Tailoring inorganic–polymer composites for the mass production of solid-state batteries

Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Materials Vol. 6; no. 11; pp. 1003 - 1019
Main Authors Fan, Li-Zhen, He, Hongcai, Nan, Ce-Wen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2058-8437
2058-8437
DOI10.1038/s41578-021-00320-0

Cover

Loading…
Abstract Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs. Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries.
AbstractList Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs.Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries.
Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs. Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries.
Author Fan, Li-Zhen
Nan, Ce-Wen
He, Hongcai
Author_xml – sequence: 1
  givenname: Li-Zhen
  orcidid: 0000-0003-2270-4458
  surname: Fan
  fullname: Fan, Li-Zhen
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing
– sequence: 2
  givenname: Hongcai
  orcidid: 0000-0001-5665-7560
  surname: He
  fullname: He, Hongcai
  organization: Qingtao Research Institute, Qingtao Energy Development Inc
– sequence: 3
  givenname: Ce-Wen
  orcidid: 0000-0002-3261-4053
  surname: Nan
  fullname: Nan, Ce-Wen
  email: cwnan@tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
BookMark eNp9kL1OwzAQxy1UJErpCzBZYg74M7FHVPElVWIpA5PluE5xlcTBdoduvANvyJPgEiQQA9PdcL-7__1OwaT3vQXgHKNLjKi4igzzShSI4AIhSlCBjsCUIC4KwWg1-dWfgHmMW4QQlpRJQabgeaVd64PrN9D1Pmx078zH2_vg231nAzS-G3x0yUbY-ADTi4WdjhEOwa93JjnfQ9_A6Fu3LmLSycJap2SDs_EMHDe6jXb-XWfg6fZmtbgvlo93D4vrZWGo4KlgvEaIMUMZ1byyrK5Z2ehGConXEtemJBhLpqVpdEUJQYYbUzUZrQ5YzekMXIx7c6bXnY1Jbf0u9PmkIlxiUZaiJHlKjFMm-BiDbZRxOW9-IIVsQGGkDi7V6FJll-rLpUIZJX_QIbhOh_3_EB2hOBzk2vCT6h_qE98wie4
CitedBy_id crossref_primary_10_1002_adma_202303355
crossref_primary_10_1021_acsami_3c06304
crossref_primary_10_1038_s41467_023_41808_3
crossref_primary_10_1016_j_polymer_2024_127977
crossref_primary_10_1002_smll_202310547
crossref_primary_10_1016_j_cej_2023_143409
crossref_primary_10_1016_j_jcis_2024_10_199
crossref_primary_10_3390_batteries9100487
crossref_primary_10_1126_sciadv_abl8390
crossref_primary_10_3390_polym14245408
crossref_primary_10_1002_adma_202419782
crossref_primary_10_1002_aenm_202203631
crossref_primary_10_1021_jacs_4c16447
crossref_primary_10_1007_s40820_023_01073_x
crossref_primary_10_1016_j_cej_2025_159437
crossref_primary_10_1515_revic_2023_0030
crossref_primary_10_1007_s11581_022_04599_z
crossref_primary_10_1039_D2CC02306G
crossref_primary_10_1002_adma_202420428
crossref_primary_10_1007_s11581_023_05318_y
crossref_primary_10_1002_adma_202304685
crossref_primary_10_1016_j_nanoen_2024_109767
crossref_primary_10_1002_eem2_12613
crossref_primary_10_1016_j_ensm_2023_102918
crossref_primary_10_1016_j_esci_2023_100182
crossref_primary_10_1002_smll_202309317
crossref_primary_10_1002_advs_202207056
crossref_primary_10_1021_acs_nanolett_4c05596
crossref_primary_10_1016_j_cej_2023_144840
crossref_primary_10_1016_j_cossms_2021_100973
crossref_primary_10_1016_j_est_2023_107917
crossref_primary_10_1016_j_cossms_2021_100977
crossref_primary_10_1002_adma_202401909
crossref_primary_10_1002_ange_202110917
crossref_primary_10_1016_j_cej_2024_158175
crossref_primary_10_1021_acs_macromol_3c01545
crossref_primary_10_3390_batteries10010029
crossref_primary_10_1007_s12274_023_5637_7
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1016_j_polymer_2023_126496
crossref_primary_10_1007_s41918_024_00228_7
crossref_primary_10_1002_adfm_202410350
crossref_primary_10_1002_aenm_202202432
crossref_primary_10_1002_ange_202304947
crossref_primary_10_1007_s42765_024_00508_3
crossref_primary_10_1021_acsenergylett_3c02422
crossref_primary_10_1016_j_mtchem_2024_102219
crossref_primary_10_1016_j_nanoen_2024_109998
crossref_primary_10_1021_acsenergylett_3c01579
crossref_primary_10_1002_macp_202300185
crossref_primary_10_1021_acsaem_3c02162
crossref_primary_10_1002_anie_202418783
crossref_primary_10_1002_smll_202204037
crossref_primary_10_1038_s41467_022_31792_5
crossref_primary_10_1016_j_jmat_2023_10_012
crossref_primary_10_1002_ange_202417605
crossref_primary_10_1016_j_cej_2023_142537
crossref_primary_10_1016_j_xcrp_2024_102213
crossref_primary_10_1021_acsapm_3c01319
crossref_primary_10_1021_acs_macromol_3c01695
crossref_primary_10_1002_advs_202200213
crossref_primary_10_1016_j_mtcomm_2023_105764
crossref_primary_10_1002_ange_202302655
crossref_primary_10_1016_j_matt_2023_02_012
crossref_primary_10_1016_j_mattod_2022_04_004
crossref_primary_10_1021_acs_jpcc_3c06275
crossref_primary_10_1021_acsami_4c08006
crossref_primary_10_1038_s41467_024_55633_9
crossref_primary_10_1002_cssc_202402289
crossref_primary_10_1002_celc_202300664
crossref_primary_10_1007_s11581_024_05796_8
crossref_primary_10_1007_s11581_024_05421_8
crossref_primary_10_1016_j_electacta_2023_142063
crossref_primary_10_1016_j_cclet_2024_110272
crossref_primary_10_1039_D1QM01508G
crossref_primary_10_1002_adma_202403078
crossref_primary_10_1002_adfm_202424763
crossref_primary_10_1016_j_jechem_2021_12_035
crossref_primary_10_1002_aenm_202201555
crossref_primary_10_1016_j_jechem_2024_11_050
crossref_primary_10_1016_j_cej_2023_143857
crossref_primary_10_1016_j_mser_2024_100921
crossref_primary_10_1002_adfm_202307677
crossref_primary_10_1021_acsami_2c11281
crossref_primary_10_1039_D3EE03108J
crossref_primary_10_1039_D4EE02208D
crossref_primary_10_1039_D1NJ05199G
crossref_primary_10_1007_s10965_024_04243_6
crossref_primary_10_1021_acsmaterialslett_3c00065
crossref_primary_10_1002_anie_202302655
crossref_primary_10_1016_j_susmat_2023_e00587
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_1021_acsami_3c18862
crossref_primary_10_1039_D3TA01968C
crossref_primary_10_1002_aenm_202405220
crossref_primary_10_1021_acsaenm_3c00266
crossref_primary_10_1007_s40843_024_2915_3
crossref_primary_10_1016_j_ensm_2025_104107
crossref_primary_10_1016_j_nanoen_2024_110435
crossref_primary_10_1007_s43979_024_00096_6
crossref_primary_10_1021_acsomega_3c01258
crossref_primary_10_1039_D3QI02288A
crossref_primary_10_1016_j_est_2024_113602
crossref_primary_10_1016_j_cej_2024_158268
crossref_primary_10_1134_S1023193524601359
crossref_primary_10_1002_aenm_202203547
crossref_primary_10_3390_polym15020466
crossref_primary_10_1002_anie_202209169
crossref_primary_10_1016_j_cej_2022_135420
crossref_primary_10_1021_acs_energyfuels_4c02275
crossref_primary_10_1021_acsmaterialslett_3c00077
crossref_primary_10_1002_anie_202304947
crossref_primary_10_1007_s40820_025_01700_9
crossref_primary_10_1039_D3CP00905J
crossref_primary_10_1016_j_cej_2024_153815
crossref_primary_10_1002_advs_202301056
crossref_primary_10_3390_nano14221773
crossref_primary_10_1016_j_inoche_2025_114263
crossref_primary_10_1002_adfm_202210845
crossref_primary_10_1016_j_cej_2024_158136
crossref_primary_10_1016_j_giant_2024_100337
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_aenm_202203440
crossref_primary_10_1039_D2NR01143C
crossref_primary_10_1016_j_ensm_2022_04_015
crossref_primary_10_1021_acsenergylett_3c00560
crossref_primary_10_3390_ma17205134
crossref_primary_10_1021_acsami_4c01689
crossref_primary_10_1021_acs_chemmater_4c01524
crossref_primary_10_1021_acsami_2c13408
crossref_primary_10_1016_j_jcis_2024_03_058
crossref_primary_10_1007_s12274_022_4845_x
crossref_primary_10_1039_D4TA04745A
crossref_primary_10_1016_j_jallcom_2022_166125
crossref_primary_10_1016_j_jcis_2023_06_064
crossref_primary_10_1002_pol_20240135
crossref_primary_10_1002_adma_202402291
crossref_primary_10_1016_j_memsci_2025_124009
crossref_primary_10_1002_ange_202400091
crossref_primary_10_1039_D2SE01679F
crossref_primary_10_1016_j_nanoen_2024_109303
crossref_primary_10_1016_j_jnoncrysol_2025_123386
crossref_primary_10_1016_j_jpowsour_2022_231527
crossref_primary_10_1021_acsenergylett_3c01643
crossref_primary_10_1016_j_ensm_2024_103188
crossref_primary_10_1039_D3CS00819C
crossref_primary_10_1016_j_nanoen_2022_108087
crossref_primary_10_1016_j_cclet_2023_109182
crossref_primary_10_1016_j_cej_2024_150646
crossref_primary_10_1002_smtd_202401187
crossref_primary_10_1016_j_cej_2024_150887
crossref_primary_10_1002_anie_202400091
crossref_primary_10_1007_s12598_023_02521_8
crossref_primary_10_1002_celc_202200923
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1016_j_ensm_2024_103181
crossref_primary_10_1021_acsami_2c00244
crossref_primary_10_1021_acsami_1c17002
crossref_primary_10_1002_adma_202418761
crossref_primary_10_1016_j_cej_2022_137994
crossref_primary_10_1021_acsomega_4c05040
crossref_primary_10_1002_adma_202417796
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_1016_j_ensm_2024_103452
crossref_primary_10_1039_D4EE04011B
crossref_primary_10_1016_j_ensm_2024_103575
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1016_j_jmat_2023_12_003
crossref_primary_10_1021_acsnano_3c03901
crossref_primary_10_1016_j_cej_2024_150298
crossref_primary_10_1016_j_memsci_2023_121552
crossref_primary_10_1016_j_ensm_2024_103570
crossref_primary_10_1360_SSC_2023_0047
crossref_primary_10_1016_j_cej_2024_154301
crossref_primary_10_1021_acsenergylett_4c03331
crossref_primary_10_1016_j_jechem_2025_02_004
crossref_primary_10_1002_sus2_67
crossref_primary_10_1016_j_cej_2022_140375
crossref_primary_10_1021_acsami_4c04864
crossref_primary_10_1002_admt_202200205
crossref_primary_10_1016_j_apsusc_2022_153954
crossref_primary_10_1016_j_jallcom_2023_172352
crossref_primary_10_1021_acsami_4c06803
crossref_primary_10_1016_j_ensm_2023_103062
crossref_primary_10_1002_anie_202417605
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_3390_app12147318
crossref_primary_10_1021_acsapm_3c02836
crossref_primary_10_1002_aenm_202400762
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1002_anie_202403661
crossref_primary_10_1002_chem_202303733
crossref_primary_10_1016_j_ensm_2023_103066
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1016_j_jpowsour_2024_234370
crossref_primary_10_1002_adma_202202143
crossref_primary_10_1007_s40820_025_01691_7
crossref_primary_10_1007_s40843_024_2857_8
crossref_primary_10_1039_D2TA03042J
crossref_primary_10_1002_aenm_202301230
crossref_primary_10_1016_j_jechem_2024_09_069
crossref_primary_10_1021_acs_chemmater_1c04396
crossref_primary_10_1002_adma_202407738
crossref_primary_10_1002_adfm_202300658
crossref_primary_10_1002_anie_202308738
crossref_primary_10_1007_s12598_024_03049_1
crossref_primary_10_1002_batt_202400121
crossref_primary_10_1016_j_jechem_2024_01_013
crossref_primary_10_1016_j_adna_2024_03_002
crossref_primary_10_1021_acsapm_3c02804
crossref_primary_10_1557_s43577_024_00740_7
crossref_primary_10_1016_j_jpowsour_2023_233469
crossref_primary_10_1016_j_clay_2024_107329
crossref_primary_10_1016_j_nanoen_2022_107763
crossref_primary_10_1016_j_nanoen_2021_106351
crossref_primary_10_1002_aenm_202304511
crossref_primary_10_1002_ange_202418783
crossref_primary_10_1007_s41918_023_00184_8
crossref_primary_10_1016_j_cej_2022_140151
crossref_primary_10_1016_j_jallcom_2023_170273
crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1002_idm2_12202
crossref_primary_10_1021_acs_nanolett_4c05892
crossref_primary_10_1002_sstr_202400050
crossref_primary_10_1016_j_ceramint_2025_02_020
crossref_primary_10_1039_D3EE02657D
crossref_primary_10_1002_batt_202400118
crossref_primary_10_1002_inf2_12401
crossref_primary_10_1016_j_jallcom_2023_169064
crossref_primary_10_1021_acsnano_3c07246
crossref_primary_10_1038_s41565_023_01341_2
crossref_primary_10_1016_j_etran_2024_100311
crossref_primary_10_1021_acsenergylett_4c00057
crossref_primary_10_1021_acs_nanolett_3c02169
crossref_primary_10_1016_j_ensm_2022_04_035
crossref_primary_10_1002_adma_202312927
crossref_primary_10_1016_j_memsci_2021_119952
crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1021_acs_jpcc_1c07359
crossref_primary_10_1016_j_cej_2023_143687
crossref_primary_10_1016_j_cej_2024_151108
crossref_primary_10_1038_s41467_024_54234_w
crossref_primary_10_1002_ange_202416170
crossref_primary_10_1021_acs_nanolett_4c02274
crossref_primary_10_1016_j_ensm_2023_103138
crossref_primary_10_1016_j_electacta_2023_142874
crossref_primary_10_1016_j_jpowsour_2024_234101
crossref_primary_10_1021_jacs_4c00976
crossref_primary_10_59761_RCR5126
crossref_primary_10_1039_D2TA03168J
crossref_primary_10_1007_s40820_023_01139_w
crossref_primary_10_1002_aenm_202202981
crossref_primary_10_1002_bte2_20230037
crossref_primary_10_1002_cssc_202300671
crossref_primary_10_2139_ssrn_4197936
crossref_primary_10_1002_adfm_202205998
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1002_cssc_202401139
crossref_primary_10_1007_s12274_022_5304_4
crossref_primary_10_1039_D3QM00729D
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_2139_ssrn_4001209
crossref_primary_10_1063_5_0117248
crossref_primary_10_1039_D2SE01529C
crossref_primary_10_1002_advs_202205233
crossref_primary_10_1002_anie_202414777
crossref_primary_10_1007_s00289_024_05540_2
crossref_primary_10_1016_j_ensm_2022_03_028
crossref_primary_10_1002_adfm_202307263
crossref_primary_10_1021_acsami_3c06511
crossref_primary_10_1021_acsami_4c18835
crossref_primary_10_1016_j_partic_2023_04_005
crossref_primary_10_3390_polym13213622
crossref_primary_10_1021_acsapm_4c00653
crossref_primary_10_1002_aenm_202401802
crossref_primary_10_1002_smll_202408944
crossref_primary_10_1002_adfm_202311633
crossref_primary_10_1016_j_ijhydene_2024_07_104
crossref_primary_10_1016_j_jcis_2023_03_182
crossref_primary_10_1016_j_esci_2024_100277
crossref_primary_10_1016_j_jmat_2022_11_006
crossref_primary_10_1002_app_53337
crossref_primary_10_1016_j_ijhydene_2025_02_086
crossref_primary_10_1016_j_ensm_2024_103355
crossref_primary_10_1016_j_ensm_2022_10_055
crossref_primary_10_1002_adma_202300502
crossref_primary_10_1002_aenm_202200412
crossref_primary_10_1063_5_0117252
crossref_primary_10_1007_s40145_022_0580_8
crossref_primary_10_1016_j_est_2024_111967
crossref_primary_10_1002_ange_202409500
crossref_primary_10_1016_j_ensm_2023_103034
crossref_primary_10_1016_j_cej_2025_159332
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1007_s12274_024_6667_5
crossref_primary_10_1016_j_jallcom_2023_172134
crossref_primary_10_1002_aenm_202200660
crossref_primary_10_1016_j_jechem_2021_11_021
crossref_primary_10_1016_j_jechem_2024_02_069
crossref_primary_10_1016_j_jcis_2022_01_163
crossref_primary_10_1021_acs_jpclett_2c02800
crossref_primary_10_1002_aenm_202402929
crossref_primary_10_1021_acssuschemeng_3c03756
crossref_primary_10_1039_D3QM01023F
crossref_primary_10_1002_advs_202103786
crossref_primary_10_1002_cssc_202202297
crossref_primary_10_1021_acs_nanolett_4c05334
crossref_primary_10_1016_j_nanoen_2023_109075
crossref_primary_10_1021_accountsmr_4c00156
crossref_primary_10_1039_D3QM00054K
crossref_primary_10_1002_adma_202300998
crossref_primary_10_1016_j_nxnano_2023_100011
crossref_primary_10_1016_j_jmst_2024_12_005
crossref_primary_10_1039_D1TA10607D
crossref_primary_10_1007_s12274_022_4242_5
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1016_j_jpowsour_2024_235631
crossref_primary_10_1002_inf2_12563
crossref_primary_10_1002_adma_202307388
crossref_primary_10_1007_s12274_024_6886_9
crossref_primary_10_1002_ange_202302586
crossref_primary_10_1016_j_compositesb_2024_111192
crossref_primary_10_1002_ange_202401957
crossref_primary_10_1021_acsenergylett_2c02349
crossref_primary_10_1021_acsaem_4c02012
crossref_primary_10_3390_su14159090
crossref_primary_10_1021_acsaem_3c01875
crossref_primary_10_1039_D4TA01753F
crossref_primary_10_1002_advs_202207627
crossref_primary_10_1016_j_electacta_2022_141226
crossref_primary_10_3390_app14073115
crossref_primary_10_1038_s41467_025_58113_w
crossref_primary_10_1002_adfm_202500727
crossref_primary_10_1002_aenm_202403757
crossref_primary_10_34133_energymatadv_0041
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1002_ange_202308738
crossref_primary_10_1021_jacs_4c12409
crossref_primary_10_1002_anie_202218621
crossref_primary_10_1021_acsaem_4c02380
crossref_primary_10_1002_chem_202402510
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1002_batt_202300488
crossref_primary_10_1002_aenm_202302711
crossref_primary_10_1038_s41578_024_00669_y
crossref_primary_10_1007_s40843_022_2259_3
crossref_primary_10_1002_anie_202412434
crossref_primary_10_1002_batt_202300001
crossref_primary_10_3390_catal13040711
crossref_primary_10_1039_D4TA08557D
crossref_primary_10_1002_adfm_202415495
crossref_primary_10_1016_j_est_2025_115686
crossref_primary_10_1002_idm2_12020
crossref_primary_10_1016_j_enchem_2022_100073
crossref_primary_10_1021_acs_energyfuels_4c03846
crossref_primary_10_1016_j_cej_2022_138581
crossref_primary_10_1002_advs_202206887
crossref_primary_10_1016_j_etran_2023_100233
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_1016_j_electacta_2023_142968
crossref_primary_10_1126_sciadv_adc9516
crossref_primary_10_1021_acsami_4c13188
crossref_primary_10_1016_j_jpowsour_2025_236205
crossref_primary_10_1021_acsaem_4c02391
crossref_primary_10_1002_aenm_202303932
crossref_primary_10_1002_anie_202410463
crossref_primary_10_1007_s10570_023_05629_3
crossref_primary_10_1002_ange_202421427
crossref_primary_10_1002_ange_202400960
crossref_primary_10_1002_anie_202410347
crossref_primary_10_1039_D4NJ05234J
crossref_primary_10_1021_acs_nanolett_4c02894
crossref_primary_10_1002_advs_202205108
crossref_primary_10_1016_j_jmapro_2024_04_059
crossref_primary_10_1039_D1EE03466A
crossref_primary_10_1002_aenm_202204028
crossref_primary_10_1016_j_cej_2024_158963
crossref_primary_10_1016_j_ceja_2022_100439
crossref_primary_10_1016_j_jpowsour_2022_232257
crossref_primary_10_1002_aenm_202203292
crossref_primary_10_1007_s11051_022_05661_7
crossref_primary_10_1021_acs_inorgchem_4c00937
crossref_primary_10_1038_s41467_024_48078_7
crossref_primary_10_1016_j_ceramint_2022_09_333
crossref_primary_10_1021_acsami_2c12920
crossref_primary_10_1002_idm2_12045
crossref_primary_10_1016_j_ensm_2022_02_045
crossref_primary_10_1021_acs_nanolett_3c04072
crossref_primary_10_1002_smll_202302691
crossref_primary_10_1016_j_ensm_2024_103941
crossref_primary_10_1016_j_mtener_2021_100939
crossref_primary_10_1039_D3TA07067K
crossref_primary_10_1016_j_jpowsour_2024_235165
crossref_primary_10_1016_j_jechem_2025_01_028
crossref_primary_10_1021_acsami_2c16174
crossref_primary_10_1146_annurev_matsci_010622_105440
crossref_primary_10_1039_D3TA02761A
crossref_primary_10_1039_D2CC04128F
crossref_primary_10_1002_adma_202107957
crossref_primary_10_1126_sciadv_adh0069
crossref_primary_10_1002_adma_202409269
crossref_primary_10_1002_adfm_202111919
crossref_primary_10_1016_j_jechem_2022_04_048
crossref_primary_10_1021_acsnano_4c00128
crossref_primary_10_1021_acsnano_4c02547
crossref_primary_10_1021_acs_nanolett_4c05942
crossref_primary_10_1007_s12274_023_6354_y
crossref_primary_10_1039_D2TA04229K
crossref_primary_10_1002_adfm_202203858
crossref_primary_10_1016_j_mser_2025_100950
crossref_primary_10_1016_j_ensm_2022_01_034
crossref_primary_10_1016_j_cej_2024_158820
crossref_primary_10_3390_gels10050293
crossref_primary_10_1016_j_jpowsour_2024_235028
crossref_primary_10_1002_ange_202410347
crossref_primary_10_1021_acsenergylett_4c02840
crossref_primary_10_1002_aenm_202402746
crossref_primary_10_1002_ange_202410463
crossref_primary_10_1016_j_ensm_2024_103526
crossref_primary_10_1016_j_jelechem_2023_117357
crossref_primary_10_1002_inf2_70012
crossref_primary_10_1021_jacs_3c04279
crossref_primary_10_1002_aenm_202302876
crossref_primary_10_1002_adfm_202404795
crossref_primary_10_1002_eem2_12498
crossref_primary_10_1021_acsnano_3c10870
crossref_primary_10_1021_acsaem_3c01667
crossref_primary_10_1016_j_ensm_2023_02_008
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1002_aenm_202200967
crossref_primary_10_1016_j_jpowsour_2022_231297
crossref_primary_10_1002_adma_202312661
crossref_primary_10_1016_j_etran_2023_100310
crossref_primary_10_1016_j_cclet_2024_109938
crossref_primary_10_1002_adem_202201390
crossref_primary_10_1039_D2TC01946A
crossref_primary_10_1002_anie_202401957
crossref_primary_10_1016_j_ensm_2024_103759
crossref_primary_10_1016_j_cej_2023_142183
crossref_primary_10_1016_j_progpolymsci_2023_101743
crossref_primary_10_1002_adfm_202316561
crossref_primary_10_1039_D4QI01831A
crossref_primary_10_1016_j_mattod_2024_05_008
crossref_primary_10_1002_idm2_12111
crossref_primary_10_1016_j_ensm_2024_103752
crossref_primary_10_3390_polym15040803
crossref_primary_10_1021_acs_nanolett_4c00154
crossref_primary_10_1038_s41467_022_35636_0
crossref_primary_10_1002_ange_202209169
crossref_primary_10_1016_j_electacta_2022_141441
crossref_primary_10_1002_batt_202400048
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_3389_fchem_2024_1472284
crossref_primary_10_1016_j_ensm_2022_01_052
crossref_primary_10_1016_j_mattod_2022_06_007
crossref_primary_10_1016_j_ensm_2022_09_003
crossref_primary_10_1016_j_jpowsour_2023_233789
crossref_primary_10_1002_advs_202300985
crossref_primary_10_1038_s41467_022_29596_8
crossref_primary_10_1016_j_est_2023_109644
crossref_primary_10_1016_j_gee_2024_09_005
crossref_primary_10_1016_j_mtphys_2023_101009
crossref_primary_10_3390_j7030012
crossref_primary_10_1016_j_est_2024_110809
crossref_primary_10_1002_batt_202300187
crossref_primary_10_1038_s41467_025_56324_9
crossref_primary_10_1039_D3CS00439B
crossref_primary_10_1039_D3TA07184G
crossref_primary_10_1002_aenm_202402402
crossref_primary_10_1039_D3QM00964E
crossref_primary_10_1021_acs_energyfuels_4c00633
crossref_primary_10_1002_idm2_12121
crossref_primary_10_1016_j_jmat_2023_05_012
crossref_primary_10_1021_acsenergylett_4c01983
crossref_primary_10_1149_1945_7111_adba95
crossref_primary_10_3390_batteries9120590
crossref_primary_10_1016_j_ensm_2022_11_021
crossref_primary_10_1002_inf2_12288
crossref_primary_10_1002_smll_202307942
crossref_primary_10_3390_ma17020306
crossref_primary_10_35534_spe_2023_10004
crossref_primary_10_1002_smll_202304677
crossref_primary_10_1016_j_jechem_2022_11_059
crossref_primary_10_1016_j_jpowsour_2021_230921
crossref_primary_10_2139_ssrn_4105393
crossref_primary_10_1021_acsaem_3c01472
crossref_primary_10_1016_j_compscitech_2023_110312
crossref_primary_10_1016_j_ensm_2023_02_038
crossref_primary_10_1039_D3TA01787G
crossref_primary_10_1002_adfm_202419102
crossref_primary_10_1016_j_jallcom_2022_168364
crossref_primary_10_1021_acssuschemeng_1c07996
crossref_primary_10_1038_s41467_023_39725_6
crossref_primary_10_1002_advs_202204633
crossref_primary_10_1007_s41918_023_00200_x
crossref_primary_10_1016_j_ensm_2022_12_048
crossref_primary_10_1016_j_est_2024_112399
crossref_primary_10_1016_j_etran_2022_100224
crossref_primary_10_3390_coatings13040788
crossref_primary_10_1016_j_cej_2022_135106
crossref_primary_10_1016_j_ensm_2023_102876
crossref_primary_10_1016_j_jpowsour_2023_232914
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1021_acs_chemrev_2c00289
crossref_primary_10_1038_s41578_023_00623_4
crossref_primary_10_34133_2022_9753506
crossref_primary_10_1002_anie_202421427
crossref_primary_10_1016_j_cej_2024_149516
crossref_primary_10_1039_D4EE02358G
crossref_primary_10_1016_j_ensm_2023_102773
crossref_primary_10_1002_adfm_202307740
crossref_primary_10_1016_j_ensm_2025_104034
crossref_primary_10_1039_D4DT01133C
crossref_primary_10_1016_j_cej_2024_157242
crossref_primary_10_1039_D3TA02501B
crossref_primary_10_1021_acsnano_4c02236
crossref_primary_10_1016_j_jpowsour_2022_231891
crossref_primary_10_1021_acs_macromol_2c00788
crossref_primary_10_1002_pssr_202400434
crossref_primary_10_1016_j_flatc_2024_100708
crossref_primary_10_1021_acsami_4c08319
crossref_primary_10_1002_advs_202304117
crossref_primary_10_1002_eem2_12447
crossref_primary_10_1016_j_carbon_2024_119023
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1016_j_ensm_2025_104125
crossref_primary_10_1016_j_nanoen_2023_108571
crossref_primary_10_1002_batt_202300434
crossref_primary_10_1021_acs_energyfuels_3c02237
crossref_primary_10_1021_acs_energyfuels_4c02209
crossref_primary_10_1021_jacs_4c04519
crossref_primary_10_1002_smtd_202402220
crossref_primary_10_1021_acs_energyfuels_3c04898
crossref_primary_10_1061_JOEEDU_EEENG_7340
crossref_primary_10_1039_D3TA03195K
crossref_primary_10_1016_j_ensm_2023_01_017
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1016_j_jpowsour_2022_231681
crossref_primary_10_1149_1945_7111_acc697
crossref_primary_10_26599_NR_2025_94906992
crossref_primary_10_1002_anie_202416170
crossref_primary_10_1021_acsami_4c07798
crossref_primary_10_1016_j_cclet_2024_110417
crossref_primary_10_1063_5_0206377
crossref_primary_10_1039_D2CC04862K
crossref_primary_10_1016_j_ijengsci_2024_104137
crossref_primary_10_1016_j_cej_2024_148995
crossref_primary_10_1039_D4QM00182F
crossref_primary_10_1021_acsaem_3c00396
crossref_primary_10_1002_advs_202305430
crossref_primary_10_1016_j_scib_2022_01_026
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124864
crossref_primary_10_1002_adma_202405097
crossref_primary_10_1016_j_jmat_2022_02_009
crossref_primary_10_1016_j_ensm_2025_104134
crossref_primary_10_1021_acs_chemmater_3c01992
crossref_primary_10_1039_D4TA06120A
crossref_primary_10_1002_adma_202500348
crossref_primary_10_1002_aenm_202103530
crossref_primary_10_1016_j_nxener_2023_100042
crossref_primary_10_1021_acs_jpcc_4c07186
crossref_primary_10_1021_acs_jpclett_4c02525
crossref_primary_10_1016_j_cclet_2024_109568
crossref_primary_10_1016_j_mser_2025_100941
crossref_primary_10_1002_adfm_202410891
crossref_primary_10_1039_D2TA02138B
crossref_primary_10_1002_adfm_202408465
crossref_primary_10_1002_ange_202218621
crossref_primary_10_1002_anie_202110917
crossref_primary_10_1016_j_jpowsour_2022_231797
crossref_primary_10_1002_anie_202400960
crossref_primary_10_1016_j_jpowsour_2022_231794
crossref_primary_10_1016_j_cej_2022_136227
crossref_primary_10_1016_j_est_2024_112181
crossref_primary_10_1002_ange_202412434
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1002_smll_202305322
crossref_primary_10_1021_acsami_2c07471
crossref_primary_10_1002_smll_202305326
crossref_primary_10_1016_j_jcis_2025_02_155
crossref_primary_10_1038_s41467_023_37313_2
crossref_primary_10_1039_D4EE05739B
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1002_adma_202406151
crossref_primary_10_3390_molecules27217488
crossref_primary_10_1016_j_ensm_2023_102955
crossref_primary_10_1016_j_ijhydene_2024_04_154
crossref_primary_10_1016_j_jpowsour_2022_232559
crossref_primary_10_1016_j_cej_2021_133922
crossref_primary_10_1039_D2EE01053D
crossref_primary_10_3390_batteries9050270
crossref_primary_10_1039_D4QM00625A
crossref_primary_10_1016_j_est_2024_112009
crossref_primary_10_1039_D3TA02448B
crossref_primary_10_1002_aenm_202301708
crossref_primary_10_1002_adfm_202415298
crossref_primary_10_1039_D4MH01869A
crossref_primary_10_1016_j_polymer_2024_127641
crossref_primary_10_1021_jacs_4c13126
crossref_primary_10_1002_ange_202403661
crossref_primary_10_1016_j_cej_2024_155029
crossref_primary_10_2139_ssrn_4168657
crossref_primary_10_1016_j_cej_2022_138787
crossref_primary_10_1007_s11814_025_00395_3
crossref_primary_10_1016_j_ensm_2021_11_021
crossref_primary_10_1002_adfm_202315555
crossref_primary_10_1002_adfm_202313496
crossref_primary_10_1002_smll_202309501
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1039_D1TA10685F
crossref_primary_10_1002_aenm_202401281
crossref_primary_10_1016_j_mrl_2021_10_004
crossref_primary_10_1016_j_nanoen_2023_108890
crossref_primary_10_1021_acsaem_2c02170
crossref_primary_10_1002_aenm_202405760
crossref_primary_10_1038_s41467_023_43467_w
crossref_primary_10_1021_acsomega_3c09952
crossref_primary_10_1021_jacs_3c07858
crossref_primary_10_1002_smll_202304164
crossref_primary_10_1002_adfm_202421965
crossref_primary_10_1016_j_xcrp_2023_101328
crossref_primary_10_1039_D5EE00203F
crossref_primary_10_1007_s11426_022_1525_3
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1016_j_jpowsour_2023_232738
crossref_primary_10_1021_acs_macromol_4c01738
crossref_primary_10_1016_j_ceramint_2024_03_362
crossref_primary_10_1002_anie_202302586
crossref_primary_10_3390_batteries8100141
crossref_primary_10_1002_smll_202405909
crossref_primary_10_1093_chemle_upad053
crossref_primary_10_1002_eem2_12670
crossref_primary_10_1038_s43246_024_00482_8
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1002_anie_202409500
crossref_primary_10_1002_adma_202311195
crossref_primary_10_1016_j_cej_2024_154151
crossref_primary_10_1016_j_electacta_2022_140624
crossref_primary_10_1021_acsami_1c20243
crossref_primary_10_1039_D4QM00428K
crossref_primary_10_1016_j_jallcom_2023_170640
crossref_primary_10_1021_acs_nanolett_3c03852
crossref_primary_10_3389_fceng_2022_883502
crossref_primary_10_1002_ange_202414777
crossref_primary_10_1002_eem2_12428
crossref_primary_10_1002_adma_202303460
crossref_primary_10_1016_j_est_2023_109912
Cites_doi 10.1039/C8TA11449H
10.1016/j.jpowsour.2018.04.099
10.1016/j.eurpolymj.2005.09.017
10.1002/adma.201804461
10.1016/j.nanoen.2019.05.002
10.1038/s41578-019-0157-5
10.1126/sciadv.aas9820
10.1103/PhysRevLett.91.266104
10.1021/acsami.9b14824
10.1149/1.1850854
10.1038/s41560-020-0648-z
10.1039/C8TA05642K
10.1021/acssuschemeng.9b01869
10.1039/c1ee01598b
10.1021/acsenergylett.9b01676
10.1016/j.ssi.2018.10.023
10.1002/adma.202000399
10.1039/C7TA10517G
10.1021/jacs.9b03517
10.1111/jace.13844
10.1021/acsami.7b00336
10.1021/cen-09118-cover
10.1002/adma.201502636
10.1021/cm901452z
10.1016/j.jpowsour.2017.04.014
10.1002/aenm.201804004
10.3390/ma12233892
10.1021/jacs.7b01763
10.1021/acs.chemrev.7b00115
10.1016/j.jpowsour.2018.08.016
10.1038/ncomms10992
10.1038/natrevmats.2016.13
10.1038/28818
10.1002/adfm.201901047
10.1021/acsami.7b17301
10.1016/j.jmat.2019.12.010
10.1021/acs.jpclett.5b02352
10.1021/acs.nanolett.7b00715
10.1002/adma.201802661
10.1039/C9TA12495K
10.1039/C6CS00875E
10.1021/acs.chemrev.9b00268
10.1002/aenm.201402073
10.1016/j.jpowsour.2014.10.078
10.1016/j.jpowsour.2013.08.037
10.1038/ncomms9058
10.1007/s11581-016-1905-9
10.1039/C9CS00635D
10.1021/acs.nanolett.5b04117
10.1002/adfm.201700348
10.1002/aenm.201703360
10.1016/j.ensm.2020.01.009
10.1038/s41565-020-0657-x
10.1016/j.nanoen.2020.105107
10.1002/aenm.201703474
10.1002/aenm.201702657
10.1016/j.ensm.2019.10.020
10.1021/acsnano.6b06797
10.1063/1.4990501
10.1016/j.ensm.2019.01.007
10.1002/anie.201102357
10.1038/s41560-020-0575-z
10.1002/adma.201805574
10.1021/ja4054465
10.1002/smll.201902813
10.1021/acsami.5b07517
10.1021/acs.nanolett.8b01421
10.1038/s41563-020-0655-2
10.1016/0079-6425(93)90004-5
10.1039/C5TA08574H
10.1021/acs.nanolett.9b02678
10.1073/pnas.1708489114
10.1039/C8EE02617C
10.1021/acsami.8b06658
10.1038/nmat3793
10.1016/j.jpowsour.2018.02.062
10.1038/nmat3191
10.1038/s41578-019-0103-6
10.1002/advs.201600377
10.1016/j.matt.2020.02.003
10.1002/adma.201601925
10.1002/adma.201707629
10.1002/aenm.201703138
10.1002/anie.201710841
10.1039/C3CC49588D
10.1002/aenm.201801528
10.1038/s41565-019-0427-9
10.1038/s41560-020-0565-1
10.1016/j.ensm.2019.06.021
10.1021/acsami.8b13735
10.1016/S1359-0286(97)80049-6
10.1016/j.mtnano.2020.100079
10.1002/smll.201802244
10.1038/nenergy.2016.42
10.1021/acs.chemrev.9b00760
10.1021/acs.chemmater.6b00610
10.1021/acsami.9b07830
10.1021/acsami.7b18123
10.1002/smll.201904216
10.1038/d41586-019-02965-y
10.1039/C6TA01441K
10.1039/C3EE42613K
10.1016/j.mser.2018.10.004
10.1021/ja3091438
10.1021/acs.jpcc.6b11136
10.1021/jacs.7b10864
10.1016/S0378-7753(98)00242-0
10.1016/j.ensm.2018.07.004
10.1016/j.elecom.2016.02.022
10.1149/1.1615352
10.1039/C6TA02907H
10.1038/nenergy.2016.141
10.1016/j.nanoen.2019.03.051
10.1038/s41563-019-0431-3
10.1016/j.nanoen.2016.09.002
10.1039/C7EE02723K
10.1021/acsami.9b16936
10.1002/adma.201901131
10.1126/science.1212741
10.1016/S0378-7753(00)00533-4
10.1021/acs.nanolett.5b00600
10.1016/j.jpowsour.2005.03.072
10.1021/jacs.6b05341
10.4028/www.scientific.net/AMR.1140.304
10.1002/anie.201608924
10.1039/C6TA07384K
10.1038/s41560-019-0338-x
10.1021/acsami.8b02240
10.1038/natrevmats.2016.103
10.1021/acsami.9b20104
10.1007/s10853-012-6687-5
10.1016/j.electacta.2016.06.025
10.1038/35087538
10.1016/j.mattod.2018.01.001
10.1016/j.ensm.2018.03.016
10.1016/S0378-7753(01)00610-3
10.1002/adma.201806082
10.1002/aenm.201802927
10.1002/advs.201903088
10.1039/C4CP02921F
10.1016/j.ensm.2016.07.003
10.1016/j.electacta.2017.03.083
10.1039/C9TA09969G
10.1016/S0167-2738(00)00327-1
10.1016/j.jpowsour.2015.09.111
10.1039/C7TA05832B
10.1021/cm5016959
10.1021/cm0300516
10.1038/nenergy.2016.30
10.1002/adma.201902029
10.1073/pnas.1600422113
10.1016/j.ssi.2016.07.013
10.1039/c4cs00020j
10.1002/aenm.201900626
10.1038/nnano.2017.16
10.1039/C9EE03828K
10.1002/aenm.201703404
10.1016/0032-3861(73)90146-8
10.1038/nnano.2016.32
10.1038/s41560-019-0513-0
10.1016/j.electacta.2016.12.018
10.1039/C5TA03471J
10.1039/C8TA01907J
10.1016/j.elecom.2015.05.001
10.1002/aenm.201903376
10.1016/j.joule.2019.03.019
10.1002/ange.201607539
10.1039/C3EE40795K
10.1007/s10853-013-7226-8
10.1073/pnas.1520394112
10.1016/j.joule.2020.02.006
10.1021/acs.jpcc.7b10725
10.1016/S0378-7753(01)00748-0
10.1073/pnas.1518188113
10.1016/j.progpolymsci.2017.12.004
10.1021/acs.nanolett.8b01111
10.1021/acsami.7b03806
10.1016/j.joule.2018.02.001
10.1021/acs.chemrev.9b00427
10.1016/0167-2738(82)90072-8
10.1016/j.nanoen.2017.12.037
10.1021/jacs.7b06364
10.1039/C4TA00214H
10.1021/acs.nanolett.8b04919
10.1016/j.jpowsour.2017.05.061
10.1021/acs.jpclett.5b01727
10.1002/adma.201807789
10.1038/s41578-019-0165-5
10.1149/2.0731504jes
ContentType Journal Article
Copyright Springer Nature Limited 2021
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1038/s41578-021-00320-0
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-8437
EndPage 1019
ExternalDocumentID 10_1038_s41578_021_00320_0
GroupedDBID 0R~
88I
8FE
8FG
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BGLVJ
BKKNO
CCPQU
D1I
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
KB.
M2P
NNMJJ
O9-
ODYON
PDBOC
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-45b0044c343a57e4bb46faf9891d91bc621194a9cfa73220c5cc7f38570044b53
IEDL.DBID BENPR
ISSN 2058-8437
IngestDate Sat Aug 23 13:09:48 EDT 2025
Tue Jul 01 03:55:39 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Fri Feb 21 02:37:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-45b0044c343a57e4bb46faf9891d91bc621194a9cfa73220c5cc7f38570044b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3261-4053
0000-0003-2270-4458
0000-0001-5665-7560
PQID 2591866862
PQPubID 2069615
PageCount 17
ParticipantIDs proquest_journals_2591866862
crossref_citationtrail_10_1038_s41578_021_00320_0
crossref_primary_10_1038_s41578_021_00320_0
springer_journals_10_1038_s41578_021_00320_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature reviews. Materials
PublicationTitleAbbrev Nat Rev Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Keller, Barzi, Passerini (CR119) 2018; 392
Chi, Liu, Song, Fan, Zhang (CR164) 2017; 27
Li, Song, Manthiram (CR149) 2017; 46
Mindemark, Lacey, Bowden, Brandell (CR28) 2018; 81
Xu (CR136) 2018; 400
Niu (CR168) 2019; 14
Yao (CR81) 2018; 18
Liu, Lin, Sun, Zhou, Cui (CR76) 2016; 10
Bae (CR96) 2018; 57
Huo (CR129) 2019; 9
Xiao (CR157) 2020; 5
Pignanelli, Romero, Faccio, Fernández-Werner, Mombrú (CR103) 2018; 122
Xia, Fujieda, Tatsumi, Prosini, Sakai (CR42) 2001; 92
Janek, Zeier (CR9) 2016; 1
Bates, Dudney, Neudecker, Ueda, Evans (CR62) 2000; 135
Kumar, Ganesan, Riggleman (CR105) 2017; 147
Wang, Yi, Fici, Laine, Kieffer (CR85) 2017; 121
Duan (CR186) 2017; 140
Etacheri, Marom, Elazari, Salitra, Aurbach (CR4) 2011; 4
Wang (CR33) 2020; 120
Zheng, Tang, Hu (CR92) 2016; 128
Lin (CR74) 2016; 16
Keller (CR135) 2017; 353
Whiteley, Taynton, Zhang, Lee (CR189) 2015; 27
Chi (CR178) 2019; 17
Zhang (CR169) 2018; 2
Fan (CR99) 2020; 12
Lin, Liu, Cui (CR19) 2017; 12
Duan (CR185) 2019; 31
Zhao (CR177) 2017; 114
Harry, Hallinan, Parkinson, MacDowell, Balsara (CR47) 2014; 13
Culver, Koerver, Zeier, Janek (CR158) 2019; 9
Fenton, Parker, Wright (CR38) 1973; 14
Manthiram, Yu, Wang (CR14) 2017; 2
Liu, Liu, Lin, Pei, Cui (CR6) 2018; 4
Famprikis, Canepa, Dawson, Islam, Masquelier (CR31) 2019; 18
Dirican, Yan, Zhu, Zhang (CR64) 2019; 136
Guo (CR128) 2016; 4
Xue (CR70) 2017; 235
Chung (CR75) 2001; 97–98
Günther (CR27) 2016; 1140
Chai (CR184) 2018; 14
Chen, He, Ding, Wang, Wang (CR188) 2019; 12
Varzi, Raccichini, Passerini, Scrosati (CR22) 2016; 4
Fan, Wei, Li, Lu (CR191) 2018; 8
Li (CR53) 2019; 4
Liu, Zhang, Sun, Wu, Zhao (CR139) 2019; 11
Fan (CR171) 2018; 8
Bruce, Freunberger, Hardwick, Tarascon (CR13) 2012; 11
Zhang (CR88) 2018; 327
Villaluenga (CR190) 2016; 113
Yang (CR109) 2020; 8
Zhang (CR162) 2018; 8
Brissot, Rosso, Chazalviel, Lascaud (CR46) 1999; 81
Jian, Hu, Ji, Chen (CR59) 2017; 29
Zhang (CR153) 2019; 31
Chai (CR183) 2017; 4
Castelvecchi, Stoye (CR2) 2019; 574
Perea, Dontigny, Zaghib (CR134) 2017; 359
Hu (CR148) 2016; 4
Ren, Shen, Lin, Nan (CR131) 2015; 57
Zhang (CR84) 2018; 18
Lee (CR57) 2020; 5
Zhao (CR61) 2019; 3
Cheng (CR104) 2014; 16
Yang, Yin, Zhang, Li, Guo (CR161) 2015; 6
Chen (CR86) 2018; 46
Zhang (CR176) 2019; 31
Zhu (CR100) 2018; 6
Wang (CR78) 2018; 6
Fu (CR108) 2016; 113
Tan, Banerjee, Chen, Meng (CR36) 2020; 15
Xue, He, Xie (CR39) 2015; 3
Nan, Fan, Lin, Cai (CR83) 2003; 91
Chen (CR137) 2016; 210
Zhou (CR181) 2018; 31
Liang (CR44) 2020; 78
Choi, Aurbach (CR12) 2016; 1
Yan (CR174) 2018; 30
Li (CR35) 2020; 13
Wang (CR114) 2019; 60
Jacoby (CR41) 2013; 91
Fu (CR133) 2020; 19
Zheng, Dang, Feng, Chien, Hu (CR93) 2017; 5
Wang (CR117) 2020; 6
Xu (CR142) 2014; 2
Jiang (CR173) 2020; 10
Gauthier (CR150) 2015; 6
Huo (CR77) 2019; 18
Liu (CR102) 2015; 15
Bae (CR113) 2018; 15
Chen, Zhao, Yang, Yao, Xu (CR145) 2017; 23
Yan (CR175) 2018; 30
Zheng, Hu (CR95) 2018; 10
Zhu, He, Mo (CR141) 2016; 4
Freunberger (CR25) 2011; 50
Liang (CR167) 2016; 113
Thangadurai, Sumaletha, Dana (CR60) 2014; 43
Li, Zhang, Dou, Wong, Ng (CR98) 2019; 7
Lin (CR160) 2016; 11
Zou (CR37) 2020; 120
Haruyama, Sodeyama, Han, Takada, Tateyama (CR54) 2014; 26
Liu (CR67) 2019; 16
Luntz, Voss, Reuter (CR55) 2015; 6
Seki (CR151) 2005; 146
Wetjen (CR152) 2014; 246
Li (CR43) 2001; 97–98
Wenzel (CR52) 2016; 28
Zhu, He, Mo (CR50) 2015; 7
Cao (CR155) 2020; 20
Yang, Luo, Sun (CR24) 2020; 49
Deng (CR56) 2020; 27
Ye (CR163) 2017; 139
Zekoll (CR116) 2018; 11
Kimura, Yajima, Tominaga (CR45) 2016; 66
Zhai (CR115) 2017; 17
Huang (CR165) 2019; 19
Li, Chen, Wang, Fan (CR125) 2018; 10
Jung, Lee, Choi, Jang, Kim (CR143) 2015; 162
Shi (CR172) 2020; 10
Choi, Lee, Yu, Doh, Lee (CR144) 2015; 274
Weston, Steele (CR123) 1982; 7
Goodenough (CR1) 2014; 7
Randau (CR11) 2020; 5
Stephan (CR40) 2006; 42
Li, Xie, Zhang, Guo (CR97) 2020; 8
Xie (CR110) 2018; 8
Li, Sha, Guo (CR112) 2019; 11
Liu (CR8) 2019; 4
Zhao (CR146) 2016; 301
Lopez, Mackanic, Cui, Bao (CR29) 2019; 4
Kato (CR49) 2016; 1
Wang (CR107) 2018; 10
Gong (CR111) 2018; 21
Cui (CR68) 2020; 2
Tominaga, Yamazaki (CR120) 2014; 50
Zhang (CR87) 2017; 139
Yang (CR48) 2019; 61
Gadjourova, Andreev, Tunstall, Bruce (CR69) 2001; 412
Huang (CR166) 2019; 15
Schnella (CR17) 2018; 382
CR16
Oh (CR154) 2019; 9
CR15
Xu (CR18) 2014; 7
Hu (CR26) 2016; 1
Lin (CR73) 2018; 30
Munaoka (CR127) 2018; 8
Nan (CR106) 1993; 37
Goodenough, Park (CR5) 2013; 135
Zhou (CR126) 2018; 6
Stramare, Thangadurai, Weppner (CR58) 2003; 15
Chen, Li, Fan, Nan, Zhang (CR79) 2019; 29
Ni, Case, Sakamoto, Rangasamy, Wolfenstine (CR122) 2012; 47
Zhang (CR89) 2016; 28
Zhou (CR180) 2016; 138
Xiao (CR21) 2020; 5
Zhu, Wang, Miller (CR80) 2019; 11
Wu (CR159) 2013; 135
Li (CR65) 2020; 7
Wang (CR156) 2018; 8
Chen, Li, Yu, Chen, Li (CR34) 2020; 120
Ju (CR182) 2018; 10
Liang (CR66) 2019; 21
Pan (CR91) 2020; 32
Li (CR101) 2019; 11
Liang (CR138) 2019; 141
Mauger, Julien, Paolella, Armand, Zaghib (CR10) 2019; 12
Ohtomo, Hayashi (CR51) 2013; 48
Goodenough, Kim (CR140) 2010; 22
Cheng, Zhang, Zhao, Zhang (CR20) 2017; 117
Wang, Huang, Chen (CR82) 2003; 6
Lu (CR118) 2015; 5
Zhang (CR90) 2020; 25
Li (CR179) 2017; 56
Cheng, Sharafi, Sakamoto (CR132) 2017; 223
Zhao, Stalin, Zhao, Archer (CR30) 2020; 5
Monroe, Newman (CR121) 2005; 152
Li, Erickson, Manthiram (CR7) 2020; 5
Zhao (CR124) 2016; 295
Zhou, Ma, Dong, Li, Cui (CR71) 2019; 31
Croce, Appetecchi, Persi, Scrosati (CR72) 1998; 394
Yang, Zheng, Cheng, Hu, Chan (CR94) 2017; 9
Liu (CR170) 2016; 7
Gai (CR187) 2019; 7
Yue (CR147) 2016; 5
Sakabe (CR63) 1997; 2
Dorfler (CR23) 2020; 4
Dunn, Kamath, Tarascon (CR3) 2011; 334
Ren (CR32) 2015; 98
Wang (CR130) 2017; 9
S Randau (320_CR11) 2020; 5
ZX Wang (320_CR82) 2003; 6
YS Hu (320_CR26) 2016; 1
XZ Chen (320_CR188) 2019; 12
K Pan (320_CR91) 2020; 32
L-P Wang (320_CR156) 2018; 8
Y Guo (320_CR128) 2016; 4
JB Bates (320_CR62) 2000; 135
YY Xia (320_CR42) 2001; 92
Y Ren (320_CR131) 2015; 57
X Li (320_CR35) 2020; 13
C Xu (320_CR142) 2014; 2
Y Li (320_CR98) 2019; 7
KK Fu (320_CR108) 2016; 113
M Dirican (320_CR64) 2019; 136
C Fu (320_CR133) 2020; 19
HY Huo (320_CR77) 2019; 18
S Dorfler (320_CR23) 2020; 4
J-H Choi (320_CR144) 2015; 274
C Yan (320_CR175) 2018; 30
D Lin (320_CR73) 2018; 30
Y Zhang (320_CR90) 2020; 25
Q Zhou (320_CR71) 2019; 31
G Cui (320_CR68) 2020; 2
J Zheng (320_CR93) 2017; 5
CP Yang (320_CR161) 2015; 6
T Yang (320_CR94) 2017; 9
C Brissot (320_CR46) 1999; 81
W Liu (320_CR76) 2016; 10
DC Lin (320_CR19) 2017; 12
J Bae (320_CR113) 2018; 15
ZG Xue (320_CR39) 2015; 3
YZ Zhu (320_CR141) 2016; 4
W Li (320_CR149) 2017; 46
L Fan (320_CR171) 2018; 8
JB Goodenough (320_CR5) 2013; 135
A Varzi (320_CR22) 2016; 4
Y-C Jung (320_CR143) 2015; 162
Y Liu (320_CR170) 2016; 7
SC Chung (320_CR75) 2001; 97–98
CW Nan (320_CR83) 2003; 91
Y Ren (320_CR32) 2015; 98
DC Lin (320_CR74) 2016; 16
J Liu (320_CR8) 2019; 4
H Xie (320_CR110) 2018; 8
J Liang (320_CR44) 2020; 78
C Monroe (320_CR121) 2005; 152
JE Weston (320_CR123) 1982; 7
M Gauthier (320_CR150) 2015; 6
YT Li (320_CR179) 2017; 56
SA Freunberger (320_CR25) 2011; 50
Z Li (320_CR97) 2020; 8
CH Wang (320_CR130) 2017; 9
SP Culver (320_CR158) 2019; 9
XY Xu (320_CR136) 2018; 400
Y Kato (320_CR49) 2016; 1
W Xu (320_CR18) 2014; 7
Q Li (320_CR43) 2001; 97–98
A Perea (320_CR134) 2017; 359
J Zheng (320_CR92) 2016; 128
Q Zhang (320_CR153) 2019; 31
WD Zhou (320_CR180) 2016; 138
JL Gai (320_CR187) 2019; 7
JB Goodenough (320_CR1) 2014; 7
SJ Chen (320_CR145) 2017; 23
X Yang (320_CR24) 2020; 49
Z Zou (320_CR37) 2020; 120
J Haruyama (320_CR54) 2014; 26
B Li (320_CR101) 2019; 11
YZ Zhu (320_CR50) 2015; 7
XK Zhang (320_CR84) 2018; 18
X Wang (320_CR114) 2019; 60
B Zhou (320_CR126) 2018; 6
DHS Tan (320_CR36) 2020; 15
Z Jian (320_CR59) 2017; 29
WM Wang (320_CR85) 2017; 121
SB Huang (320_CR165) 2019; 19
J Xiao (320_CR21) 2020; 5
V Thangadurai (320_CR60) 2014; 43
J Lopez (320_CR29) 2019; 4
K Liu (320_CR139) 2019; 11
A Mauger (320_CR10) 2019; 12
F Croce (320_CR72) 1998; 394
PG Bruce (320_CR13) 2012; 11
A Manthiram (320_CR14) 2017; 2
S Li (320_CR65) 2020; 7
J Schnella (320_CR17) 2018; 382
T Jiang (320_CR173) 2020; 10
YR Zhao (320_CR146) 2016; 301
AM Stephan (320_CR40) 2006; 42
SS Chi (320_CR178) 2019; 17
PC Yao (320_CR81) 2018; 18
R Chen (320_CR34) 2020; 120
MY Wu (320_CR159) 2013; 135
I Villaluenga (320_CR190) 2016; 113
N Zhao (320_CR61) 2019; 3
D Li (320_CR125) 2018; 10
T Günther (320_CR27) 2016; 1140
QY Zhu (320_CR80) 2019; 11
YH Xiao (320_CR157) 2020; 5
J Mindemark (320_CR28) 2018; 81
H Yang (320_CR109) 2020; 8
JC Chai (320_CR184) 2018; 14
M Jacoby (320_CR41) 2013; 91
T Munaoka (320_CR127) 2018; 8
D Lin (320_CR160) 2016; 11
M Keller (320_CR119) 2018; 392
Z Liang (320_CR167) 2016; 113
S Deng (320_CR56) 2020; 27
P Hu (320_CR148) 2016; 4
JC Chai (320_CR183) 2017; 4
Y Sakabe (320_CR63) 1997; 2
W Liu (320_CR102) 2015; 15
Q Zhao (320_CR30) 2020; 5
K Kimura (320_CR45) 2016; 66
H Ye (320_CR163) 2017; 139
XZ Wang (320_CR107) 2018; 10
T Famprikis (320_CR31) 2019; 18
S Zekoll (320_CR116) 2018; 11
Y Lu (320_CR118) 2015; 5
J Zheng (320_CR95) 2018; 10
L Fan (320_CR191) 2018; 8
J Bae (320_CR96) 2018; 57
SK Kumar (320_CR105) 2017; 147
320_CR16
V Etacheri (320_CR4) 2011; 4
WD Li (320_CR7) 2020; 5
320_CR15
Y Zhao (320_CR124) 2016; 295
D Cao (320_CR155) 2020; 20
X-B Cheng (320_CR20) 2017; 117
Z Gadjourova (320_CR69) 2001; 412
ZN Wang (320_CR78) 2018; 6
X Zhang (320_CR87) 2017; 139
J Janek (320_CR9) 2016; 1
KJ Harry (320_CR47) 2014; 13
R Fan (320_CR99) 2020; 12
JE Ni (320_CR122) 2012; 47
S Seki (320_CR151) 2005; 146
Y-G Lee (320_CR57) 2020; 5
JW Ju (320_CR182) 2018; 10
YH Gong (320_CR111) 2018; 21
C Yan (320_CR174) 2018; 30
J Liang (320_CR66) 2019; 21
JY Liang (320_CR138) 2019; 141
H Duan (320_CR186) 2017; 140
D Castelvecchi (320_CR2) 2019; 574
JM Whiteley (320_CR189) 2015; 27
X Yang (320_CR48) 2019; 61
X Li (320_CR53) 2019; 4
SB Huang (320_CR166) 2019; 15
AC Luntz (320_CR55) 2015; 6
T Ohtomo (320_CR51) 2013; 48
S Wenzel (320_CR52) 2016; 28
Z Li (320_CR112) 2019; 11
L Chen (320_CR79) 2019; 29
L Chen (320_CR86) 2018; 46
M Wetjen (320_CR152) 2014; 246
K Liu (320_CR6) 2018; 4
X Zhang (320_CR176) 2019; 31
Y Liu (320_CR67) 2019; 16
H Duan (320_CR185) 2019; 31
LP Yue (320_CR147) 2016; 5
B Chen (320_CR137) 2016; 210
WD Zhou (320_CR181) 2018; 31
M Keller (320_CR135) 2017; 353
B Dunn (320_CR3) 2011; 334
P Zhu (320_CR100) 2018; 6
CZ Zhao (320_CR177) 2017; 114
S Wang (320_CR117) 2020; 6
JB Goodenough (320_CR140) 2010; 22
JX Zhang (320_CR89) 2016; 28
EJ Cheng (320_CR132) 2017; 223
S Stramare (320_CR58) 2003; 15
Y Tominaga (320_CR120) 2014; 50
R Zhang (320_CR169) 2018; 2
S Xue (320_CR70) 2017; 235
F Pignanelli (320_CR103) 2018; 122
X Shi (320_CR172) 2020; 10
C Wang (320_CR33) 2020; 120
X Zhang (320_CR88) 2018; 327
L Cheng (320_CR104) 2014; 16
DE Fenton (320_CR38) 1973; 14
C Zhang (320_CR162) 2018; 8
HY Huo (320_CR129) 2019; 9
DY Oh (320_CR154) 2019; 9
SS Chi (320_CR164) 2017; 27
CW Nan (320_CR106) 1993; 37
C Niu (320_CR168) 2019; 14
HW Zhai (320_CR115) 2017; 17
JW Choi (320_CR12) 2016; 1
References_xml – volume: 7
  start-page: 3391
  year: 2019
  end-page: 3398
  ident: CR98
  article-title: Li La Zr O ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11449H
– volume: 392
  start-page: 206
  year: 2018
  end-page: 225
  ident: CR119
  article-title: Hybrid electrolytes for lithium metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.099
– volume: 42
  start-page: 21
  year: 2006
  end-page: 42
  ident: CR40
  article-title: Review on gel polymer electrolytes for lithium batteries
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2005.09.017
– volume: 30
  start-page: 1804461
  year: 2018
  ident: CR175
  article-title: An armored mixed conductor interphase on a dendrite-free lithium-metal anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804461
– volume: 61
  start-page: 567
  year: 2019
  end-page: 575
  ident: CR48
  article-title: High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.002
– volume: 5
  start-page: 105
  year: 2020
  end-page: 126
  ident: CR157
  article-title: Understanding interface stability in solid-state batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0157-5
– volume: 4
  start-page: eaas9820
  year: 2018
  ident: CR6
  article-title: Materials for lithium-ion battery safety
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9820
– ident: CR16
– volume: 91
  start-page: 266104
  year: 2003
  ident: CR83
  article-title: Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO particles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.266104
– volume: 11
  start-page: 42206
  year: 2019
  end-page: 42213
  ident: CR101
  article-title: Li La TiO nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14824
– volume: 152
  start-page: A396
  year: 2005
  end-page: A404
  ident: CR121
  article-title: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1850854
– volume: 5
  start-page: 561
  year: 2020
  end-page: 568
  ident: CR21
  article-title: Understanding and applying coulombic efficiency in lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0648-z
– volume: 6
  start-page: 17227
  year: 2018
  end-page: 17234
  ident: CR78
  article-title: Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05642K
– volume: 7
  start-page: 15896
  year: 2019
  end-page: 15903
  ident: CR187
  article-title: Flexible organic–inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01869
– volume: 4
  start-page: 3243
  year: 2011
  end-page: 3262
  ident: CR4
  article-title: Challenges in the development of advanced Li-ion batteries: a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 4
  start-page: 2480
  year: 2019
  end-page: 2488
  ident: CR53
  article-title: Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01676
– volume: 327
  start-page: 32
  year: 2018
  end-page: 38
  ident: CR88
  article-title: Effects of Li La Zr Ta O on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2018.10.023
– volume: 32
  start-page: 2000399
  year: 2020
  ident: CR91
  article-title: A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000399
– volume: 6
  start-page: 4279
  year: 2018
  end-page: 4285
  ident: CR100
  article-title: Li La TiO ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10517G
– volume: 141
  start-page: 9165
  year: 2019
  end-page: 9169
  ident: CR138
  article-title: Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03517
– volume: 98
  start-page: 3603
  year: 2015
  end-page: 3623
  ident: CR32
  article-title: Oxide electrolytes for lithium batteries
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13844
– volume: 9
  start-page: 13694
  year: 2017
  end-page: 13702
  ident: CR130
  article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00336
– volume: 91
  start-page: 13
  year: 2013
  end-page: 18
  ident: CR41
  article-title: Batteries get flexible
  publication-title: Chem. Eng. News
  doi: 10.1021/cen-09118-cover
– volume: 27
  start-page: 6922
  year: 2015
  end-page: 6927
  ident: CR189
  article-title: Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502636
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  ident: CR140
  article-title: Challenages for rechargable Li batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 353
  start-page: 287
  year: 2017
  end-page: 297
  ident: CR135
  article-title: Electrochemical performance of a solvent-free hybrid ceramic polymer electrolyte based on Li La Zr O in P(EO) LiTFSI
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.014
– volume: 9
  start-page: 1804004
  year: 2019
  ident: CR129
  article-title: Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201804004
– volume: 12
  start-page: 3892
  year: 2019
  ident: CR10
  article-title: Building better batteries in the solid state: a review
  publication-title: Materials
  doi: 10.3390/ma12233892
– volume: 139
  start-page: 5916
  year: 2017
  end-page: 5922
  ident: CR163
  article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01763
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: CR20
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 400
  start-page: 212
  year: 2018
  end-page: 217
  ident: CR136
  article-title: Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.016
– volume: 7
  year: 2016
  ident: CR170
  article-title: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10992
– volume: 1
  start-page: 16013
  year: 2016
  ident: CR12
  article-title: Promise and reality of post-lithium-ion batteries with high energy densitie
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 394
  start-page: 456
  year: 1998
  end-page: 458
  ident: CR72
  article-title: Nanocomposite polymer electrolytes for lithium batteries
  publication-title: Nature
  doi: 10.1038/28818
– volume: 29
  start-page: 1901047
  year: 2019
  ident: CR79
  article-title: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901047
– volume: 10
  start-page: 4113
  year: 2018
  end-page: 4120
  ident: CR95
  article-title: New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17301
– volume: 6
  start-page: 70
  year: 2020
  end-page: 76
  ident: CR117
  article-title: High-conductivity free-standing Li PS Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2019.12.010
– volume: 6
  start-page: 4599
  year: 2015
  end-page: 4604
  ident: CR55
  article-title: Interfacial challenges in solid-state Li ion batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02352
– volume: 17
  start-page: 3182
  year: 2017
  end-page: 3187
  ident: CR115
  article-title: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00715
– volume: 30
  start-page: 1802661
  year: 2018
  ident: CR73
  article-title: A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802661
– volume: 8
  start-page: 7261
  year: 2020
  end-page: 7272
  ident: CR109
  article-title: Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12495K
– volume: 46
  start-page: 3006
  year: 2017
  end-page: 3059
  ident: CR149
  article-title: High-voltage positive electrode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 120
  start-page: 6820
  year: 2020
  end-page: 6877
  ident: CR34
  article-title: Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00268
– volume: 5
  start-page: 1402073
  year: 2015
  ident: CR118
  article-title: Stable cycling of lithium metal batteries using high transference number electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402073
– volume: 274
  start-page: 458
  year: 2015
  end-page: 463
  ident: CR144
  article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li La Zr O into a polyethylene oxide matrix
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.078
– volume: 246
  start-page: 846
  year: 2014
  end-page: 857
  ident: CR152
  article-title: Thermal and electrochemical properties of PEO-LiTFSI-Pyr TFSI-based composite cathodes, incorporating 4 V-class cathode active materials
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.037
– volume: 6
  year: 2015
  ident: CR161
  article-title: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9058
– volume: 23
  start-page: 2603
  year: 2017
  end-page: 2611
  ident: CR145
  article-title: Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells
  publication-title: Ionics
  doi: 10.1007/s11581-016-1905-9
– volume: 49
  start-page: 2140
  year: 2020
  end-page: 2195
  ident: CR24
  article-title: Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00635D
– volume: 16
  start-page: 459
  year: 2016
  end-page: 465
  ident: CR74
  article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO nanospheres in poly(ethylene oxide)
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04117
– volume: 27
  start-page: 1700348
  year: 2017
  ident: CR164
  article-title: Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700348
– volume: 8
  start-page: 1703360
  year: 2018
  ident: CR171
  article-title: Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703360
– volume: 27
  start-page: 117
  year: 2020
  end-page: 123
  ident: CR56
  article-title: Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.009
– volume: 15
  start-page: 170
  year: 2020
  end-page: 180
  ident: CR36
  article-title: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0657-x
– volume: 78
  start-page: 105107
  year: 2020
  ident: CR44
  article-title: Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105107
– volume: 8
  start-page: 1703474
  year: 2018
  ident: CR110
  article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703474
– volume: 8
  start-page: 1702657
  year: 2018
  ident: CR191
  article-title: Recent progress of the solid-state electrolytes for high-energy metal-based batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702657
– volume: 25
  start-page: 145
  year: 2020
  end-page: 153
  ident: CR90
  article-title: Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.10.020
– volume: 10
  start-page: 11407
  year: 2016
  end-page: 11413
  ident: CR76
  article-title: Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06797
– volume: 147
  start-page: 020901
  year: 2017
  ident: CR105
  article-title: Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4990501
– volume: 18
  start-page: 59
  year: 2019
  end-page: 67
  ident: CR77
  article-title: Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.01.007
– volume: 50
  start-page: 8609
  year: 2011
  end-page: 8613
  ident: CR25
  article-title: The lithium–oxygen battery with ether-based electrolytes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102357
– volume: 5
  start-page: 299
  year: 2020
  end-page: 308
  ident: CR57
  article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 31
  start-page: 1805574
  year: 2018
  ident: CR181
  article-title: Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805574
– volume: 135
  start-page: 12048
  year: 2013
  end-page: 12056
  ident: CR159
  article-title: Toward an ideal polymer binder design for high-capacity battery anodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4054465
– volume: 16
  start-page: 1902813
  year: 2019
  ident: CR67
  article-title: Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries
  publication-title: Small
  doi: 10.1002/smll.201902813
– volume: 7
  start-page: 23685
  year: 2015
  end-page: 23693
  ident: CR50
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first principles calculations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 18
  start-page: 6113
  year: 2018
  end-page: 6120
  ident: CR81
  article-title: PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01421
– volume: 19
  start-page: 758
  year: 2020
  end-page: 766
  ident: CR133
  article-title: Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0655-2
– volume: 37
  start-page: 1
  year: 1993
  end-page: 116
  ident: CR106
  article-title: Physics of inhomogeneous inorganic materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(93)90004-5
– volume: 4
  start-page: 3253
  year: 2016
  end-page: 3266
  ident: CR141
  article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08574H
– volume: 20
  start-page: 1483
  year: 2020
  end-page: 1490
  ident: CR155
  article-title: Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02678
– volume: 114
  start-page: 11069
  year: 2017
  end-page: 11074
  ident: CR177
  article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708489114
– volume: 12
  start-page: 938
  year: 2019
  end-page: 944
  ident: CR188
  article-title: Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02617C
– volume: 10
  start-page: 24791
  year: 2018
  end-page: 24798
  ident: CR107
  article-title: Lithium-salt-rich PEO/Li La TiO interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06658
– volume: 13
  start-page: 69
  year: 2014
  end-page: 73
  ident: CR47
  article-title: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3793
– volume: 382
  start-page: 160
  year: 2018
  end-page: 175
  ident: CR17
  article-title: All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.062
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  ident: CR13
  article-title: Li–O and Li–S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 4
  start-page: 312
  year: 2019
  end-page: 330
  ident: CR29
  article-title: Designing polymers for advanced battery chemistries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0103-6
– volume: 4
  start-page: 1600377
  year: 2017
  ident: CR183
  article-title: In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO lithium batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600377
– volume: 2
  start-page: 805
  year: 2020
  end-page: 815
  ident: CR68
  article-title: Reasonable design of high-energy-density solid-state lithium-metal batteries
  publication-title: Matter
  doi: 10.1016/j.matt.2020.02.003
– volume: 29
  start-page: 1601925
  year: 2017
  ident: CR59
  article-title: NASICON-structured materials for energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601925
– volume: 30
  start-page: 1707629
  year: 2018
  ident: CR174
  article-title: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707629
– volume: 8
  start-page: 1703138
  year: 2018
  ident: CR127
  article-title: Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703138
– volume: 57
  start-page: 2096
  year: 2018
  end-page: 2100
  ident: CR96
  article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710841
– volume: 50
  start-page: 4448
  year: 2014
  end-page: 4450
  ident: CR120
  article-title: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49588D
– volume: 8
  start-page: 1801528
  year: 2018
  ident: CR156
  article-title: Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801528
– volume: 14
  start-page: 594
  year: 2019
  end-page: 601
  ident: CR168
  article-title: Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0427-9
– volume: 5
  start-page: 259
  year: 2020
  end-page: 270
  ident: CR11
  article-title: Benchmarking the performance of all-solid-state lithium batteries
  publication-title: Nat. Eenrgy
  doi: 10.1038/s41560-020-0565-1
– volume: 21
  start-page: 308
  year: 2019
  end-page: 334
  ident: CR66
  article-title: Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.021
– volume: 11
  start-page: 8954
  year: 2019
  end-page: 8960
  ident: CR80
  article-title: Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13735
– volume: 2
  start-page: 584
  year: 1997
  end-page: 587
  ident: CR63
  article-title: Multilayer ceramic capacitors
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/S1359-0286(97)80049-6
– volume: 10
  start-page: 100079
  year: 2020
  ident: CR172
  article-title: In situ forming LiF nano-decorated electrolyte/electrode interfaces for stable all-solid-state batteries
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2020.100079
– volume: 14
  start-page: 1802244
  year: 2018
  ident: CR184
  article-title: Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi Mn O /Li metal batteries
  publication-title: Small
  doi: 10.1002/smll.201802244
– volume: 1
  start-page: 16042
  year: 2016
  ident: CR26
  article-title: Batteries: getting solid
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.42
– volume: 120
  start-page: 4169
  year: 2020
  end-page: 4221
  ident: CR37
  article-title: Mobile ions in composite solids
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00760
– volume: 28
  start-page: 2400
  year: 2016
  end-page: 2407
  ident: CR52
  article-title: Direct observation of the interfacial instability of the fast ionic conductor Li GeP S at the lithium metal anode
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
– volume: 11
  start-page: 26920
  year: 2019
  end-page: 26927
  ident: CR112
  article-title: Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07830
– volume: 10
  start-page: 7069
  year: 2018
  end-page: 7078
  ident: CR125
  article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18123
– volume: 15
  year: 2019
  ident: CR166
  article-title: Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries
  publication-title: Small
  doi: 10.1002/smll.201904216
– volume: 574
  start-page: 308
  year: 2019
  ident: CR2
  article-title: World-changing batteries win Nobel
  publication-title: Nature
  doi: 10.1038/d41586-019-02965-y
– volume: 4
  start-page: 8769
  year: 2016
  end-page: 8776
  ident: CR128
  article-title: A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01441K
– volume: 7
  start-page: 14
  year: 2014
  end-page: 18
  ident: CR1
  article-title: Electrochemical energy storage in a sustainable modern society
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42613K
– volume: 136
  start-page: 27
  year: 2019
  end-page: 46
  ident: CR64
  article-title: Composite solid electrolytes for all-solid-state lithium batteries
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2018.10.004
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  ident: CR5
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 121
  start-page: 2563
  year: 2017
  end-page: 2573
  ident: CR85
  article-title: Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11136
– volume: 140
  start-page: 82
  year: 2017
  end-page: 85
  ident: CR186
  article-title: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10864
– volume: 81
  start-page: 925
  year: 1999
  end-page: 929
  ident: CR46
  article-title: Dendritic growth mechanisms in lithium/polymer cells
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(98)00242-0
– volume: 17
  start-page: 309
  year: 2019
  end-page: 316
  ident: CR178
  article-title: Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.07.004
– volume: 66
  start-page: 46
  year: 2016
  end-page: 48
  ident: CR45
  article-title: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.02.022
– volume: 6
  start-page: E40
  year: 2003
  end-page: E44
  ident: CR82
  article-title: Understanding of effects of nano-Al O particles on ionic conductivity of composite polymer electrolytes
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1615352
– volume: 4
  start-page: 10070
  year: 2016
  end-page: 10083
  ident: CR148
  article-title: Progress in nitrile-based polymer electrolytes for high performance lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02907H
– volume: 1
  start-page: 16141
  year: 2016
  ident: CR9
  article-title: A solid future for battery development
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 60
  start-page: 205
  year: 2019
  end-page: 212
  ident: CR114
  article-title: Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.051
– volume: 18
  start-page: 1278
  year: 2019
  end-page: 1291
  ident: CR31
  article-title: Fundamentals of inorganic solid-state electrolytes for batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0431-3
– volume: 28
  start-page: 447
  year: 2016
  end-page: 454
  ident: CR89
  article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.002
– volume: 11
  start-page: 185
  year: 2018
  end-page: 201
  ident: CR116
  article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02723K
– volume: 11
  start-page: 46930
  year: 2019
  end-page: 46937
  ident: CR139
  article-title: Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16936
– volume: 31
  start-page: 1901131
  year: 2019
  ident: CR153
  article-title: Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901131
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: CR3
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 92
  start-page: 234
  year: 2001
  end-page: 243
  ident: CR42
  article-title: Thermal and electrochemical stability of cathode materials in solid polymer electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00533-4
– volume: 15
  start-page: 2740
  year: 2015
  end-page: 2745
  ident: CR102
  article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00600
– volume: 146
  start-page: 741
  year: 2005
  end-page: 744
  ident: CR151
  article-title: Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.072
– ident: CR15
– volume: 138
  start-page: 9385
  year: 2016
  end-page: 9388
  ident: CR180
  article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05341
– volume: 1140
  start-page: 304
  year: 2016
  end-page: 311
  ident: CR27
  article-title: The manufacturing of electrodes: key process for the future success of lithium-ion batteries
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.1140.304
– volume: 56
  start-page: 753
  year: 2017
  end-page: 756
  ident: CR179
  article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608924
– volume: 4
  start-page: 17251
  year: 2016
  end-page: 17259
  ident: CR22
  article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA07384K
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  ident: CR8
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 10
  start-page: 13588
  year: 2018
  end-page: 13597
  ident: CR182
  article-title: Integrated interface strategy toward room temperature solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02240
– volume: 2
  start-page: 16103
  year: 2017
  ident: CR14
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 12
  start-page: 7222
  year: 2020
  end-page: 7231
  ident: CR99
  article-title: Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li La Zr Ta O nanofibers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20104
– volume: 47
  start-page: 7978
  year: 2012
  end-page: 7985
  ident: CR122
  article-title: Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6687-5
– volume: 210
  start-page: 905
  year: 2016
  end-page: 914
  ident: CR137
  article-title: A new composite solid electrolyte PEO/Li GeP S /SN for all-solid-state lithium battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.025
– volume: 412
  start-page: 520
  year: 2001
  end-page: 523
  ident: CR69
  article-title: Ionic conductivity in crystalline polymer electrolytes
  publication-title: Nature
  doi: 10.1038/35087538
– volume: 21
  start-page: 594
  year: 2018
  end-page: 601
  ident: CR111
  article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.001
– volume: 15
  start-page: 46
  year: 2018
  end-page: 52
  ident: CR113
  article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.016
– volume: 97–98
  start-page: 795
  year: 2001
  end-page: 797
  ident: CR43
  article-title: Cycling performances and interfacial properties of a Li/PEO-Li(CF SO ) N-ceramic filler/LiNi Co O cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00610-3
– volume: 31
  start-page: 1806082
  year: 2019
  ident: CR176
  article-title: Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806082
– volume: 9
  start-page: 1802927
  year: 2019
  ident: CR154
  article-title: Slurry-fabricable Li -conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802927
– volume: 7
  start-page: 1903088
  year: 2020
  ident: CR65
  article-title: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903088
– volume: 16
  start-page: 18294
  year: 2014
  end-page: 18300
  ident: CR104
  article-title: The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02921F
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  ident: CR147
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.07.003
– volume: 235
  start-page: 122
  year: 2017
  end-page: 128
  ident: CR70
  article-title: Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide) :LiCF SO polymer electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.083
– volume: 8
  start-page: 3892
  year: 2020
  end-page: 3900
  ident: CR97
  article-title: In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09969G
– volume: 135
  start-page: 33
  year: 2000
  end-page: 45
  ident: CR62
  article-title: Thin-film lithium and lithium-ion batteries
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00327-1
– volume: 301
  start-page: 47
  year: 2016
  end-page: 53
  ident: CR146
  article-title: A new solid polymer electrolyte incorporating Li GeP S into a polyethylene oxide matrix for all-solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.111
– volume: 5
  start-page: 18457
  year: 2017
  end-page: 18463
  ident: CR93
  article-title: Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li La Zr O –polyethylene oxide–tetraethylene glycol dimethyl ether
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05832B
– volume: 26
  start-page: 4248
  year: 2014
  end-page: 4255
  ident: CR54
  article-title: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery
  publication-title: Chem. Mater.
  doi: 10.1021/cm5016959
– volume: 15
  start-page: 3974
  year: 2003
  end-page: 3990
  ident: CR58
  article-title: Lithium lanthanum titanates: a review
  publication-title: Chem. Mater.
  doi: 10.1021/cm0300516
– volume: 1
  start-page: 16030
  year: 2016
  ident: CR49
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 31
  start-page: 1902029
  year: 2019
  ident: CR71
  article-title: Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902029
– volume: 113
  start-page: 7094
  year: 2016
  end-page: 7099
  ident: CR108
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1600422113
– volume: 295
  start-page: 65
  year: 2016
  end-page: 71
  ident: CR124
  article-title: A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.07.013
– volume: 43
  start-page: 4714
  year: 2014
  end-page: 4727
  ident: CR60
  article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00020j
– volume: 9
  start-page: 1900626
  year: 2019
  ident: CR158
  article-title: On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900626
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: CR19
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 13
  start-page: 1429
  year: 2020
  end-page: 1461
  ident: CR35
  article-title: Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03828K
– volume: 8
  start-page: 1703404
  year: 2018
  ident: CR162
  article-title: Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703404
– volume: 14
  start-page: 589
  year: 1973
  ident: CR38
  article-title: Complexes of alkali metal ions with poly(ethylene oxide)
  publication-title: Polymer
  doi: 10.1016/0032-3861(73)90146-8
– volume: 11
  start-page: 626
  year: 2016
  end-page: 632
  ident: CR160
  article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 5
  start-page: 26
  year: 2020
  end-page: 34
  ident: CR7
  article-title: High-nickel layered oxide cathodes for lithium-based automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 223
  start-page: 85
  year: 2017
  end-page: 91
  ident: CR132
  article-title: Intergranular Li metal propagation through polycrystalline Li Al La Zr O ceramic electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.018
– volume: 3
  start-page: 19218
  year: 2015
  end-page: 19253
  ident: CR39
  article-title: Poly(ethylene oxide)-based electrolytes for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03471J
– volume: 6
  start-page: 11725
  year: 2018
  end-page: 11733
  ident: CR126
  article-title: A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01907J
– volume: 57
  start-page: 27
  year: 2015
  end-page: 30
  ident: CR131
  article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.05.001
– volume: 10
  start-page: 1903376
  year: 2020
  ident: CR173
  article-title: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903376
– volume: 3
  start-page: 1190
  year: 2019
  end-page: 1199
  ident: CR61
  article-title: Solid garnet batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.019
– volume: 128
  start-page: 12726
  year: 2016
  end-page: 12730
  ident: CR92
  article-title: Lithium ion pathway within Li La Zr O -polyethylene oxide composite electrolytes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201607539
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  ident: CR18
  article-title: Lithium metal anodes for rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 48
  start-page: 4137
  year: 2013
  end-page: 4142
  ident: CR51
  article-title: Suppression of H S gas generation from the 75Li S·25P S glass electrolyte by additives
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7226-8
– volume: 113
  start-page: 52
  year: 2016
  end-page: 57
  ident: CR190
  article-title: Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1520394112
– volume: 4
  start-page: 539
  year: 2020
  end-page: 554
  ident: CR23
  article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.006
– volume: 122
  start-page: 1492
  year: 2018
  end-page: 1499
  ident: CR103
  article-title: Enhancement of lithium-ion transport in poly(acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10725
– volume: 97–98
  start-page: 644
  year: 2001
  end-page: 648
  ident: CR75
  article-title: Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00748-0
– volume: 113
  start-page: 2862
  year: 2016
  end-page: 2867
  ident: CR167
  article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1518188113
– volume: 81
  start-page: 114
  year: 2018
  end-page: 143
  ident: CR28
  article-title: Beyond PEO — alternative host materials for Li -conducting solid polymer electrolytes
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 18
  start-page: 3829
  year: 2018
  end-page: 3838
  ident: CR84
  article-title: Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01111
– volume: 9
  start-page: 21773
  year: 2017
  end-page: 21780
  ident: CR94
  article-title: Composite polymer electrolytes with Li La Zr O garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03806
– volume: 2
  start-page: 764
  year: 2018
  end-page: 777
  ident: CR169
  article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.001
– volume: 120
  start-page: 4257
  year: 2020
  end-page: 4300
  ident: CR33
  article-title: Garnet-type solid-state electrolytes: materials, interfaces, and batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00427
– volume: 7
  start-page: 75
  year: 1982
  end-page: 79
  ident: CR123
  article-title: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(82)90072-8
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  ident: CR86
  article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  ident: CR87
  article-title: Synergistic coupling between Li La Zr Ta O and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06364
– volume: 2
  start-page: 7256
  year: 2014
  end-page: 7264
  ident: CR142
  article-title: Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00214H
– volume: 19
  start-page: 1832
  year: 2019
  end-page: 1837
  ident: CR165
  article-title: Chemical energy release driven lithiophilic layer on 1 m commercial brass mesh toward highly stable lithium metal batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04919
– volume: 359
  start-page: 182
  year: 2017
  end-page: 185
  ident: CR134
  article-title: Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.061
– volume: 6
  start-page: 4653
  year: 2015
  end-page: 4672
  ident: CR150
  article-title: Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01727
– volume: 31
  start-page: 1807789
  year: 2019
  ident: CR185
  article-title: Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807789
– volume: 5
  start-page: 229
  year: 2020
  end-page: 252
  ident: CR30
  article-title: Designing solid-state electrolytes for safe, energy-dense batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0165-5
– volume: 162
  start-page: A704
  year: 2015
  end-page: A710
  ident: CR143
  article-title: All solid-state lithium batteries assembled with hybrid solid electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731504jes
– volume: 15
  year: 2019
  ident: 320_CR166
  publication-title: Small
  doi: 10.1002/smll.201904216
– volume: 48
  start-page: 4137
  year: 2013
  ident: 320_CR51
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7226-8
– volume: 128
  start-page: 12726
  year: 2016
  ident: 320_CR92
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201607539
– volume: 20
  start-page: 1483
  year: 2020
  ident: 320_CR155
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02678
– volume: 22
  start-page: 587
  year: 2010
  ident: 320_CR140
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 7
  start-page: 513
  year: 2014
  ident: 320_CR18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 97–98
  start-page: 795
  year: 2001
  ident: 320_CR43
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00610-3
– volume: 5
  start-page: 1402073
  year: 2015
  ident: 320_CR118
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402073
– volume: 117
  start-page: 10403
  year: 2017
  ident: 320_CR20
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 412
  start-page: 520
  year: 2001
  ident: 320_CR69
  publication-title: Nature
  doi: 10.1038/35087538
– volume: 8
  start-page: 1801528
  year: 2018
  ident: 320_CR156
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801528
– volume: 30
  start-page: 1804461
  year: 2018
  ident: 320_CR175
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804461
– volume: 4
  start-page: eaas9820
  year: 2018
  ident: 320_CR6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9820
– volume: 114
  start-page: 11069
  year: 2017
  ident: 320_CR177
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708489114
– volume: 16
  start-page: 1902813
  year: 2019
  ident: 320_CR67
  publication-title: Small
  doi: 10.1002/smll.201902813
– volume: 10
  start-page: 11407
  year: 2016
  ident: 320_CR76
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06797
– volume: 10
  start-page: 4113
  year: 2018
  ident: 320_CR95
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17301
– volume: 21
  start-page: 308
  year: 2019
  ident: 320_CR66
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.021
– volume: 9
  start-page: 1900626
  year: 2019
  ident: 320_CR158
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900626
– volume: 327
  start-page: 32
  year: 2018
  ident: 320_CR88
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2018.10.023
– volume: 15
  start-page: 46
  year: 2018
  ident: 320_CR113
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.016
– volume: 56
  start-page: 753
  year: 2017
  ident: 320_CR179
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608924
– volume: 2
  start-page: 584
  year: 1997
  ident: 320_CR63
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/S1359-0286(97)80049-6
– volume: 16
  start-page: 459
  year: 2016
  ident: 320_CR74
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04117
– volume: 9
  start-page: 1802927
  year: 2019
  ident: 320_CR154
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802927
– volume: 7
  start-page: 15896
  year: 2019
  ident: 320_CR187
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01869
– volume: 28
  start-page: 447
  year: 2016
  ident: 320_CR89
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.002
– volume: 5
  start-page: 299
  year: 2020
  ident: 320_CR57
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 4
  start-page: 3253
  year: 2016
  ident: 320_CR141
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08574H
– volume: 2
  start-page: 764
  year: 2018
  ident: 320_CR169
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.001
– volume: 66
  start-page: 46
  year: 2016
  ident: 320_CR45
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.02.022
– volume: 394
  start-page: 456
  year: 1998
  ident: 320_CR72
  publication-title: Nature
  doi: 10.1038/28818
– volume: 57
  start-page: 27
  year: 2015
  ident: 320_CR131
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.05.001
– volume: 37
  start-page: 1
  year: 1993
  ident: 320_CR106
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(93)90004-5
– volume: 14
  start-page: 589
  year: 1973
  ident: 320_CR38
  publication-title: Polymer
  doi: 10.1016/0032-3861(73)90146-8
– volume: 10
  start-page: 24791
  year: 2018
  ident: 320_CR107
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06658
– volume: 10
  start-page: 13588
  year: 2018
  ident: 320_CR182
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02240
– volume: 574
  start-page: 308
  year: 2019
  ident: 320_CR2
  publication-title: Nature
  doi: 10.1038/d41586-019-02965-y
– volume: 78
  start-page: 105107
  year: 2020
  ident: 320_CR44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105107
– volume: 139
  start-page: 13779
  year: 2017
  ident: 320_CR87
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06364
– volume: 23
  start-page: 2603
  year: 2017
  ident: 320_CR145
  publication-title: Ionics
  doi: 10.1007/s11581-016-1905-9
– volume: 113
  start-page: 7094
  year: 2016
  ident: 320_CR108
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1600422113
– volume: 9
  start-page: 13694
  year: 2017
  ident: 320_CR130
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00336
– volume: 147
  start-page: 020901
  year: 2017
  ident: 320_CR105
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4990501
– volume: 7
  start-page: 75
  year: 1982
  ident: 320_CR123
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(82)90072-8
– volume: 43
  start-page: 4714
  year: 2014
  ident: 320_CR60
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00020j
– volume: 120
  start-page: 4257
  year: 2020
  ident: 320_CR33
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00427
– volume: 31
  start-page: 1902029
  year: 2019
  ident: 320_CR71
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902029
– volume: 98
  start-page: 3603
  year: 2015
  ident: 320_CR32
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13844
– volume: 139
  start-page: 5916
  year: 2017
  ident: 320_CR163
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01763
– volume: 31
  start-page: 1806082
  year: 2019
  ident: 320_CR176
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806082
– volume: 49
  start-page: 2140
  year: 2020
  ident: 320_CR24
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00635D
– volume: 6
  start-page: 17227
  year: 2018
  ident: 320_CR78
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05642K
– volume: 392
  start-page: 206
  year: 2018
  ident: 320_CR119
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.099
– volume: 11
  start-page: 46930
  year: 2019
  ident: 320_CR139
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16936
– volume: 8
  start-page: 1702657
  year: 2018
  ident: 320_CR191
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702657
– volume: 7
  start-page: 3391
  year: 2019
  ident: 320_CR98
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11449H
– volume: 46
  start-page: 3006
  year: 2017
  ident: 320_CR149
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 18
  start-page: 6113
  year: 2018
  ident: 320_CR81
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01421
– volume: 50
  start-page: 8609
  year: 2011
  ident: 320_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102357
– volume: 28
  start-page: 2400
  year: 2016
  ident: 320_CR52
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
– volume: 5
  start-page: 105
  year: 2020
  ident: 320_CR157
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0157-5
– volume: 29
  start-page: 1901047
  year: 2019
  ident: 320_CR79
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901047
– volume: 31
  start-page: 1807789
  year: 2019
  ident: 320_CR185
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807789
– volume: 27
  start-page: 6922
  year: 2015
  ident: 320_CR189
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502636
– volume: 7
  start-page: 1903088
  year: 2020
  ident: 320_CR65
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903088
– volume: 42
  start-page: 21
  year: 2006
  ident: 320_CR40
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2005.09.017
– volume: 3
  start-page: 1190
  year: 2019
  ident: 320_CR61
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.019
– volume: 81
  start-page: 114
  year: 2018
  ident: 320_CR28
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 120
  start-page: 6820
  year: 2020
  ident: 320_CR34
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00268
– volume: 13
  start-page: 1429
  year: 2020
  ident: 320_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03828K
– volume: 17
  start-page: 3182
  year: 2017
  ident: 320_CR115
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00715
– volume: 6
  start-page: 4599
  year: 2015
  ident: 320_CR55
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02352
– volume: 120
  start-page: 4169
  year: 2020
  ident: 320_CR37
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00760
– volume: 57
  start-page: 2096
  year: 2018
  ident: 320_CR96
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710841
– volume: 11
  start-page: 26920
  year: 2019
  ident: 320_CR112
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07830
– ident: 320_CR16
– volume: 10
  start-page: 7069
  year: 2018
  ident: 320_CR125
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18123
– volume: 210
  start-page: 905
  year: 2016
  ident: 320_CR137
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.025
– volume: 400
  start-page: 212
  year: 2018
  ident: 320_CR136
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.016
– volume: 7
  start-page: 23685
  year: 2015
  ident: 320_CR50
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 141
  start-page: 9165
  year: 2019
  ident: 320_CR138
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03517
– volume: 11
  start-page: 42206
  year: 2019
  ident: 320_CR101
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14824
– volume: 1
  start-page: 16013
  year: 2016
  ident: 320_CR12
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 60
  start-page: 205
  year: 2019
  ident: 320_CR114
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.051
– volume: 27
  start-page: 1700348
  year: 2017
  ident: 320_CR164
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700348
– volume: 15
  start-page: 3974
  year: 2003
  ident: 320_CR58
  publication-title: Chem. Mater.
  doi: 10.1021/cm0300516
– volume: 295
  start-page: 65
  year: 2016
  ident: 320_CR124
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.07.013
– volume: 4
  start-page: 180
  year: 2019
  ident: 320_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 12
  start-page: 7222
  year: 2020
  ident: 320_CR99
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20104
– volume: 135
  start-page: 33
  year: 2000
  ident: 320_CR62
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00327-1
– volume: 19
  start-page: 758
  year: 2020
  ident: 320_CR133
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0655-2
– volume: 152
  start-page: A396
  year: 2005
  ident: 320_CR121
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1850854
– volume: 5
  start-page: 259
  year: 2020
  ident: 320_CR11
  publication-title: Nat. Eenrgy
  doi: 10.1038/s41560-020-0565-1
– volume: 6
  start-page: 70
  year: 2020
  ident: 320_CR117
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2019.12.010
– volume: 359
  start-page: 182
  year: 2017
  ident: 320_CR134
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.061
– volume: 4
  start-page: 312
  year: 2019
  ident: 320_CR29
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0103-6
– volume: 15
  start-page: 2740
  year: 2015
  ident: 320_CR102
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00600
– volume: 31
  start-page: 1901131
  year: 2019
  ident: 320_CR153
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901131
– volume: 27
  start-page: 117
  year: 2020
  ident: 320_CR56
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.009
– volume: 50
  start-page: 4448
  year: 2014
  ident: 320_CR120
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49588D
– volume: 353
  start-page: 287
  year: 2017
  ident: 320_CR135
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.014
– volume: 140
  start-page: 82
  year: 2017
  ident: 320_CR186
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10864
– volume: 1
  start-page: 16030
  year: 2016
  ident: 320_CR49
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 30
  start-page: 1707629
  year: 2018
  ident: 320_CR174
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707629
– volume: 31
  start-page: 1805574
  year: 2018
  ident: 320_CR181
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805574
– volume: 9
  start-page: 1804004
  year: 2019
  ident: 320_CR129
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201804004
– volume: 47
  start-page: 7978
  year: 2012
  ident: 320_CR122
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6687-5
– volume: 17
  start-page: 309
  year: 2019
  ident: 320_CR178
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.07.004
– volume: 12
  start-page: 3892
  year: 2019
  ident: 320_CR10
  publication-title: Materials
  doi: 10.3390/ma12233892
– volume: 6
  year: 2015
  ident: 320_CR161
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9058
– volume: 8
  start-page: 3892
  year: 2020
  ident: 320_CR97
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09969G
– volume: 10
  start-page: 1903376
  year: 2020
  ident: 320_CR173
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903376
– volume: 246
  start-page: 846
  year: 2014
  ident: 320_CR152
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.037
– volume: 46
  start-page: 176
  year: 2018
  ident: 320_CR86
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 1140
  start-page: 304
  year: 2016
  ident: 320_CR27
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.1140.304
– volume: 5
  start-page: 18457
  year: 2017
  ident: 320_CR93
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05832B
– volume: 334
  start-page: 928
  year: 2011
  ident: 320_CR3
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 7
  start-page: 14
  year: 2014
  ident: 320_CR1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42613K
– volume: 11
  start-page: 8954
  year: 2019
  ident: 320_CR80
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13735
– volume: 18
  start-page: 1278
  year: 2019
  ident: 320_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0431-3
– volume: 6
  start-page: E40
  year: 2003
  ident: 320_CR82
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1615352
– volume: 223
  start-page: 85
  year: 2017
  ident: 320_CR132
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.018
– volume: 6
  start-page: 11725
  year: 2018
  ident: 320_CR126
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01907J
– volume: 2
  start-page: 7256
  year: 2014
  ident: 320_CR142
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00214H
– volume: 8
  start-page: 1703138
  year: 2018
  ident: 320_CR127
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703138
– volume: 4
  start-page: 2480
  year: 2019
  ident: 320_CR53
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01676
– volume: 6
  start-page: 4279
  year: 2018
  ident: 320_CR100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10517G
– volume: 6
  start-page: 4653
  year: 2015
  ident: 320_CR150
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01727
– volume: 5
  start-page: 26
  year: 2020
  ident: 320_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 146
  start-page: 741
  year: 2005
  ident: 320_CR151
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.072
– volume: 97–98
  start-page: 644
  year: 2001
  ident: 320_CR75
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00748-0
– volume: 8
  start-page: 1703474
  year: 2018
  ident: 320_CR110
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703474
– volume: 10
  start-page: 100079
  year: 2020
  ident: 320_CR172
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2020.100079
– volume: 15
  start-page: 170
  year: 2020
  ident: 320_CR36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0657-x
– volume: 13
  start-page: 69
  year: 2014
  ident: 320_CR47
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3793
– volume: 25
  start-page: 145
  year: 2020
  ident: 320_CR90
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.10.020
– volume: 382
  start-page: 160
  year: 2018
  ident: 320_CR17
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.062
– volume: 162
  start-page: A704
  year: 2015
  ident: 320_CR143
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731504jes
– volume: 11
  start-page: 626
  year: 2016
  ident: 320_CR160
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 11
  start-page: 19
  year: 2012
  ident: 320_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 26
  start-page: 4248
  year: 2014
  ident: 320_CR54
  publication-title: Chem. Mater.
  doi: 10.1021/cm5016959
– volume: 2
  start-page: 16103
  year: 2017
  ident: 320_CR14
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 235
  start-page: 122
  year: 2017
  ident: 320_CR70
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.083
– volume: 91
  start-page: 266104
  year: 2003
  ident: 320_CR83
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.266104
– volume: 18
  start-page: 59
  year: 2019
  ident: 320_CR77
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.01.007
– volume: 32
  start-page: 2000399
  year: 2020
  ident: 320_CR91
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000399
– volume: 122
  start-page: 1492
  year: 2018
  ident: 320_CR103
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10725
– volume: 135
  start-page: 1167
  year: 2013
  ident: 320_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 4
  start-page: 10070
  year: 2016
  ident: 320_CR148
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02907H
– volume: 113
  start-page: 52
  year: 2016
  ident: 320_CR190
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1520394112
– volume: 91
  start-page: 13
  year: 2013
  ident: 320_CR41
  publication-title: Chem. Eng. News
  doi: 10.1021/cen-09118-cover
– volume: 3
  start-page: 19218
  year: 2015
  ident: 320_CR39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03471J
– volume: 7
  year: 2016
  ident: 320_CR170
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10992
– volume: 14
  start-page: 1802244
  year: 2018
  ident: 320_CR184
  publication-title: Small
  doi: 10.1002/smll.201802244
– volume: 81
  start-page: 925
  year: 1999
  ident: 320_CR46
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(98)00242-0
– volume: 4
  start-page: 8769
  year: 2016
  ident: 320_CR128
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01441K
– volume: 1
  start-page: 16141
  year: 2016
  ident: 320_CR9
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 21
  start-page: 594
  year: 2018
  ident: 320_CR111
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.001
– volume: 135
  start-page: 12048
  year: 2013
  ident: 320_CR159
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4054465
– volume: 4
  start-page: 539
  year: 2020
  ident: 320_CR23
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.006
– volume: 18
  start-page: 3829
  year: 2018
  ident: 320_CR84
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01111
– volume: 4
  start-page: 17251
  year: 2016
  ident: 320_CR22
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA07384K
– volume: 9
  start-page: 21773
  year: 2017
  ident: 320_CR94
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03806
– volume: 8
  start-page: 1703360
  year: 2018
  ident: 320_CR171
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703360
– volume: 61
  start-page: 567
  year: 2019
  ident: 320_CR48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.002
– volume: 16
  start-page: 18294
  year: 2014
  ident: 320_CR104
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02921F
– volume: 12
  start-page: 194
  year: 2017
  ident: 320_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 301
  start-page: 47
  year: 2016
  ident: 320_CR146
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.111
– volume: 19
  start-page: 1832
  year: 2019
  ident: 320_CR165
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04919
– volume: 5
  start-page: 229
  year: 2020
  ident: 320_CR30
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0165-5
– volume: 92
  start-page: 234
  year: 2001
  ident: 320_CR42
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00533-4
– volume: 136
  start-page: 27
  year: 2019
  ident: 320_CR64
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2018.10.004
– volume: 1
  start-page: 16042
  year: 2016
  ident: 320_CR26
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.42
– volume: 12
  start-page: 938
  year: 2019
  ident: 320_CR188
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02617C
– volume: 8
  start-page: 7261
  year: 2020
  ident: 320_CR109
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12495K
– volume: 14
  start-page: 594
  year: 2019
  ident: 320_CR168
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0427-9
– volume: 29
  start-page: 1601925
  year: 2017
  ident: 320_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601925
– volume: 4
  start-page: 3243
  year: 2011
  ident: 320_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 121
  start-page: 2563
  year: 2017
  ident: 320_CR85
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11136
– volume: 138
  start-page: 9385
  year: 2016
  ident: 320_CR180
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05341
– volume: 30
  start-page: 1802661
  year: 2018
  ident: 320_CR73
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802661
– volume: 4
  start-page: 1600377
  year: 2017
  ident: 320_CR183
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600377
– volume: 274
  start-page: 458
  year: 2015
  ident: 320_CR144
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.078
– volume: 113
  start-page: 2862
  year: 2016
  ident: 320_CR167
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1518188113
– ident: 320_CR15
– volume: 5
  start-page: 561
  year: 2020
  ident: 320_CR21
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0648-z
– volume: 11
  start-page: 185
  year: 2018
  ident: 320_CR116
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02723K
– volume: 5
  start-page: 139
  year: 2016
  ident: 320_CR147
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.07.003
– volume: 2
  start-page: 805
  year: 2020
  ident: 320_CR68
  publication-title: Matter
  doi: 10.1016/j.matt.2020.02.003
– volume: 8
  start-page: 1703404
  year: 2018
  ident: 320_CR162
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703404
SSID ssj0001934982
Score 2.6562314
SecondaryResourceType review_article
Snippet Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1003
SubjectTerms 639/301/299/891
639/4077/4079
Biomaterials
Chemistry and Materials Science
Composite structures
Condensed Matter Physics
Electrolytes
Flammability
Flux density
Ions
Lithium-ion batteries
Manufacturing
Mass production
Materials Science
Molten salt electrolytes
Multilayers
Nanotechnology
Optical and Electronic Materials
Polymer matrix composites
Polymers
Rechargeable batteries
Review Article
Solid electrolytes
Solid state
Title Tailoring inorganic–polymer composites for the mass production of solid-state batteries
URI https://link.springer.com/article/10.1038/s41578-021-00320-0
https://www.proquest.com/docview/2591866862
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCqTywgdUmdhJ7Qi2iICQqhEAqUxQ7tlSJPmjLwMZ_4B_ySzgnLgUkmON4uIfvu_P5O4BjR_uUqNBQDB6MchtHVMS5opoHiVAmZrbodr_pxVcP_Lof9X3BbebbKhdnYnFQ52PtauRNhOmOmw0B-NnkmbqpUe521Y_QWIUqHsECLbzauejd3i2rLJJxKUL_WqbFRHOGEcuRyoaYRbvh4bT1MyItYeavm9Ei4HQ3YcMjRdIuVbsFK2a0Devf-AN34PE-G5QddGQwKucz6Y-398n46XVopsS1i7ueLDMjCE0JQj0yRKxMJiXLK2qEjC1B4xvktHhYRFTBtonJ8y48dC_uz6-on5VANRPRnPLI-R_XjLMsSgxXisc2s1LIIJeB0rFjcuOZ1DZL0IdbOtI6saykt-cqYntQGY1HZh-I4Y6iXdowMbhP7vh8ZGATmYkc0xnNaxAs5JVqTyTu5lk8pcWFNhNpKeMUZZwWMk5bNTj5-mdS0mj8u7q-UEPqXWqWLg2gBqcL1Sw__73bwf-7HcJa6KyheF9Yh8p8-mKOEGjMVQNWRfeyAdV2t9PpNbxtfQJ-9tK3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4heigcqv4htqWtD3BqLTaxk9gHhKrCdvk9LRKcTOzY0kqwu2UXIW59h74HD8WTdMZJum0luHFO4sPMF8839sw3AOsk-1TY1HMMHoLLkGdc5ZXlTiaFsj4XIVa7Hx3n_RO5f5qdLsBd2wtDZZXtnhg36mrs6Ix8E2k6abMhAd-e_OA0NYpuV9sRGjUsDvztDaZs0629HfTvRpr2dgff-ryZKsCdUNmMy4yQKp2QoswKL62VeSiDVjqpdGJdTppnstQulAWivesy54ogaiF4aWlKBG75z6QQmkoIVe_7_ExHC6lV2vTmdIXanGJ8JAnbFHN2GlXOu__Gvzmp_e8eNoa33kt40fBS9rUG0itY8KPXsPyXWuEbOBuUw7pejw1H9TQod__z12R8cXvprxgVp1MFmJ8yJMIMiSW7RGbOJrWmLPqfjQNDqA8rHtuYmI3anpiqv4WTJ7HhCiyOxiO_CsxLEoTXIS08rlORepBOQqFLVWHy5GQHktZexjWy5TQ948LE63OhTG1jgzY20cam24HPf76Z1KIdj7691rrBND_w1Mzh1oEvrWvmjx9e7d3jq32C5_3B0aE53Ds-eA9LKSEjdjauweLs6tp_QIozsx8jrhicPzWQfwNhPAp6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+inorganic%E2%80%93polymer+composites+for+the+mass+production+of+solid-state+batteries&rft.jtitle=Nature+reviews.+Materials&rft.au=Fan%2C+Li-Zhen&rft.au=He%2C+Hongcai&rft.au=Nan%2C+Ce-Wen&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-8437&rft.volume=6&rft.issue=11&rft.spage=1003&rft.epage=1019&rft_id=info:doi/10.1038%2Fs41578-021-00320-0&rft.externalDocID=10_1038_s41578_021_00320_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon