Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces

Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 11; p. 502
Main Authors Kozin, Alexey, Gerasimov, Anton, Bakaev, Maxim, Pashkov, Anton, Razumnikova, Olga
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a16110502

Cover

Abstract Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs.
AbstractList Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs.
Audience Academic
Author Bakaev, Maxim
Razumnikova, Olga
Gerasimov, Anton
Kozin, Alexey
Pashkov, Anton
Author_xml – sequence: 1
  givenname: Alexey
  orcidid: 0009-0008-2242-2649
  surname: Kozin
  fullname: Kozin, Alexey
– sequence: 2
  givenname: Anton
  surname: Gerasimov
  fullname: Gerasimov, Anton
– sequence: 3
  givenname: Maxim
  orcidid: 0000-0002-1889-0692
  surname: Bakaev
  fullname: Bakaev, Maxim
– sequence: 4
  givenname: Anton
  orcidid: 0000-0002-2403-3136
  surname: Pashkov
  fullname: Pashkov, Anton
– sequence: 5
  givenname: Olga
  orcidid: 0000-0002-7831-9404
  surname: Razumnikova
  fullname: Razumnikova, Olga
BookMark eNptkU9rGzEQxUVJofnTQ7_BQk89bCppdmXp6JikMQQacJKr0EojI-OVXGn3kG8fNS5JC0UgDY83P83wzshJTBEJ-cLoJYCi3w0TjNGe8g_klCml2k4qOPmr_kTOStlRKnol2Cl5WM5TGs0U4rbZTGGc97VOsbnJ-GvGaJ-bDe7Rvmo-5Wazebq-b69MQddcZRNiu0rjYZ4wN-tYb28slgvy0Zt9wc9_3nPyeHP9sLpt737-WK-Wd60F2U8tADrrcMG6AahyIBW3hoNDOQBjAjgfBsmNw07IwQ-WIhple9tLYXtGEc7J-sh1yez0IYfR5GedTNCvQspbbfIU7B51_cf1auikp7QDxtXAmVdUWgFMdd2isr4eWYec6uZl0rs051jH17wOpkCCEu-uranQEH2asrFjKFYvF4sKFh3vq-vyP656HI7B1sB8qPo_Dd-ODTanUjL6t2UY1b9z1W-5wgtgL5Qk
Cites_doi 10.1088/1741-2552/acf7f6
10.1016/j.neuroimage.2018.04.006
10.1371/journal.pone.0077536
10.1088/1741-2552/ac284a
10.1088/1361-6579/aad57e
10.1109/ICTS52701.2021.9608810
10.1016/j.neunet.2023.03.039
10.1109/SMC.2019.8914668
10.1007/978-3-319-05080-5
10.1073/pnas.1508080112
10.1016/j.ynstr.2022.100452
10.3389/fneng.2014.00038
10.1038/nature04970
10.1088/1741-2560/13/1/016014
10.3389/fnins.2023.1142892
10.1109/THMS.2020.2983661
10.1109/ICASET.2019.8714373
10.1093/oxfordhb/9780192898340.013.15
10.1016/j.jneumeth.2022.109736
10.1109/TNSRE.2020.3005771
10.1109/TNSRE.2022.3185262
10.1155/2010/702357
10.1016/j.artmed.2013.08.001
10.1007/s12204-022-2488-4
10.3389/fnhum.2023.1103935
10.1088/1741-2560/12/4/046008
10.1088/1741-2552/aaca6e
10.3390/app12168274
10.1109/TNSRE.2023.3243786
10.1007/978-3-642-21663-3_65
10.1109/BCI51272.2021.9385322
10.1134/S0361768822080163
10.3390/vision7020030
10.3390/bioengineering9120768
10.3109/17483107.2014.961569
10.1038/s42256-023-00714-5
10.1088/1741-2552/acb50e
10.1109/TBME.2021.3133594
10.1016/j.dsp.2021.103101
10.1038/s41598-022-12733-0
10.1093/brain/awaa026
10.1088/1741-2560/11/3/035002
10.1109/SMC.2018.00102
10.1097/00001756-199806010-00007
10.3390/s19050987
10.3390/brainsci13030483
10.3171/2020.4.FOCUS20185
10.1016/j.ijpsycho.2012.09.008
10.1109/CW.2010.22
10.1088/1741-2552/aaf12e
10.3758/s13415-013-0238-7
10.1080/00140139.2012.676675
10.1016/j.biopsycho.2009.10.008
10.26599/BSA.2022.9050022
10.1109/TNSRE.2023.3245654
10.1016/j.inffus.2023.102006
10.1109/86.712231
10.1109/TNSRE.2022.3184402
10.1088/1741-2560/9/3/036008
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a16110502
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_cded59b48f0043129b21f908c6319447
A774316425
10_3390_a16110502
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c385t-33edcde714b309d3892ca23de8b3116322bb82ade468bfbc0eea9c5c586c510e3
IEDL.DBID 8FG
ISSN 1999-4893
IngestDate Wed Aug 27 01:24:50 EDT 2025
Fri Jul 25 12:10:14 EDT 2025
Tue Jun 17 22:19:08 EDT 2025
Tue Jun 10 21:20:18 EDT 2025
Tue Jul 01 03:23:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-33edcde714b309d3892ca23de8b3116322bb82ade468bfbc0eea9c5c586c510e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7831-9404
0000-0002-1889-0692
0009-0008-2242-2649
0000-0002-2403-3136
OpenAccessLink https://www.proquest.com/docview/2892938396?pq-origsite=%requestingapplication%
PQID 2892938396
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_cded59b48f0043129b21f908c6319447
proquest_journals_2892938396
gale_infotracmisc_A774316425
gale_infotracacademiconefile_A774316425
crossref_primary_10_3390_a16110502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231001
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rupp (ref_58) 2014; 7
Caraza (ref_30) 2023; 17
Yao (ref_43) 2022; 30
Putman (ref_24) 2014; 14
ref_14
Caucheteux (ref_36) 2023; 5
Ladouce (ref_21) 2022; 12
ref_53
ref_52
ref_51
ref_18
Chen (ref_54) 2023; 31
Brennan (ref_60) 2020; 50
Goodman (ref_26) 2013; 87
Borghini (ref_39) 2018; 39
Wong (ref_41) 2021; 69
ref_25
ref_22
Ortega (ref_45) 2022; 48
ref_20
Miller (ref_40) 2020; 49
Holz (ref_44) 2013; 59
Na (ref_16) 2021; 116
ref_29
ref_28
Zhang (ref_23) 2020; 28
Won (ref_13) 2015; 13
Shi (ref_17) 2023; 31
Wolpaw (ref_11) 1998; 6
Hochberg (ref_35) 2006; 442
Zhu (ref_10) 2010; 2010
Khademi (ref_1) 2023; 383
Nam (ref_27) 2012; 55
Ming (ref_47) 2023; 20
ref_33
ref_31
Ng (ref_32) 2012; 9
Kennedy (ref_34) 1998; 9
ref_37
Chen (ref_55) 2015; 12
Guo (ref_56) 2022; 30
Zhang (ref_12) 2023; 17
Chen (ref_9) 2015; 112
Lesenfants (ref_15) 2014; 11
Abiri (ref_5) 2019; 16
Varone (ref_38) 2024; 101
Ming (ref_46) 2021; 18
Pan (ref_59) 2020; 143
ref_3
ref_2
Zerafa (ref_42) 2018; 15
ref_49
ref_48
Liu (ref_7) 2022; 8
Wittevrongel (ref_8) 2018; 175
Li (ref_19) 2023; 163
ref_4
Putman (ref_50) 2010; 83
ref_6
Bamdad (ref_57) 2013; 10
References_xml – ident: ref_6
  doi: 10.1088/1741-2552/acf7f6
– volume: 175
  start-page: 315
  year: 2018
  ident: ref_8
  article-title: Representation of steady-state visual evoked potentials elicited by luminance flicker in human occipital cortex: An electrocorticography study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.04.006
– ident: ref_31
  doi: 10.1371/journal.pone.0077536
– volume: 18
  start-page: 056046
  year: 2021
  ident: ref_46
  article-title: Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac284a
– volume: 39
  start-page: 08TR02
  year: 2018
  ident: ref_39
  article-title: Passive BCI beyond the lab: Current trends and future directions
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad57e
– ident: ref_51
  doi: 10.1109/ICTS52701.2021.9608810
– volume: 163
  start-page: 195
  year: 2023
  ident: ref_19
  article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.03.039
– ident: ref_14
  doi: 10.1109/SMC.2019.8914668
– ident: ref_22
  doi: 10.1007/978-3-319-05080-5
– volume: 112
  start-page: E6058
  year: 2015
  ident: ref_9
  article-title: High-speed spelling with a noninvasive brain—Computer interface
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508080112
– ident: ref_25
  doi: 10.1016/j.ynstr.2022.100452
– volume: 7
  start-page: 38
  year: 2014
  ident: ref_58
  article-title: Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00038
– volume: 442
  start-page: 164
  year: 2006
  ident: ref_35
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 13
  start-page: 016014
  year: 2015
  ident: ref_13
  article-title: Effect of higher frequency on the classification of steady-state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/1/016014
– volume: 17
  start-page: 1142892
  year: 2023
  ident: ref_30
  article-title: SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1142892
– volume: 50
  start-page: 277
  year: 2020
  ident: ref_60
  article-title: Performance of a Steady-State Visual Evoked Potential and Eye Gaze Hybrid Brain-Computer Interface on Participants with and without a Brain Injury
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2020.2983661
– ident: ref_2
  doi: 10.1109/ICASET.2019.8714373
– ident: ref_52
  doi: 10.1093/oxfordhb/9780192898340.013.15
– ident: ref_4
– volume: 383
  start-page: 109736
  year: 2023
  ident: ref_1
  article-title: A review of critical challenges in MI-BCI: From conventional to deep learning methods
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109736
– volume: 28
  start-page: 1771
  year: 2020
  ident: ref_23
  article-title: Stress-Induced Effects in Resting EEG Spectra Predict the Performance of SSVEP-Based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3005771
– volume: 30
  start-page: 1737
  year: 2022
  ident: ref_56
  article-title: SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3185262
– volume: 2010
  start-page: 702357
  year: 2010
  ident: ref_10
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2010/702357
– volume: 59
  start-page: 111
  year: 2013
  ident: ref_44
  article-title: Brain–computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2013.08.001
– ident: ref_20
  doi: 10.1007/s12204-022-2488-4
– volume: 17
  start-page: 1103935
  year: 2023
  ident: ref_12
  article-title: An online hybrid BCI combining SSVEP and EOG-based eye movements
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2023.1103935
– volume: 12
  start-page: 046008
  year: 2015
  ident: ref_55
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046008
– volume: 15
  start-page: 051001
  year: 2018
  ident: ref_42
  article-title: To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaca6e
– ident: ref_33
  doi: 10.3390/app12168274
– volume: 31
  start-page: 1277
  year: 2023
  ident: ref_54
  article-title: Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3243786
– ident: ref_29
  doi: 10.1007/978-3-642-21663-3_65
– ident: ref_18
  doi: 10.1109/BCI51272.2021.9385322
– volume: 48
  start-page: 646
  year: 2022
  ident: ref_45
  article-title: Usability Evaluation of BCI Software Applications: A systematic review of the literature
  publication-title: Program. Comput. Softw.
  doi: 10.1134/S0361768822080163
– ident: ref_49
  doi: 10.3390/vision7020030
– ident: ref_37
  doi: 10.3390/bioengineering9120768
– volume: 10
  start-page: 355
  year: 2013
  ident: ref_57
  article-title: Application of BCI systems in neurorehabilitation: A scoping review
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.3109/17483107.2014.961569
– volume: 5
  start-page: 1097
  year: 2023
  ident: ref_36
  article-title: Decoding speech perception from non-invasive brain recordings
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00714-5
– volume: 20
  start-page: 016042
  year: 2023
  ident: ref_47
  article-title: A high-performance SSVEP-based BCI using imperceptible flickers
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acb50e
– volume: 69
  start-page: 2018
  year: 2021
  ident: ref_41
  article-title: Online adaptation boosts SSVEP-based BCI performance
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3133594
– volume: 116
  start-page: 103101
  year: 2021
  ident: ref_16
  article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2021.103101
– volume: 12
  start-page: 8865
  year: 2022
  ident: ref_21
  article-title: Improving user experience of SSVEP BCI through low amplitude depth and high frequency stimuli design
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12733-0
– volume: 143
  start-page: 1177
  year: 2020
  ident: ref_59
  article-title: Prognosis for patients with cognitive motor dissociation identified by brain-computer interface
  publication-title: Brain
  doi: 10.1093/brain/awaa026
– volume: 11
  start-page: 035002
  year: 2014
  ident: ref_15
  article-title: An independent SSVEP-based brain–computer interface in locked-in syndrome
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035002
– ident: ref_3
  doi: 10.1109/SMC.2018.00102
– volume: 9
  start-page: 1707
  year: 1998
  ident: ref_34
  article-title: Restoration of neural output from a paralyzed patient by a direct brain connection
  publication-title: NeuroReport
  doi: 10.1097/00001756-199806010-00007
– ident: ref_53
  doi: 10.3390/s19050987
– ident: ref_48
  doi: 10.3390/brainsci13030483
– volume: 49
  start-page: E2
  year: 2020
  ident: ref_40
  article-title: The current state of electrocorticography-based brain–computer interfaces
  publication-title: Neurosurg. Focus
  doi: 10.3171/2020.4.FOCUS20185
– volume: 87
  start-page: 115
  year: 2013
  ident: ref_26
  article-title: Stress, emotion regulation and cognitive performance: The predictive contributions of trait and state relative frontal EEG alpha asymmetry
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.09.008
– ident: ref_28
  doi: 10.1109/CW.2010.22
– volume: 16
  start-page: 011001
  year: 2019
  ident: ref_5
  article-title: A comprehensive review of EEG-based brain—Computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 14
  start-page: 782
  year: 2014
  ident: ref_24
  article-title: EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-013-0238-7
– volume: 55
  start-page: 513
  year: 2012
  ident: ref_27
  article-title: Brain–computer interface (BCI) and ergonomics
  publication-title: Ergonomics
  doi: 10.1080/00140139.2012.676675
– volume: 83
  start-page: 73
  year: 2010
  ident: ref_50
  article-title: EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2009.10.008
– volume: 8
  start-page: 258
  year: 2022
  ident: ref_7
  article-title: Review of brain—Computer interface based on steady-state visual evoked potential
  publication-title: Brain Sci. Adv.
  doi: 10.26599/BSA.2022.9050022
– volume: 31
  start-page: 1521
  year: 2023
  ident: ref_17
  article-title: Representative-Based Cold Start for Adaptive SSVEP-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3245654
– volume: 101
  start-page: 102006
  year: 2024
  ident: ref_38
  article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102006
– volume: 6
  start-page: 326
  year: 1998
  ident: ref_11
  article-title: EEG-based communication: Improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.712231
– volume: 30
  start-page: 1870
  year: 2022
  ident: ref_43
  article-title: Reducing the calibration time in somatosensory BCI by using tactile ERD
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3184402
– volume: 9
  start-page: 036008
  year: 2012
  ident: ref_32
  article-title: Stimulus specificity of a steady-state visual-evoked potential-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/3/036008
SSID ssj0065961
Score 2.288916
Snippet Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 502
SubjectTerms Accuracy
Algorithms
Analysis
Brain research
brain–computer interface
Calibration
Communication
Consciousness
discomfort index
Electroencephalography
Frequency ranges
frequency selection algorithm
Human-computer interface
personal response
Power
Signal to noise ratio
Spinal cord injuries
steady-state visually evoked potentials
Stimulation
Usability
User experience
User interface
User satisfaction
User training
visual stimulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtvcbXKIoKn0N3NY5NjKy1FUIRtpbeQ14oHW6nbg__eyT6KPYgXr9nsMsxkMt9kJ_MhdKu5o9YbjnPOKaY8ybG0mcUlKzOZlsbquk_34xOfzOjDnM1_UH2FmrCmPXCjuL513jFpqCjDTyuITiZLS5kIy2HxUFrfI09k0iVTzR7MmeRp00eIQFLf14BrAEi0Zydd9Kmb9P-2FdfxZXyI9ltgGA8agY7Qjl8co4OOdCFuffAETQfrahlg5uI1Lqq395Z-Kx6vmqLor7ioqW3CGADSuCheRs94CMHKxcPAB4E336xPA8tQk3WKZuPR9H6CW2oEbIlgFSbEO9BMnlJDEukAdWRWZ8R5YUgKECvLjBGZdp5yYUDjifdaWmaZ4Ba80JMztLtYLvw5ijnNPfeOl8QRSrzUWhNrpPcpg3eEi9BNpzL10XTAUJA5BL2qjV4jNAzK3EwITavrATClak2p_jJlhO6CKVRwrWqlrW5vCICcoUmVGuQB7kDCxCLU25oJLmG3H3fGVK1LfirILAHaAB7kF_8h7CXaC8zzTV1fD-1Wq7W_AnxSmet6KX4DwcHiHw
  priority: 102
  providerName: Directory of Open Access Journals
Title Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces
URI https://www.proquest.com/docview/2892938396
https://doaj.org/article/cded59b48f0043129b21f908c6319447
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be-HCG7FQVhFC4mR1Ez9in9Au2qVCoqrYFvVm-ZWqB3bLNj3w75lxnEU9wNVOImvsmflmPJkP4INTUYTkFWuVEkyoWctMaALrZNeYuvPB5T7d307VyYX4eikvS8LttpRVjjYxG-q4DZQjP8bAAD0TunP16eYXI9Youl0tFBoP4bBGT0PnXK--jJZYSaPqoZsQx9D-2CG6QThRMiijD8qt-v9lkLOXWT2FxwUeVvNhP5_Bg7R5Dk9G6oWqaOILOJ_f9VsCm5urat1f_ywkXNVqN5RG_67WmeCGxhCWVuv1j-UZW6DLitWCWCHY_ps5J9hRZdZLuFgtzz-fsEKQwALXsmecpxhiamvh-cxExB5NcA2PSXteI9BqGu9142ISSnuU-ywlZ4IMUquAupj4KzjYbDfpNVRKtEmlqDoeueDJOOd48CalWuI7Ok7g_SgyezP0wbAYP5Bc7V6uE1iQMPcPUOvqPLDdXdmiCRYXHKXxQnd0C4lwwzd1Z2Y6KLQGQrQT-EhbYUnB-p0LrvwngOukVlV23hLowbBJTuDo3pOoGOH-9LiZtijmrf17jN78f_otPCJm-aFu7wgO-t1deof4o_fTfMimcLhYnp59n-Yo_g-4oN1M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAX3oi0BVYIxMnqru31rg8VSiBRStuoIinqzfi1FYcmbboV6p_qb2S86w3qAW692ruWNZ7HZ3s8H8AHLRy33ghSCMEJF2lBpKWWVHlFZVYZq5s63UdTMTnh307z0w247d7ChLTKzic2jtotbTgj38WNAUYmDOfi88UlCaxR4Xa1o9Bo1eLA3_zGLdvV3v5XXN-PlI5H8y8TElkFiGVlXhPGvLPOFxk3LJUOAza1mjLnS8MyRCeUGlNS7TwXpcHJpt5raXObl8KiAnuG4z6ATR5etPZgcziaHn_vfL_Ipcja-kWMyXRXI55CABPPbLqo15AD_CsENHFt_BQeR0CaDFoNegYbfvEcnnRkD0m0_RcwH1zXywBvF2fJrP51Hmm_kvGqTca-SWYNpU5oQyCczGY_RsdkiEHSJcPAQ0HWYzankFXIBXsJJ_civFfQWywX_jUkghdeeCcq5hhnXmqtmTXS-yzHf0rXh_edyNRFW3lD4Y4lyFWt5dqHYRDm-oNQLLtpWK7OVLQ9hRN2uTS8rMK9JwIcQ7NKpqUV6H84L_rwKSyFCiZdr7TV8WUCzjMUx1KDIsAs3Kjlfdi58yWaor3b3S2miq7gSv1V3K3_d7-Dh5P50aE63J8ebMOjwGvfZg3uQK9eXfs3iH5q8zaqXAI_71vL_wDxGhpL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvBELpVgIxMnaxK_EB1Tttg0tharStqg341cqDuyWbSrUv8av6ziPRT3ArVc7sazxeOYbezwfwDurgvDRKVooJahQWUG1Z57WsmY6r523bZ3ur4dq70R8PpWna_BneAuT0ioHm9ga6rDw6Yx8jIEBeiZ052pc92kRRzvV1vkvmhik0k3rQKfRqchBvPqN4dvFx_0dXOv3jFW7x9t7tGcYoJ6XsqGcx-BDLHLheKYDOm_mLeMhlo7niFQYc65kNkShSocTz2K02ksvS-VRmSPHce_A3YIXOgV-ZfVp8AJKapV3lYw419nYIrJCKNOf3gz-r6UJ-JczaD1c9Qge9NCUTDpdegxrcf4EHg60D6S3Ak_heHLZLBLQnZ-RWfPjZ08ARqpll5Z9RWYtuU5qQ0hMZrNvu0d0iu4ykGlipKCrMdvzyDplhT2Dk1sR3XNYny_m8QUQJYqoYlA1D1zwqK213DsdYy7xnzKM4O0gMnPe1eAwGLskuZqVXEcwTcJcfZDKZrcNi-WZ6XehwQkHqZ0o63QDilDHsbzWWekVWiIhihF8SEth0uZultbb_o0CzjOVyTKTIgEuDNnkCDZufImb0t_sHhbT9EbhwvxV4Zf_734D91C3zZf9w4NXcD8R3Hfpgxuw3iwv42uEQY3bbPWNwPfbVvBr7yodGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+Stimulation+Frequency+Selection+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=Algorithms&rft.au=Kozin%2C+Alexey&rft.au=Gerasimov%2C+Anton&rft.au=Bakaev%2C+Maxim&rft.au=Pashkov%2C+Anton&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=11&rft_id=info:doi/10.3390%2Fa16110502&rft.externalDocID=A774316425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon