Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion
During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to...
Saved in:
Published in | Renewable energy Vol. 226; p. 120378 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to rain droplet impact, which can result in a variety of complex failure modes, such as delamination of the coating-substrate interface. The objective of this work to develop single droplet numerical models to investigate the influence of elastic stress wave developments generated during impact. Following that, a single rain droplet FE parametric research was performed with different coating materials, coating and filler putty thicknesses. It is shown that stiffer coatings lead to higher stresses. Furthermore, thicker coatings can result in lower stress transfer to the filler material. The empirical equations developed for coating thickness and filler putty thickness were found to be in good agreement with each other. This detailed baseline investigation can help in understanding the effect of coating and filler putty thickness on rain erosion rate, as well as analysing different coating designs using empirical equations for the development of more durable leading edge protection coatings for wind turbine blade applications. |
---|---|
AbstractList | During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to rain droplet impact, which can result in a variety of complex failure modes, such as delamination of the coating-substrate interface. The objective of this work to develop single droplet numerical models to investigate the influence of elastic stress wave developments generated during impact. Following that, a single rain droplet FE parametric research was performed with different coating materials, coating and filler putty thicknesses. It is shown that stiffer coatings lead to higher stresses. Furthermore, thicker coatings can result in lower stress transfer to the filler material. The empirical equations developed for coating thickness and filler putty thickness were found to be in good agreement with each other. This detailed baseline investigation can help in understanding the effect of coating and filler putty thickness on rain erosion rate, as well as analysing different coating designs using empirical equations for the development of more durable leading edge protection coatings for wind turbine blade applications. |
ArticleNumber | 120378 |
Author | Ansari, Quaiyum M. Mishnaevsky, Leon Sánchez, Fernando Young, Trevor M. |
Author_xml | – sequence: 1 givenname: Quaiyum M. surname: Ansari fullname: Ansari, Quaiyum M. email: mohammad.ansari@ul.ie organization: Bernal Institute, School of Engineering, University of Limerick, V94 T9PX, Ireland – sequence: 2 givenname: Fernando surname: Sánchez fullname: Sánchez, Fernando email: fernando.sanchez@uchceu.es organization: Institute of Design, Innovation and Technology (IDIT), Universidad Cardenal Herrera-CEU, CEU Universities, 46113, Moncada, Valencia, Spain – sequence: 3 givenname: Leon orcidid: 0000-0003-3193-4212 surname: Mishnaevsky fullname: Mishnaevsky, Leon email: lemi@dtu.dk organization: Department of Wind Energy, Risø Campus, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark – sequence: 4 givenname: Trevor M. surname: Young fullname: Young, Trevor M. email: trevor.young@ul.ie organization: Bernal Institute, School of Engineering, University of Limerick, V94 T9PX, Ireland |
BookMark | eNqFkE9P3DAQxa1qkboLfAMOPvaSZRznj9NDpQptCxISl3K2HHsC3mbtre1QceC71yGcegCNpZE87z09_TZk5bxDQi4YbBmw5nK_DejybEsoqy0rgbfiE1kz0XYFNKJckTV0DRSsEuwz2cS4B2C1aKs1edk9qXFSyXpH_ZDfEB99QPrXOkPTFHrrkPajMhip9lnnHmh6tPq3wxgpDgPqRLN3RGXmG5oHpMfgU_6fM-NzTHigcer3szJ5GpR1FIOP-XxGTgY1Rjx_26fk_sfu19V1cXv38-bq-22huahTwU03KN20ldCqNq02AGA61SiNolN9Bw2vRcV1Y7oSDOe8HuqOIdR9b3gven5Kviy5udmfCWOSBxs1jqNy6KcoeQkNE7xuRZZ-XaQ6V4wBB6lteuWTcvNRMpAzc7mXC3M5M5cL82yu_jMfgz2o8PyR7dtiw8zgyWKQUVt0Go0NmZo03r4f8A-e1aKp |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_118773 crossref_primary_10_1016_j_wear_2025_205755 crossref_primary_10_3390_en17246285 crossref_primary_10_3390_en18020425 crossref_primary_10_1016_j_renene_2024_121048 crossref_primary_10_1016_j_ijfatigue_2024_108617 |
Cites_doi | 10.1002/we.2378 10.1063/1.5008010 10.1002/we.2272 10.1002/we.2767 10.1063/1.4903316 10.13031/2013.26532 10.1002/we.2848 10.1016/0043-1648(95)07187-3 10.1016/j.wear.2018.07.008 10.1016/j.renene.2023.118966 10.1016/j.renene.2022.12.050 10.1007/s11012-019-01089-x 10.3390/ma10101146 10.1016/j.prostr.2023.12.013 10.3390/coatings13030577 10.1016/0043-1648(95)07176-8 10.1016/S0341-8162(81)80006-9 10.1016/j.matdes.2023.112011 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2 10.3390/ma15031170 10.1007/s11340-012-9608-2 10.3390/coatings11070767 10.1063/1.1495533 10.1115/1.3447017 10.1088/0022-3727/46/38/383001 10.3390/coatings10070685 10.1016/S0043-1648(96)07379-6 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2024.120378 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
ExternalDocumentID | 10_1016_j_renene_2024_120378 S0960148124004439 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-3d9fac6748ca5d7cd000d9a6ace89ab90635843c6d920d3335f591e05bbd3b8b3 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 1879-0682 |
IngestDate | Wed Jul 02 03:21:44 EDT 2025 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 03:20:51 EDT 2025 Sat May 04 15:44:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coating thickness Rain droplet impact Coating stress analysis Filler putty thickness Wind turbine blades |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-3d9fac6748ca5d7cd000d9a6ace89ab90635843c6d920d3335f591e05bbd3b8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3193-4212 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960148124004439 |
PQID | 3206183578 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3206183578 crossref_citationtrail_10_1016_j_renene_2024_120378 crossref_primary_10_1016_j_renene_2024_120378 elsevier_sciencedirect_doi_10_1016_j_renene_2024_120378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Keegan, Nash, Stack (bib3) 2013; 46 Zhang, Kiil, Dam-Johansen, Bernad (bib29) 2014 Hoksbergen, Akkerman, Baran (bib5) 2022; 15 Bowden, Field (bib14) 1964; 282 Imeson, Vis, deWater (bib18) 1981; 8 Li, Zhang, Guo, Lv (bib19) 2014; 116 O'Carroll, Hardiman, Tobin, Young (bib8) 2018; 412–413 Mishnaevsky (bib28) 2019; 22 Tobin, Young (bib7) 2017; 6 Zhang, Lv, Guo, Li (bib27) 2017 Tempelis, Mishnaevsky (bib35) 2023; 26 Bartolomé, Teuwen (bib21) 2019; 22 Polycarbonate Ouachan, Kuball, Liu, Dyer, Ward, Hamerton (bib26) 2019; 1222 Mishnaevsky, Tempelis, Kuthe, Mahajan (bib39) 2023; 215 López, Kolios, Wang, Chiachio (bib40) 2023; 203 Ansari, Sánchezb, Doménech-Ballesterb, Young (bib42) 2024; 52 bib47 bib45 Hinkle (bib17) 1989; 5 . Herring, Domenech, Renau, Šakalytė, Ward, Dyer, Sanchez (bib4) 2021; 11 Verma, Castro, Jiang, Teuwen (bib34) 2017; 241 Nassiri, Chini, Kinsey (bib32) 2015; vol. 56826 Adler (bib33) 1995; 186 bib2 Marzbali, Yeganehdoust, Ibrahim, Tarasi, Jadidi (bib38) 2023; 13 Cook (bib12) 1928; 119 Mitchell, Nassiri, Locke, Klewicki, Korkolis, Kinsey (bib30) 2016; 49897 Hoksbergen, Akkerman, Baran (bib41) 2022 Gunn, Kinzer (bib20) 1949; 6 Obara, Bourne, Field (bib10) 1995; 186–187 Katsivalis, Chanteli, Finnegan, Young (bib22) 2022; 25 Rigid Thermoset Polyurethane (RPU) Equation of state, Abaqus Explicit, ABAQUS Analysis User’s Manual, Version 6.6 Documentation, DS Simulia. bib49 Tempelis, Mishnaevsky (bib13) 2023; 231 (bib25) 2013 Doagou-Rad, Mishnaevsky (bib31) 2020; 55 Haller, Ventikos, Poulikakos (bib16) 2002; 92 (accessed on April 2023). Briscoe, Pickles, Julian, Adams (bib11) 1997; 203–204 Keegan (bib37) 2014 Designer Data (bib44) Kuthe, Mahajan, Ahmad, Mishnaevsky (bib36) 2022; 31 Lopatnikov, Gillespie, Morand, Lumpkin, Dignam (bib9) 2012; 52 Huang, Hammit, Yang (bib15) 1973; 95 Cortés, Sánchez, Domenech, Olivares, Young, O'Carroll, Chinesta (bib6) 2017; 1896 Cortés, Sánchez, O'Carroll, Madramany, Hardiman, Young (bib24) 2017; 10 Domenech, Renau, Šakalytė, Sánchez (bib23) 2020; 10 (10.1016/j.renene.2024.120378_bib25) 2013 Tobin (10.1016/j.renene.2024.120378_bib7) 2017; 6 10.1016/j.renene.2024.120378_bib1 Mitchell (10.1016/j.renene.2024.120378_bib30) 2016; 49897 Lopatnikov (10.1016/j.renene.2024.120378_bib9) 2012; 52 Cook (10.1016/j.renene.2024.120378_bib12) 1928; 119 Briscoe (10.1016/j.renene.2024.120378_bib11) 1997; 203–204 Tempelis (10.1016/j.renene.2024.120378_bib35) 2023; 26 Ouachan (10.1016/j.renene.2024.120378_bib26) 2019; 1222 Hoksbergen (10.1016/j.renene.2024.120378_bib5) 2022; 15 O'Carroll (10.1016/j.renene.2024.120378_bib8) 2018; 412–413 Gunn (10.1016/j.renene.2024.120378_bib20) 1949; 6 10.1016/j.renene.2024.120378_bib43 Marzbali (10.1016/j.renene.2024.120378_bib38) 2023; 13 Herring (10.1016/j.renene.2024.120378_bib4) 2021; 11 Verma (10.1016/j.renene.2024.120378_bib34) 2017; 241 Mishnaevsky (10.1016/j.renene.2024.120378_bib39) 2023; 215 10.1016/j.renene.2024.120378_bib46 Cortés (10.1016/j.renene.2024.120378_bib6) 2017; 1896 10.1016/j.renene.2024.120378_bib48 Keegan (10.1016/j.renene.2024.120378_bib3) 2013; 46 Bowden (10.1016/j.renene.2024.120378_bib14) 1964; 282 Domenech (10.1016/j.renene.2024.120378_bib23) 2020; 10 Li (10.1016/j.renene.2024.120378_bib19) 2014; 116 Hinkle (10.1016/j.renene.2024.120378_bib17) 1989; 5 Mishnaevsky (10.1016/j.renene.2024.120378_bib28) 2019; 22 Cortés (10.1016/j.renene.2024.120378_bib24) 2017; 10 Haller (10.1016/j.renene.2024.120378_bib16) 2002; 92 Bartolomé (10.1016/j.renene.2024.120378_bib21) 2019; 22 Zhang (10.1016/j.renene.2024.120378_bib29) 2014 Kuthe (10.1016/j.renene.2024.120378_bib36) 2022; 31 Nassiri (10.1016/j.renene.2024.120378_bib32) 2015; vol. 56826 Doagou-Rad (10.1016/j.renene.2024.120378_bib31) 2020; 55 Hoksbergen (10.1016/j.renene.2024.120378_bib41) 2022 Imeson (10.1016/j.renene.2024.120378_bib18) 1981; 8 Designer Data (10.1016/j.renene.2024.120378_bib44) Katsivalis (10.1016/j.renene.2024.120378_bib22) 2022; 25 Obara (10.1016/j.renene.2024.120378_bib10) 1995; 186–187 López (10.1016/j.renene.2024.120378_bib40) 2023; 203 Tempelis (10.1016/j.renene.2024.120378_bib13) 2023; 231 Huang (10.1016/j.renene.2024.120378_bib15) 1973; 95 Zhang (10.1016/j.renene.2024.120378_bib27) 2017 Ansari (10.1016/j.renene.2024.120378_bib42) 2024; 52 Adler (10.1016/j.renene.2024.120378_bib33) 1995; 186 Keegan (10.1016/j.renene.2024.120378_bib37) 2014 |
References_xml | – volume: 231 year: 2023 ident: bib13 article-title: Surface roughness evolution of wind turbine blade subject to rain erosion publication-title: Mater. Des. – reference: . (accessed on April 2023). – volume: 11 start-page: 767 year: 2021 ident: bib4 article-title: Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods publication-title: Coatings – volume: 26 start-page: 1017 year: 2023 end-page: 1026 ident: bib35 article-title: Erosion modelling on reconstructed rough surfaces of wind turbine blades publication-title: Wind Energy – volume: 31 year: 2022 ident: bib36 article-title: Engineered anti-erosion coating for wind turbine blade protection: computational analysis publication-title: Mater. Today Commun. – volume: 25 start-page: 1758 year: 2022 end-page: 1774 ident: bib22 article-title: Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications publication-title: Wind Energy – volume: 15 start-page: 1170 year: 2022 ident: bib5 article-title: The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: a review and sensitivity study publication-title: Materials – volume: 1896 year: 2017 ident: bib6 article-title: Manufacturing issues which affect coating erosion performance in wind turbine blades publication-title: AIP Conf. Proc. – volume: 412–413 start-page: 38 year: 2018 end-page: 48 ident: bib8 article-title: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation publication-title: Wear – year: 2013 ident: bib25 article-title: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus – volume: 203 start-page: 131 year: 2023 end-page: 141 ident: bib40 article-title: A wind turbine blade leading edge rain erosion computational framework publication-title: Renew. Energy – volume: 46 year: 2013 ident: bib3 article-title: On erosion issues associated with the leading edge of wind turbine blades publication-title: J. Phys. Appl. Phys. – ident: bib44 article-title: High Density Polyethylene (HDPE) – volume: 22 start-page: 140 year: 2019 end-page: 151 ident: bib21 article-title: Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades publication-title: Wind Energy – ident: bib45 – year: 2014 ident: bib29 article-title: Accelerated Rain Erosion of Wind Turbine Blade Coatings – reference: Polycarbonate, – ident: bib49 – volume: 186–187 start-page: 388 year: 1995 end-page: 394 ident: bib10 article-title: Liquid-jet impact on liquid and solid surfaces publication-title: Wear – volume: 6 year: 2017 ident: bib7 article-title: Analysis of incubation period versus surface topographical parameters in liquid droplet erosion tests publication-title: Mater. Perfor. Charact. – volume: 203–204 start-page: 88 year: 1997 end-page: 97 ident: bib11 article-title: Erosion of polymer-particle composite coatings by liquid water jets publication-title: Wear – volume: 6 start-page: 243 year: 1949 end-page: 248 ident: bib20 article-title: The terminal velocity of fall for water droplets in stagnant air publication-title: J. Meteorol. – volume: 22 start-page: 1636 year: 2019 end-page: 1653 ident: bib28 article-title: Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions publication-title: Wind Energy – year: 2017 ident: bib27 article-title: Experimental study of impact force of a low-speed droplet colliding on the solid surface at different impact angles publication-title: ASME 2017 International Mechanical Engineering Congress and Exposition – volume: 49897 start-page: MSEC2016 year: 2016 end-page: 8874 ident: bib30 article-title: Experimental and numerical framework for study of low velocity water droplet impact dynamics publication-title: Int. Manuf. Sci. Eng. Conf. Blacksburg Virginia Am. Soc. Mech. Eng. – start-page: 113 year: 2022 end-page: 120 ident: bib41 article-title: Coating stress analysis for leading edge protection systems for wind turbine blades publication-title: 20th European Conference on Composite Materials, ECCM 2022: Composites Meet Sustainability – volume: 116 year: 2014 ident: bib19 article-title: Impact force of a low speed water droplet colliding on a solid surface publication-title: J. Appl. Phys. – volume: vol. 56826 year: 2015 ident: bib32 article-title: Arbitrary Lagrangian eulerian FEA method to predict wavy pattern and weldability window during magnetic pulsed welding publication-title: International Manufacturing Science and Engineering Conference – volume: 241 year: 2017 ident: bib34 article-title: Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: a parametric study publication-title: Compos. Struct. – volume: 92 start-page: 2821 year: 2002 end-page: 2828 ident: bib16 article-title: Computational study of high -speed liquid droplet impact publication-title: J. Appl. Phys. – volume: 8 start-page: 83 year: 1981 end-page: 96 ident: bib18 article-title: The measurement of water drop impact forces with a piezo -electric transducer publication-title: Catena – volume: 5 start-page: 386 year: 1989 end-page: 391 ident: bib17 article-title: Water droplet kinetic energy and momentum measurement considerations publication-title: Appl. Eng. Agric. – reference: Equation of state, Abaqus Explicit, ABAQUS Analysis User’s Manual, Version 6.6 Documentation, DS Simulia. – volume: 13 start-page: 577 year: 2023 ident: bib38 article-title: Liquid–solid impact mechanism, liquid impingement erosion and erosion-resistant surface engineering: a review publication-title: Coatings – volume: 55 start-page: 725 year: 2020 end-page: 743 ident: bib31 article-title: Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation publication-title: Meccanica – volume: 10 start-page: 685 year: 2020 ident: bib23 article-title: Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 1: modelling approach publication-title: Coatings – volume: 215 year: 2023 ident: bib39 article-title: Recent developments in the protection of wind turbine blades against leading edge erosion: materials solutions and predictive modelling publication-title: Renew. Energy – volume: 52 start-page: 1475 year: 2012 end-page: 1481 ident: bib9 article-title: The new test method for high velocity water jet impact publication-title: Exp. Mech. – ident: bib47 – volume: 119 start-page: 481 year: 1928 end-page: 488 ident: bib12 article-title: Erosion by water-hammer publication-title: Proc. London Royal Soc. – volume: 186 start-page: 341 year: 1995 end-page: 351 ident: bib33 article-title: Waterdrop impact modeling publication-title: Wear – reference: . – ident: bib2 article-title: Lawrence berkeley national laboratory, reducing wind energy costs through increased turbine size: is the sky the limit? – reference: Rigid Thermoset Polyurethane (RPU), – volume: 52 start-page: 122 year: 2024 end-page: 132 ident: bib42 article-title: Evaluation of offshore wind turbine leading edge protection coating failure mode under rain erosion publication-title: Procedia Struct. Integr. – volume: 282 start-page: 331 year: 1964 end-page: 352 ident: bib14 article-title: The brittle fracture of solids by liquid impact, by solid impact, and by shock publication-title: Proc. London Royal Soc. – volume: 1222 year: 2019 ident: bib26 article-title: Understanding of leading-edge protection performance using nano-silicates for modification publication-title: Wind Europe J. Phys.: Conf. Series – year: 2014 ident: bib37 article-title: Wind Turbine Blade Leading Edge Erosion: an Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanisms – volume: 10 start-page: 1146 year: 2017 ident: bib24 article-title: On the material characterization of wind turbine blade coatings: effect of the interphase adhesion on rain erosion performance publication-title: Materials – volume: 95 start-page: 276 year: 1973 end-page: 292 ident: bib15 article-title: Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plate publication-title: J. Fluid Eng. – volume: 22 start-page: 1636 issue: 11 year: 2019 ident: 10.1016/j.renene.2024.120378_bib28 article-title: Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions publication-title: Wind Energy doi: 10.1002/we.2378 – volume: 31 year: 2022 ident: 10.1016/j.renene.2024.120378_bib36 article-title: Engineered anti-erosion coating for wind turbine blade protection: computational analysis publication-title: Mater. Today Commun. – ident: 10.1016/j.renene.2024.120378_bib46 – volume: 1896 issue: 1 year: 2017 ident: 10.1016/j.renene.2024.120378_bib6 article-title: Manufacturing issues which affect coating erosion performance in wind turbine blades publication-title: AIP Conf. Proc. doi: 10.1063/1.5008010 – volume: 22 start-page: 140 issue: 1 year: 2019 ident: 10.1016/j.renene.2024.120378_bib21 article-title: Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades publication-title: Wind Energy doi: 10.1002/we.2272 – ident: 10.1016/j.renene.2024.120378_bib48 – volume: 6 issue: 2 year: 2017 ident: 10.1016/j.renene.2024.120378_bib7 article-title: Analysis of incubation period versus surface topographical parameters in liquid droplet erosion tests publication-title: Mater. Perfor. Charact. – volume: 25 start-page: 1758 year: 2022 ident: 10.1016/j.renene.2024.120378_bib22 article-title: Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications publication-title: Wind Energy doi: 10.1002/we.2767 – volume: 116 year: 2014 ident: 10.1016/j.renene.2024.120378_bib19 article-title: Impact force of a low speed water droplet colliding on a solid surface publication-title: J. Appl. Phys. doi: 10.1063/1.4903316 – volume: 5 start-page: 386 year: 1989 ident: 10.1016/j.renene.2024.120378_bib17 article-title: Water droplet kinetic energy and momentum measurement considerations publication-title: Appl. Eng. Agric. doi: 10.13031/2013.26532 – volume: 26 start-page: 1017 year: 2023 ident: 10.1016/j.renene.2024.120378_bib35 article-title: Erosion modelling on reconstructed rough surfaces of wind turbine blades publication-title: Wind Energy doi: 10.1002/we.2848 – volume: 186–187 start-page: 388 year: 1995 ident: 10.1016/j.renene.2024.120378_bib10 article-title: Liquid-jet impact on liquid and solid surfaces publication-title: Wear doi: 10.1016/0043-1648(95)07187-3 – volume: 412–413 start-page: 38 year: 2018 ident: 10.1016/j.renene.2024.120378_bib8 article-title: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation publication-title: Wear doi: 10.1016/j.wear.2018.07.008 – volume: 215 year: 2023 ident: 10.1016/j.renene.2024.120378_bib39 article-title: Recent developments in the protection of wind turbine blades against leading edge erosion: materials solutions and predictive modelling publication-title: Renew. Energy doi: 10.1016/j.renene.2023.118966 – volume: 203 start-page: 131 year: 2023 ident: 10.1016/j.renene.2024.120378_bib40 article-title: A wind turbine blade leading edge rain erosion computational framework publication-title: Renew. Energy doi: 10.1016/j.renene.2022.12.050 – volume: 1222 year: 2019 ident: 10.1016/j.renene.2024.120378_bib26 article-title: Understanding of leading-edge protection performance using nano-silicates for modification publication-title: Wind Europe J. Phys.: Conf. Series – volume: 55 start-page: 725 year: 2020 ident: 10.1016/j.renene.2024.120378_bib31 article-title: Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation publication-title: Meccanica doi: 10.1007/s11012-019-01089-x – year: 2014 ident: 10.1016/j.renene.2024.120378_bib29 – volume: 241 year: 2017 ident: 10.1016/j.renene.2024.120378_bib34 article-title: Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: a parametric study publication-title: Compos. Struct. – volume: 119 start-page: 481 year: 1928 ident: 10.1016/j.renene.2024.120378_bib12 article-title: Erosion by water-hammer publication-title: Proc. London Royal Soc. – volume: vol. 56826 year: 2015 ident: 10.1016/j.renene.2024.120378_bib32 article-title: Arbitrary Lagrangian eulerian FEA method to predict wavy pattern and weldability window during magnetic pulsed welding – volume: 10 start-page: 1146 year: 2017 ident: 10.1016/j.renene.2024.120378_bib24 article-title: On the material characterization of wind turbine blade coatings: effect of the interphase adhesion on rain erosion performance publication-title: Materials doi: 10.3390/ma10101146 – year: 2013 ident: 10.1016/j.renene.2024.120378_bib25 – ident: 10.1016/j.renene.2024.120378_bib1 – volume: 49897 start-page: MSEC2016 year: 2016 ident: 10.1016/j.renene.2024.120378_bib30 article-title: Experimental and numerical framework for study of low velocity water droplet impact dynamics publication-title: Int. Manuf. Sci. Eng. Conf. Blacksburg Virginia Am. Soc. Mech. Eng. – ident: 10.1016/j.renene.2024.120378_bib43 – volume: 52 start-page: 122 year: 2024 ident: 10.1016/j.renene.2024.120378_bib42 article-title: Evaluation of offshore wind turbine leading edge protection coating failure mode under rain erosion publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2023.12.013 – volume: 13 start-page: 577 year: 2023 ident: 10.1016/j.renene.2024.120378_bib38 article-title: Liquid–solid impact mechanism, liquid impingement erosion and erosion-resistant surface engineering: a review publication-title: Coatings doi: 10.3390/coatings13030577 – volume: 186 start-page: 341 year: 1995 ident: 10.1016/j.renene.2024.120378_bib33 article-title: Waterdrop impact modeling publication-title: Wear doi: 10.1016/0043-1648(95)07176-8 – start-page: 113 year: 2022 ident: 10.1016/j.renene.2024.120378_bib41 article-title: Coating stress analysis for leading edge protection systems for wind turbine blades – volume: 8 start-page: 83 year: 1981 ident: 10.1016/j.renene.2024.120378_bib18 article-title: The measurement of water drop impact forces with a piezo -electric transducer publication-title: Catena doi: 10.1016/S0341-8162(81)80006-9 – volume: 231 year: 2023 ident: 10.1016/j.renene.2024.120378_bib13 article-title: Surface roughness evolution of wind turbine blade subject to rain erosion publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.112011 – volume: 6 start-page: 243 year: 1949 ident: 10.1016/j.renene.2024.120378_bib20 article-title: The terminal velocity of fall for water droplets in stagnant air publication-title: J. Meteorol. doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2 – ident: 10.1016/j.renene.2024.120378_bib44 – volume: 282 start-page: 331 year: 1964 ident: 10.1016/j.renene.2024.120378_bib14 article-title: The brittle fracture of solids by liquid impact, by solid impact, and by shock publication-title: Proc. London Royal Soc. – volume: 15 start-page: 1170 issue: 3 year: 2022 ident: 10.1016/j.renene.2024.120378_bib5 article-title: The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: a review and sensitivity study publication-title: Materials doi: 10.3390/ma15031170 – volume: 52 start-page: 1475 issue: 9 year: 2012 ident: 10.1016/j.renene.2024.120378_bib9 article-title: The new test method for high velocity water jet impact publication-title: Exp. Mech. doi: 10.1007/s11340-012-9608-2 – volume: 11 start-page: 767 year: 2021 ident: 10.1016/j.renene.2024.120378_bib4 article-title: Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods publication-title: Coatings doi: 10.3390/coatings11070767 – volume: 92 start-page: 2821 year: 2002 ident: 10.1016/j.renene.2024.120378_bib16 article-title: Computational study of high -speed liquid droplet impact publication-title: J. Appl. Phys. doi: 10.1063/1.1495533 – volume: 95 start-page: 276 year: 1973 ident: 10.1016/j.renene.2024.120378_bib15 article-title: Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plate publication-title: J. Fluid Eng. doi: 10.1115/1.3447017 – volume: 46 issue: 38 year: 2013 ident: 10.1016/j.renene.2024.120378_bib3 article-title: On erosion issues associated with the leading edge of wind turbine blades publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/46/38/383001 – volume: 10 start-page: 685 issue: 7 year: 2020 ident: 10.1016/j.renene.2024.120378_bib23 article-title: Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 1: modelling approach publication-title: Coatings doi: 10.3390/coatings10070685 – year: 2017 ident: 10.1016/j.renene.2024.120378_bib27 article-title: Experimental study of impact force of a low-speed droplet colliding on the solid surface at different impact angles – year: 2014 ident: 10.1016/j.renene.2024.120378_bib37 – volume: 203–204 start-page: 88 year: 1997 ident: 10.1016/j.renene.2024.120378_bib11 article-title: Erosion of polymer-particle composite coatings by liquid water jets publication-title: Wear doi: 10.1016/S0043-1648(96)07379-6 |
SSID | ssj0015874 |
Score | 2.464625 |
Snippet | During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120378 |
SubjectTerms | Coating stress analysis Coating thickness delamination droplets Filler putty thickness power generation rain Rain droplet impact renewable energy sources Wind turbine blades wind turbines |
Title | Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion |
URI | https://dx.doi.org/10.1016/j.renene.2024.120378 https://www.proquest.com/docview/3206183578 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWvcbZNsm6OIsip6UcFbyBMfS7u4u3jS3-7Mpl1UBEHopW0S2kw68yX98g0hR77oeaNkZIVVlqGEFrOAWpmJSgmb-yw63Jx8fdPr34vLB_kwR07bvTBIq2x8f_LpU2_dXOk0vdkZPj11bhF8A5jPkAUpIK7iDnZR4Cg__pjRPDJZJiVmKMywdLt9bsrxQtXICsUyc3Gc5V2OydZ-D08_HPU0-pyvkOUGNtKT9GSrZC5Ua2Tpi5jgOnk_mwl30zrCEUeP9WugbzDrphBYYAocqB0YH0bU1QbpzhTJ7i_o7GjidVCoO0i0eooLbbSRccA2k-YzHU0sLt3QcU0xuwQN8B5we4Pcn5_dnfZZk1yBOV7KMeNeReMw1Ygz0hfOg2_0yvSMC6UyVgF0AWzCXc-rvOs55zJKlYWutNZzW1q-SearugpbhDoH5o7eBAj9whXKilhIbEMK0fWm2Ca87VPtGuVxTIAx0C3F7FknS2i0hE6W2CZsVmuYlDf-KF-05tLfRpCG4PBHzcPWuho-LvxjYqpQT0aa5wB3ShQE2vl367tkEc8SSXKPzI9fJ2EfgMzYHkxH6gFZOLm46t98AqrP9mY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BOBQOiLZUvEpdqVeTZL3Oro8oAiU8cilI3Cw_VdpoF5FEnPjvzMS7UakqISHtade2dj3emc_2528Afvhi4I2SkRdWWU4SWtwiauUmKpXbzPejo8PJ15PB6Da_uJN3azBsz8IQrbLx_cmnL711c6fb9Gb34f6--5PAN4L5PrEgc4yr67BB6lSyAxun48vRZLWZIMskxozlOVVoT9AtaV4kHFmRXmaWn_SznqB8a_-PUP_46mUAOt-B7QY5stP0ch9hLVSfYOsvPcHP8Hy20u5mdcQrzn7Vj4E94cSbYWzBWXBgdmp8mDFXG2I8M-K7_yF_xxK1g2HdaWLWM1prY42SA7WZZJ_ZbGFp9YbNa0YJJljA78DHu3B7fnYzHPEmvwJ3opRzLryKxlG2EWekL5xH9-iVGRgXSmWsQvSC8ES4gVdZzwshZJSqH3rSWi9sacUX6FR1FfaAOYcWj94EjP65K5TNYyGpDZnnPW-KfRBtn2rXiI9TDoypbllmv3WyhCZL6GSJfeCrWg9JfOON8kVrLv1qEGmMD2_U_N5aV-P_RZsmpgr1YqZFhoinJE2gg3e3_g0-jG6ur_TVeHJ5CJv0JHEmj6Azf1yEr4hr5va4GbcvE_v5Fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+offshore+wind+turbine+blades+coating+thickness+effect+on+leading+edge+protection+system+subject+to+rain+erosion&rft.jtitle=Renewable+energy&rft.au=Ansari%2C+Quaiyum+M.&rft.au=S%C3%A1nchez%2C+Fernando&rft.au=Mishnaevsky%2C+Leon&rft.au=Young%2C+Trevor+M.&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=226&rft_id=info:doi/10.1016%2Fj.renene.2024.120378&rft.externalDocID=S0960148124004439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |