of+Advanced+High+Strength+Steels+Subject+to+Non-Proportional+Loading&rft.jtitle=Experimental+mechanics&rft.au=Min%2C+J.&rft.au=Kong%2C+J.&rft.au=Hou%2C+Y.&rft.au=Liu%2C+Z.&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=62&rft.issue=4&rft.spage=685&rft.epage=700&rft_id=info:doi/10.1007%2Fs11340-022-00820-2&rft.externalDocID=10_1007_s11340_022_00820_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon |