Tailoring inorganic–polymer composites for the mass production of solid-state batteries
Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to...
Saved in:
Published in | Nature reviews. Materials Vol. 6; no. 11; pp. 1003 - 1019 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2058-8437 2058-8437 |
DOI | 10.1038/s41578-021-00320-0 |
Cover
Loading…
Abstract | Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs.
Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries. |
---|---|
AbstractList | Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs.Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries. Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion batteries with flammable liquid electrolytes. To achieve large-scale, low-cost production of SSBs as soon as possible, it would be advantageous to modify the mature manufacturing platform, involving slurry casting and roll-to-roll technologies, used for conventional Li-ion batteries for application to SSBs. However, the manufacturing of SSBs depends on the development of suitable solid electrolytes. Inorganic–polymer composite electrolytes combine the advantages of inorganic and polymer solid electrolytes, making them particularly suitable for the mass production of SSBs. In this Review, we discuss the properties of solid electrolytes comprising inorganic–polymer composites and outline the design of composite electrolytes for realizing high-performance devices. We also assess the challenges of integrating the composite electrolytes into batteries, which will enable the mass production of SSBs. Inorganic–polymer composites have emerged as viable solid electrolytes for the mass production of solid-state batteries. In this Review, we examine the properties and design of inorganic–polymer composite electrolytes, discuss the processing technologies for multilayer and multiphase composite structures, and outline the challenges of integrating composite electrolytes into solid-state batteries. |
Author | Fan, Li-Zhen Nan, Ce-Wen He, Hongcai |
Author_xml | – sequence: 1 givenname: Li-Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li-Zhen organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing – sequence: 2 givenname: Hongcai orcidid: 0000-0001-5665-7560 surname: He fullname: He, Hongcai organization: Qingtao Research Institute, Qingtao Energy Development Inc – sequence: 3 givenname: Ce-Wen orcidid: 0000-0002-3261-4053 surname: Nan fullname: Nan, Ce-Wen email: cwnan@tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University |
BookMark | eNp9kL1OwzAQxy1UJErpCzBZYg74M7FHVPElVWIpA5PluE5xlcTBdoduvANvyJPgEiQQA9PdcL-7__1OwaT3vQXgHKNLjKi4igzzShSI4AIhSlCBjsCUIC4KwWg1-dWfgHmMW4QQlpRJQabgeaVd64PrN9D1Pmx078zH2_vg231nAzS-G3x0yUbY-ADTi4WdjhEOwa93JjnfQ9_A6Fu3LmLSycJap2SDs_EMHDe6jXb-XWfg6fZmtbgvlo93D4vrZWGo4KlgvEaIMUMZ1byyrK5Z2ehGConXEtemJBhLpqVpdEUJQYYbUzUZrQ5YzekMXIx7c6bXnY1Jbf0u9PmkIlxiUZaiJHlKjFMm-BiDbZRxOW9-IIVsQGGkDi7V6FJll-rLpUIZJX_QIbhOh_3_EB2hOBzk2vCT6h_qE98wie4 |
CitedBy_id | crossref_primary_10_1002_adma_202303355 crossref_primary_10_1021_acsami_3c06304 crossref_primary_10_1038_s41467_023_41808_3 crossref_primary_10_1016_j_polymer_2024_127977 crossref_primary_10_1002_smll_202310547 crossref_primary_10_1016_j_cej_2023_143409 crossref_primary_10_1016_j_jcis_2024_10_199 crossref_primary_10_3390_batteries9100487 crossref_primary_10_1126_sciadv_abl8390 crossref_primary_10_3390_polym14245408 crossref_primary_10_1002_adma_202419782 crossref_primary_10_1002_aenm_202203631 crossref_primary_10_1021_jacs_4c16447 crossref_primary_10_1007_s40820_023_01073_x crossref_primary_10_1016_j_cej_2025_159437 crossref_primary_10_1515_revic_2023_0030 crossref_primary_10_1007_s11581_022_04599_z crossref_primary_10_1039_D2CC02306G crossref_primary_10_1002_adma_202420428 crossref_primary_10_1007_s11581_023_05318_y crossref_primary_10_1002_adma_202304685 crossref_primary_10_1016_j_nanoen_2024_109767 crossref_primary_10_1002_eem2_12613 crossref_primary_10_1016_j_ensm_2023_102918 crossref_primary_10_1016_j_esci_2023_100182 crossref_primary_10_1002_smll_202309317 crossref_primary_10_1002_advs_202207056 crossref_primary_10_1021_acs_nanolett_4c05596 crossref_primary_10_1016_j_cej_2023_144840 crossref_primary_10_1016_j_cossms_2021_100973 crossref_primary_10_1016_j_est_2023_107917 crossref_primary_10_1016_j_cossms_2021_100977 crossref_primary_10_1002_adma_202401909 crossref_primary_10_1002_ange_202110917 crossref_primary_10_1016_j_cej_2024_158175 crossref_primary_10_1021_acs_macromol_3c01545 crossref_primary_10_3390_batteries10010029 crossref_primary_10_1007_s12274_023_5637_7 crossref_primary_10_1002_smll_202401200 crossref_primary_10_1016_j_polymer_2023_126496 crossref_primary_10_1007_s41918_024_00228_7 crossref_primary_10_1002_adfm_202410350 crossref_primary_10_1002_aenm_202202432 crossref_primary_10_1002_ange_202304947 crossref_primary_10_1007_s42765_024_00508_3 crossref_primary_10_1021_acsenergylett_3c02422 crossref_primary_10_1016_j_mtchem_2024_102219 crossref_primary_10_1016_j_nanoen_2024_109998 crossref_primary_10_1021_acsenergylett_3c01579 crossref_primary_10_1002_macp_202300185 crossref_primary_10_1021_acsaem_3c02162 crossref_primary_10_1002_anie_202418783 crossref_primary_10_1002_smll_202204037 crossref_primary_10_1038_s41467_022_31792_5 crossref_primary_10_1016_j_jmat_2023_10_012 crossref_primary_10_1002_ange_202417605 crossref_primary_10_1016_j_cej_2023_142537 crossref_primary_10_1016_j_xcrp_2024_102213 crossref_primary_10_1021_acsapm_3c01319 crossref_primary_10_1021_acs_macromol_3c01695 crossref_primary_10_1002_advs_202200213 crossref_primary_10_1016_j_mtcomm_2023_105764 crossref_primary_10_1002_ange_202302655 crossref_primary_10_1016_j_matt_2023_02_012 crossref_primary_10_1016_j_mattod_2022_04_004 crossref_primary_10_1021_acs_jpcc_3c06275 crossref_primary_10_1021_acsami_4c08006 crossref_primary_10_1038_s41467_024_55633_9 crossref_primary_10_1002_cssc_202402289 crossref_primary_10_1002_celc_202300664 crossref_primary_10_1007_s11581_024_05796_8 crossref_primary_10_1007_s11581_024_05421_8 crossref_primary_10_1016_j_electacta_2023_142063 crossref_primary_10_1016_j_cclet_2024_110272 crossref_primary_10_1039_D1QM01508G crossref_primary_10_1002_adma_202403078 crossref_primary_10_1002_adfm_202424763 crossref_primary_10_1016_j_jechem_2021_12_035 crossref_primary_10_1002_aenm_202201555 crossref_primary_10_1016_j_jechem_2024_11_050 crossref_primary_10_1016_j_cej_2023_143857 crossref_primary_10_1016_j_mser_2024_100921 crossref_primary_10_1002_adfm_202307677 crossref_primary_10_1021_acsami_2c11281 crossref_primary_10_1039_D3EE03108J crossref_primary_10_1039_D4EE02208D crossref_primary_10_1039_D1NJ05199G crossref_primary_10_1007_s10965_024_04243_6 crossref_primary_10_1021_acsmaterialslett_3c00065 crossref_primary_10_1002_anie_202302655 crossref_primary_10_1016_j_susmat_2023_e00587 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1021_acsami_3c18862 crossref_primary_10_1039_D3TA01968C crossref_primary_10_1002_aenm_202405220 crossref_primary_10_1021_acsaenm_3c00266 crossref_primary_10_1007_s40843_024_2915_3 crossref_primary_10_1016_j_ensm_2025_104107 crossref_primary_10_1016_j_nanoen_2024_110435 crossref_primary_10_1007_s43979_024_00096_6 crossref_primary_10_1021_acsomega_3c01258 crossref_primary_10_1039_D3QI02288A crossref_primary_10_1016_j_est_2024_113602 crossref_primary_10_1016_j_cej_2024_158268 crossref_primary_10_1134_S1023193524601359 crossref_primary_10_1002_aenm_202203547 crossref_primary_10_3390_polym15020466 crossref_primary_10_1002_anie_202209169 crossref_primary_10_1016_j_cej_2022_135420 crossref_primary_10_1021_acs_energyfuels_4c02275 crossref_primary_10_1021_acsmaterialslett_3c00077 crossref_primary_10_1002_anie_202304947 crossref_primary_10_1007_s40820_025_01700_9 crossref_primary_10_1039_D3CP00905J crossref_primary_10_1016_j_cej_2024_153815 crossref_primary_10_1002_advs_202301056 crossref_primary_10_3390_nano14221773 crossref_primary_10_1016_j_inoche_2025_114263 crossref_primary_10_1002_adfm_202210845 crossref_primary_10_1016_j_cej_2024_158136 crossref_primary_10_1016_j_giant_2024_100337 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_aenm_202203440 crossref_primary_10_1039_D2NR01143C crossref_primary_10_1016_j_ensm_2022_04_015 crossref_primary_10_1021_acsenergylett_3c00560 crossref_primary_10_3390_ma17205134 crossref_primary_10_1021_acsami_4c01689 crossref_primary_10_1021_acs_chemmater_4c01524 crossref_primary_10_1021_acsami_2c13408 crossref_primary_10_1016_j_jcis_2024_03_058 crossref_primary_10_1007_s12274_022_4845_x crossref_primary_10_1039_D4TA04745A crossref_primary_10_1016_j_jallcom_2022_166125 crossref_primary_10_1016_j_jcis_2023_06_064 crossref_primary_10_1002_pol_20240135 crossref_primary_10_1002_adma_202402291 crossref_primary_10_1016_j_memsci_2025_124009 crossref_primary_10_1002_ange_202400091 crossref_primary_10_1039_D2SE01679F crossref_primary_10_1016_j_nanoen_2024_109303 crossref_primary_10_1016_j_jnoncrysol_2025_123386 crossref_primary_10_1016_j_jpowsour_2022_231527 crossref_primary_10_1021_acsenergylett_3c01643 crossref_primary_10_1016_j_ensm_2024_103188 crossref_primary_10_1039_D3CS00819C crossref_primary_10_1016_j_nanoen_2022_108087 crossref_primary_10_1016_j_cclet_2023_109182 crossref_primary_10_1016_j_cej_2024_150646 crossref_primary_10_1002_smtd_202401187 crossref_primary_10_1016_j_cej_2024_150887 crossref_primary_10_1002_anie_202400091 crossref_primary_10_1007_s12598_023_02521_8 crossref_primary_10_1002_celc_202200923 crossref_primary_10_1002_inf2_12606 crossref_primary_10_1016_j_ensm_2024_103181 crossref_primary_10_1021_acsami_2c00244 crossref_primary_10_1021_acsami_1c17002 crossref_primary_10_1002_adma_202418761 crossref_primary_10_1016_j_cej_2022_137994 crossref_primary_10_1021_acsomega_4c05040 crossref_primary_10_1002_adma_202417796 crossref_primary_10_1039_D4EE03097D crossref_primary_10_1016_j_ensm_2024_103452 crossref_primary_10_1039_D4EE04011B crossref_primary_10_1016_j_ensm_2024_103575 crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1016_j_jmat_2023_12_003 crossref_primary_10_1021_acsnano_3c03901 crossref_primary_10_1016_j_cej_2024_150298 crossref_primary_10_1016_j_memsci_2023_121552 crossref_primary_10_1016_j_ensm_2024_103570 crossref_primary_10_1360_SSC_2023_0047 crossref_primary_10_1016_j_cej_2024_154301 crossref_primary_10_1021_acsenergylett_4c03331 crossref_primary_10_1016_j_jechem_2025_02_004 crossref_primary_10_1002_sus2_67 crossref_primary_10_1016_j_cej_2022_140375 crossref_primary_10_1021_acsami_4c04864 crossref_primary_10_1002_admt_202200205 crossref_primary_10_1016_j_apsusc_2022_153954 crossref_primary_10_1016_j_jallcom_2023_172352 crossref_primary_10_1021_acsami_4c06803 crossref_primary_10_1016_j_ensm_2023_103062 crossref_primary_10_1002_anie_202417605 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_3390_app12147318 crossref_primary_10_1021_acsapm_3c02836 crossref_primary_10_1002_aenm_202400762 crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1002_anie_202403661 crossref_primary_10_1002_chem_202303733 crossref_primary_10_1016_j_ensm_2023_103066 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1016_j_jpowsour_2024_234370 crossref_primary_10_1002_adma_202202143 crossref_primary_10_1007_s40820_025_01691_7 crossref_primary_10_1007_s40843_024_2857_8 crossref_primary_10_1039_D2TA03042J crossref_primary_10_1002_aenm_202301230 crossref_primary_10_1016_j_jechem_2024_09_069 crossref_primary_10_1021_acs_chemmater_1c04396 crossref_primary_10_1002_adma_202407738 crossref_primary_10_1002_adfm_202300658 crossref_primary_10_1002_anie_202308738 crossref_primary_10_1007_s12598_024_03049_1 crossref_primary_10_1002_batt_202400121 crossref_primary_10_1016_j_jechem_2024_01_013 crossref_primary_10_1016_j_adna_2024_03_002 crossref_primary_10_1021_acsapm_3c02804 crossref_primary_10_1557_s43577_024_00740_7 crossref_primary_10_1016_j_jpowsour_2023_233469 crossref_primary_10_1016_j_clay_2024_107329 crossref_primary_10_1016_j_nanoen_2022_107763 crossref_primary_10_1016_j_nanoen_2021_106351 crossref_primary_10_1002_aenm_202304511 crossref_primary_10_1002_ange_202418783 crossref_primary_10_1007_s41918_023_00184_8 crossref_primary_10_1016_j_cej_2022_140151 crossref_primary_10_1016_j_jallcom_2023_170273 crossref_primary_10_1002_bte2_20220059 crossref_primary_10_1002_idm2_12202 crossref_primary_10_1021_acs_nanolett_4c05892 crossref_primary_10_1002_sstr_202400050 crossref_primary_10_1016_j_ceramint_2025_02_020 crossref_primary_10_1039_D3EE02657D crossref_primary_10_1002_batt_202400118 crossref_primary_10_1002_inf2_12401 crossref_primary_10_1016_j_jallcom_2023_169064 crossref_primary_10_1021_acsnano_3c07246 crossref_primary_10_1038_s41565_023_01341_2 crossref_primary_10_1016_j_etran_2024_100311 crossref_primary_10_1021_acsenergylett_4c00057 crossref_primary_10_1021_acs_nanolett_3c02169 crossref_primary_10_1016_j_ensm_2022_04_035 crossref_primary_10_1002_adma_202312927 crossref_primary_10_1016_j_memsci_2021_119952 crossref_primary_10_1016_j_mattod_2023_11_016 crossref_primary_10_1021_acs_jpcc_1c07359 crossref_primary_10_1016_j_cej_2023_143687 crossref_primary_10_1016_j_cej_2024_151108 crossref_primary_10_1038_s41467_024_54234_w crossref_primary_10_1002_ange_202416170 crossref_primary_10_1021_acs_nanolett_4c02274 crossref_primary_10_1016_j_ensm_2023_103138 crossref_primary_10_1016_j_electacta_2023_142874 crossref_primary_10_1016_j_jpowsour_2024_234101 crossref_primary_10_1021_jacs_4c00976 crossref_primary_10_59761_RCR5126 crossref_primary_10_1039_D2TA03168J crossref_primary_10_1007_s40820_023_01139_w crossref_primary_10_1002_aenm_202202981 crossref_primary_10_1002_bte2_20230037 crossref_primary_10_1002_cssc_202300671 crossref_primary_10_2139_ssrn_4197936 crossref_primary_10_1002_adfm_202205998 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1002_cssc_202401139 crossref_primary_10_1007_s12274_022_5304_4 crossref_primary_10_1039_D3QM00729D crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_2139_ssrn_4001209 crossref_primary_10_1063_5_0117248 crossref_primary_10_1039_D2SE01529C crossref_primary_10_1002_advs_202205233 crossref_primary_10_1002_anie_202414777 crossref_primary_10_1007_s00289_024_05540_2 crossref_primary_10_1016_j_ensm_2022_03_028 crossref_primary_10_1002_adfm_202307263 crossref_primary_10_1021_acsami_3c06511 crossref_primary_10_1021_acsami_4c18835 crossref_primary_10_1016_j_partic_2023_04_005 crossref_primary_10_3390_polym13213622 crossref_primary_10_1021_acsapm_4c00653 crossref_primary_10_1002_aenm_202401802 crossref_primary_10_1002_smll_202408944 crossref_primary_10_1002_adfm_202311633 crossref_primary_10_1016_j_ijhydene_2024_07_104 crossref_primary_10_1016_j_jcis_2023_03_182 crossref_primary_10_1016_j_esci_2024_100277 crossref_primary_10_1016_j_jmat_2022_11_006 crossref_primary_10_1002_app_53337 crossref_primary_10_1016_j_ijhydene_2025_02_086 crossref_primary_10_1016_j_ensm_2024_103355 crossref_primary_10_1016_j_ensm_2022_10_055 crossref_primary_10_1002_adma_202300502 crossref_primary_10_1002_aenm_202200412 crossref_primary_10_1063_5_0117252 crossref_primary_10_1007_s40145_022_0580_8 crossref_primary_10_1016_j_est_2024_111967 crossref_primary_10_1002_ange_202409500 crossref_primary_10_1016_j_ensm_2023_103034 crossref_primary_10_1016_j_cej_2025_159332 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1007_s12274_024_6667_5 crossref_primary_10_1016_j_jallcom_2023_172134 crossref_primary_10_1002_aenm_202200660 crossref_primary_10_1016_j_jechem_2021_11_021 crossref_primary_10_1016_j_jechem_2024_02_069 crossref_primary_10_1016_j_jcis_2022_01_163 crossref_primary_10_1021_acs_jpclett_2c02800 crossref_primary_10_1002_aenm_202402929 crossref_primary_10_1021_acssuschemeng_3c03756 crossref_primary_10_1039_D3QM01023F crossref_primary_10_1002_advs_202103786 crossref_primary_10_1002_cssc_202202297 crossref_primary_10_1021_acs_nanolett_4c05334 crossref_primary_10_1016_j_nanoen_2023_109075 crossref_primary_10_1021_accountsmr_4c00156 crossref_primary_10_1039_D3QM00054K crossref_primary_10_1002_adma_202300998 crossref_primary_10_1016_j_nxnano_2023_100011 crossref_primary_10_1016_j_jmst_2024_12_005 crossref_primary_10_1039_D1TA10607D crossref_primary_10_1007_s12274_022_4242_5 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1016_j_jpowsour_2024_235631 crossref_primary_10_1002_inf2_12563 crossref_primary_10_1002_adma_202307388 crossref_primary_10_1007_s12274_024_6886_9 crossref_primary_10_1002_ange_202302586 crossref_primary_10_1016_j_compositesb_2024_111192 crossref_primary_10_1002_ange_202401957 crossref_primary_10_1021_acsenergylett_2c02349 crossref_primary_10_1021_acsaem_4c02012 crossref_primary_10_3390_su14159090 crossref_primary_10_1021_acsaem_3c01875 crossref_primary_10_1039_D4TA01753F crossref_primary_10_1002_advs_202207627 crossref_primary_10_1016_j_electacta_2022_141226 crossref_primary_10_3390_app14073115 crossref_primary_10_1038_s41467_025_58113_w crossref_primary_10_1002_adfm_202500727 crossref_primary_10_1002_aenm_202403757 crossref_primary_10_34133_energymatadv_0041 crossref_primary_10_1002_aenm_202401336 crossref_primary_10_1002_ange_202308738 crossref_primary_10_1021_jacs_4c12409 crossref_primary_10_1002_anie_202218621 crossref_primary_10_1021_acsaem_4c02380 crossref_primary_10_1002_chem_202402510 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1002_batt_202300488 crossref_primary_10_1002_aenm_202302711 crossref_primary_10_1038_s41578_024_00669_y crossref_primary_10_1007_s40843_022_2259_3 crossref_primary_10_1002_anie_202412434 crossref_primary_10_1002_batt_202300001 crossref_primary_10_3390_catal13040711 crossref_primary_10_1039_D4TA08557D crossref_primary_10_1002_adfm_202415495 crossref_primary_10_1016_j_est_2025_115686 crossref_primary_10_1002_idm2_12020 crossref_primary_10_1016_j_enchem_2022_100073 crossref_primary_10_1021_acs_energyfuels_4c03846 crossref_primary_10_1016_j_cej_2022_138581 crossref_primary_10_1002_advs_202206887 crossref_primary_10_1016_j_etran_2023_100233 crossref_primary_10_1039_D3QM00736G crossref_primary_10_1016_j_electacta_2023_142968 crossref_primary_10_1126_sciadv_adc9516 crossref_primary_10_1021_acsami_4c13188 crossref_primary_10_1016_j_jpowsour_2025_236205 crossref_primary_10_1021_acsaem_4c02391 crossref_primary_10_1002_aenm_202303932 crossref_primary_10_1002_anie_202410463 crossref_primary_10_1007_s10570_023_05629_3 crossref_primary_10_1002_ange_202421427 crossref_primary_10_1002_ange_202400960 crossref_primary_10_1002_anie_202410347 crossref_primary_10_1039_D4NJ05234J crossref_primary_10_1021_acs_nanolett_4c02894 crossref_primary_10_1002_advs_202205108 crossref_primary_10_1016_j_jmapro_2024_04_059 crossref_primary_10_1039_D1EE03466A crossref_primary_10_1002_aenm_202204028 crossref_primary_10_1016_j_cej_2024_158963 crossref_primary_10_1016_j_ceja_2022_100439 crossref_primary_10_1016_j_jpowsour_2022_232257 crossref_primary_10_1002_aenm_202203292 crossref_primary_10_1007_s11051_022_05661_7 crossref_primary_10_1021_acs_inorgchem_4c00937 crossref_primary_10_1038_s41467_024_48078_7 crossref_primary_10_1016_j_ceramint_2022_09_333 crossref_primary_10_1021_acsami_2c12920 crossref_primary_10_1002_idm2_12045 crossref_primary_10_1016_j_ensm_2022_02_045 crossref_primary_10_1021_acs_nanolett_3c04072 crossref_primary_10_1002_smll_202302691 crossref_primary_10_1016_j_ensm_2024_103941 crossref_primary_10_1016_j_mtener_2021_100939 crossref_primary_10_1039_D3TA07067K crossref_primary_10_1016_j_jpowsour_2024_235165 crossref_primary_10_1016_j_jechem_2025_01_028 crossref_primary_10_1021_acsami_2c16174 crossref_primary_10_1146_annurev_matsci_010622_105440 crossref_primary_10_1039_D3TA02761A crossref_primary_10_1039_D2CC04128F crossref_primary_10_1002_adma_202107957 crossref_primary_10_1126_sciadv_adh0069 crossref_primary_10_1002_adma_202409269 crossref_primary_10_1002_adfm_202111919 crossref_primary_10_1016_j_jechem_2022_04_048 crossref_primary_10_1021_acsnano_4c00128 crossref_primary_10_1021_acsnano_4c02547 crossref_primary_10_1021_acs_nanolett_4c05942 crossref_primary_10_1007_s12274_023_6354_y crossref_primary_10_1039_D2TA04229K crossref_primary_10_1002_adfm_202203858 crossref_primary_10_1016_j_mser_2025_100950 crossref_primary_10_1016_j_ensm_2022_01_034 crossref_primary_10_1016_j_cej_2024_158820 crossref_primary_10_3390_gels10050293 crossref_primary_10_1016_j_jpowsour_2024_235028 crossref_primary_10_1002_ange_202410347 crossref_primary_10_1021_acsenergylett_4c02840 crossref_primary_10_1002_aenm_202402746 crossref_primary_10_1002_ange_202410463 crossref_primary_10_1016_j_ensm_2024_103526 crossref_primary_10_1016_j_jelechem_2023_117357 crossref_primary_10_1002_inf2_70012 crossref_primary_10_1021_jacs_3c04279 crossref_primary_10_1002_aenm_202302876 crossref_primary_10_1002_adfm_202404795 crossref_primary_10_1002_eem2_12498 crossref_primary_10_1021_acsnano_3c10870 crossref_primary_10_1021_acsaem_3c01667 crossref_primary_10_1016_j_ensm_2023_02_008 crossref_primary_10_1002_adma_202206013 crossref_primary_10_1002_aenm_202200967 crossref_primary_10_1016_j_jpowsour_2022_231297 crossref_primary_10_1002_adma_202312661 crossref_primary_10_1016_j_etran_2023_100310 crossref_primary_10_1016_j_cclet_2024_109938 crossref_primary_10_1002_adem_202201390 crossref_primary_10_1039_D2TC01946A crossref_primary_10_1002_anie_202401957 crossref_primary_10_1016_j_ensm_2024_103759 crossref_primary_10_1016_j_cej_2023_142183 crossref_primary_10_1016_j_progpolymsci_2023_101743 crossref_primary_10_1002_adfm_202316561 crossref_primary_10_1039_D4QI01831A crossref_primary_10_1016_j_mattod_2024_05_008 crossref_primary_10_1002_idm2_12111 crossref_primary_10_1016_j_ensm_2024_103752 crossref_primary_10_3390_polym15040803 crossref_primary_10_1021_acs_nanolett_4c00154 crossref_primary_10_1038_s41467_022_35636_0 crossref_primary_10_1002_ange_202209169 crossref_primary_10_1016_j_electacta_2022_141441 crossref_primary_10_1002_batt_202400048 crossref_primary_10_1039_D3EE02705H crossref_primary_10_3389_fchem_2024_1472284 crossref_primary_10_1016_j_ensm_2022_01_052 crossref_primary_10_1016_j_mattod_2022_06_007 crossref_primary_10_1016_j_ensm_2022_09_003 crossref_primary_10_1016_j_jpowsour_2023_233789 crossref_primary_10_1002_advs_202300985 crossref_primary_10_1038_s41467_022_29596_8 crossref_primary_10_1016_j_est_2023_109644 crossref_primary_10_1016_j_gee_2024_09_005 crossref_primary_10_1016_j_mtphys_2023_101009 crossref_primary_10_3390_j7030012 crossref_primary_10_1016_j_est_2024_110809 crossref_primary_10_1002_batt_202300187 crossref_primary_10_1038_s41467_025_56324_9 crossref_primary_10_1039_D3CS00439B crossref_primary_10_1039_D3TA07184G crossref_primary_10_1002_aenm_202402402 crossref_primary_10_1039_D3QM00964E crossref_primary_10_1021_acs_energyfuels_4c00633 crossref_primary_10_1002_idm2_12121 crossref_primary_10_1016_j_jmat_2023_05_012 crossref_primary_10_1021_acsenergylett_4c01983 crossref_primary_10_1149_1945_7111_adba95 crossref_primary_10_3390_batteries9120590 crossref_primary_10_1016_j_ensm_2022_11_021 crossref_primary_10_1002_inf2_12288 crossref_primary_10_1002_smll_202307942 crossref_primary_10_3390_ma17020306 crossref_primary_10_35534_spe_2023_10004 crossref_primary_10_1002_smll_202304677 crossref_primary_10_1016_j_jechem_2022_11_059 crossref_primary_10_1016_j_jpowsour_2021_230921 crossref_primary_10_2139_ssrn_4105393 crossref_primary_10_1021_acsaem_3c01472 crossref_primary_10_1016_j_compscitech_2023_110312 crossref_primary_10_1016_j_ensm_2023_02_038 crossref_primary_10_1039_D3TA01787G crossref_primary_10_1002_adfm_202419102 crossref_primary_10_1016_j_jallcom_2022_168364 crossref_primary_10_1021_acssuschemeng_1c07996 crossref_primary_10_1038_s41467_023_39725_6 crossref_primary_10_1002_advs_202204633 crossref_primary_10_1007_s41918_023_00200_x crossref_primary_10_1016_j_ensm_2022_12_048 crossref_primary_10_1016_j_est_2024_112399 crossref_primary_10_1016_j_etran_2022_100224 crossref_primary_10_3390_coatings13040788 crossref_primary_10_1016_j_cej_2022_135106 crossref_primary_10_1016_j_ensm_2023_102876 crossref_primary_10_1016_j_jpowsour_2023_232914 crossref_primary_10_1002_inf2_12292 crossref_primary_10_1021_acs_chemrev_2c00289 crossref_primary_10_1038_s41578_023_00623_4 crossref_primary_10_34133_2022_9753506 crossref_primary_10_1002_anie_202421427 crossref_primary_10_1016_j_cej_2024_149516 crossref_primary_10_1039_D4EE02358G crossref_primary_10_1016_j_ensm_2023_102773 crossref_primary_10_1002_adfm_202307740 crossref_primary_10_1016_j_ensm_2025_104034 crossref_primary_10_1039_D4DT01133C crossref_primary_10_1016_j_cej_2024_157242 crossref_primary_10_1039_D3TA02501B crossref_primary_10_1021_acsnano_4c02236 crossref_primary_10_1016_j_jpowsour_2022_231891 crossref_primary_10_1021_acs_macromol_2c00788 crossref_primary_10_1002_pssr_202400434 crossref_primary_10_1016_j_flatc_2024_100708 crossref_primary_10_1021_acsami_4c08319 crossref_primary_10_1002_advs_202304117 crossref_primary_10_1002_eem2_12447 crossref_primary_10_1016_j_carbon_2024_119023 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1016_j_ensm_2025_104125 crossref_primary_10_1016_j_nanoen_2023_108571 crossref_primary_10_1002_batt_202300434 crossref_primary_10_1021_acs_energyfuels_3c02237 crossref_primary_10_1021_acs_energyfuels_4c02209 crossref_primary_10_1021_jacs_4c04519 crossref_primary_10_1002_smtd_202402220 crossref_primary_10_1021_acs_energyfuels_3c04898 crossref_primary_10_1061_JOEEDU_EEENG_7340 crossref_primary_10_1039_D3TA03195K crossref_primary_10_1016_j_ensm_2023_01_017 crossref_primary_10_1002_cssc_202301268 crossref_primary_10_1016_j_jpowsour_2022_231681 crossref_primary_10_1149_1945_7111_acc697 crossref_primary_10_26599_NR_2025_94906992 crossref_primary_10_1002_anie_202416170 crossref_primary_10_1021_acsami_4c07798 crossref_primary_10_1016_j_cclet_2024_110417 crossref_primary_10_1063_5_0206377 crossref_primary_10_1039_D2CC04862K crossref_primary_10_1016_j_ijengsci_2024_104137 crossref_primary_10_1016_j_cej_2024_148995 crossref_primary_10_1039_D4QM00182F crossref_primary_10_1021_acsaem_3c00396 crossref_primary_10_1002_advs_202305430 crossref_primary_10_1016_j_scib_2022_01_026 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124864 crossref_primary_10_1002_adma_202405097 crossref_primary_10_1016_j_jmat_2022_02_009 crossref_primary_10_1016_j_ensm_2025_104134 crossref_primary_10_1021_acs_chemmater_3c01992 crossref_primary_10_1039_D4TA06120A crossref_primary_10_1002_adma_202500348 crossref_primary_10_1002_aenm_202103530 crossref_primary_10_1016_j_nxener_2023_100042 crossref_primary_10_1021_acs_jpcc_4c07186 crossref_primary_10_1021_acs_jpclett_4c02525 crossref_primary_10_1016_j_cclet_2024_109568 crossref_primary_10_1016_j_mser_2025_100941 crossref_primary_10_1002_adfm_202410891 crossref_primary_10_1039_D2TA02138B crossref_primary_10_1002_adfm_202408465 crossref_primary_10_1002_ange_202218621 crossref_primary_10_1002_anie_202110917 crossref_primary_10_1016_j_jpowsour_2022_231797 crossref_primary_10_1002_anie_202400960 crossref_primary_10_1016_j_jpowsour_2022_231794 crossref_primary_10_1016_j_cej_2022_136227 crossref_primary_10_1016_j_est_2024_112181 crossref_primary_10_1002_ange_202412434 crossref_primary_10_1007_s40820_022_00996_1 crossref_primary_10_1002_smll_202305322 crossref_primary_10_1021_acsami_2c07471 crossref_primary_10_1002_smll_202305326 crossref_primary_10_1016_j_jcis_2025_02_155 crossref_primary_10_1038_s41467_023_37313_2 crossref_primary_10_1039_D4EE05739B crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1002_adma_202406151 crossref_primary_10_3390_molecules27217488 crossref_primary_10_1016_j_ensm_2023_102955 crossref_primary_10_1016_j_ijhydene_2024_04_154 crossref_primary_10_1016_j_jpowsour_2022_232559 crossref_primary_10_1016_j_cej_2021_133922 crossref_primary_10_1039_D2EE01053D crossref_primary_10_3390_batteries9050270 crossref_primary_10_1039_D4QM00625A crossref_primary_10_1016_j_est_2024_112009 crossref_primary_10_1039_D3TA02448B crossref_primary_10_1002_aenm_202301708 crossref_primary_10_1002_adfm_202415298 crossref_primary_10_1039_D4MH01869A crossref_primary_10_1016_j_polymer_2024_127641 crossref_primary_10_1021_jacs_4c13126 crossref_primary_10_1002_ange_202403661 crossref_primary_10_1016_j_cej_2024_155029 crossref_primary_10_2139_ssrn_4168657 crossref_primary_10_1016_j_cej_2022_138787 crossref_primary_10_1007_s11814_025_00395_3 crossref_primary_10_1016_j_ensm_2021_11_021 crossref_primary_10_1002_adfm_202315555 crossref_primary_10_1002_adfm_202313496 crossref_primary_10_1002_smll_202309501 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1039_D1TA10685F crossref_primary_10_1002_aenm_202401281 crossref_primary_10_1016_j_mrl_2021_10_004 crossref_primary_10_1016_j_nanoen_2023_108890 crossref_primary_10_1021_acsaem_2c02170 crossref_primary_10_1002_aenm_202405760 crossref_primary_10_1038_s41467_023_43467_w crossref_primary_10_1021_acsomega_3c09952 crossref_primary_10_1021_jacs_3c07858 crossref_primary_10_1002_smll_202304164 crossref_primary_10_1002_adfm_202421965 crossref_primary_10_1016_j_xcrp_2023_101328 crossref_primary_10_1039_D5EE00203F crossref_primary_10_1007_s11426_022_1525_3 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1016_j_jpowsour_2023_232738 crossref_primary_10_1021_acs_macromol_4c01738 crossref_primary_10_1016_j_ceramint_2024_03_362 crossref_primary_10_1002_anie_202302586 crossref_primary_10_3390_batteries8100141 crossref_primary_10_1002_smll_202405909 crossref_primary_10_1093_chemle_upad053 crossref_primary_10_1002_eem2_12670 crossref_primary_10_1038_s43246_024_00482_8 crossref_primary_10_1016_j_pmatsci_2023_101171 crossref_primary_10_1002_anie_202409500 crossref_primary_10_1002_adma_202311195 crossref_primary_10_1016_j_cej_2024_154151 crossref_primary_10_1016_j_electacta_2022_140624 crossref_primary_10_1021_acsami_1c20243 crossref_primary_10_1039_D4QM00428K crossref_primary_10_1016_j_jallcom_2023_170640 crossref_primary_10_1021_acs_nanolett_3c03852 crossref_primary_10_3389_fceng_2022_883502 crossref_primary_10_1002_ange_202414777 crossref_primary_10_1002_eem2_12428 crossref_primary_10_1002_adma_202303460 crossref_primary_10_1016_j_est_2023_109912 |
Cites_doi | 10.1039/C8TA11449H 10.1016/j.jpowsour.2018.04.099 10.1016/j.eurpolymj.2005.09.017 10.1002/adma.201804461 10.1016/j.nanoen.2019.05.002 10.1038/s41578-019-0157-5 10.1126/sciadv.aas9820 10.1103/PhysRevLett.91.266104 10.1021/acsami.9b14824 10.1149/1.1850854 10.1038/s41560-020-0648-z 10.1039/C8TA05642K 10.1021/acssuschemeng.9b01869 10.1039/c1ee01598b 10.1021/acsenergylett.9b01676 10.1016/j.ssi.2018.10.023 10.1002/adma.202000399 10.1039/C7TA10517G 10.1021/jacs.9b03517 10.1111/jace.13844 10.1021/acsami.7b00336 10.1021/cen-09118-cover 10.1002/adma.201502636 10.1021/cm901452z 10.1016/j.jpowsour.2017.04.014 10.1002/aenm.201804004 10.3390/ma12233892 10.1021/jacs.7b01763 10.1021/acs.chemrev.7b00115 10.1016/j.jpowsour.2018.08.016 10.1038/ncomms10992 10.1038/natrevmats.2016.13 10.1038/28818 10.1002/adfm.201901047 10.1021/acsami.7b17301 10.1016/j.jmat.2019.12.010 10.1021/acs.jpclett.5b02352 10.1021/acs.nanolett.7b00715 10.1002/adma.201802661 10.1039/C9TA12495K 10.1039/C6CS00875E 10.1021/acs.chemrev.9b00268 10.1002/aenm.201402073 10.1016/j.jpowsour.2014.10.078 10.1016/j.jpowsour.2013.08.037 10.1038/ncomms9058 10.1007/s11581-016-1905-9 10.1039/C9CS00635D 10.1021/acs.nanolett.5b04117 10.1002/adfm.201700348 10.1002/aenm.201703360 10.1016/j.ensm.2020.01.009 10.1038/s41565-020-0657-x 10.1016/j.nanoen.2020.105107 10.1002/aenm.201703474 10.1002/aenm.201702657 10.1016/j.ensm.2019.10.020 10.1021/acsnano.6b06797 10.1063/1.4990501 10.1016/j.ensm.2019.01.007 10.1002/anie.201102357 10.1038/s41560-020-0575-z 10.1002/adma.201805574 10.1021/ja4054465 10.1002/smll.201902813 10.1021/acsami.5b07517 10.1021/acs.nanolett.8b01421 10.1038/s41563-020-0655-2 10.1016/0079-6425(93)90004-5 10.1039/C5TA08574H 10.1021/acs.nanolett.9b02678 10.1073/pnas.1708489114 10.1039/C8EE02617C 10.1021/acsami.8b06658 10.1038/nmat3793 10.1016/j.jpowsour.2018.02.062 10.1038/nmat3191 10.1038/s41578-019-0103-6 10.1002/advs.201600377 10.1016/j.matt.2020.02.003 10.1002/adma.201601925 10.1002/adma.201707629 10.1002/aenm.201703138 10.1002/anie.201710841 10.1039/C3CC49588D 10.1002/aenm.201801528 10.1038/s41565-019-0427-9 10.1038/s41560-020-0565-1 10.1016/j.ensm.2019.06.021 10.1021/acsami.8b13735 10.1016/S1359-0286(97)80049-6 10.1016/j.mtnano.2020.100079 10.1002/smll.201802244 10.1038/nenergy.2016.42 10.1021/acs.chemrev.9b00760 10.1021/acs.chemmater.6b00610 10.1021/acsami.9b07830 10.1021/acsami.7b18123 10.1002/smll.201904216 10.1038/d41586-019-02965-y 10.1039/C6TA01441K 10.1039/C3EE42613K 10.1016/j.mser.2018.10.004 10.1021/ja3091438 10.1021/acs.jpcc.6b11136 10.1021/jacs.7b10864 10.1016/S0378-7753(98)00242-0 10.1016/j.ensm.2018.07.004 10.1016/j.elecom.2016.02.022 10.1149/1.1615352 10.1039/C6TA02907H 10.1038/nenergy.2016.141 10.1016/j.nanoen.2019.03.051 10.1038/s41563-019-0431-3 10.1016/j.nanoen.2016.09.002 10.1039/C7EE02723K 10.1021/acsami.9b16936 10.1002/adma.201901131 10.1126/science.1212741 10.1016/S0378-7753(00)00533-4 10.1021/acs.nanolett.5b00600 10.1016/j.jpowsour.2005.03.072 10.1021/jacs.6b05341 10.4028/www.scientific.net/AMR.1140.304 10.1002/anie.201608924 10.1039/C6TA07384K 10.1038/s41560-019-0338-x 10.1021/acsami.8b02240 10.1038/natrevmats.2016.103 10.1021/acsami.9b20104 10.1007/s10853-012-6687-5 10.1016/j.electacta.2016.06.025 10.1038/35087538 10.1016/j.mattod.2018.01.001 10.1016/j.ensm.2018.03.016 10.1016/S0378-7753(01)00610-3 10.1002/adma.201806082 10.1002/aenm.201802927 10.1002/advs.201903088 10.1039/C4CP02921F 10.1016/j.ensm.2016.07.003 10.1016/j.electacta.2017.03.083 10.1039/C9TA09969G 10.1016/S0167-2738(00)00327-1 10.1016/j.jpowsour.2015.09.111 10.1039/C7TA05832B 10.1021/cm5016959 10.1021/cm0300516 10.1038/nenergy.2016.30 10.1002/adma.201902029 10.1073/pnas.1600422113 10.1016/j.ssi.2016.07.013 10.1039/c4cs00020j 10.1002/aenm.201900626 10.1038/nnano.2017.16 10.1039/C9EE03828K 10.1002/aenm.201703404 10.1016/0032-3861(73)90146-8 10.1038/nnano.2016.32 10.1038/s41560-019-0513-0 10.1016/j.electacta.2016.12.018 10.1039/C5TA03471J 10.1039/C8TA01907J 10.1016/j.elecom.2015.05.001 10.1002/aenm.201903376 10.1016/j.joule.2019.03.019 10.1002/ange.201607539 10.1039/C3EE40795K 10.1007/s10853-013-7226-8 10.1073/pnas.1520394112 10.1016/j.joule.2020.02.006 10.1021/acs.jpcc.7b10725 10.1016/S0378-7753(01)00748-0 10.1073/pnas.1518188113 10.1016/j.progpolymsci.2017.12.004 10.1021/acs.nanolett.8b01111 10.1021/acsami.7b03806 10.1016/j.joule.2018.02.001 10.1021/acs.chemrev.9b00427 10.1016/0167-2738(82)90072-8 10.1016/j.nanoen.2017.12.037 10.1021/jacs.7b06364 10.1039/C4TA00214H 10.1021/acs.nanolett.8b04919 10.1016/j.jpowsour.2017.05.061 10.1021/acs.jpclett.5b01727 10.1002/adma.201807789 10.1038/s41578-019-0165-5 10.1149/2.0731504jes |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2021 Springer Nature Limited 2021. |
Copyright_xml | – notice: Springer Nature Limited 2021 – notice: Springer Nature Limited 2021. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1038/s41578-021-00320-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2058-8437 |
EndPage | 1019 |
ExternalDocumentID | 10_1038_s41578_021_00320_0 |
GroupedDBID | 0R~ 88I 8FE 8FG AAEEF AARCD AAWYQ AAYZH AAZLF ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFBBN AFKRA AFSHS AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU D1I DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ KB. M2P NNMJJ O9- ODYON PDBOC RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-45b0044c343a57e4bb46faf9891d91bc621194a9cfa73220c5cc7f38570044b53 |
IEDL.DBID | BENPR |
ISSN | 2058-8437 |
IngestDate | Sat Aug 23 13:09:48 EDT 2025 Tue Jul 01 03:55:39 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:37:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-45b0044c343a57e4bb46faf9891d91bc621194a9cfa73220c5cc7f38570044b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3261-4053 0000-0003-2270-4458 0000-0001-5665-7560 |
PQID | 2591866862 |
PQPubID | 2069615 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2591866862 crossref_citationtrail_10_1038_s41578_021_00320_0 crossref_primary_10_1038_s41578_021_00320_0 springer_journals_10_1038_s41578_021_00320_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature reviews. Materials |
PublicationTitleAbbrev | Nat Rev Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Keller, Barzi, Passerini (CR119) 2018; 392 Chi, Liu, Song, Fan, Zhang (CR164) 2017; 27 Li, Song, Manthiram (CR149) 2017; 46 Mindemark, Lacey, Bowden, Brandell (CR28) 2018; 81 Xu (CR136) 2018; 400 Niu (CR168) 2019; 14 Yao (CR81) 2018; 18 Liu, Lin, Sun, Zhou, Cui (CR76) 2016; 10 Bae (CR96) 2018; 57 Huo (CR129) 2019; 9 Xiao (CR157) 2020; 5 Pignanelli, Romero, Faccio, Fernández-Werner, Mombrú (CR103) 2018; 122 Xia, Fujieda, Tatsumi, Prosini, Sakai (CR42) 2001; 92 Janek, Zeier (CR9) 2016; 1 Bates, Dudney, Neudecker, Ueda, Evans (CR62) 2000; 135 Kumar, Ganesan, Riggleman (CR105) 2017; 147 Wang, Yi, Fici, Laine, Kieffer (CR85) 2017; 121 Duan (CR186) 2017; 140 Etacheri, Marom, Elazari, Salitra, Aurbach (CR4) 2011; 4 Wang (CR33) 2020; 120 Zheng, Tang, Hu (CR92) 2016; 128 Lin (CR74) 2016; 16 Keller (CR135) 2017; 353 Whiteley, Taynton, Zhang, Lee (CR189) 2015; 27 Chi (CR178) 2019; 17 Zhang (CR169) 2018; 2 Fan (CR99) 2020; 12 Lin, Liu, Cui (CR19) 2017; 12 Duan (CR185) 2019; 31 Zhao (CR177) 2017; 114 Harry, Hallinan, Parkinson, MacDowell, Balsara (CR47) 2014; 13 Culver, Koerver, Zeier, Janek (CR158) 2019; 9 Fenton, Parker, Wright (CR38) 1973; 14 Manthiram, Yu, Wang (CR14) 2017; 2 Liu, Liu, Lin, Pei, Cui (CR6) 2018; 4 Famprikis, Canepa, Dawson, Islam, Masquelier (CR31) 2019; 18 Dirican, Yan, Zhu, Zhang (CR64) 2019; 136 Guo (CR128) 2016; 4 Xue (CR70) 2017; 235 Chung (CR75) 2001; 97–98 Günther (CR27) 2016; 1140 Chai (CR184) 2018; 14 Chen, He, Ding, Wang, Wang (CR188) 2019; 12 Varzi, Raccichini, Passerini, Scrosati (CR22) 2016; 4 Fan, Wei, Li, Lu (CR191) 2018; 8 Li (CR53) 2019; 4 Liu, Zhang, Sun, Wu, Zhao (CR139) 2019; 11 Fan (CR171) 2018; 8 Bruce, Freunberger, Hardwick, Tarascon (CR13) 2012; 11 Zhang (CR88) 2018; 327 Villaluenga (CR190) 2016; 113 Yang (CR109) 2020; 8 Zhang (CR162) 2018; 8 Brissot, Rosso, Chazalviel, Lascaud (CR46) 1999; 81 Jian, Hu, Ji, Chen (CR59) 2017; 29 Zhang (CR153) 2019; 31 Chai (CR183) 2017; 4 Castelvecchi, Stoye (CR2) 2019; 574 Perea, Dontigny, Zaghib (CR134) 2017; 359 Hu (CR148) 2016; 4 Ren, Shen, Lin, Nan (CR131) 2015; 57 Zhang (CR84) 2018; 18 Lee (CR57) 2020; 5 Zhao (CR61) 2019; 3 Cheng (CR104) 2014; 16 Yang, Yin, Zhang, Li, Guo (CR161) 2015; 6 Chen (CR86) 2018; 46 Zhang (CR176) 2019; 31 Zhu (CR100) 2018; 6 Wang (CR78) 2018; 6 Fu (CR108) 2016; 113 Tan, Banerjee, Chen, Meng (CR36) 2020; 15 Xue, He, Xie (CR39) 2015; 3 Nan, Fan, Lin, Cai (CR83) 2003; 91 Chen (CR137) 2016; 210 Zhou (CR181) 2018; 31 Liang (CR44) 2020; 78 Choi, Aurbach (CR12) 2016; 1 Yan (CR174) 2018; 30 Li (CR35) 2020; 13 Wang (CR114) 2019; 60 Jacoby (CR41) 2013; 91 Fu (CR133) 2020; 19 Zheng, Dang, Feng, Chien, Hu (CR93) 2017; 5 Wang (CR117) 2020; 6 Xu (CR142) 2014; 2 Jiang (CR173) 2020; 10 Gauthier (CR150) 2015; 6 Huo (CR77) 2019; 18 Liu (CR102) 2015; 15 Bae (CR113) 2018; 15 Chen, Zhao, Yang, Yao, Xu (CR145) 2017; 23 Yan (CR175) 2018; 30 Zheng, Hu (CR95) 2018; 10 Zhu, He, Mo (CR141) 2016; 4 Freunberger (CR25) 2011; 50 Liang (CR167) 2016; 113 Thangadurai, Sumaletha, Dana (CR60) 2014; 43 Li, Zhang, Dou, Wong, Ng (CR98) 2019; 7 Lin (CR160) 2016; 11 Zou (CR37) 2020; 120 Haruyama, Sodeyama, Han, Takada, Tateyama (CR54) 2014; 26 Liu (CR67) 2019; 16 Luntz, Voss, Reuter (CR55) 2015; 6 Seki (CR151) 2005; 146 Wetjen (CR152) 2014; 246 Li (CR43) 2001; 97–98 Wenzel (CR52) 2016; 28 Zhu, He, Mo (CR50) 2015; 7 Cao (CR155) 2020; 20 Yang, Luo, Sun (CR24) 2020; 49 Deng (CR56) 2020; 27 Ye (CR163) 2017; 139 Zekoll (CR116) 2018; 11 Kimura, Yajima, Tominaga (CR45) 2016; 66 Zhai (CR115) 2017; 17 Huang (CR165) 2019; 19 Li, Chen, Wang, Fan (CR125) 2018; 10 Jung, Lee, Choi, Jang, Kim (CR143) 2015; 162 Shi (CR172) 2020; 10 Choi, Lee, Yu, Doh, Lee (CR144) 2015; 274 Weston, Steele (CR123) 1982; 7 Goodenough (CR1) 2014; 7 Randau (CR11) 2020; 5 Stephan (CR40) 2006; 42 Li, Xie, Zhang, Guo (CR97) 2020; 8 Xie (CR110) 2018; 8 Li, Sha, Guo (CR112) 2019; 11 Liu (CR8) 2019; 4 Zhao (CR146) 2016; 301 Lopez, Mackanic, Cui, Bao (CR29) 2019; 4 Kato (CR49) 2016; 1 Wang (CR107) 2018; 10 Gong (CR111) 2018; 21 Cui (CR68) 2020; 2 Tominaga, Yamazaki (CR120) 2014; 50 Zhang (CR87) 2017; 139 Yang (CR48) 2019; 61 Gadjourova, Andreev, Tunstall, Bruce (CR69) 2001; 412 Huang (CR166) 2019; 15 Schnella (CR17) 2018; 382 CR16 Oh (CR154) 2019; 9 CR15 Xu (CR18) 2014; 7 Hu (CR26) 2016; 1 Lin (CR73) 2018; 30 Munaoka (CR127) 2018; 8 Nan (CR106) 1993; 37 Goodenough, Park (CR5) 2013; 135 Zhou (CR126) 2018; 6 Stramare, Thangadurai, Weppner (CR58) 2003; 15 Chen, Li, Fan, Nan, Zhang (CR79) 2019; 29 Ni, Case, Sakamoto, Rangasamy, Wolfenstine (CR122) 2012; 47 Zhang (CR89) 2016; 28 Zhou (CR180) 2016; 138 Xiao (CR21) 2020; 5 Zhu, Wang, Miller (CR80) 2019; 11 Wu (CR159) 2013; 135 Li (CR65) 2020; 7 Wang (CR156) 2018; 8 Chen, Li, Yu, Chen, Li (CR34) 2020; 120 Ju (CR182) 2018; 10 Liang (CR66) 2019; 21 Pan (CR91) 2020; 32 Li (CR101) 2019; 11 Liang (CR138) 2019; 141 Mauger, Julien, Paolella, Armand, Zaghib (CR10) 2019; 12 Ohtomo, Hayashi (CR51) 2013; 48 Goodenough, Kim (CR140) 2010; 22 Cheng, Zhang, Zhao, Zhang (CR20) 2017; 117 Wang, Huang, Chen (CR82) 2003; 6 Lu (CR118) 2015; 5 Zhang (CR90) 2020; 25 Li (CR179) 2017; 56 Cheng, Sharafi, Sakamoto (CR132) 2017; 223 Zhao, Stalin, Zhao, Archer (CR30) 2020; 5 Monroe, Newman (CR121) 2005; 152 Li, Erickson, Manthiram (CR7) 2020; 5 Zhao (CR124) 2016; 295 Zhou, Ma, Dong, Li, Cui (CR71) 2019; 31 Croce, Appetecchi, Persi, Scrosati (CR72) 1998; 394 Yang, Zheng, Cheng, Hu, Chan (CR94) 2017; 9 Liu (CR170) 2016; 7 Gai (CR187) 2019; 7 Yue (CR147) 2016; 5 Sakabe (CR63) 1997; 2 Dorfler (CR23) 2020; 4 Dunn, Kamath, Tarascon (CR3) 2011; 334 Ren (CR32) 2015; 98 Wang (CR130) 2017; 9 S Randau (320_CR11) 2020; 5 ZX Wang (320_CR82) 2003; 6 YS Hu (320_CR26) 2016; 1 XZ Chen (320_CR188) 2019; 12 K Pan (320_CR91) 2020; 32 L-P Wang (320_CR156) 2018; 8 Y Guo (320_CR128) 2016; 4 JB Bates (320_CR62) 2000; 135 YY Xia (320_CR42) 2001; 92 Y Ren (320_CR131) 2015; 57 X Li (320_CR35) 2020; 13 C Xu (320_CR142) 2014; 2 Y Li (320_CR98) 2019; 7 KK Fu (320_CR108) 2016; 113 M Dirican (320_CR64) 2019; 136 C Fu (320_CR133) 2020; 19 HY Huo (320_CR77) 2019; 18 S Dorfler (320_CR23) 2020; 4 J-H Choi (320_CR144) 2015; 274 C Yan (320_CR175) 2018; 30 D Lin (320_CR73) 2018; 30 Y Zhang (320_CR90) 2020; 25 Q Zhou (320_CR71) 2019; 31 G Cui (320_CR68) 2020; 2 J Zheng (320_CR93) 2017; 5 CP Yang (320_CR161) 2015; 6 T Yang (320_CR94) 2017; 9 C Brissot (320_CR46) 1999; 81 W Liu (320_CR76) 2016; 10 DC Lin (320_CR19) 2017; 12 J Bae (320_CR113) 2018; 15 ZG Xue (320_CR39) 2015; 3 YZ Zhu (320_CR141) 2016; 4 W Li (320_CR149) 2017; 46 L Fan (320_CR171) 2018; 8 JB Goodenough (320_CR5) 2013; 135 A Varzi (320_CR22) 2016; 4 Y-C Jung (320_CR143) 2015; 162 Y Liu (320_CR170) 2016; 7 SC Chung (320_CR75) 2001; 97–98 CW Nan (320_CR83) 2003; 91 Y Ren (320_CR32) 2015; 98 DC Lin (320_CR74) 2016; 16 J Liu (320_CR8) 2019; 4 H Xie (320_CR110) 2018; 8 J Liang (320_CR44) 2020; 78 C Monroe (320_CR121) 2005; 152 JE Weston (320_CR123) 1982; 7 M Gauthier (320_CR150) 2015; 6 YT Li (320_CR179) 2017; 56 SA Freunberger (320_CR25) 2011; 50 Z Li (320_CR97) 2020; 8 CH Wang (320_CR130) 2017; 9 SP Culver (320_CR158) 2019; 9 XY Xu (320_CR136) 2018; 400 Y Kato (320_CR49) 2016; 1 W Xu (320_CR18) 2014; 7 Q Li (320_CR43) 2001; 97–98 A Perea (320_CR134) 2017; 359 J Zheng (320_CR92) 2016; 128 Q Zhang (320_CR153) 2019; 31 WD Zhou (320_CR180) 2016; 138 JL Gai (320_CR187) 2019; 7 JB Goodenough (320_CR1) 2014; 7 SJ Chen (320_CR145) 2017; 23 X Yang (320_CR24) 2020; 49 Z Zou (320_CR37) 2020; 120 J Haruyama (320_CR54) 2014; 26 B Li (320_CR101) 2019; 11 YZ Zhu (320_CR50) 2015; 7 XK Zhang (320_CR84) 2018; 18 X Wang (320_CR114) 2019; 60 B Zhou (320_CR126) 2018; 6 DHS Tan (320_CR36) 2020; 15 Z Jian (320_CR59) 2017; 29 WM Wang (320_CR85) 2017; 121 SB Huang (320_CR165) 2019; 19 J Xiao (320_CR21) 2020; 5 V Thangadurai (320_CR60) 2014; 43 J Lopez (320_CR29) 2019; 4 K Liu (320_CR139) 2019; 11 A Mauger (320_CR10) 2019; 12 F Croce (320_CR72) 1998; 394 PG Bruce (320_CR13) 2012; 11 A Manthiram (320_CR14) 2017; 2 S Li (320_CR65) 2020; 7 J Schnella (320_CR17) 2018; 382 T Jiang (320_CR173) 2020; 10 YR Zhao (320_CR146) 2016; 301 AM Stephan (320_CR40) 2006; 42 SS Chi (320_CR178) 2019; 17 PC Yao (320_CR81) 2018; 18 R Chen (320_CR34) 2020; 120 MY Wu (320_CR159) 2013; 135 I Villaluenga (320_CR190) 2016; 113 N Zhao (320_CR61) 2019; 3 D Li (320_CR125) 2018; 10 T Günther (320_CR27) 2016; 1140 QY Zhu (320_CR80) 2019; 11 YH Xiao (320_CR157) 2020; 5 J Mindemark (320_CR28) 2018; 81 H Yang (320_CR109) 2020; 8 JC Chai (320_CR184) 2018; 14 M Jacoby (320_CR41) 2013; 91 T Munaoka (320_CR127) 2018; 8 D Lin (320_CR160) 2016; 11 M Keller (320_CR119) 2018; 392 Z Liang (320_CR167) 2016; 113 S Deng (320_CR56) 2020; 27 P Hu (320_CR148) 2016; 4 JC Chai (320_CR183) 2017; 4 Y Sakabe (320_CR63) 1997; 2 W Liu (320_CR102) 2015; 15 Q Zhao (320_CR30) 2020; 5 K Kimura (320_CR45) 2016; 66 H Ye (320_CR163) 2017; 139 XZ Wang (320_CR107) 2018; 10 T Famprikis (320_CR31) 2019; 18 S Zekoll (320_CR116) 2018; 11 Y Lu (320_CR118) 2015; 5 J Zheng (320_CR95) 2018; 10 L Fan (320_CR191) 2018; 8 J Bae (320_CR96) 2018; 57 SK Kumar (320_CR105) 2017; 147 320_CR16 V Etacheri (320_CR4) 2011; 4 WD Li (320_CR7) 2020; 5 320_CR15 Y Zhao (320_CR124) 2016; 295 D Cao (320_CR155) 2020; 20 X-B Cheng (320_CR20) 2017; 117 Z Gadjourova (320_CR69) 2001; 412 ZN Wang (320_CR78) 2018; 6 X Zhang (320_CR87) 2017; 139 J Janek (320_CR9) 2016; 1 KJ Harry (320_CR47) 2014; 13 R Fan (320_CR99) 2020; 12 JE Ni (320_CR122) 2012; 47 S Seki (320_CR151) 2005; 146 Y-G Lee (320_CR57) 2020; 5 JW Ju (320_CR182) 2018; 10 YH Gong (320_CR111) 2018; 21 C Yan (320_CR174) 2018; 30 J Liang (320_CR66) 2019; 21 JY Liang (320_CR138) 2019; 141 H Duan (320_CR186) 2017; 140 D Castelvecchi (320_CR2) 2019; 574 JM Whiteley (320_CR189) 2015; 27 X Yang (320_CR48) 2019; 61 X Li (320_CR53) 2019; 4 SB Huang (320_CR166) 2019; 15 AC Luntz (320_CR55) 2015; 6 T Ohtomo (320_CR51) 2013; 48 S Wenzel (320_CR52) 2016; 28 Z Li (320_CR112) 2019; 11 L Chen (320_CR79) 2019; 29 L Chen (320_CR86) 2018; 46 M Wetjen (320_CR152) 2014; 246 K Liu (320_CR6) 2018; 4 X Zhang (320_CR176) 2019; 31 Y Liu (320_CR67) 2019; 16 H Duan (320_CR185) 2019; 31 LP Yue (320_CR147) 2016; 5 B Chen (320_CR137) 2016; 210 WD Zhou (320_CR181) 2018; 31 M Keller (320_CR135) 2017; 353 B Dunn (320_CR3) 2011; 334 P Zhu (320_CR100) 2018; 6 CZ Zhao (320_CR177) 2017; 114 S Wang (320_CR117) 2020; 6 JB Goodenough (320_CR140) 2010; 22 JX Zhang (320_CR89) 2016; 28 EJ Cheng (320_CR132) 2017; 223 S Stramare (320_CR58) 2003; 15 Y Tominaga (320_CR120) 2014; 50 R Zhang (320_CR169) 2018; 2 S Xue (320_CR70) 2017; 235 F Pignanelli (320_CR103) 2018; 122 X Shi (320_CR172) 2020; 10 C Wang (320_CR33) 2020; 120 X Zhang (320_CR88) 2018; 327 L Cheng (320_CR104) 2014; 16 DE Fenton (320_CR38) 1973; 14 C Zhang (320_CR162) 2018; 8 HY Huo (320_CR129) 2019; 9 DY Oh (320_CR154) 2019; 9 SS Chi (320_CR164) 2017; 27 CW Nan (320_CR106) 1993; 37 C Niu (320_CR168) 2019; 14 HW Zhai (320_CR115) 2017; 17 JW Choi (320_CR12) 2016; 1 |
References_xml | – volume: 7 start-page: 3391 year: 2019 end-page: 3398 ident: CR98 article-title: Li La Zr O ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11449H – volume: 392 start-page: 206 year: 2018 end-page: 225 ident: CR119 article-title: Hybrid electrolytes for lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.099 – volume: 42 start-page: 21 year: 2006 end-page: 42 ident: CR40 article-title: Review on gel polymer electrolytes for lithium batteries publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2005.09.017 – volume: 30 start-page: 1804461 year: 2018 ident: CR175 article-title: An armored mixed conductor interphase on a dendrite-free lithium-metal anode publication-title: Adv. Mater. doi: 10.1002/adma.201804461 – volume: 61 start-page: 567 year: 2019 end-page: 575 ident: CR48 article-title: High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.002 – volume: 5 start-page: 105 year: 2020 end-page: 126 ident: CR157 article-title: Understanding interface stability in solid-state batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0157-5 – volume: 4 start-page: eaas9820 year: 2018 ident: CR6 article-title: Materials for lithium-ion battery safety publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9820 – ident: CR16 – volume: 91 start-page: 266104 year: 2003 ident: CR83 article-title: Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO particles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.266104 – volume: 11 start-page: 42206 year: 2019 end-page: 42213 ident: CR101 article-title: Li La TiO nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14824 – volume: 152 start-page: A396 year: 2005 end-page: A404 ident: CR121 article-title: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces publication-title: J. Electrochem. Soc. doi: 10.1149/1.1850854 – volume: 5 start-page: 561 year: 2020 end-page: 568 ident: CR21 article-title: Understanding and applying coulombic efficiency in lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 6 start-page: 17227 year: 2018 end-page: 17234 ident: CR78 article-title: Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05642K – volume: 7 start-page: 15896 year: 2019 end-page: 15903 ident: CR187 article-title: Flexible organic–inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01869 – volume: 4 start-page: 3243 year: 2011 end-page: 3262 ident: CR4 article-title: Challenges in the development of advanced Li-ion batteries: a review publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 4 start-page: 2480 year: 2019 end-page: 2488 ident: CR53 article-title: Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01676 – volume: 327 start-page: 32 year: 2018 end-page: 38 ident: CR88 article-title: Effects of Li La Zr Ta O on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes publication-title: Solid State Ion. doi: 10.1016/j.ssi.2018.10.023 – volume: 32 start-page: 2000399 year: 2020 ident: CR91 article-title: A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.202000399 – volume: 6 start-page: 4279 year: 2018 end-page: 4285 ident: CR100 article-title: Li La TiO ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10517G – volume: 141 start-page: 9165 year: 2019 end-page: 9169 ident: CR138 article-title: Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03517 – volume: 98 start-page: 3603 year: 2015 end-page: 3623 ident: CR32 article-title: Oxide electrolytes for lithium batteries publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13844 – volume: 9 start-page: 13694 year: 2017 end-page: 13702 ident: CR130 article-title: Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00336 – volume: 91 start-page: 13 year: 2013 end-page: 18 ident: CR41 article-title: Batteries get flexible publication-title: Chem. Eng. News doi: 10.1021/cen-09118-cover – volume: 27 start-page: 6922 year: 2015 end-page: 6927 ident: CR189 article-title: Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix publication-title: Adv. Mater. doi: 10.1002/adma.201502636 – volume: 22 start-page: 587 year: 2010 end-page: 603 ident: CR140 article-title: Challenages for rechargable Li batteries publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 353 start-page: 287 year: 2017 end-page: 297 ident: CR135 article-title: Electrochemical performance of a solvent-free hybrid ceramic polymer electrolyte based on Li La Zr O in P(EO) LiTFSI publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.014 – volume: 9 start-page: 1804004 year: 2019 ident: CR129 article-title: Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201804004 – volume: 12 start-page: 3892 year: 2019 ident: CR10 article-title: Building better batteries in the solid state: a review publication-title: Materials doi: 10.3390/ma12233892 – volume: 139 start-page: 5916 year: 2017 end-page: 5922 ident: CR163 article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01763 – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: CR20 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 400 start-page: 212 year: 2018 end-page: 217 ident: CR136 article-title: Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.016 – volume: 7 year: 2016 ident: CR170 article-title: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode publication-title: Nat. Commun. doi: 10.1038/ncomms10992 – volume: 1 start-page: 16013 year: 2016 ident: CR12 article-title: Promise and reality of post-lithium-ion batteries with high energy densitie publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 394 start-page: 456 year: 1998 end-page: 458 ident: CR72 article-title: Nanocomposite polymer electrolytes for lithium batteries publication-title: Nature doi: 10.1038/28818 – volume: 29 start-page: 1901047 year: 2019 ident: CR79 article-title: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901047 – volume: 10 start-page: 4113 year: 2018 end-page: 4120 ident: CR95 article-title: New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17301 – volume: 6 start-page: 70 year: 2020 end-page: 76 ident: CR117 article-title: High-conductivity free-standing Li PS Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries publication-title: J. Materiomics doi: 10.1016/j.jmat.2019.12.010 – volume: 6 start-page: 4599 year: 2015 end-page: 4604 ident: CR55 article-title: Interfacial challenges in solid-state Li ion batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02352 – volume: 17 start-page: 3182 year: 2017 end-page: 3187 ident: CR115 article-title: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00715 – volume: 30 start-page: 1802661 year: 2018 ident: CR73 article-title: A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus publication-title: Adv. Mater. doi: 10.1002/adma.201802661 – volume: 8 start-page: 7261 year: 2020 end-page: 7272 ident: CR109 article-title: Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12495K – volume: 46 start-page: 3006 year: 2017 end-page: 3059 ident: CR149 article-title: High-voltage positive electrode materials for lithium-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00875E – volume: 120 start-page: 6820 year: 2020 end-page: 6877 ident: CR34 article-title: Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00268 – volume: 5 start-page: 1402073 year: 2015 ident: CR118 article-title: Stable cycling of lithium metal batteries using high transference number electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402073 – volume: 274 start-page: 458 year: 2015 end-page: 463 ident: CR144 article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li La Zr O into a polyethylene oxide matrix publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.078 – volume: 246 start-page: 846 year: 2014 end-page: 857 ident: CR152 article-title: Thermal and electrochemical properties of PEO-LiTFSI-Pyr TFSI-based composite cathodes, incorporating 4 V-class cathode active materials publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.037 – volume: 6 year: 2015 ident: CR161 article-title: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes publication-title: Nat. Commun. doi: 10.1038/ncomms9058 – volume: 23 start-page: 2603 year: 2017 end-page: 2611 ident: CR145 article-title: Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells publication-title: Ionics doi: 10.1007/s11581-016-1905-9 – volume: 49 start-page: 2140 year: 2020 end-page: 2195 ident: CR24 article-title: Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00635D – volume: 16 start-page: 459 year: 2016 end-page: 465 ident: CR74 article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO nanospheres in poly(ethylene oxide) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04117 – volume: 27 start-page: 1700348 year: 2017 ident: CR164 article-title: Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700348 – volume: 8 start-page: 1703360 year: 2018 ident: CR171 article-title: Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703360 – volume: 27 start-page: 117 year: 2020 end-page: 123 ident: CR56 article-title: Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.009 – volume: 15 start-page: 170 year: 2020 end-page: 180 ident: CR36 article-title: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0657-x – volume: 78 start-page: 105107 year: 2020 ident: CR44 article-title: Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105107 – volume: 8 start-page: 1703474 year: 2018 ident: CR110 article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703474 – volume: 8 start-page: 1702657 year: 2018 ident: CR191 article-title: Recent progress of the solid-state electrolytes for high-energy metal-based batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702657 – volume: 25 start-page: 145 year: 2020 end-page: 153 ident: CR90 article-title: Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.10.020 – volume: 10 start-page: 11407 year: 2016 end-page: 11413 ident: CR76 article-title: Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires publication-title: ACS Nano doi: 10.1021/acsnano.6b06797 – volume: 147 start-page: 020901 year: 2017 ident: CR105 article-title: Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids publication-title: J. Chem. Phys. doi: 10.1063/1.4990501 – volume: 18 start-page: 59 year: 2019 end-page: 67 ident: CR77 article-title: Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.01.007 – volume: 50 start-page: 8609 year: 2011 end-page: 8613 ident: CR25 article-title: The lithium–oxygen battery with ether-based electrolytes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102357 – volume: 5 start-page: 299 year: 2020 end-page: 308 ident: CR57 article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 31 start-page: 1805574 year: 2018 ident: CR181 article-title: Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries publication-title: Adv. Mater. doi: 10.1002/adma.201805574 – volume: 135 start-page: 12048 year: 2013 end-page: 12056 ident: CR159 article-title: Toward an ideal polymer binder design for high-capacity battery anodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4054465 – volume: 16 start-page: 1902813 year: 2019 ident: CR67 article-title: Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries publication-title: Small doi: 10.1002/smll.201902813 – volume: 7 start-page: 23685 year: 2015 end-page: 23693 ident: CR50 article-title: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first principles calculations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07517 – volume: 18 start-page: 6113 year: 2018 end-page: 6120 ident: CR81 article-title: PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01421 – volume: 19 start-page: 758 year: 2020 end-page: 766 ident: CR133 article-title: Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries publication-title: Nat. Mater. doi: 10.1038/s41563-020-0655-2 – volume: 37 start-page: 1 year: 1993 end-page: 116 ident: CR106 article-title: Physics of inhomogeneous inorganic materials publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(93)90004-5 – volume: 4 start-page: 3253 year: 2016 end-page: 3266 ident: CR141 article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08574H – volume: 20 start-page: 1483 year: 2020 end-page: 1490 ident: CR155 article-title: Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02678 – volume: 114 start-page: 11069 year: 2017 end-page: 11074 ident: CR177 article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708489114 – volume: 12 start-page: 938 year: 2019 end-page: 944 ident: CR188 article-title: Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02617C – volume: 10 start-page: 24791 year: 2018 end-page: 24798 ident: CR107 article-title: Lithium-salt-rich PEO/Li La TiO interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06658 – volume: 13 start-page: 69 year: 2014 end-page: 73 ident: CR47 article-title: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes publication-title: Nat. Mater. doi: 10.1038/nmat3793 – volume: 382 start-page: 160 year: 2018 end-page: 175 ident: CR17 article-title: All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.062 – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: CR13 article-title: Li–O and Li–S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 4 start-page: 312 year: 2019 end-page: 330 ident: CR29 article-title: Designing polymers for advanced battery chemistries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0103-6 – volume: 4 start-page: 1600377 year: 2017 ident: CR183 article-title: In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO lithium batteries publication-title: Adv. Sci. doi: 10.1002/advs.201600377 – volume: 2 start-page: 805 year: 2020 end-page: 815 ident: CR68 article-title: Reasonable design of high-energy-density solid-state lithium-metal batteries publication-title: Matter doi: 10.1016/j.matt.2020.02.003 – volume: 29 start-page: 1601925 year: 2017 ident: CR59 article-title: NASICON-structured materials for energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201601925 – volume: 30 start-page: 1707629 year: 2018 ident: CR174 article-title: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition publication-title: Adv. Mater. doi: 10.1002/adma.201707629 – volume: 8 start-page: 1703138 year: 2018 ident: CR127 article-title: Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703138 – volume: 57 start-page: 2096 year: 2018 end-page: 2100 ident: CR96 article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710841 – volume: 50 start-page: 4448 year: 2014 end-page: 4450 ident: CR120 article-title: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO nanoparticles publication-title: Chem. Commun. doi: 10.1039/C3CC49588D – volume: 8 start-page: 1801528 year: 2018 ident: CR156 article-title: Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801528 – volume: 14 start-page: 594 year: 2019 end-page: 601 ident: CR168 article-title: Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0427-9 – volume: 5 start-page: 259 year: 2020 end-page: 270 ident: CR11 article-title: Benchmarking the performance of all-solid-state lithium batteries publication-title: Nat. Eenrgy doi: 10.1038/s41560-020-0565-1 – volume: 21 start-page: 308 year: 2019 end-page: 334 ident: CR66 article-title: Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.021 – volume: 11 start-page: 8954 year: 2019 end-page: 8960 ident: CR80 article-title: Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13735 – volume: 2 start-page: 584 year: 1997 end-page: 587 ident: CR63 article-title: Multilayer ceramic capacitors publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/S1359-0286(97)80049-6 – volume: 10 start-page: 100079 year: 2020 ident: CR172 article-title: In situ forming LiF nano-decorated electrolyte/electrode interfaces for stable all-solid-state batteries publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2020.100079 – volume: 14 start-page: 1802244 year: 2018 ident: CR184 article-title: Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi Mn O /Li metal batteries publication-title: Small doi: 10.1002/smll.201802244 – volume: 1 start-page: 16042 year: 2016 ident: CR26 article-title: Batteries: getting solid publication-title: Nat. Energy doi: 10.1038/nenergy.2016.42 – volume: 120 start-page: 4169 year: 2020 end-page: 4221 ident: CR37 article-title: Mobile ions in composite solids publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00760 – volume: 28 start-page: 2400 year: 2016 end-page: 2407 ident: CR52 article-title: Direct observation of the interfacial instability of the fast ionic conductor Li GeP S at the lithium metal anode publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00610 – volume: 11 start-page: 26920 year: 2019 end-page: 26927 ident: CR112 article-title: Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07830 – volume: 10 start-page: 7069 year: 2018 end-page: 7078 ident: CR125 article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18123 – volume: 15 year: 2019 ident: CR166 article-title: Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries publication-title: Small doi: 10.1002/smll.201904216 – volume: 574 start-page: 308 year: 2019 ident: CR2 article-title: World-changing batteries win Nobel publication-title: Nature doi: 10.1038/d41586-019-02965-y – volume: 4 start-page: 8769 year: 2016 end-page: 8776 ident: CR128 article-title: A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01441K – volume: 7 start-page: 14 year: 2014 end-page: 18 ident: CR1 article-title: Electrochemical energy storage in a sustainable modern society publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42613K – volume: 136 start-page: 27 year: 2019 end-page: 46 ident: CR64 article-title: Composite solid electrolytes for all-solid-state lithium batteries publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2018.10.004 – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: CR5 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 121 start-page: 2563 year: 2017 end-page: 2573 ident: CR85 article-title: Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11136 – volume: 140 start-page: 82 year: 2017 end-page: 85 ident: CR186 article-title: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10864 – volume: 81 start-page: 925 year: 1999 end-page: 929 ident: CR46 article-title: Dendritic growth mechanisms in lithium/polymer cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(98)00242-0 – volume: 17 start-page: 309 year: 2019 end-page: 316 ident: CR178 article-title: Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.07.004 – volume: 66 start-page: 46 year: 2016 end-page: 48 ident: CR45 article-title: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.02.022 – volume: 6 start-page: E40 year: 2003 end-page: E44 ident: CR82 article-title: Understanding of effects of nano-Al O particles on ionic conductivity of composite polymer electrolytes publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1615352 – volume: 4 start-page: 10070 year: 2016 end-page: 10083 ident: CR148 article-title: Progress in nitrile-based polymer electrolytes for high performance lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02907H – volume: 1 start-page: 16141 year: 2016 ident: CR9 article-title: A solid future for battery development publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 60 start-page: 205 year: 2019 end-page: 212 ident: CR114 article-title: Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.051 – volume: 18 start-page: 1278 year: 2019 end-page: 1291 ident: CR31 article-title: Fundamentals of inorganic solid-state electrolytes for batteries publication-title: Nat. Mater. doi: 10.1038/s41563-019-0431-3 – volume: 28 start-page: 447 year: 2016 end-page: 454 ident: CR89 article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.002 – volume: 11 start-page: 185 year: 2018 end-page: 201 ident: CR116 article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02723K – volume: 11 start-page: 46930 year: 2019 end-page: 46937 ident: CR139 article-title: Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16936 – volume: 31 start-page: 1901131 year: 2019 ident: CR153 article-title: Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901131 – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: CR3 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 92 start-page: 234 year: 2001 end-page: 243 ident: CR42 article-title: Thermal and electrochemical stability of cathode materials in solid polymer electrolyte publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00533-4 – volume: 15 start-page: 2740 year: 2015 end-page: 2745 ident: CR102 article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00600 – volume: 146 start-page: 741 year: 2005 end-page: 744 ident: CR151 article-title: Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.072 – ident: CR15 – volume: 138 start-page: 9385 year: 2016 end-page: 9388 ident: CR180 article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05341 – volume: 1140 start-page: 304 year: 2016 end-page: 311 ident: CR27 article-title: The manufacturing of electrodes: key process for the future success of lithium-ion batteries publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.1140.304 – volume: 56 start-page: 753 year: 2017 end-page: 756 ident: CR179 article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608924 – volume: 4 start-page: 17251 year: 2016 end-page: 17259 ident: CR22 article-title: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries publication-title: J. Mater. Chem. doi: 10.1039/C6TA07384K – volume: 4 start-page: 180 year: 2019 end-page: 186 ident: CR8 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 10 start-page: 13588 year: 2018 end-page: 13597 ident: CR182 article-title: Integrated interface strategy toward room temperature solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02240 – volume: 2 start-page: 16103 year: 2017 ident: CR14 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 12 start-page: 7222 year: 2020 end-page: 7231 ident: CR99 article-title: Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li La Zr Ta O nanofibers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20104 – volume: 47 start-page: 7978 year: 2012 end-page: 7985 ident: CR122 article-title: Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6687-5 – volume: 210 start-page: 905 year: 2016 end-page: 914 ident: CR137 article-title: A new composite solid electrolyte PEO/Li GeP S /SN for all-solid-state lithium battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.025 – volume: 412 start-page: 520 year: 2001 end-page: 523 ident: CR69 article-title: Ionic conductivity in crystalline polymer electrolytes publication-title: Nature doi: 10.1038/35087538 – volume: 21 start-page: 594 year: 2018 end-page: 601 ident: CR111 article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.001 – volume: 15 start-page: 46 year: 2018 end-page: 52 ident: CR113 article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.016 – volume: 97–98 start-page: 795 year: 2001 end-page: 797 ident: CR43 article-title: Cycling performances and interfacial properties of a Li/PEO-Li(CF SO ) N-ceramic filler/LiNi Co O cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00610-3 – volume: 31 start-page: 1806082 year: 2019 ident: CR176 article-title: Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes publication-title: Adv. Mater. doi: 10.1002/adma.201806082 – volume: 9 start-page: 1802927 year: 2019 ident: CR154 article-title: Slurry-fabricable Li -conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802927 – volume: 7 start-page: 1903088 year: 2020 ident: CR65 article-title: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries publication-title: Adv. Sci. doi: 10.1002/advs.201903088 – volume: 16 start-page: 18294 year: 2014 end-page: 18300 ident: CR104 article-title: The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02921F – volume: 5 start-page: 139 year: 2016 end-page: 164 ident: CR147 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.07.003 – volume: 235 start-page: 122 year: 2017 end-page: 128 ident: CR70 article-title: Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide) :LiCF SO polymer electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.083 – volume: 8 start-page: 3892 year: 2020 end-page: 3900 ident: CR97 article-title: In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09969G – volume: 135 start-page: 33 year: 2000 end-page: 45 ident: CR62 article-title: Thin-film lithium and lithium-ion batteries publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00327-1 – volume: 301 start-page: 47 year: 2016 end-page: 53 ident: CR146 article-title: A new solid polymer electrolyte incorporating Li GeP S into a polyethylene oxide matrix for all-solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.111 – volume: 5 start-page: 18457 year: 2017 end-page: 18463 ident: CR93 article-title: Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li La Zr O –polyethylene oxide–tetraethylene glycol dimethyl ether publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05832B – volume: 26 start-page: 4248 year: 2014 end-page: 4255 ident: CR54 article-title: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery publication-title: Chem. Mater. doi: 10.1021/cm5016959 – volume: 15 start-page: 3974 year: 2003 end-page: 3990 ident: CR58 article-title: Lithium lanthanum titanates: a review publication-title: Chem. Mater. doi: 10.1021/cm0300516 – volume: 1 start-page: 16030 year: 2016 ident: CR49 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 31 start-page: 1902029 year: 2019 ident: CR71 article-title: Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.201902029 – volume: 113 start-page: 7094 year: 2016 end-page: 7099 ident: CR108 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1600422113 – volume: 295 start-page: 65 year: 2016 end-page: 71 ident: CR124 article-title: A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.07.013 – volume: 43 start-page: 4714 year: 2014 end-page: 4727 ident: CR60 article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00020j – volume: 9 start-page: 1900626 year: 2019 ident: CR158 article-title: On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900626 – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: CR19 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 13 start-page: 1429 year: 2020 end-page: 1461 ident: CR35 article-title: Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03828K – volume: 8 start-page: 1703404 year: 2018 ident: CR162 article-title: Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703404 – volume: 14 start-page: 589 year: 1973 ident: CR38 article-title: Complexes of alkali metal ions with poly(ethylene oxide) publication-title: Polymer doi: 10.1016/0032-3861(73)90146-8 – volume: 11 start-page: 626 year: 2016 end-page: 632 ident: CR160 article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 5 start-page: 26 year: 2020 end-page: 34 ident: CR7 article-title: High-nickel layered oxide cathodes for lithium-based automotive batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 223 start-page: 85 year: 2017 end-page: 91 ident: CR132 article-title: Intergranular Li metal propagation through polycrystalline Li Al La Zr O ceramic electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.018 – volume: 3 start-page: 19218 year: 2015 end-page: 19253 ident: CR39 article-title: Poly(ethylene oxide)-based electrolytes for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03471J – volume: 6 start-page: 11725 year: 2018 end-page: 11733 ident: CR126 article-title: A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01907J – volume: 57 start-page: 27 year: 2015 end-page: 30 ident: CR131 article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.05.001 – volume: 10 start-page: 1903376 year: 2020 ident: CR173 article-title: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903376 – volume: 3 start-page: 1190 year: 2019 end-page: 1199 ident: CR61 article-title: Solid garnet batteries publication-title: Joule doi: 10.1016/j.joule.2019.03.019 – volume: 128 start-page: 12726 year: 2016 end-page: 12730 ident: CR92 article-title: Lithium ion pathway within Li La Zr O -polyethylene oxide composite electrolytes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201607539 – volume: 7 start-page: 513 year: 2014 end-page: 537 ident: CR18 article-title: Lithium metal anodes for rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 48 start-page: 4137 year: 2013 end-page: 4142 ident: CR51 article-title: Suppression of H S gas generation from the 75Li S·25P S glass electrolyte by additives publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7226-8 – volume: 113 start-page: 52 year: 2016 end-page: 57 ident: CR190 article-title: Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1520394112 – volume: 4 start-page: 539 year: 2020 end-page: 554 ident: CR23 article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level publication-title: Joule doi: 10.1016/j.joule.2020.02.006 – volume: 122 start-page: 1492 year: 2018 end-page: 1499 ident: CR103 article-title: Enhancement of lithium-ion transport in poly(acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10725 – volume: 97–98 start-page: 644 year: 2001 end-page: 648 ident: CR75 article-title: Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00748-0 – volume: 113 start-page: 2862 year: 2016 end-page: 2867 ident: CR167 article-title: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1518188113 – volume: 81 start-page: 114 year: 2018 end-page: 143 ident: CR28 article-title: Beyond PEO — alternative host materials for Li -conducting solid polymer electrolytes publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.12.004 – volume: 18 start-page: 3829 year: 2018 end-page: 3838 ident: CR84 article-title: Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01111 – volume: 9 start-page: 21773 year: 2017 end-page: 21780 ident: CR94 article-title: Composite polymer electrolytes with Li La Zr O garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03806 – volume: 2 start-page: 764 year: 2018 end-page: 777 ident: CR169 article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2018.02.001 – volume: 120 start-page: 4257 year: 2020 end-page: 4300 ident: CR33 article-title: Garnet-type solid-state electrolytes: materials, interfaces, and batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00427 – volume: 7 start-page: 75 year: 1982 end-page: 79 ident: CR123 article-title: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes publication-title: Solid State Ion. doi: 10.1016/0167-2738(82)90072-8 – volume: 46 start-page: 176 year: 2018 end-page: 184 ident: CR86 article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic” publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 139 start-page: 13779 year: 2017 end-page: 13785 ident: CR87 article-title: Synergistic coupling between Li La Zr Ta O and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06364 – volume: 2 start-page: 7256 year: 2014 end-page: 7264 ident: CR142 article-title: Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00214H – volume: 19 start-page: 1832 year: 2019 end-page: 1837 ident: CR165 article-title: Chemical energy release driven lithiophilic layer on 1 m commercial brass mesh toward highly stable lithium metal batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04919 – volume: 359 start-page: 182 year: 2017 end-page: 185 ident: CR134 article-title: Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.061 – volume: 6 start-page: 4653 year: 2015 end-page: 4672 ident: CR150 article-title: Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01727 – volume: 31 start-page: 1807789 year: 2019 ident: CR185 article-title: Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.201807789 – volume: 5 start-page: 229 year: 2020 end-page: 252 ident: CR30 article-title: Designing solid-state electrolytes for safe, energy-dense batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 162 start-page: A704 year: 2015 end-page: A710 ident: CR143 article-title: All solid-state lithium batteries assembled with hybrid solid electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0731504jes – volume: 15 year: 2019 ident: 320_CR166 publication-title: Small doi: 10.1002/smll.201904216 – volume: 48 start-page: 4137 year: 2013 ident: 320_CR51 publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7226-8 – volume: 128 start-page: 12726 year: 2016 ident: 320_CR92 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201607539 – volume: 20 start-page: 1483 year: 2020 ident: 320_CR155 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02678 – volume: 22 start-page: 587 year: 2010 ident: 320_CR140 publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 7 start-page: 513 year: 2014 ident: 320_CR18 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 97–98 start-page: 795 year: 2001 ident: 320_CR43 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00610-3 – volume: 5 start-page: 1402073 year: 2015 ident: 320_CR118 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402073 – volume: 117 start-page: 10403 year: 2017 ident: 320_CR20 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 412 start-page: 520 year: 2001 ident: 320_CR69 publication-title: Nature doi: 10.1038/35087538 – volume: 8 start-page: 1801528 year: 2018 ident: 320_CR156 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801528 – volume: 30 start-page: 1804461 year: 2018 ident: 320_CR175 publication-title: Adv. Mater. doi: 10.1002/adma.201804461 – volume: 4 start-page: eaas9820 year: 2018 ident: 320_CR6 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9820 – volume: 114 start-page: 11069 year: 2017 ident: 320_CR177 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708489114 – volume: 16 start-page: 1902813 year: 2019 ident: 320_CR67 publication-title: Small doi: 10.1002/smll.201902813 – volume: 10 start-page: 11407 year: 2016 ident: 320_CR76 publication-title: ACS Nano doi: 10.1021/acsnano.6b06797 – volume: 10 start-page: 4113 year: 2018 ident: 320_CR95 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17301 – volume: 21 start-page: 308 year: 2019 ident: 320_CR66 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.021 – volume: 9 start-page: 1900626 year: 2019 ident: 320_CR158 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900626 – volume: 327 start-page: 32 year: 2018 ident: 320_CR88 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2018.10.023 – volume: 15 start-page: 46 year: 2018 ident: 320_CR113 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.016 – volume: 56 start-page: 753 year: 2017 ident: 320_CR179 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608924 – volume: 2 start-page: 584 year: 1997 ident: 320_CR63 publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/S1359-0286(97)80049-6 – volume: 16 start-page: 459 year: 2016 ident: 320_CR74 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04117 – volume: 9 start-page: 1802927 year: 2019 ident: 320_CR154 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802927 – volume: 7 start-page: 15896 year: 2019 ident: 320_CR187 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01869 – volume: 28 start-page: 447 year: 2016 ident: 320_CR89 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.002 – volume: 5 start-page: 299 year: 2020 ident: 320_CR57 publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 4 start-page: 3253 year: 2016 ident: 320_CR141 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08574H – volume: 2 start-page: 764 year: 2018 ident: 320_CR169 publication-title: Joule doi: 10.1016/j.joule.2018.02.001 – volume: 66 start-page: 46 year: 2016 ident: 320_CR45 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.02.022 – volume: 394 start-page: 456 year: 1998 ident: 320_CR72 publication-title: Nature doi: 10.1038/28818 – volume: 57 start-page: 27 year: 2015 ident: 320_CR131 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.05.001 – volume: 37 start-page: 1 year: 1993 ident: 320_CR106 publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(93)90004-5 – volume: 14 start-page: 589 year: 1973 ident: 320_CR38 publication-title: Polymer doi: 10.1016/0032-3861(73)90146-8 – volume: 10 start-page: 24791 year: 2018 ident: 320_CR107 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06658 – volume: 10 start-page: 13588 year: 2018 ident: 320_CR182 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02240 – volume: 574 start-page: 308 year: 2019 ident: 320_CR2 publication-title: Nature doi: 10.1038/d41586-019-02965-y – volume: 78 start-page: 105107 year: 2020 ident: 320_CR44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105107 – volume: 139 start-page: 13779 year: 2017 ident: 320_CR87 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06364 – volume: 23 start-page: 2603 year: 2017 ident: 320_CR145 publication-title: Ionics doi: 10.1007/s11581-016-1905-9 – volume: 113 start-page: 7094 year: 2016 ident: 320_CR108 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1600422113 – volume: 9 start-page: 13694 year: 2017 ident: 320_CR130 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00336 – volume: 147 start-page: 020901 year: 2017 ident: 320_CR105 publication-title: J. Chem. Phys. doi: 10.1063/1.4990501 – volume: 7 start-page: 75 year: 1982 ident: 320_CR123 publication-title: Solid State Ion. doi: 10.1016/0167-2738(82)90072-8 – volume: 43 start-page: 4714 year: 2014 ident: 320_CR60 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00020j – volume: 120 start-page: 4257 year: 2020 ident: 320_CR33 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00427 – volume: 31 start-page: 1902029 year: 2019 ident: 320_CR71 publication-title: Adv. Mater. doi: 10.1002/adma.201902029 – volume: 98 start-page: 3603 year: 2015 ident: 320_CR32 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13844 – volume: 139 start-page: 5916 year: 2017 ident: 320_CR163 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01763 – volume: 31 start-page: 1806082 year: 2019 ident: 320_CR176 publication-title: Adv. Mater. doi: 10.1002/adma.201806082 – volume: 49 start-page: 2140 year: 2020 ident: 320_CR24 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00635D – volume: 6 start-page: 17227 year: 2018 ident: 320_CR78 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05642K – volume: 392 start-page: 206 year: 2018 ident: 320_CR119 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.099 – volume: 11 start-page: 46930 year: 2019 ident: 320_CR139 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16936 – volume: 8 start-page: 1702657 year: 2018 ident: 320_CR191 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702657 – volume: 7 start-page: 3391 year: 2019 ident: 320_CR98 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11449H – volume: 46 start-page: 3006 year: 2017 ident: 320_CR149 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00875E – volume: 18 start-page: 6113 year: 2018 ident: 320_CR81 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01421 – volume: 50 start-page: 8609 year: 2011 ident: 320_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102357 – volume: 28 start-page: 2400 year: 2016 ident: 320_CR52 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00610 – volume: 5 start-page: 105 year: 2020 ident: 320_CR157 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0157-5 – volume: 29 start-page: 1901047 year: 2019 ident: 320_CR79 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901047 – volume: 31 start-page: 1807789 year: 2019 ident: 320_CR185 publication-title: Adv. Mater. doi: 10.1002/adma.201807789 – volume: 27 start-page: 6922 year: 2015 ident: 320_CR189 publication-title: Adv. Mater. doi: 10.1002/adma.201502636 – volume: 7 start-page: 1903088 year: 2020 ident: 320_CR65 publication-title: Adv. Sci. doi: 10.1002/advs.201903088 – volume: 42 start-page: 21 year: 2006 ident: 320_CR40 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2005.09.017 – volume: 3 start-page: 1190 year: 2019 ident: 320_CR61 publication-title: Joule doi: 10.1016/j.joule.2019.03.019 – volume: 81 start-page: 114 year: 2018 ident: 320_CR28 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.12.004 – volume: 120 start-page: 6820 year: 2020 ident: 320_CR34 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00268 – volume: 13 start-page: 1429 year: 2020 ident: 320_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03828K – volume: 17 start-page: 3182 year: 2017 ident: 320_CR115 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00715 – volume: 6 start-page: 4599 year: 2015 ident: 320_CR55 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02352 – volume: 120 start-page: 4169 year: 2020 ident: 320_CR37 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00760 – volume: 57 start-page: 2096 year: 2018 ident: 320_CR96 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710841 – volume: 11 start-page: 26920 year: 2019 ident: 320_CR112 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07830 – ident: 320_CR16 – volume: 10 start-page: 7069 year: 2018 ident: 320_CR125 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18123 – volume: 210 start-page: 905 year: 2016 ident: 320_CR137 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.025 – volume: 400 start-page: 212 year: 2018 ident: 320_CR136 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.016 – volume: 7 start-page: 23685 year: 2015 ident: 320_CR50 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07517 – volume: 141 start-page: 9165 year: 2019 ident: 320_CR138 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03517 – volume: 11 start-page: 42206 year: 2019 ident: 320_CR101 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14824 – volume: 1 start-page: 16013 year: 2016 ident: 320_CR12 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 60 start-page: 205 year: 2019 ident: 320_CR114 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.051 – volume: 27 start-page: 1700348 year: 2017 ident: 320_CR164 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700348 – volume: 15 start-page: 3974 year: 2003 ident: 320_CR58 publication-title: Chem. Mater. doi: 10.1021/cm0300516 – volume: 295 start-page: 65 year: 2016 ident: 320_CR124 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.07.013 – volume: 4 start-page: 180 year: 2019 ident: 320_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 12 start-page: 7222 year: 2020 ident: 320_CR99 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20104 – volume: 135 start-page: 33 year: 2000 ident: 320_CR62 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00327-1 – volume: 19 start-page: 758 year: 2020 ident: 320_CR133 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0655-2 – volume: 152 start-page: A396 year: 2005 ident: 320_CR121 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1850854 – volume: 5 start-page: 259 year: 2020 ident: 320_CR11 publication-title: Nat. Eenrgy doi: 10.1038/s41560-020-0565-1 – volume: 6 start-page: 70 year: 2020 ident: 320_CR117 publication-title: J. Materiomics doi: 10.1016/j.jmat.2019.12.010 – volume: 359 start-page: 182 year: 2017 ident: 320_CR134 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.061 – volume: 4 start-page: 312 year: 2019 ident: 320_CR29 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0103-6 – volume: 15 start-page: 2740 year: 2015 ident: 320_CR102 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00600 – volume: 31 start-page: 1901131 year: 2019 ident: 320_CR153 publication-title: Adv. Mater. doi: 10.1002/adma.201901131 – volume: 27 start-page: 117 year: 2020 ident: 320_CR56 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.009 – volume: 50 start-page: 4448 year: 2014 ident: 320_CR120 publication-title: Chem. Commun. doi: 10.1039/C3CC49588D – volume: 353 start-page: 287 year: 2017 ident: 320_CR135 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.014 – volume: 140 start-page: 82 year: 2017 ident: 320_CR186 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10864 – volume: 1 start-page: 16030 year: 2016 ident: 320_CR49 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 30 start-page: 1707629 year: 2018 ident: 320_CR174 publication-title: Adv. Mater. doi: 10.1002/adma.201707629 – volume: 31 start-page: 1805574 year: 2018 ident: 320_CR181 publication-title: Adv. Mater. doi: 10.1002/adma.201805574 – volume: 9 start-page: 1804004 year: 2019 ident: 320_CR129 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201804004 – volume: 47 start-page: 7978 year: 2012 ident: 320_CR122 publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6687-5 – volume: 17 start-page: 309 year: 2019 ident: 320_CR178 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.07.004 – volume: 12 start-page: 3892 year: 2019 ident: 320_CR10 publication-title: Materials doi: 10.3390/ma12233892 – volume: 6 year: 2015 ident: 320_CR161 publication-title: Nat. Commun. doi: 10.1038/ncomms9058 – volume: 8 start-page: 3892 year: 2020 ident: 320_CR97 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09969G – volume: 10 start-page: 1903376 year: 2020 ident: 320_CR173 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903376 – volume: 246 start-page: 846 year: 2014 ident: 320_CR152 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.037 – volume: 46 start-page: 176 year: 2018 ident: 320_CR86 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 1140 start-page: 304 year: 2016 ident: 320_CR27 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.1140.304 – volume: 5 start-page: 18457 year: 2017 ident: 320_CR93 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05832B – volume: 334 start-page: 928 year: 2011 ident: 320_CR3 publication-title: Science doi: 10.1126/science.1212741 – volume: 7 start-page: 14 year: 2014 ident: 320_CR1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42613K – volume: 11 start-page: 8954 year: 2019 ident: 320_CR80 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13735 – volume: 18 start-page: 1278 year: 2019 ident: 320_CR31 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0431-3 – volume: 6 start-page: E40 year: 2003 ident: 320_CR82 publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1615352 – volume: 223 start-page: 85 year: 2017 ident: 320_CR132 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.018 – volume: 6 start-page: 11725 year: 2018 ident: 320_CR126 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01907J – volume: 2 start-page: 7256 year: 2014 ident: 320_CR142 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00214H – volume: 8 start-page: 1703138 year: 2018 ident: 320_CR127 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703138 – volume: 4 start-page: 2480 year: 2019 ident: 320_CR53 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01676 – volume: 6 start-page: 4279 year: 2018 ident: 320_CR100 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10517G – volume: 6 start-page: 4653 year: 2015 ident: 320_CR150 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01727 – volume: 5 start-page: 26 year: 2020 ident: 320_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 146 start-page: 741 year: 2005 ident: 320_CR151 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.072 – volume: 97–98 start-page: 644 year: 2001 ident: 320_CR75 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00748-0 – volume: 8 start-page: 1703474 year: 2018 ident: 320_CR110 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703474 – volume: 10 start-page: 100079 year: 2020 ident: 320_CR172 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2020.100079 – volume: 15 start-page: 170 year: 2020 ident: 320_CR36 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0657-x – volume: 13 start-page: 69 year: 2014 ident: 320_CR47 publication-title: Nat. Mater. doi: 10.1038/nmat3793 – volume: 25 start-page: 145 year: 2020 ident: 320_CR90 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.10.020 – volume: 382 start-page: 160 year: 2018 ident: 320_CR17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.062 – volume: 162 start-page: A704 year: 2015 ident: 320_CR143 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0731504jes – volume: 11 start-page: 626 year: 2016 ident: 320_CR160 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 11 start-page: 19 year: 2012 ident: 320_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 26 start-page: 4248 year: 2014 ident: 320_CR54 publication-title: Chem. Mater. doi: 10.1021/cm5016959 – volume: 2 start-page: 16103 year: 2017 ident: 320_CR14 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 235 start-page: 122 year: 2017 ident: 320_CR70 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.083 – volume: 91 start-page: 266104 year: 2003 ident: 320_CR83 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.266104 – volume: 18 start-page: 59 year: 2019 ident: 320_CR77 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.01.007 – volume: 32 start-page: 2000399 year: 2020 ident: 320_CR91 publication-title: Adv. Mater. doi: 10.1002/adma.202000399 – volume: 122 start-page: 1492 year: 2018 ident: 320_CR103 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10725 – volume: 135 start-page: 1167 year: 2013 ident: 320_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 4 start-page: 10070 year: 2016 ident: 320_CR148 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02907H – volume: 113 start-page: 52 year: 2016 ident: 320_CR190 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1520394112 – volume: 91 start-page: 13 year: 2013 ident: 320_CR41 publication-title: Chem. Eng. News doi: 10.1021/cen-09118-cover – volume: 3 start-page: 19218 year: 2015 ident: 320_CR39 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03471J – volume: 7 year: 2016 ident: 320_CR170 publication-title: Nat. Commun. doi: 10.1038/ncomms10992 – volume: 14 start-page: 1802244 year: 2018 ident: 320_CR184 publication-title: Small doi: 10.1002/smll.201802244 – volume: 81 start-page: 925 year: 1999 ident: 320_CR46 publication-title: J. Power Sources doi: 10.1016/S0378-7753(98)00242-0 – volume: 4 start-page: 8769 year: 2016 ident: 320_CR128 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01441K – volume: 1 start-page: 16141 year: 2016 ident: 320_CR9 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 21 start-page: 594 year: 2018 ident: 320_CR111 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.001 – volume: 135 start-page: 12048 year: 2013 ident: 320_CR159 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4054465 – volume: 4 start-page: 539 year: 2020 ident: 320_CR23 publication-title: Joule doi: 10.1016/j.joule.2020.02.006 – volume: 18 start-page: 3829 year: 2018 ident: 320_CR84 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01111 – volume: 4 start-page: 17251 year: 2016 ident: 320_CR22 publication-title: J. Mater. Chem. doi: 10.1039/C6TA07384K – volume: 9 start-page: 21773 year: 2017 ident: 320_CR94 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03806 – volume: 8 start-page: 1703360 year: 2018 ident: 320_CR171 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703360 – volume: 61 start-page: 567 year: 2019 ident: 320_CR48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.002 – volume: 16 start-page: 18294 year: 2014 ident: 320_CR104 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02921F – volume: 12 start-page: 194 year: 2017 ident: 320_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 301 start-page: 47 year: 2016 ident: 320_CR146 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.111 – volume: 19 start-page: 1832 year: 2019 ident: 320_CR165 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04919 – volume: 5 start-page: 229 year: 2020 ident: 320_CR30 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 92 start-page: 234 year: 2001 ident: 320_CR42 publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00533-4 – volume: 136 start-page: 27 year: 2019 ident: 320_CR64 publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2018.10.004 – volume: 1 start-page: 16042 year: 2016 ident: 320_CR26 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.42 – volume: 12 start-page: 938 year: 2019 ident: 320_CR188 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02617C – volume: 8 start-page: 7261 year: 2020 ident: 320_CR109 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12495K – volume: 14 start-page: 594 year: 2019 ident: 320_CR168 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0427-9 – volume: 29 start-page: 1601925 year: 2017 ident: 320_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201601925 – volume: 4 start-page: 3243 year: 2011 ident: 320_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 121 start-page: 2563 year: 2017 ident: 320_CR85 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11136 – volume: 138 start-page: 9385 year: 2016 ident: 320_CR180 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05341 – volume: 30 start-page: 1802661 year: 2018 ident: 320_CR73 publication-title: Adv. Mater. doi: 10.1002/adma.201802661 – volume: 4 start-page: 1600377 year: 2017 ident: 320_CR183 publication-title: Adv. Sci. doi: 10.1002/advs.201600377 – volume: 274 start-page: 458 year: 2015 ident: 320_CR144 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.078 – volume: 113 start-page: 2862 year: 2016 ident: 320_CR167 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1518188113 – ident: 320_CR15 – volume: 5 start-page: 561 year: 2020 ident: 320_CR21 publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 11 start-page: 185 year: 2018 ident: 320_CR116 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02723K – volume: 5 start-page: 139 year: 2016 ident: 320_CR147 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.07.003 – volume: 2 start-page: 805 year: 2020 ident: 320_CR68 publication-title: Matter doi: 10.1016/j.matt.2020.02.003 – volume: 8 start-page: 1703404 year: 2018 ident: 320_CR162 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703404 |
SSID | ssj0001934982 |
Score | 2.6562314 |
SecondaryResourceType | review_article |
Snippet | Solid-state batteries (SSBs) have recently been revived to increase the energy density and eliminate safety concerns associated with conventional Li-ion... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1003 |
SubjectTerms | 639/301/299/891 639/4077/4079 Biomaterials Chemistry and Materials Science Composite structures Condensed Matter Physics Electrolytes Flammability Flux density Ions Lithium-ion batteries Manufacturing Mass production Materials Science Molten salt electrolytes Multilayers Nanotechnology Optical and Electronic Materials Polymer matrix composites Polymers Rechargeable batteries Review Article Solid electrolytes Solid state |
Title | Tailoring inorganic–polymer composites for the mass production of solid-state batteries |
URI | https://link.springer.com/article/10.1038/s41578-021-00320-0 https://www.proquest.com/docview/2591866862 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCqTywgdUmdhJ7Qi2iICQqhEAqUxQ7tlSJPmjLwMZ_4B_ySzgnLgUkmON4uIfvu_P5O4BjR_uUqNBQDB6MchtHVMS5opoHiVAmZrbodr_pxVcP_Lof9X3BbebbKhdnYnFQ52PtauRNhOmOmw0B-NnkmbqpUe521Y_QWIUqHsECLbzauejd3i2rLJJxKUL_WqbFRHOGEcuRyoaYRbvh4bT1MyItYeavm9Ei4HQ3YcMjRdIuVbsFK2a0Devf-AN34PE-G5QddGQwKucz6Y-398n46XVopsS1i7ueLDMjCE0JQj0yRKxMJiXLK2qEjC1B4xvktHhYRFTBtonJ8y48dC_uz6-on5VANRPRnPLI-R_XjLMsSgxXisc2s1LIIJeB0rFjcuOZ1DZL0IdbOtI6saykt-cqYntQGY1HZh-I4Y6iXdowMbhP7vh8ZGATmYkc0xnNaxAs5JVqTyTu5lk8pcWFNhNpKeMUZZwWMk5bNTj5-mdS0mj8u7q-UEPqXWqWLg2gBqcL1Sw__73bwf-7HcJa6KyheF9Yh8p8-mKOEGjMVQNWRfeyAdV2t9PpNbxtfQJ-9tK3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4heigcqv4htqWtD3BqLTaxk9gHhKrCdvk9LRKcTOzY0kqwu2UXIW59h74HD8WTdMZJum0luHFO4sPMF8839sw3AOsk-1TY1HMMHoLLkGdc5ZXlTiaFsj4XIVa7Hx3n_RO5f5qdLsBd2wtDZZXtnhg36mrs6Ix8E2k6abMhAd-e_OA0NYpuV9sRGjUsDvztDaZs0629HfTvRpr2dgff-ryZKsCdUNmMy4yQKp2QoswKL62VeSiDVjqpdGJdTppnstQulAWivesy54ogaiF4aWlKBG75z6QQmkoIVe_7_ExHC6lV2vTmdIXanGJ8JAnbFHN2GlXOu__Gvzmp_e8eNoa33kt40fBS9rUG0itY8KPXsPyXWuEbOBuUw7pejw1H9TQod__z12R8cXvprxgVp1MFmJ8yJMIMiSW7RGbOJrWmLPqfjQNDqA8rHtuYmI3anpiqv4WTJ7HhCiyOxiO_CsxLEoTXIS08rlORepBOQqFLVWHy5GQHktZexjWy5TQ948LE63OhTG1jgzY20cam24HPf76Z1KIdj7691rrBND_w1Mzh1oEvrWvmjx9e7d3jq32C5_3B0aE53Ds-eA9LKSEjdjauweLs6tp_QIozsx8jrhicPzWQfwNhPAp6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+inorganic%E2%80%93polymer+composites+for+the+mass+production+of+solid-state+batteries&rft.jtitle=Nature+reviews.+Materials&rft.au=Fan%2C+Li-Zhen&rft.au=He%2C+Hongcai&rft.au=Nan%2C+Ce-Wen&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-8437&rft.volume=6&rft.issue=11&rft.spage=1003&rft.epage=1019&rft_id=info:doi/10.1038%2Fs41578-021-00320-0&rft.externalDocID=10_1038_s41578_021_00320_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon |