Nonoscillation of the Mathieu-type half-linear differential equation and its application to the generalized Whittaker–Hill-type equation

The nonoscillation of Mathieu-type half-linear differential equations was investigated. The particular equation under consideration is an extension of the Mathieu equation, which has been widely applied in mechanical and electrical engineering. The investigation led to the main finding that all nont...

Full description

Saved in:
Bibliographic Details
Published inMonatshefte für Mathematik Vol. 198; no. 4; pp. 741 - 756
Main Author Ishibashi, Kazuki
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nonoscillation of Mathieu-type half-linear differential equations was investigated. The particular equation under consideration is an extension of the Mathieu equation, which has been widely applied in mechanical and electrical engineering. The investigation led to the main finding that all nontrivial solutions of the Mathieu-type half-linear differential equations are nonoscillatory under simple parametric conditions. Proving the finding requires a simple nonoscillation theorem to compare the two equations. As another application of the findings, by using a simple nonoscillation comparison theorem, we propose that all nontrivial solutions of the half-linear Whittaker–Hill-type equation do not oscillate.
AbstractList The nonoscillation of Mathieu-type half-linear differential equations was investigated. The particular equation under consideration is an extension of the Mathieu equation, which has been widely applied in mechanical and electrical engineering. The investigation led to the main finding that all nontrivial solutions of the Mathieu-type half-linear differential equations are nonoscillatory under simple parametric conditions. Proving the finding requires a simple nonoscillation theorem to compare the two equations. As another application of the findings, by using a simple nonoscillation comparison theorem, we propose that all nontrivial solutions of the half-linear Whittaker–Hill-type equation do not oscillate.
Author Ishibashi, Kazuki
Author_xml – sequence: 1
  givenname: Kazuki
  orcidid: 0000-0003-1812-9980
  surname: Ishibashi
  fullname: Ishibashi, Kazuki
  email: ishibashi_kazuaoi@yahoo.co.jp
  organization: Department of Electronic Control Engineering, National Institute of Technology (KOSEN), Hiroshima College
BookMark eNp9kLtKBTEQhoMoeLy8gFXAOjpJNnspRbyBl0axDDm7E090TdYkp9DK2tY39ElcXcXOaQaG__sG_g2y6oNHQnY47HGAaj8BlKAYCMGAVwKYWCEzXsiSKaj5KpkBiJI1Qql1spHSPQBwWTYz8nYZfEit63uTXfA0WJoXSC9MXjhcsvw8IF2Y3rLeeTSRds5ajOizMz3Fp-VEGd9RlxM1w9C7drrl8G26Q4_R9O4FO3q7cDmbB4wfr--n48tJ_2vZImvW9Am3f_YmuTk-uj48ZedXJ2eHB-eslbXKTJa2EYXgOG8KtNVcdbZRQpZczYtxbFFBbYxURtWqkqK1puNQF3OluC1rVchNsjt5hxielpiyvg_L6MeXWpT1CHGlYEyJKdXGkFJEq4foHk181hz0V-d66lyPnevvzrUYITlBaQz7O4x_6n-oT6aUiQ0
CitedBy_id crossref_primary_10_14232_ejqtde_2024_1_19
Cites_doi 10.1017/S0013091500002297
10.1002/9783527617586
10.1016/j.jfa.2006.06.013
10.21136/CMJ.2018.0645-16
10.1017/S0308210500000287
10.1002/qua.22255
10.1016/j.aml.2017.12.012
10.1063/1.3455367
10.1007/978-94-017-2515-6
10.1016/j.jat.2005.03.004
10.1016/j.jmaa.2018.05.037
10.1063/1.1696228
10.1016/j.jmaa.2016.07.013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s00605-022-01720-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1436-5081
EndPage 756
ExternalDocumentID 10_1007_s00605_022_01720_2
GrantInformation_xml – fundername: JSPS KAKENHI Grant-in-Aid for Early-Career Scientists
  grantid: JP22K13933
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
406
408
409
40D
40E
5QI
5VS
67Z
692
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFFNX
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
YNT
YQT
Z45
Z7U
ZMTXR
ZWQNP
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c385t-36f92421eb94ef7b5df9523615b4444f4708aa35a585732cfad1084b551f68543
IEDL.DBID AGYKE
ISSN 0026-9255
IngestDate Thu Oct 10 18:11:43 EDT 2024
Thu Sep 12 18:16:58 EDT 2024
Sat Dec 16 12:10:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nonoscillation
34C10
Half-linear differential equation
Mathieu’s equation
34B30
Riccati technique
Comparison theorem
Whittaker–Hill’s equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-36f92421eb94ef7b5df9523615b4444f4708aa35a585732cfad1084b551f68543
ORCID 0000-0003-1812-9980
PQID 2688571550
PQPubID 2043621
PageCount 16
ParticipantIDs proquest_journals_2688571550
crossref_primary_10_1007_s00605_022_01720_2
springer_journals_10_1007_s00605_022_01720_2
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Monatshefte für Mathematik
PublicationTitleAbbrev Monatsh Math
PublicationYear 2022
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References MagnusWWinklerSHill’s equation1979New YorkDover1141.34002
EnakaYOnitsukaMIntegral averaging technique for oscillation of damped half-linear oscillatorsCzechoslov. Math. J.201868755770385188910.21136/CMJ.2018.0645-16
MathieuÉMémoire sur le mouvement vibratoire d’une membrane de forme elliptiqueJ. Math. Pure. Appl.18681313720301.0354.02
KusanoTMarićVNonoscillatory linear and half-linear differential equations having regularly varying solutionsAdv. Math. Sci. Appl.20041435135720836331069.34050
RoncarattiLFAquilantiVWhittaker–Hill equation, Ince polynomials, and molecular torsional modesInt. J. Quant. Chem.201011071673010.1002/qua.22255
WhittakerETOn a class of differential equations whose solutions satisfy integral equationsProc. Edinburgh Math. Soc.191433142310.1017/S0013091500002297
AgarwalRPGraceSRO’ReganDOscillation theory for second order linear, half-linear, superlinear, and sublinear dynamic equations2002Dordrecht, Boston, LondonKluwer Academic Publishers10.1007/978-94-017-2515-6
SugieJIshibashiKIntegral condition for oscillation of half-linear differential equations with dampingAppl. Math. Lett.201879146154374862410.1016/j.aml.2017.12.012
DošlýOŘehákPHalf-linear differential equations, North-Holland Math. Stud2005AmsterdamElsevier Science B.V.1090.34001
IshibashiKSugieJSimple conditions for parametrically excited oscillations of generalized Mathieu equationsJ. Math. Anal. Appl.2017446233247355472410.1016/j.jmaa.2016.07.013
DjakovPMityaginBAsymptotics of instability zones of the Hill operator with a two term potentialJ. Funct. Anal.2007242157194227401910.1016/j.jfa.2006.06.013
HuntRHLeacockRAPetersCWHechtKTInternal-rotation in hydrogen peroxide: the far-infrared spectrum and the determination of the hindering potentialJ. Chem. Phys.1965421931194610.1063/1.1696228
HemeryADVeselovAPWhittaker–Hill equation and semifinite-gap Schrödinger operatorsJ. Math. Phys.20105170721081710.1063/1.3455367
NayfehAHMookDTNonlinear oscillations1995New YorkJohn Wiley & Sons10.1002/9783527617586
SugieJIshibashiKOscillation problems for Hill’s equation with periodic dampingJ. Math. Anal. Appl.20184465670381810510.1016/j.jmaa.2018.05.037
DjakovPMityaginBSimple and double eigenvalues of the Hill operator with a two-term potentialJ. Approx. Theory200513570104215125010.1016/j.jat.2005.03.004
DošlýOElbertÁConjugacy of half-linear second-order differential equationsProc. Roy. Soc. Edinburgh Sect. A2000130517525176924010.1017/S0308210500000287
SugieJMatsumuraKA nonoscillation theorem for half-linear differential equations with periodic coefficientsAppl. Math. Comput.200819944745524205741217.34056
McLachlanNWTheory and application of Mathieu functions1964New YorkDover0128.29603
É Mathieu (1720_CR13) 1868; 13
NW McLachlan (1720_CR14) 1964
O Došlý (1720_CR5) 2005
J Sugie (1720_CR16) 2008; 199
W Magnus (1720_CR12) 1979
Y Enaka (1720_CR6) 2018; 68
AD Hemery (1720_CR7) 2010; 51
J Sugie (1720_CR17) 2018; 79
ET Whittaker (1720_CR19) 1914; 33
P Djakov (1720_CR3) 2007; 242
K Ishibashi (1720_CR9) 2017; 446
T Kusano (1720_CR10) 2004; 14
P Djakov (1720_CR2) 2005; 135
RH Hunt (1720_CR8) 1965; 42
AH Nayfeh (1720_CR11) 1995
O Došlý (1720_CR4) 2000; 130
J Sugie (1720_CR18) 2018; 446
LF Roncaratti (1720_CR15) 2010; 110
RP Agarwal (1720_CR1) 2002
References_xml – volume: 14
  start-page: 351
  year: 2004
  ident: 1720_CR10
  publication-title: Adv. Math. Sci. Appl.
  contributor:
    fullname: T Kusano
– volume: 199
  start-page: 447
  year: 2008
  ident: 1720_CR16
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: J Sugie
– volume-title: Half-linear differential equations, North-Holland Math. Stud
  year: 2005
  ident: 1720_CR5
  contributor:
    fullname: O Došlý
– volume-title: Hill’s equation
  year: 1979
  ident: 1720_CR12
  contributor:
    fullname: W Magnus
– volume: 33
  start-page: 14
  year: 1914
  ident: 1720_CR19
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500002297
  contributor:
    fullname: ET Whittaker
– volume: 13
  start-page: 137
  year: 1868
  ident: 1720_CR13
  publication-title: J. Math. Pure. Appl.
  contributor:
    fullname: É Mathieu
– volume-title: Nonlinear oscillations
  year: 1995
  ident: 1720_CR11
  doi: 10.1002/9783527617586
  contributor:
    fullname: AH Nayfeh
– volume: 242
  start-page: 157
  year: 2007
  ident: 1720_CR3
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2006.06.013
  contributor:
    fullname: P Djakov
– volume: 68
  start-page: 755
  year: 2018
  ident: 1720_CR6
  publication-title: Czechoslov. Math. J.
  doi: 10.21136/CMJ.2018.0645-16
  contributor:
    fullname: Y Enaka
– volume: 130
  start-page: 517
  year: 2000
  ident: 1720_CR4
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210500000287
  contributor:
    fullname: O Došlý
– volume: 110
  start-page: 716
  year: 2010
  ident: 1720_CR15
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.22255
  contributor:
    fullname: LF Roncaratti
– volume: 79
  start-page: 146
  year: 2018
  ident: 1720_CR17
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2017.12.012
  contributor:
    fullname: J Sugie
– volume: 51
  start-page: 07210817
  issue: 7
  year: 2010
  ident: 1720_CR7
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3455367
  contributor:
    fullname: AD Hemery
– volume-title: Oscillation theory for second order linear, half-linear, superlinear, and sublinear dynamic equations
  year: 2002
  ident: 1720_CR1
  doi: 10.1007/978-94-017-2515-6
  contributor:
    fullname: RP Agarwal
– volume: 135
  start-page: 70
  year: 2005
  ident: 1720_CR2
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2005.03.004
  contributor:
    fullname: P Djakov
– volume-title: Theory and application of Mathieu functions
  year: 1964
  ident: 1720_CR14
  contributor:
    fullname: NW McLachlan
– volume: 446
  start-page: 56
  year: 2018
  ident: 1720_CR18
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.05.037
  contributor:
    fullname: J Sugie
– volume: 42
  start-page: 1931
  year: 1965
  ident: 1720_CR8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696228
  contributor:
    fullname: RH Hunt
– volume: 446
  start-page: 233
  year: 2017
  ident: 1720_CR9
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.07.013
  contributor:
    fullname: K Ishibashi
SSID ssj0001369
Score 2.325326
Snippet The nonoscillation of Mathieu-type half-linear differential equations was investigated. The particular equation under consideration is an extension of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 741
SubjectTerms Differential equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Theorems
Title Nonoscillation of the Mathieu-type half-linear differential equation and its application to the generalized Whittaker–Hill-type equation
URI https://link.springer.com/article/10.1007/s00605-022-01720-2
https://www.proquest.com/docview/2688571550
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiPygMbGCWO4yRjQZQKRCcqwRTZiQ1VqwTadOnEzMo_5Jdg51WeAxlj65LcXc53vrvPAEeBxXwhfIo9IgWmng5YeUQcrIjgyibM8_IN_Zse6_bp1Z17N-_jzovdq4xkbqjrXjeDHGKaiU0lgadjHm13l0zjqduApfbl_fVFbYBth5WVHQwH2mUue2V-p_J1PZo7md_yovly01mD26ppp6gyGZ5OM3EazX5iOP7nS9ZhtXQ_UbvQlw1YkMkmrNzU2K2TLXjtpYlBuBwVVXIoVUiPIjNnIKfY7NmiRz5S2DiofIyqI1a0qRgh-VxAhyOexGiQTdCnBDnK0pzSQ4F0PZjJGJnz-TI-lOP3l7eufmRBvqKyDf3Oxe15F5cnNuDI8d0MO0wFJscsRUCl8oQbq8A18C6uoPpSWhd8zh2X6yDFc0ikeGxbPhXabVPMd6mzA40kTeQuoFhZ5payPGlRSSPflpYKOAsCqkMkizbhuJJb-FQAc4Q1BHPO4VBzOMw5HJImHFSiDcufdBIS5uvXMDFaE04qUc2H_6a297_p-7BMcmmbssEDaGTjqTzUrkwmWlp1O2dnvVapwi1Y7JP2B0B37O8
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIpCAQ9sYClxHCceK0QVoO3USt0iO7GhokqgTRcmZlb-Ib8E23kUEAxkjK1L5O9s3_nuPgNwzhwaChESFGApEAm0w8oT7CGFBVcupkFgD_T7AxqNyO3YH1dFYfM6270OSdqVuil2M9QhpprYpBIE2unRC--a4Vc3ej3CnWb9dT1aJXZQxLTFXJXK_C7j-3a0tDF_hEXtbtPdBluVmQg7Ja47YEVmu2Cz33CszvfA2yDPDBPltMxmg7mCuhWaPhO5QOZsFT7wqULGkOQzWF-Foqf0FMrnkuIb8iyFk2IOvwSyYZFbSfclI_XkRabQ3KNX8Ec5-3h9j_QnS_G1lH0w6l4PryJU3ayAEi_0C-RRxUwsWApGpAqEnyrmGxoWXxD9KI1ZyLnnc-1MBB5OFE9dJyRCm1eKhj7xDsBqlmfyEMBUOeaVcgLpEEmS0JWOYpwyRrQr45AWuKgHOH4qCTTihirZwhFrOGILR4xboF1jEFeTaR5jGurfML5UC1zWuCyb_5Z29L_uZ2A9GvZ7ce9mcHcMNrBVE5Pq1warxWwhT7T5UYhTq22fbarRew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hIiEYeCPK0wMbuOThOMmIgFJeFQNIZYrsxIaqVVLadOnEzMo_5Jdg59EWBAMiY2xdbJ9jf-e7-wxw4BvU49wj2LUEx8RVBisLLRtLizNpWtR1swP92yZtPJCrltOayuLPot1Ll2Se06BZmuL0uBfJ43Him6YR0ZnFOqzAVQaQWoRniangQgVmTy4er8_Hq7Fp0yLMg2Jf4eciceZnKV83pwni_OYkzfae-hKwstV5yEmnNkx5LRx9I3T8T7eWYbEApugkn0krMCPiVVi4HbO6DtbgrZnEmvuym8fPoUQiVYp0nbYYYn2ai55ZV2INXVkflZevqEWki8RLTiqOWByhdjpAU65zlCaZpKecA7s9EhHSN_elrCP6H6_vDfXJXHwpZR0e6uf3pw1c3OWAQ9tzUmxT6Wvvs-A-EdLlTiR9RxO_OJyoR6pZ4jFmO0yZL65thZJFpuERrgCdpJ5D7A2oxEksNgFF0tCvpOEKgwgSeqYwpM-o7xNlPBmkCoelEoNeTtkRjMmZsxEO1AgH2QgHVhV2Sj0Hxe87CCzqqWZo660KR6XaJsW_S9v6W_V9mLs7qwc3l83rbZi3MsXr2MIdqKT9odhVeCfle8WU_gS-_PdC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonoscillation+of+the+Mathieu-type+half-linear+differential+equation+and+its+application+to+the+generalized+Whittaker%E2%80%93Hill-type+equation&rft.jtitle=Monatshefte+f%C3%BCr+Mathematik&rft.au=Ishibashi%2C+Kazuki&rft.date=2022-08-01&rft.issn=0026-9255&rft.eissn=1436-5081&rft.volume=198&rft.issue=4&rft.spage=741&rft.epage=756&rft_id=info:doi/10.1007%2Fs00605-022-01720-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00605_022_01720_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-9255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-9255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-9255&client=summon