Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion

During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 226; p. 120378
Main Authors Ansari, Quaiyum M., Sánchez, Fernando, Mishnaevsky, Leon, Young, Trevor M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to rain droplet impact, which can result in a variety of complex failure modes, such as delamination of the coating-substrate interface. The objective of this work to develop single droplet numerical models to investigate the influence of elastic stress wave developments generated during impact. Following that, a single rain droplet FE parametric research was performed with different coating materials, coating and filler putty thicknesses. It is shown that stiffer coatings lead to higher stresses. Furthermore, thicker coatings can result in lower stress transfer to the filler material. The empirical equations developed for coating thickness and filler putty thickness were found to be in good agreement with each other. This detailed baseline investigation can help in understanding the effect of coating and filler putty thickness on rain erosion rate, as well as analysing different coating designs using empirical equations for the development of more durable leading edge protection coatings for wind turbine blade applications.
AbstractList During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to rain droplet impact, which can result in a variety of complex failure modes, such as delamination of the coating-substrate interface. The objective of this work to develop single droplet numerical models to investigate the influence of elastic stress wave developments generated during impact. Following that, a single rain droplet FE parametric research was performed with different coating materials, coating and filler putty thicknesses. It is shown that stiffer coatings lead to higher stresses. Furthermore, thicker coatings can result in lower stress transfer to the filler material. The empirical equations developed for coating thickness and filler putty thickness were found to be in good agreement with each other. This detailed baseline investigation can help in understanding the effect of coating and filler putty thickness on rain erosion rate, as well as analysing different coating designs using empirical equations for the development of more durable leading edge protection coatings for wind turbine blade applications.
ArticleNumber 120378
Author Ansari, Quaiyum M.
Mishnaevsky, Leon
Sánchez, Fernando
Young, Trevor M.
Author_xml – sequence: 1
  givenname: Quaiyum M.
  surname: Ansari
  fullname: Ansari, Quaiyum M.
  email: mohammad.ansari@ul.ie
  organization: Bernal Institute, School of Engineering, University of Limerick, V94 T9PX, Ireland
– sequence: 2
  givenname: Fernando
  surname: Sánchez
  fullname: Sánchez, Fernando
  email: fernando.sanchez@uchceu.es
  organization: Institute of Design, Innovation and Technology (IDIT), Universidad Cardenal Herrera-CEU, CEU Universities, 46113, Moncada, Valencia, Spain
– sequence: 3
  givenname: Leon
  orcidid: 0000-0003-3193-4212
  surname: Mishnaevsky
  fullname: Mishnaevsky, Leon
  email: lemi@dtu.dk
  organization: Department of Wind Energy, Risø Campus, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
– sequence: 4
  givenname: Trevor M.
  surname: Young
  fullname: Young, Trevor M.
  email: trevor.young@ul.ie
  organization: Bernal Institute, School of Engineering, University of Limerick, V94 T9PX, Ireland
BookMark eNqFkE9P3DAQxa1qkboLfAMOPvaSZRznj9NDpQptCxISl3K2HHsC3mbtre1QceC71yGcegCNpZE87z09_TZk5bxDQi4YbBmw5nK_DejybEsoqy0rgbfiE1kz0XYFNKJckTV0DRSsEuwz2cS4B2C1aKs1edk9qXFSyXpH_ZDfEB99QPrXOkPTFHrrkPajMhip9lnnHmh6tPq3wxgpDgPqRLN3RGXmG5oHpMfgU_6fM-NzTHigcer3szJ5GpR1FIOP-XxGTgY1Rjx_26fk_sfu19V1cXv38-bq-22huahTwU03KN20ldCqNq02AGA61SiNolN9Bw2vRcV1Y7oSDOe8HuqOIdR9b3gven5Kviy5udmfCWOSBxs1jqNy6KcoeQkNE7xuRZZ-XaQ6V4wBB6lteuWTcvNRMpAzc7mXC3M5M5cL82yu_jMfgz2o8PyR7dtiw8zgyWKQUVt0Go0NmZo03r4f8A-e1aKp
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_118773
crossref_primary_10_1016_j_wear_2025_205755
crossref_primary_10_3390_en17246285
crossref_primary_10_3390_en18020425
crossref_primary_10_1016_j_renene_2024_121048
crossref_primary_10_1016_j_ijfatigue_2024_108617
Cites_doi 10.1002/we.2378
10.1063/1.5008010
10.1002/we.2272
10.1002/we.2767
10.1063/1.4903316
10.13031/2013.26532
10.1002/we.2848
10.1016/0043-1648(95)07187-3
10.1016/j.wear.2018.07.008
10.1016/j.renene.2023.118966
10.1016/j.renene.2022.12.050
10.1007/s11012-019-01089-x
10.3390/ma10101146
10.1016/j.prostr.2023.12.013
10.3390/coatings13030577
10.1016/0043-1648(95)07176-8
10.1016/S0341-8162(81)80006-9
10.1016/j.matdes.2023.112011
10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
10.3390/ma15031170
10.1007/s11340-012-9608-2
10.3390/coatings11070767
10.1063/1.1495533
10.1115/1.3447017
10.1088/0022-3727/46/38/383001
10.3390/coatings10070685
10.1016/S0043-1648(96)07379-6
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2024.120378
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
ExternalDocumentID 10_1016_j_renene_2024_120378
S0960148124004439
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c385t-3d9fac6748ca5d7cd000d9a6ace89ab90635843c6d920d3335f591e05bbd3b8b3
IEDL.DBID .~1
ISSN 0960-1481
1879-0682
IngestDate Wed Jul 02 03:21:44 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 03:20:51 EDT 2025
Sat May 04 15:44:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Coating thickness
Rain droplet impact
Coating stress analysis
Filler putty thickness
Wind turbine blades
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-3d9fac6748ca5d7cd000d9a6ace89ab90635843c6d920d3335f591e05bbd3b8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3193-4212
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960148124004439
PQID 3206183578
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206183578
crossref_citationtrail_10_1016_j_renene_2024_120378
crossref_primary_10_1016_j_renene_2024_120378
elsevier_sciencedirect_doi_10_1016_j_renene_2024_120378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Keegan, Nash, Stack (bib3) 2013; 46
Zhang, Kiil, Dam-Johansen, Bernad (bib29) 2014
Hoksbergen, Akkerman, Baran (bib5) 2022; 15
Bowden, Field (bib14) 1964; 282
Imeson, Vis, deWater (bib18) 1981; 8
Li, Zhang, Guo, Lv (bib19) 2014; 116
O'Carroll, Hardiman, Tobin, Young (bib8) 2018; 412–413
Mishnaevsky (bib28) 2019; 22
Tobin, Young (bib7) 2017; 6
Zhang, Lv, Guo, Li (bib27) 2017
Tempelis, Mishnaevsky (bib35) 2023; 26
Bartolomé, Teuwen (bib21) 2019; 22
Polycarbonate
Ouachan, Kuball, Liu, Dyer, Ward, Hamerton (bib26) 2019; 1222
Mishnaevsky, Tempelis, Kuthe, Mahajan (bib39) 2023; 215
López, Kolios, Wang, Chiachio (bib40) 2023; 203
Ansari, Sánchezb, Doménech-Ballesterb, Young (bib42) 2024; 52
bib47
bib45
Hinkle (bib17) 1989; 5
.
Herring, Domenech, Renau, Šakalytė, Ward, Dyer, Sanchez (bib4) 2021; 11
Verma, Castro, Jiang, Teuwen (bib34) 2017; 241
Nassiri, Chini, Kinsey (bib32) 2015; vol. 56826
Adler (bib33) 1995; 186
bib2
Marzbali, Yeganehdoust, Ibrahim, Tarasi, Jadidi (bib38) 2023; 13
Cook (bib12) 1928; 119
Mitchell, Nassiri, Locke, Klewicki, Korkolis, Kinsey (bib30) 2016; 49897
Hoksbergen, Akkerman, Baran (bib41) 2022
Gunn, Kinzer (bib20) 1949; 6
Obara, Bourne, Field (bib10) 1995; 186–187
Katsivalis, Chanteli, Finnegan, Young (bib22) 2022; 25
Rigid Thermoset Polyurethane (RPU)
Equation of state, Abaqus Explicit, ABAQUS Analysis User’s Manual, Version 6.6 Documentation, DS Simulia.
bib49
Tempelis, Mishnaevsky (bib13) 2023; 231
(bib25) 2013
Doagou-Rad, Mishnaevsky (bib31) 2020; 55
Haller, Ventikos, Poulikakos (bib16) 2002; 92
(accessed on April 2023).
Briscoe, Pickles, Julian, Adams (bib11) 1997; 203–204
Keegan (bib37) 2014
Designer Data (bib44)
Kuthe, Mahajan, Ahmad, Mishnaevsky (bib36) 2022; 31
Lopatnikov, Gillespie, Morand, Lumpkin, Dignam (bib9) 2012; 52
Huang, Hammit, Yang (bib15) 1973; 95
Cortés, Sánchez, Domenech, Olivares, Young, O'Carroll, Chinesta (bib6) 2017; 1896
Cortés, Sánchez, O'Carroll, Madramany, Hardiman, Young (bib24) 2017; 10
Domenech, Renau, Šakalytė, Sánchez (bib23) 2020; 10
(10.1016/j.renene.2024.120378_bib25) 2013
Tobin (10.1016/j.renene.2024.120378_bib7) 2017; 6
10.1016/j.renene.2024.120378_bib1
Mitchell (10.1016/j.renene.2024.120378_bib30) 2016; 49897
Lopatnikov (10.1016/j.renene.2024.120378_bib9) 2012; 52
Cook (10.1016/j.renene.2024.120378_bib12) 1928; 119
Briscoe (10.1016/j.renene.2024.120378_bib11) 1997; 203–204
Tempelis (10.1016/j.renene.2024.120378_bib35) 2023; 26
Ouachan (10.1016/j.renene.2024.120378_bib26) 2019; 1222
Hoksbergen (10.1016/j.renene.2024.120378_bib5) 2022; 15
O'Carroll (10.1016/j.renene.2024.120378_bib8) 2018; 412–413
Gunn (10.1016/j.renene.2024.120378_bib20) 1949; 6
10.1016/j.renene.2024.120378_bib43
Marzbali (10.1016/j.renene.2024.120378_bib38) 2023; 13
Herring (10.1016/j.renene.2024.120378_bib4) 2021; 11
Verma (10.1016/j.renene.2024.120378_bib34) 2017; 241
Mishnaevsky (10.1016/j.renene.2024.120378_bib39) 2023; 215
10.1016/j.renene.2024.120378_bib46
Cortés (10.1016/j.renene.2024.120378_bib6) 2017; 1896
10.1016/j.renene.2024.120378_bib48
Keegan (10.1016/j.renene.2024.120378_bib3) 2013; 46
Bowden (10.1016/j.renene.2024.120378_bib14) 1964; 282
Domenech (10.1016/j.renene.2024.120378_bib23) 2020; 10
Li (10.1016/j.renene.2024.120378_bib19) 2014; 116
Hinkle (10.1016/j.renene.2024.120378_bib17) 1989; 5
Mishnaevsky (10.1016/j.renene.2024.120378_bib28) 2019; 22
Cortés (10.1016/j.renene.2024.120378_bib24) 2017; 10
Haller (10.1016/j.renene.2024.120378_bib16) 2002; 92
Bartolomé (10.1016/j.renene.2024.120378_bib21) 2019; 22
Zhang (10.1016/j.renene.2024.120378_bib29) 2014
Kuthe (10.1016/j.renene.2024.120378_bib36) 2022; 31
Nassiri (10.1016/j.renene.2024.120378_bib32) 2015; vol. 56826
Doagou-Rad (10.1016/j.renene.2024.120378_bib31) 2020; 55
Hoksbergen (10.1016/j.renene.2024.120378_bib41) 2022
Imeson (10.1016/j.renene.2024.120378_bib18) 1981; 8
Designer Data (10.1016/j.renene.2024.120378_bib44)
Katsivalis (10.1016/j.renene.2024.120378_bib22) 2022; 25
Obara (10.1016/j.renene.2024.120378_bib10) 1995; 186–187
López (10.1016/j.renene.2024.120378_bib40) 2023; 203
Tempelis (10.1016/j.renene.2024.120378_bib13) 2023; 231
Huang (10.1016/j.renene.2024.120378_bib15) 1973; 95
Zhang (10.1016/j.renene.2024.120378_bib27) 2017
Ansari (10.1016/j.renene.2024.120378_bib42) 2024; 52
Adler (10.1016/j.renene.2024.120378_bib33) 1995; 186
Keegan (10.1016/j.renene.2024.120378_bib37) 2014
References_xml – volume: 231
  year: 2023
  ident: bib13
  article-title: Surface roughness evolution of wind turbine blade subject to rain erosion
  publication-title: Mater. Des.
– reference: . (accessed on April 2023).
– volume: 11
  start-page: 767
  year: 2021
  ident: bib4
  article-title: Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods
  publication-title: Coatings
– volume: 26
  start-page: 1017
  year: 2023
  end-page: 1026
  ident: bib35
  article-title: Erosion modelling on reconstructed rough surfaces of wind turbine blades
  publication-title: Wind Energy
– volume: 31
  year: 2022
  ident: bib36
  article-title: Engineered anti-erosion coating for wind turbine blade protection: computational analysis
  publication-title: Mater. Today Commun.
– volume: 25
  start-page: 1758
  year: 2022
  end-page: 1774
  ident: bib22
  article-title: Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications
  publication-title: Wind Energy
– volume: 15
  start-page: 1170
  year: 2022
  ident: bib5
  article-title: The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: a review and sensitivity study
  publication-title: Materials
– volume: 1896
  year: 2017
  ident: bib6
  article-title: Manufacturing issues which affect coating erosion performance in wind turbine blades
  publication-title: AIP Conf. Proc.
– volume: 412–413
  start-page: 38
  year: 2018
  end-page: 48
  ident: bib8
  article-title: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation
  publication-title: Wear
– year: 2013
  ident: bib25
  article-title: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus
– volume: 203
  start-page: 131
  year: 2023
  end-page: 141
  ident: bib40
  article-title: A wind turbine blade leading edge rain erosion computational framework
  publication-title: Renew. Energy
– volume: 46
  year: 2013
  ident: bib3
  article-title: On erosion issues associated with the leading edge of wind turbine blades
  publication-title: J. Phys. Appl. Phys.
– ident: bib44
  article-title: High Density Polyethylene (HDPE)
– volume: 22
  start-page: 140
  year: 2019
  end-page: 151
  ident: bib21
  article-title: Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades
  publication-title: Wind Energy
– ident: bib45
– year: 2014
  ident: bib29
  article-title: Accelerated Rain Erosion of Wind Turbine Blade Coatings
– reference: Polycarbonate,
– ident: bib49
– volume: 186–187
  start-page: 388
  year: 1995
  end-page: 394
  ident: bib10
  article-title: Liquid-jet impact on liquid and solid surfaces
  publication-title: Wear
– volume: 6
  year: 2017
  ident: bib7
  article-title: Analysis of incubation period versus surface topographical parameters in liquid droplet erosion tests
  publication-title: Mater. Perfor. Charact.
– volume: 203–204
  start-page: 88
  year: 1997
  end-page: 97
  ident: bib11
  article-title: Erosion of polymer-particle composite coatings by liquid water jets
  publication-title: Wear
– volume: 6
  start-page: 243
  year: 1949
  end-page: 248
  ident: bib20
  article-title: The terminal velocity of fall for water droplets in stagnant air
  publication-title: J. Meteorol.
– volume: 22
  start-page: 1636
  year: 2019
  end-page: 1653
  ident: bib28
  article-title: Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions
  publication-title: Wind Energy
– year: 2017
  ident: bib27
  article-title: Experimental study of impact force of a low-speed droplet colliding on the solid surface at different impact angles
  publication-title: ASME 2017 International Mechanical Engineering Congress and Exposition
– volume: 49897
  start-page: MSEC2016
  year: 2016
  end-page: 8874
  ident: bib30
  article-title: Experimental and numerical framework for study of low velocity water droplet impact dynamics
  publication-title: Int. Manuf. Sci. Eng. Conf. Blacksburg Virginia Am. Soc. Mech. Eng.
– start-page: 113
  year: 2022
  end-page: 120
  ident: bib41
  article-title: Coating stress analysis for leading edge protection systems for wind turbine blades
  publication-title: 20th European Conference on Composite Materials, ECCM 2022: Composites Meet Sustainability
– volume: 116
  year: 2014
  ident: bib19
  article-title: Impact force of a low speed water droplet colliding on a solid surface
  publication-title: J. Appl. Phys.
– volume: vol. 56826
  year: 2015
  ident: bib32
  article-title: Arbitrary Lagrangian eulerian FEA method to predict wavy pattern and weldability window during magnetic pulsed welding
  publication-title: International Manufacturing Science and Engineering Conference
– volume: 241
  year: 2017
  ident: bib34
  article-title: Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: a parametric study
  publication-title: Compos. Struct.
– volume: 92
  start-page: 2821
  year: 2002
  end-page: 2828
  ident: bib16
  article-title: Computational study of high -speed liquid droplet impact
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 83
  year: 1981
  end-page: 96
  ident: bib18
  article-title: The measurement of water drop impact forces with a piezo -electric transducer
  publication-title: Catena
– volume: 5
  start-page: 386
  year: 1989
  end-page: 391
  ident: bib17
  article-title: Water droplet kinetic energy and momentum measurement considerations
  publication-title: Appl. Eng. Agric.
– reference: Equation of state, Abaqus Explicit, ABAQUS Analysis User’s Manual, Version 6.6 Documentation, DS Simulia.
– volume: 13
  start-page: 577
  year: 2023
  ident: bib38
  article-title: Liquid–solid impact mechanism, liquid impingement erosion and erosion-resistant surface engineering: a review
  publication-title: Coatings
– volume: 55
  start-page: 725
  year: 2020
  end-page: 743
  ident: bib31
  article-title: Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation
  publication-title: Meccanica
– volume: 10
  start-page: 685
  year: 2020
  ident: bib23
  article-title: Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 1: modelling approach
  publication-title: Coatings
– volume: 215
  year: 2023
  ident: bib39
  article-title: Recent developments in the protection of wind turbine blades against leading edge erosion: materials solutions and predictive modelling
  publication-title: Renew. Energy
– volume: 52
  start-page: 1475
  year: 2012
  end-page: 1481
  ident: bib9
  article-title: The new test method for high velocity water jet impact
  publication-title: Exp. Mech.
– ident: bib47
– volume: 119
  start-page: 481
  year: 1928
  end-page: 488
  ident: bib12
  article-title: Erosion by water-hammer
  publication-title: Proc. London Royal Soc.
– volume: 186
  start-page: 341
  year: 1995
  end-page: 351
  ident: bib33
  article-title: Waterdrop impact modeling
  publication-title: Wear
– reference: .
– ident: bib2
  article-title: Lawrence berkeley national laboratory, reducing wind energy costs through increased turbine size: is the sky the limit?
– reference: Rigid Thermoset Polyurethane (RPU),
– volume: 52
  start-page: 122
  year: 2024
  end-page: 132
  ident: bib42
  article-title: Evaluation of offshore wind turbine leading edge protection coating failure mode under rain erosion
  publication-title: Procedia Struct. Integr.
– volume: 282
  start-page: 331
  year: 1964
  end-page: 352
  ident: bib14
  article-title: The brittle fracture of solids by liquid impact, by solid impact, and by shock
  publication-title: Proc. London Royal Soc.
– volume: 1222
  year: 2019
  ident: bib26
  article-title: Understanding of leading-edge protection performance using nano-silicates for modification
  publication-title: Wind Europe J. Phys.: Conf. Series
– year: 2014
  ident: bib37
  article-title: Wind Turbine Blade Leading Edge Erosion: an Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanisms
– volume: 10
  start-page: 1146
  year: 2017
  ident: bib24
  article-title: On the material characterization of wind turbine blade coatings: effect of the interphase adhesion on rain erosion performance
  publication-title: Materials
– volume: 95
  start-page: 276
  year: 1973
  end-page: 292
  ident: bib15
  article-title: Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plate
  publication-title: J. Fluid Eng.
– volume: 22
  start-page: 1636
  issue: 11
  year: 2019
  ident: 10.1016/j.renene.2024.120378_bib28
  article-title: Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions
  publication-title: Wind Energy
  doi: 10.1002/we.2378
– volume: 31
  year: 2022
  ident: 10.1016/j.renene.2024.120378_bib36
  article-title: Engineered anti-erosion coating for wind turbine blade protection: computational analysis
  publication-title: Mater. Today Commun.
– ident: 10.1016/j.renene.2024.120378_bib46
– volume: 1896
  issue: 1
  year: 2017
  ident: 10.1016/j.renene.2024.120378_bib6
  article-title: Manufacturing issues which affect coating erosion performance in wind turbine blades
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5008010
– volume: 22
  start-page: 140
  issue: 1
  year: 2019
  ident: 10.1016/j.renene.2024.120378_bib21
  article-title: Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades
  publication-title: Wind Energy
  doi: 10.1002/we.2272
– ident: 10.1016/j.renene.2024.120378_bib48
– volume: 6
  issue: 2
  year: 2017
  ident: 10.1016/j.renene.2024.120378_bib7
  article-title: Analysis of incubation period versus surface topographical parameters in liquid droplet erosion tests
  publication-title: Mater. Perfor. Charact.
– volume: 25
  start-page: 1758
  year: 2022
  ident: 10.1016/j.renene.2024.120378_bib22
  article-title: Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications
  publication-title: Wind Energy
  doi: 10.1002/we.2767
– volume: 116
  year: 2014
  ident: 10.1016/j.renene.2024.120378_bib19
  article-title: Impact force of a low speed water droplet colliding on a solid surface
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4903316
– volume: 5
  start-page: 386
  year: 1989
  ident: 10.1016/j.renene.2024.120378_bib17
  article-title: Water droplet kinetic energy and momentum measurement considerations
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.26532
– volume: 26
  start-page: 1017
  year: 2023
  ident: 10.1016/j.renene.2024.120378_bib35
  article-title: Erosion modelling on reconstructed rough surfaces of wind turbine blades
  publication-title: Wind Energy
  doi: 10.1002/we.2848
– volume: 186–187
  start-page: 388
  year: 1995
  ident: 10.1016/j.renene.2024.120378_bib10
  article-title: Liquid-jet impact on liquid and solid surfaces
  publication-title: Wear
  doi: 10.1016/0043-1648(95)07187-3
– volume: 412–413
  start-page: 38
  year: 2018
  ident: 10.1016/j.renene.2024.120378_bib8
  article-title: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation
  publication-title: Wear
  doi: 10.1016/j.wear.2018.07.008
– volume: 215
  year: 2023
  ident: 10.1016/j.renene.2024.120378_bib39
  article-title: Recent developments in the protection of wind turbine blades against leading edge erosion: materials solutions and predictive modelling
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.118966
– volume: 203
  start-page: 131
  year: 2023
  ident: 10.1016/j.renene.2024.120378_bib40
  article-title: A wind turbine blade leading edge rain erosion computational framework
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.12.050
– volume: 1222
  year: 2019
  ident: 10.1016/j.renene.2024.120378_bib26
  article-title: Understanding of leading-edge protection performance using nano-silicates for modification
  publication-title: Wind Europe J. Phys.: Conf. Series
– volume: 55
  start-page: 725
  year: 2020
  ident: 10.1016/j.renene.2024.120378_bib31
  article-title: Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation
  publication-title: Meccanica
  doi: 10.1007/s11012-019-01089-x
– year: 2014
  ident: 10.1016/j.renene.2024.120378_bib29
– volume: 241
  year: 2017
  ident: 10.1016/j.renene.2024.120378_bib34
  article-title: Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: a parametric study
  publication-title: Compos. Struct.
– volume: 119
  start-page: 481
  year: 1928
  ident: 10.1016/j.renene.2024.120378_bib12
  article-title: Erosion by water-hammer
  publication-title: Proc. London Royal Soc.
– volume: vol. 56826
  year: 2015
  ident: 10.1016/j.renene.2024.120378_bib32
  article-title: Arbitrary Lagrangian eulerian FEA method to predict wavy pattern and weldability window during magnetic pulsed welding
– volume: 10
  start-page: 1146
  year: 2017
  ident: 10.1016/j.renene.2024.120378_bib24
  article-title: On the material characterization of wind turbine blade coatings: effect of the interphase adhesion on rain erosion performance
  publication-title: Materials
  doi: 10.3390/ma10101146
– year: 2013
  ident: 10.1016/j.renene.2024.120378_bib25
– ident: 10.1016/j.renene.2024.120378_bib1
– volume: 49897
  start-page: MSEC2016
  year: 2016
  ident: 10.1016/j.renene.2024.120378_bib30
  article-title: Experimental and numerical framework for study of low velocity water droplet impact dynamics
  publication-title: Int. Manuf. Sci. Eng. Conf. Blacksburg Virginia Am. Soc. Mech. Eng.
– ident: 10.1016/j.renene.2024.120378_bib43
– volume: 52
  start-page: 122
  year: 2024
  ident: 10.1016/j.renene.2024.120378_bib42
  article-title: Evaluation of offshore wind turbine leading edge protection coating failure mode under rain erosion
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2023.12.013
– volume: 13
  start-page: 577
  year: 2023
  ident: 10.1016/j.renene.2024.120378_bib38
  article-title: Liquid–solid impact mechanism, liquid impingement erosion and erosion-resistant surface engineering: a review
  publication-title: Coatings
  doi: 10.3390/coatings13030577
– volume: 186
  start-page: 341
  year: 1995
  ident: 10.1016/j.renene.2024.120378_bib33
  article-title: Waterdrop impact modeling
  publication-title: Wear
  doi: 10.1016/0043-1648(95)07176-8
– start-page: 113
  year: 2022
  ident: 10.1016/j.renene.2024.120378_bib41
  article-title: Coating stress analysis for leading edge protection systems for wind turbine blades
– volume: 8
  start-page: 83
  year: 1981
  ident: 10.1016/j.renene.2024.120378_bib18
  article-title: The measurement of water drop impact forces with a piezo -electric transducer
  publication-title: Catena
  doi: 10.1016/S0341-8162(81)80006-9
– volume: 231
  year: 2023
  ident: 10.1016/j.renene.2024.120378_bib13
  article-title: Surface roughness evolution of wind turbine blade subject to rain erosion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.112011
– volume: 6
  start-page: 243
  year: 1949
  ident: 10.1016/j.renene.2024.120378_bib20
  article-title: The terminal velocity of fall for water droplets in stagnant air
  publication-title: J. Meteorol.
  doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
– ident: 10.1016/j.renene.2024.120378_bib44
– volume: 282
  start-page: 331
  year: 1964
  ident: 10.1016/j.renene.2024.120378_bib14
  article-title: The brittle fracture of solids by liquid impact, by solid impact, and by shock
  publication-title: Proc. London Royal Soc.
– volume: 15
  start-page: 1170
  issue: 3
  year: 2022
  ident: 10.1016/j.renene.2024.120378_bib5
  article-title: The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: a review and sensitivity study
  publication-title: Materials
  doi: 10.3390/ma15031170
– volume: 52
  start-page: 1475
  issue: 9
  year: 2012
  ident: 10.1016/j.renene.2024.120378_bib9
  article-title: The new test method for high velocity water jet impact
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9608-2
– volume: 11
  start-page: 767
  year: 2021
  ident: 10.1016/j.renene.2024.120378_bib4
  article-title: Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods
  publication-title: Coatings
  doi: 10.3390/coatings11070767
– volume: 92
  start-page: 2821
  year: 2002
  ident: 10.1016/j.renene.2024.120378_bib16
  article-title: Computational study of high -speed liquid droplet impact
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1495533
– volume: 95
  start-page: 276
  year: 1973
  ident: 10.1016/j.renene.2024.120378_bib15
  article-title: Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plate
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.3447017
– volume: 46
  issue: 38
  year: 2013
  ident: 10.1016/j.renene.2024.120378_bib3
  article-title: On erosion issues associated with the leading edge of wind turbine blades
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/46/38/383001
– volume: 10
  start-page: 685
  issue: 7
  year: 2020
  ident: 10.1016/j.renene.2024.120378_bib23
  article-title: Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 1: modelling approach
  publication-title: Coatings
  doi: 10.3390/coatings10070685
– year: 2017
  ident: 10.1016/j.renene.2024.120378_bib27
  article-title: Experimental study of impact force of a low-speed droplet colliding on the solid surface at different impact angles
– year: 2014
  ident: 10.1016/j.renene.2024.120378_bib37
– volume: 203–204
  start-page: 88
  year: 1997
  ident: 10.1016/j.renene.2024.120378_bib11
  article-title: Erosion of polymer-particle composite coatings by liquid water jets
  publication-title: Wear
  doi: 10.1016/S0043-1648(96)07379-6
SSID ssj0015874
Score 2.464625
Snippet During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120378
SubjectTerms Coating stress analysis
Coating thickness
delamination
droplets
Filler putty thickness
power generation
rain
Rain droplet impact
renewable energy sources
Wind turbine blades
wind turbines
Title Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion
URI https://dx.doi.org/10.1016/j.renene.2024.120378
https://www.proquest.com/docview/3206183578
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWvcbZNsm6OIsip6UcFbyBMfS7u4u3jS3-7Mpl1UBEHopW0S2kw68yX98g0hR77oeaNkZIVVlqGEFrOAWpmJSgmb-yw63Jx8fdPr34vLB_kwR07bvTBIq2x8f_LpU2_dXOk0vdkZPj11bhF8A5jPkAUpIK7iDnZR4Cg__pjRPDJZJiVmKMywdLt9bsrxQtXICsUyc3Gc5V2OydZ-D08_HPU0-pyvkOUGNtKT9GSrZC5Ua2Tpi5jgOnk_mwl30zrCEUeP9WugbzDrphBYYAocqB0YH0bU1QbpzhTJ7i_o7GjidVCoO0i0eooLbbSRccA2k-YzHU0sLt3QcU0xuwQN8B5we4Pcn5_dnfZZk1yBOV7KMeNeReMw1Ygz0hfOg2_0yvSMC6UyVgF0AWzCXc-rvOs55zJKlYWutNZzW1q-SearugpbhDoH5o7eBAj9whXKilhIbEMK0fWm2Ca87VPtGuVxTIAx0C3F7FknS2i0hE6W2CZsVmuYlDf-KF-05tLfRpCG4PBHzcPWuho-LvxjYqpQT0aa5wB3ShQE2vl367tkEc8SSXKPzI9fJ2EfgMzYHkxH6gFZOLm46t98AqrP9mY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BOBQOiLZUvEpdqVeTZL3Oro8oAiU8cilI3Cw_VdpoF5FEnPjvzMS7UakqISHtade2dj3emc_2528Afvhi4I2SkRdWWU4SWtwiauUmKpXbzPejo8PJ15PB6Da_uJN3azBsz8IQrbLx_cmnL711c6fb9Gb34f6--5PAN4L5PrEgc4yr67BB6lSyAxun48vRZLWZIMskxozlOVVoT9AtaV4kHFmRXmaWn_SznqB8a_-PUP_46mUAOt-B7QY5stP0ch9hLVSfYOsvPcHP8Hy20u5mdcQrzn7Vj4E94cSbYWzBWXBgdmp8mDFXG2I8M-K7_yF_xxK1g2HdaWLWM1prY42SA7WZZJ_ZbGFp9YbNa0YJJljA78DHu3B7fnYzHPEmvwJ3opRzLryKxlG2EWekL5xH9-iVGRgXSmWsQvSC8ES4gVdZzwshZJSqH3rSWi9sacUX6FR1FfaAOYcWj94EjP65K5TNYyGpDZnnPW-KfRBtn2rXiI9TDoypbllmv3WyhCZL6GSJfeCrWg9JfOON8kVrLv1qEGmMD2_U_N5aV-P_RZsmpgr1YqZFhoinJE2gg3e3_g0-jG6ur_TVeHJ5CJv0JHEmj6Azf1yEr4hr5va4GbcvE_v5Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+offshore+wind+turbine+blades+coating+thickness+effect+on+leading+edge+protection+system+subject+to+rain+erosion&rft.jtitle=Renewable+energy&rft.au=Ansari%2C+Quaiyum+M.&rft.au=S%C3%A1nchez%2C+Fernando&rft.au=Mishnaevsky%2C+Leon&rft.au=Young%2C+Trevor+M.&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=226&rft_id=info:doi/10.1016%2Fj.renene.2024.120378&rft.externalDocID=S0960148124004439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon