Liouville's equations for random systems

Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential...

Full description

Saved in:
Bibliographic Details
Published inStochastic analysis and applications Vol. 40; no. 6; pp. 1026 - 1047
Main Author Jornet, Marc
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.11.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0736-2994
1532-9356
DOI10.1080/07362994.2021.1980015

Cover

Loading…
Abstract Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville's equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.
AbstractList Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville's equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville's equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.
Author Jornet, Marc
Author_xml – sequence: 1
  givenname: Marc
  orcidid: 0000-0003-0748-3730
  surname: Jornet
  fullname: Jornet, Marc
  organization: Departament de Matemàtiques, Universitat Jaume I
BookMark eNqFkD1PwzAQQC1UJNrCT0CKxABLij9ysS0WUMWXVIkFZstxHMlVErd2Auq_b0LLwgDTLe_dnd4MTVrfWoQuCV4QLPAt5iynUmYLiilZECkwJnCCpgQYTSWDfIKmI5OO0BmaxbjGGEuC-RTdrJzvP11d2-uY2G2vO-fbmFQ-JEG3pW-SuIudbeI5Oq10He3Fcc7Rx9Pj-_IlXb09vy4fVqlhArqUZRQsAUoLqUsrBTDIOAfGC9BUG8JAZoXIiowD5BUHw3FZGC6p4KbQUrM5ujrs3QS_7W3s1Nr3oR1OKsqpYCSXggzU3YEywccYbKWM675_74J2tSJYjWnUTxo1plHHNIMNv-xNcI0Ou3-9-4Pn2iFQo798qEvV6V3tQzXkMi4q9veKPR2genI
CitedBy_id crossref_primary_10_1002_mma_9226
crossref_primary_10_1007_s40324_022_00314_0
crossref_primary_10_1002_mma_10080
crossref_primary_10_1016_j_apnum_2024_09_021
crossref_primary_10_1016_j_jmps_2023_105491
crossref_primary_10_1016_j_amc_2023_128197
Cites_doi 10.1115/1.3641646
10.1016/j.chaos.2020.109639
10.1017/CBO9781139017329
10.1137/1.9781611973228
10.1175/1520-0493(1994)122<0714:TLEAIP>2.0.CO;2
10.2514/1.51196
10.1023/A:1021129325701
10.1016/0020-7225(65)90045-5
10.1016/0022-0396(70)90100-2
10.1016/j.jcp.2013.03.001
10.1016/j.apnum.2020.01.012
10.1007/978-1-4899-3324-9
10.1016/j.cam.2020.112925
10.1016/j.probengmech.2008.01.004
10.2478/9788376560267
10.1007/978-981-10-6265-0
10.5687/sss.2012.134
10.1016/j.apnum.2009.07.006
10.1080/17513750802304877
10.1142/S0217984907012700
10.1016/j.chaos.2020.109908
10.1016/j.matcom.2019.12.014
10.1140/epjp/i2015-15249-3
10.1017/CBO9780511617652.005
10.1090/amsip/008
10.2307/j.ctv7h0skv
10.1175/1520-0493(1994)122<0703:TLEAIP>2.0.CO;2
10.1007/978-3-540-85994-9
10.1016/j.matcom.2011.10.008
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07362994.2021.1980015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-9356
EndPage 1047
ExternalDocumentID 10_1080_07362994_2021_1980015
1980015
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29Q
30N
4.4
8V8
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c385t-3425e1522b9ade98535477537b5a2ac13594b84b47556f75c70dbc79287cba9a3
ISSN 0736-2994
IngestDate Wed Aug 13 10:48:00 EDT 2025
Tue Jul 01 02:53:18 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Wed Dec 25 09:05:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-3425e1522b9ade98535477537b5a2ac13594b84b47556f75c70dbc79287cba9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0748-3730
OpenAccessLink http://hdl.handle.net/10234/196981
PQID 2728316981
PQPubID 216162
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_07362994_2021_1980015
crossref_citationtrail_10_1080_07362994_2021_1980015
crossref_primary_10_1080_07362994_2021_1980015
proquest_journals_2728316981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Stochastic analysis and applications
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Saaty T. (CIT0015) 1981
CIT0030
CIT0010
CIT0031
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Smith R. C. (CIT0006) 2013
Soong T. T. (CIT0002) 1973
CIT0003
CIT0025
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0014
  doi: 10.1115/1.3641646
– ident: CIT0030
  doi: 10.1016/j.chaos.2020.109639
– ident: CIT0025
  doi: 10.1017/CBO9781139017329
– volume-title: Uncertainty Quantification: Theory, Implementation, and Applications
  year: 2013
  ident: CIT0006
  doi: 10.1137/1.9781611973228
– ident: CIT0018
  doi: 10.1175/1520-0493(1994)122<0714:TLEAIP>2.0.CO;2
– ident: CIT0020
  doi: 10.2514/1.51196
– ident: CIT0009
  doi: 10.1023/A:1021129325701
– ident: CIT0027
  doi: 10.1016/0020-7225(65)90045-5
– ident: CIT0003
  doi: 10.1016/0022-0396(70)90100-2
– ident: CIT0012
  doi: 10.1016/j.jcp.2013.03.001
– ident: CIT0031
  doi: 10.1016/j.apnum.2020.01.012
– ident: CIT0028
  doi: 10.1007/978-1-4899-3324-9
– ident: CIT0023
  doi: 10.1016/j.cam.2020.112925
– ident: CIT0016
  doi: 10.1016/j.probengmech.2008.01.004
– volume-title: Modern Nonlinear Equations
  year: 1981
  ident: CIT0015
– ident: CIT0001
  doi: 10.2478/9788376560267
– ident: CIT0005
  doi: 10.1007/978-981-10-6265-0
– ident: CIT0008
  doi: 10.5687/sss.2012.134
– ident: CIT0010
  doi: 10.1016/j.apnum.2009.07.006
– ident: CIT0007
  doi: 10.1080/17513750802304877
– ident: CIT0022
  doi: 10.1142/S0217984907012700
– ident: CIT0021
  doi: 10.1016/j.chaos.2020.109908
– ident: CIT0013
  doi: 10.1016/j.matcom.2019.12.014
– ident: CIT0029
  doi: 10.1140/epjp/i2015-15249-3
– ident: CIT0019
  doi: 10.1017/CBO9780511617652.005
– ident: CIT0024
  doi: 10.1090/amsip/008
– volume-title: Random Differential Equations in Science and Engineering
  year: 1973
  ident: CIT0002
– ident: CIT0004
  doi: 10.2307/j.ctv7h0skv
– ident: CIT0017
  doi: 10.1175/1520-0493(1994)122<0703:TLEAIP>2.0.CO;2
– ident: CIT0026
  doi: 10.1007/978-3-540-85994-9
– ident: CIT0011
  doi: 10.1016/j.matcom.2011.10.008
SSID ssj0009107
Score 2.317057
Snippet Given a random system, a Liouville's equation is an exact partial differential equation that describes the evolution of the probability density function of the...
Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1026
SubjectTerms Fields (mathematics)
Liouville's equation
Mathematical analysis
ordinary and fractional differential equation
Partial differential equations
Probability density function
Probability density functions
random partial
Stochastic processes
Title Liouville's equations for random systems
URI https://www.tandfonline.com/doi/abs/10.1080/07362994.2021.1980015
https://www.proquest.com/docview/2728316981
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapfWkPJemD5lX2UGgvMl6tHqujSVJMiHOJTU0vi6SVaaG1G--6h_76jlbah4nBbXJZzBpJRp8084088wmhDzTnwxQcM5ZCEUw5J1gbzbEaLnKiZWx47qqRJ7d8PKPXczZvb3urqktKPTB_dtaVPAZVeAe4uirZ_0C26RRewGfAF56AMDz_CeOb76vNb1fMV5262_tNyGtzqYPgg_LVz6DUXHQ56F25Mt9U4ZVagyRJJdna-S-7TaxZL21d1GO6RwQQXbpjzzagnD64raNjZETCMbgkH9Tb2ggSLBMv-F1bSS-qFFZD1-QBQ-Ed9-mkH3aa5pDLCOO54SAyJ_Eglqkjba0vajIEwzfPUJ8A_yc91B-NL79-afWUY18JX__8ujjLyabvGmKLdmyJ0j5wwhWzmB6ilyEkiEYe3yN0YJev0ItJo6dbvEafGqQ_FlGDcwTdRx7nKOD8Bs0-X00vxjjccYFNkrISJ2AzLXAo2BcqtxLIE6MCQkihmSLKxAmTVKdUU8EYXwhmxDDXRkgIdI1WUiVvUW-5Wtp3KKJkyAjVC5aYlErKFJN5DuEtsUwz4N3HiNZTkJkgAO_uIfmRxbVObJi5zM1cFmbuGA2aZr-8Asq-BrI7v1lZLb-FX3lZsqftWQ1GFjZakREBHDjmMo1PntD1KXre7o0z1CvXG3sOhLLU78Pi-gsA4Go8
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gHIADb8RgQA9IcOlo0zyaI0JMA7adNmm3qElbCQEb0I4Dvx6naccGQjvsBzhK7CSfbdmfEbogMfNCAGZX8Ai7hDHsKq2YG3lpjJXwNYtNN3K3x9oD8jCkw5leGFNWaWLo1BJFFH-1edwmGV2VxF3DtWTwjZqUCPabEDYb5F9Fa1QwbqYYBF7vh3jXty3TIOIamaqL579l5vBpjr30z29dQFBrG-lq87by5Lk5yVVTf_3idVzudDtoq_RQnRt7pXbRSjLaQ5vdKb1rto-uOk_jyafpIrzMnOTdsoVnDhzCAeiLx6-OJYjODtCgdde_bbvlyAVXByHN3QCecAKQDmaK4kQAllPCIaLhikY40n5ABVEhUYRTylJONfdipbmAuEurSETBIaqNxqPkCDkEexQTldJAh0QQGlERxxBt4YQqCm5gHZFK0VKXfORmLMaL9Cva0lIR0ihCloqoo-ZU7M0SciwSELNWlHmRCUnt2BIZLJBtVCaX5dvOJObgkvlMhP7xEkufo_V2v9uRnfve4wnawKarwmSrcQPV8o9Jcgq-Tq7Oisv8DQ8I69c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOvBGDAT0gwaWjTfNojgiYBmwTByZxi5qklRCwDdpx4Nfj9DEYCO2wH-AoseN8tmV_QeiEGOaFAMyu4BF2CWPYVVoxN_ISg5XwNTN2GrnbY-0-uX2kVTdhWrZV2hw6KYgi8rfaOvfIJFVH3DncSgavqK2IYL8JWbMF_kW0xCx5uJ3i8HrfvLt-MTENIq6VqYZ4_ltmCp6myEv_PNY5ArXWkar2XjSePDfHmWrqz1-0jnMdbgOtlfGpc1FcqE20EA-20Gp3Qu6abqOzztNw_GFnCE9TJ34ruMJTB87gAPCZ4atT0EOnO6jfun64bLvlhwuuDkKauQE4cAyADkaKTCwAySnhkM9wRSMcaT-ggqiQKMIpZQmnmntGaS4g69IqElGwi2qD4SDeQw7BHsVEJTTQIRGERlQYA7kWjqmiEATWEan0LHXJRm4_xXiRfkVaWipCWkXIUhF11JyIjQo6jlkC4qcRZZbXQZLi0xIZzJBtVBaXpWenEnMIyHwmQn9_jqWP0fL9VUt2bnp3B2gF25EKW6rGDVTL3sfxIQQ6mTrKr_IXIlnqew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liouville%27s+equations+for+random+systems&rft.jtitle=Stochastic+analysis+and+applications&rft.au=Jornet%2C+Marc&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0736-2994&rft.eissn=1532-9356&rft.volume=40&rft.issue=6&rft.spage=1026&rft.epage=1047&rft_id=info:doi/10.1080%2F07362994.2021.1980015&rft.externalDocID=1980015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-2994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-2994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-2994&client=summon