Liouville's equations for random systems
Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential...
Saved in:
Published in | Stochastic analysis and applications Vol. 40; no. 6; pp. 1026 - 1047 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.11.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0736-2994 1532-9356 |
DOI | 10.1080/07362994.2021.1980015 |
Cover
Loading…
Abstract | Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville's equations for path-wise stochastic integrals and nonlinear random ordinary differential equations. |
---|---|
AbstractList | Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville's equations for path-wise stochastic integrals and nonlinear random ordinary differential equations. |
Author | Jornet, Marc |
Author_xml | – sequence: 1 givenname: Marc orcidid: 0000-0003-0748-3730 surname: Jornet fullname: Jornet, Marc organization: Departament de Matemàtiques, Universitat Jaume I |
BookMark | eNqFkD1PwzAQQC1UJNrCT0CKxABLij9ysS0WUMWXVIkFZstxHMlVErd2Auq_b0LLwgDTLe_dnd4MTVrfWoQuCV4QLPAt5iynUmYLiilZECkwJnCCpgQYTSWDfIKmI5OO0BmaxbjGGEuC-RTdrJzvP11d2-uY2G2vO-fbmFQ-JEG3pW-SuIudbeI5Oq10He3Fcc7Rx9Pj-_IlXb09vy4fVqlhArqUZRQsAUoLqUsrBTDIOAfGC9BUG8JAZoXIiowD5BUHw3FZGC6p4KbQUrM5ujrs3QS_7W3s1Nr3oR1OKsqpYCSXggzU3YEywccYbKWM675_74J2tSJYjWnUTxo1plHHNIMNv-xNcI0Ou3-9-4Pn2iFQo798qEvV6V3tQzXkMi4q9veKPR2genI |
CitedBy_id | crossref_primary_10_1002_mma_9226 crossref_primary_10_1007_s40324_022_00314_0 crossref_primary_10_1002_mma_10080 crossref_primary_10_1016_j_apnum_2024_09_021 crossref_primary_10_1016_j_jmps_2023_105491 crossref_primary_10_1016_j_amc_2023_128197 |
Cites_doi | 10.1115/1.3641646 10.1016/j.chaos.2020.109639 10.1017/CBO9781139017329 10.1137/1.9781611973228 10.1175/1520-0493(1994)122<0714:TLEAIP>2.0.CO;2 10.2514/1.51196 10.1023/A:1021129325701 10.1016/0020-7225(65)90045-5 10.1016/0022-0396(70)90100-2 10.1016/j.jcp.2013.03.001 10.1016/j.apnum.2020.01.012 10.1007/978-1-4899-3324-9 10.1016/j.cam.2020.112925 10.1016/j.probengmech.2008.01.004 10.2478/9788376560267 10.1007/978-981-10-6265-0 10.5687/sss.2012.134 10.1016/j.apnum.2009.07.006 10.1080/17513750802304877 10.1142/S0217984907012700 10.1016/j.chaos.2020.109908 10.1016/j.matcom.2019.12.014 10.1140/epjp/i2015-15249-3 10.1017/CBO9780511617652.005 10.1090/amsip/008 10.2307/j.ctv7h0skv 10.1175/1520-0493(1994)122<0703:TLEAIP>2.0.CO;2 10.1007/978-3-540-85994-9 10.1016/j.matcom.2011.10.008 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07362994.2021.1980015 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-9356 |
EndPage | 1047 |
ExternalDocumentID | 10_1080_07362994_2021_1980015 1980015 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 8V8 AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c385t-3425e1522b9ade98535477537b5a2ac13594b84b47556f75c70dbc79287cba9a3 |
ISSN | 0736-2994 |
IngestDate | Wed Aug 13 10:48:00 EDT 2025 Tue Jul 01 02:53:18 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Wed Dec 25 09:05:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-3425e1522b9ade98535477537b5a2ac13594b84b47556f75c70dbc79287cba9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0748-3730 |
OpenAccessLink | http://hdl.handle.net/10234/196981 |
PQID | 2728316981 |
PQPubID | 216162 |
PageCount | 22 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_07362994_2021_1980015 crossref_citationtrail_10_1080_07362994_2021_1980015 crossref_primary_10_1080_07362994_2021_1980015 proquest_journals_2728316981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Stochastic analysis and applications |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Saaty T. (CIT0015) 1981 CIT0030 CIT0010 CIT0031 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Smith R. C. (CIT0006) 2013 Soong T. T. (CIT0002) 1973 CIT0003 CIT0025 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0014 doi: 10.1115/1.3641646 – ident: CIT0030 doi: 10.1016/j.chaos.2020.109639 – ident: CIT0025 doi: 10.1017/CBO9781139017329 – volume-title: Uncertainty Quantification: Theory, Implementation, and Applications year: 2013 ident: CIT0006 doi: 10.1137/1.9781611973228 – ident: CIT0018 doi: 10.1175/1520-0493(1994)122<0714:TLEAIP>2.0.CO;2 – ident: CIT0020 doi: 10.2514/1.51196 – ident: CIT0009 doi: 10.1023/A:1021129325701 – ident: CIT0027 doi: 10.1016/0020-7225(65)90045-5 – ident: CIT0003 doi: 10.1016/0022-0396(70)90100-2 – ident: CIT0012 doi: 10.1016/j.jcp.2013.03.001 – ident: CIT0031 doi: 10.1016/j.apnum.2020.01.012 – ident: CIT0028 doi: 10.1007/978-1-4899-3324-9 – ident: CIT0023 doi: 10.1016/j.cam.2020.112925 – ident: CIT0016 doi: 10.1016/j.probengmech.2008.01.004 – volume-title: Modern Nonlinear Equations year: 1981 ident: CIT0015 – ident: CIT0001 doi: 10.2478/9788376560267 – ident: CIT0005 doi: 10.1007/978-981-10-6265-0 – ident: CIT0008 doi: 10.5687/sss.2012.134 – ident: CIT0010 doi: 10.1016/j.apnum.2009.07.006 – ident: CIT0007 doi: 10.1080/17513750802304877 – ident: CIT0022 doi: 10.1142/S0217984907012700 – ident: CIT0021 doi: 10.1016/j.chaos.2020.109908 – ident: CIT0013 doi: 10.1016/j.matcom.2019.12.014 – ident: CIT0029 doi: 10.1140/epjp/i2015-15249-3 – ident: CIT0019 doi: 10.1017/CBO9780511617652.005 – ident: CIT0024 doi: 10.1090/amsip/008 – volume-title: Random Differential Equations in Science and Engineering year: 1973 ident: CIT0002 – ident: CIT0004 doi: 10.2307/j.ctv7h0skv – ident: CIT0017 doi: 10.1175/1520-0493(1994)122<0703:TLEAIP>2.0.CO;2 – ident: CIT0026 doi: 10.1007/978-3-540-85994-9 – ident: CIT0011 doi: 10.1016/j.matcom.2011.10.008 |
SSID | ssj0009107 |
Score | 2.317057 |
Snippet | Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the... Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1026 |
SubjectTerms | Fields (mathematics) Liouville's equation Mathematical analysis ordinary and fractional differential equation Partial differential equations Probability density function Probability density functions random partial Stochastic processes |
Title | Liouville's equations for random systems |
URI | https://www.tandfonline.com/doi/abs/10.1080/07362994.2021.1980015 https://www.proquest.com/docview/2728316981 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapfWkPJemD5lX2UGgvMl6tHqujSVJMiHOJTU0vi6SVaaG1G--6h_76jlbah4nBbXJZzBpJRp8084088wmhDzTnwxQcM5ZCEUw5J1gbzbEaLnKiZWx47qqRJ7d8PKPXczZvb3urqktKPTB_dtaVPAZVeAe4uirZ_0C26RRewGfAF56AMDz_CeOb76vNb1fMV5262_tNyGtzqYPgg_LVz6DUXHQ56F25Mt9U4ZVagyRJJdna-S-7TaxZL21d1GO6RwQQXbpjzzagnD64raNjZETCMbgkH9Tb2ggSLBMv-F1bSS-qFFZD1-QBQ-Ed9-mkH3aa5pDLCOO54SAyJ_Eglqkjba0vajIEwzfPUJ8A_yc91B-NL79-afWUY18JX__8ujjLyabvGmKLdmyJ0j5wwhWzmB6ilyEkiEYe3yN0YJev0ItJo6dbvEafGqQ_FlGDcwTdRx7nKOD8Bs0-X00vxjjccYFNkrISJ2AzLXAo2BcqtxLIE6MCQkihmSLKxAmTVKdUU8EYXwhmxDDXRkgIdI1WUiVvUW-5Wtp3KKJkyAjVC5aYlErKFJN5DuEtsUwz4N3HiNZTkJkgAO_uIfmRxbVObJi5zM1cFmbuGA2aZr-8Asq-BrI7v1lZLb-FX3lZsqftWQ1GFjZakREBHDjmMo1PntD1KXre7o0z1CvXG3sOhLLU78Pi-gsA4Go8 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gHIADb8RgQA9IcOlo0zyaI0JMA7adNmm3qElbCQEb0I4Dvx6naccGQjvsBzhK7CSfbdmfEbogMfNCAGZX8Ai7hDHsKq2YG3lpjJXwNYtNN3K3x9oD8jCkw5leGFNWaWLo1BJFFH-1edwmGV2VxF3DtWTwjZqUCPabEDYb5F9Fa1QwbqYYBF7vh3jXty3TIOIamaqL579l5vBpjr30z29dQFBrG-lq87by5Lk5yVVTf_3idVzudDtoq_RQnRt7pXbRSjLaQ5vdKb1rto-uOk_jyafpIrzMnOTdsoVnDhzCAeiLx6-OJYjODtCgdde_bbvlyAVXByHN3QCecAKQDmaK4kQAllPCIaLhikY40n5ABVEhUYRTylJONfdipbmAuEurSETBIaqNxqPkCDkEexQTldJAh0QQGlERxxBt4YQqCm5gHZFK0VKXfORmLMaL9Cva0lIR0ihCloqoo-ZU7M0SciwSELNWlHmRCUnt2BIZLJBtVCaX5dvOJObgkvlMhP7xEkufo_V2v9uRnfve4wnawKarwmSrcQPV8o9Jcgq-Tq7Oisv8DQ8I69c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOvBGDAT0gwaWjTfNojgiYBmwTByZxi5qklRCwDdpx4Nfj9DEYCO2wH-AoseN8tmV_QeiEGOaFAMyu4BF2CWPYVVoxN_ISg5XwNTN2GrnbY-0-uX2kVTdhWrZV2hw6KYgi8rfaOvfIJFVH3DncSgavqK2IYL8JWbMF_kW0xCx5uJ3i8HrfvLt-MTENIq6VqYZ4_ltmCp6myEv_PNY5ArXWkar2XjSePDfHmWrqz1-0jnMdbgOtlfGpc1FcqE20EA-20Gp3Qu6abqOzztNw_GFnCE9TJ34ruMJTB87gAPCZ4atT0EOnO6jfun64bLvlhwuuDkKauQE4cAyADkaKTCwAySnhkM9wRSMcaT-ggqiQKMIpZQmnmntGaS4g69IqElGwi2qD4SDeQw7BHsVEJTTQIRGERlQYA7kWjqmiEATWEan0LHXJRm4_xXiRfkVaWipCWkXIUhF11JyIjQo6jlkC4qcRZZbXQZLi0xIZzJBtVBaXpWenEnMIyHwmQn9_jqWP0fL9VUt2bnp3B2gF25EKW6rGDVTL3sfxIQQ6mTrKr_IXIlnqew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liouville%27s+equations+for+random+systems&rft.jtitle=Stochastic+analysis+and+applications&rft.au=Jornet%2C+Marc&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0736-2994&rft.eissn=1532-9356&rft.volume=40&rft.issue=6&rft.spage=1026&rft.epage=1047&rft_id=info:doi/10.1080%2F07362994.2021.1980015&rft.externalDocID=1980015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-2994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-2994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-2994&client=summon |