Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces
Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or...
Saved in:
Published in | Algorithms Vol. 16; no. 11; p. 502 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a16110502 |
Cover
Abstract | Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs. |
---|---|
AbstractList | Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or even harmful at certain frequencies. In our experimental study, we proposed a new approach to the selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies. The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended stimulation frequencies for use in SSVEP-based BCIs. |
Audience | Academic |
Author | Bakaev, Maxim Razumnikova, Olga Gerasimov, Anton Kozin, Alexey Pashkov, Anton |
Author_xml | – sequence: 1 givenname: Alexey orcidid: 0009-0008-2242-2649 surname: Kozin fullname: Kozin, Alexey – sequence: 2 givenname: Anton surname: Gerasimov fullname: Gerasimov, Anton – sequence: 3 givenname: Maxim orcidid: 0000-0002-1889-0692 surname: Bakaev fullname: Bakaev, Maxim – sequence: 4 givenname: Anton orcidid: 0000-0002-2403-3136 surname: Pashkov fullname: Pashkov, Anton – sequence: 5 givenname: Olga orcidid: 0000-0002-7831-9404 surname: Razumnikova fullname: Razumnikova, Olga |
BookMark | eNptkU9rGzEQxUVJofnTQ7_BQk89bCppdmXp6JikMQQacJKr0EojI-OVXGn3kG8fNS5JC0UgDY83P83wzshJTBEJ-cLoJYCi3w0TjNGe8g_klCml2k4qOPmr_kTOStlRKnol2Cl5WM5TGs0U4rbZTGGc97VOsbnJ-GvGaJ-bDe7Rvmo-5Wazebq-b69MQddcZRNiu0rjYZ4wN-tYb28slgvy0Zt9wc9_3nPyeHP9sLpt737-WK-Wd60F2U8tADrrcMG6AahyIBW3hoNDOQBjAjgfBsmNw07IwQ-WIhple9tLYXtGEc7J-sh1yez0IYfR5GedTNCvQspbbfIU7B51_cf1auikp7QDxtXAmVdUWgFMdd2isr4eWYec6uZl0rs051jH17wOpkCCEu-uranQEH2asrFjKFYvF4sKFh3vq-vyP656HI7B1sB8qPo_Dd-ODTanUjL6t2UY1b9z1W-5wgtgL5Qk |
Cites_doi | 10.1088/1741-2552/acf7f6 10.1016/j.neuroimage.2018.04.006 10.1371/journal.pone.0077536 10.1088/1741-2552/ac284a 10.1088/1361-6579/aad57e 10.1109/ICTS52701.2021.9608810 10.1016/j.neunet.2023.03.039 10.1109/SMC.2019.8914668 10.1007/978-3-319-05080-5 10.1073/pnas.1508080112 10.1016/j.ynstr.2022.100452 10.3389/fneng.2014.00038 10.1038/nature04970 10.1088/1741-2560/13/1/016014 10.3389/fnins.2023.1142892 10.1109/THMS.2020.2983661 10.1109/ICASET.2019.8714373 10.1093/oxfordhb/9780192898340.013.15 10.1016/j.jneumeth.2022.109736 10.1109/TNSRE.2020.3005771 10.1109/TNSRE.2022.3185262 10.1155/2010/702357 10.1016/j.artmed.2013.08.001 10.1007/s12204-022-2488-4 10.3389/fnhum.2023.1103935 10.1088/1741-2560/12/4/046008 10.1088/1741-2552/aaca6e 10.3390/app12168274 10.1109/TNSRE.2023.3243786 10.1007/978-3-642-21663-3_65 10.1109/BCI51272.2021.9385322 10.1134/S0361768822080163 10.3390/vision7020030 10.3390/bioengineering9120768 10.3109/17483107.2014.961569 10.1038/s42256-023-00714-5 10.1088/1741-2552/acb50e 10.1109/TBME.2021.3133594 10.1016/j.dsp.2021.103101 10.1038/s41598-022-12733-0 10.1093/brain/awaa026 10.1088/1741-2560/11/3/035002 10.1109/SMC.2018.00102 10.1097/00001756-199806010-00007 10.3390/s19050987 10.3390/brainsci13030483 10.3171/2020.4.FOCUS20185 10.1016/j.ijpsycho.2012.09.008 10.1109/CW.2010.22 10.1088/1741-2552/aaf12e 10.3758/s13415-013-0238-7 10.1080/00140139.2012.676675 10.1016/j.biopsycho.2009.10.008 10.26599/BSA.2022.9050022 10.1109/TNSRE.2023.3245654 10.1016/j.inffus.2023.102006 10.1109/86.712231 10.1109/TNSRE.2022.3184402 10.1088/1741-2560/9/3/036008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a16110502 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_cded59b48f0043129b21f908c6319447 A774316425 10_3390_a16110502 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c385t-33edcde714b309d3892ca23de8b3116322bb82ade468bfbc0eea9c5c586c510e3 |
IEDL.DBID | 8FG |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:24:50 EDT 2025 Fri Jul 25 12:10:14 EDT 2025 Tue Jun 17 22:19:08 EDT 2025 Tue Jun 10 21:20:18 EDT 2025 Tue Jul 01 03:23:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-33edcde714b309d3892ca23de8b3116322bb82ade468bfbc0eea9c5c586c510e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7831-9404 0000-0002-1889-0692 0009-0008-2242-2649 0000-0002-2403-3136 |
OpenAccessLink | https://www.proquest.com/docview/2892938396?pq-origsite=%requestingapplication% |
PQID | 2892938396 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cded59b48f0043129b21f908c6319447 proquest_journals_2892938396 gale_infotracmisc_A774316425 gale_infotracacademiconefile_A774316425 crossref_primary_10_3390_a16110502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Rupp (ref_58) 2014; 7 Caraza (ref_30) 2023; 17 Yao (ref_43) 2022; 30 Putman (ref_24) 2014; 14 ref_14 Caucheteux (ref_36) 2023; 5 Ladouce (ref_21) 2022; 12 ref_53 ref_52 ref_51 ref_18 Chen (ref_54) 2023; 31 Brennan (ref_60) 2020; 50 Goodman (ref_26) 2013; 87 Borghini (ref_39) 2018; 39 Wong (ref_41) 2021; 69 ref_25 ref_22 Ortega (ref_45) 2022; 48 ref_20 Miller (ref_40) 2020; 49 Holz (ref_44) 2013; 59 Na (ref_16) 2021; 116 ref_29 ref_28 Zhang (ref_23) 2020; 28 Won (ref_13) 2015; 13 Shi (ref_17) 2023; 31 Wolpaw (ref_11) 1998; 6 Hochberg (ref_35) 2006; 442 Zhu (ref_10) 2010; 2010 Khademi (ref_1) 2023; 383 Nam (ref_27) 2012; 55 Ming (ref_47) 2023; 20 ref_33 ref_31 Ng (ref_32) 2012; 9 Kennedy (ref_34) 1998; 9 ref_37 Chen (ref_55) 2015; 12 Guo (ref_56) 2022; 30 Zhang (ref_12) 2023; 17 Chen (ref_9) 2015; 112 Lesenfants (ref_15) 2014; 11 Abiri (ref_5) 2019; 16 Varone (ref_38) 2024; 101 Ming (ref_46) 2021; 18 Pan (ref_59) 2020; 143 ref_3 ref_2 Zerafa (ref_42) 2018; 15 ref_49 ref_48 Liu (ref_7) 2022; 8 Wittevrongel (ref_8) 2018; 175 Li (ref_19) 2023; 163 ref_4 Putman (ref_50) 2010; 83 ref_6 Bamdad (ref_57) 2013; 10 |
References_xml | – ident: ref_6 doi: 10.1088/1741-2552/acf7f6 – volume: 175 start-page: 315 year: 2018 ident: ref_8 article-title: Representation of steady-state visual evoked potentials elicited by luminance flicker in human occipital cortex: An electrocorticography study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.04.006 – ident: ref_31 doi: 10.1371/journal.pone.0077536 – volume: 18 start-page: 056046 year: 2021 ident: ref_46 article-title: Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac284a – volume: 39 start-page: 08TR02 year: 2018 ident: ref_39 article-title: Passive BCI beyond the lab: Current trends and future directions publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aad57e – ident: ref_51 doi: 10.1109/ICTS52701.2021.9608810 – volume: 163 start-page: 195 year: 2023 ident: ref_19 article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.03.039 – ident: ref_14 doi: 10.1109/SMC.2019.8914668 – ident: ref_22 doi: 10.1007/978-3-319-05080-5 – volume: 112 start-page: E6058 year: 2015 ident: ref_9 article-title: High-speed spelling with a noninvasive brain—Computer interface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508080112 – ident: ref_25 doi: 10.1016/j.ynstr.2022.100452 – volume: 7 start-page: 38 year: 2014 ident: ref_58 article-title: Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00038 – volume: 442 start-page: 164 year: 2006 ident: ref_35 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 13 start-page: 016014 year: 2015 ident: ref_13 article-title: Effect of higher frequency on the classification of steady-state visual evoked potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/1/016014 – volume: 17 start-page: 1142892 year: 2023 ident: ref_30 article-title: SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1142892 – volume: 50 start-page: 277 year: 2020 ident: ref_60 article-title: Performance of a Steady-State Visual Evoked Potential and Eye Gaze Hybrid Brain-Computer Interface on Participants with and without a Brain Injury publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2020.2983661 – ident: ref_2 doi: 10.1109/ICASET.2019.8714373 – ident: ref_52 doi: 10.1093/oxfordhb/9780192898340.013.15 – ident: ref_4 – volume: 383 start-page: 109736 year: 2023 ident: ref_1 article-title: A review of critical challenges in MI-BCI: From conventional to deep learning methods publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2022.109736 – volume: 28 start-page: 1771 year: 2020 ident: ref_23 article-title: Stress-Induced Effects in Resting EEG Spectra Predict the Performance of SSVEP-Based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3005771 – volume: 30 start-page: 1737 year: 2022 ident: ref_56 article-title: SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3185262 – volume: 2010 start-page: 702357 year: 2010 ident: ref_10 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/702357 – volume: 59 start-page: 111 year: 2013 ident: ref_44 article-title: Brain–computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2013.08.001 – ident: ref_20 doi: 10.1007/s12204-022-2488-4 – volume: 17 start-page: 1103935 year: 2023 ident: ref_12 article-title: An online hybrid BCI combining SSVEP and EOG-based eye movements publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2023.1103935 – volume: 12 start-page: 046008 year: 2015 ident: ref_55 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046008 – volume: 15 start-page: 051001 year: 2018 ident: ref_42 article-title: To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaca6e – ident: ref_33 doi: 10.3390/app12168274 – volume: 31 start-page: 1277 year: 2023 ident: ref_54 article-title: Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3243786 – ident: ref_29 doi: 10.1007/978-3-642-21663-3_65 – ident: ref_18 doi: 10.1109/BCI51272.2021.9385322 – volume: 48 start-page: 646 year: 2022 ident: ref_45 article-title: Usability Evaluation of BCI Software Applications: A systematic review of the literature publication-title: Program. Comput. Softw. doi: 10.1134/S0361768822080163 – ident: ref_49 doi: 10.3390/vision7020030 – ident: ref_37 doi: 10.3390/bioengineering9120768 – volume: 10 start-page: 355 year: 2013 ident: ref_57 article-title: Application of BCI systems in neurorehabilitation: A scoping review publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.3109/17483107.2014.961569 – volume: 5 start-page: 1097 year: 2023 ident: ref_36 article-title: Decoding speech perception from non-invasive brain recordings publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00714-5 – volume: 20 start-page: 016042 year: 2023 ident: ref_47 article-title: A high-performance SSVEP-based BCI using imperceptible flickers publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acb50e – volume: 69 start-page: 2018 year: 2021 ident: ref_41 article-title: Online adaptation boosts SSVEP-based BCI performance publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3133594 – volume: 116 start-page: 103101 year: 2021 ident: ref_16 article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2021.103101 – volume: 12 start-page: 8865 year: 2022 ident: ref_21 article-title: Improving user experience of SSVEP BCI through low amplitude depth and high frequency stimuli design publication-title: Sci. Rep. doi: 10.1038/s41598-022-12733-0 – volume: 143 start-page: 1177 year: 2020 ident: ref_59 article-title: Prognosis for patients with cognitive motor dissociation identified by brain-computer interface publication-title: Brain doi: 10.1093/brain/awaa026 – volume: 11 start-page: 035002 year: 2014 ident: ref_15 article-title: An independent SSVEP-based brain–computer interface in locked-in syndrome publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035002 – ident: ref_3 doi: 10.1109/SMC.2018.00102 – volume: 9 start-page: 1707 year: 1998 ident: ref_34 article-title: Restoration of neural output from a paralyzed patient by a direct brain connection publication-title: NeuroReport doi: 10.1097/00001756-199806010-00007 – ident: ref_53 doi: 10.3390/s19050987 – ident: ref_48 doi: 10.3390/brainsci13030483 – volume: 49 start-page: E2 year: 2020 ident: ref_40 article-title: The current state of electrocorticography-based brain–computer interfaces publication-title: Neurosurg. Focus doi: 10.3171/2020.4.FOCUS20185 – volume: 87 start-page: 115 year: 2013 ident: ref_26 article-title: Stress, emotion regulation and cognitive performance: The predictive contributions of trait and state relative frontal EEG alpha asymmetry publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2012.09.008 – ident: ref_28 doi: 10.1109/CW.2010.22 – volume: 16 start-page: 011001 year: 2019 ident: ref_5 article-title: A comprehensive review of EEG-based brain—Computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 14 start-page: 782 year: 2014 ident: ref_24 article-title: EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-013-0238-7 – volume: 55 start-page: 513 year: 2012 ident: ref_27 article-title: Brain–computer interface (BCI) and ergonomics publication-title: Ergonomics doi: 10.1080/00140139.2012.676675 – volume: 83 start-page: 73 year: 2010 ident: ref_50 article-title: EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2009.10.008 – volume: 8 start-page: 258 year: 2022 ident: ref_7 article-title: Review of brain—Computer interface based on steady-state visual evoked potential publication-title: Brain Sci. Adv. doi: 10.26599/BSA.2022.9050022 – volume: 31 start-page: 1521 year: 2023 ident: ref_17 article-title: Representative-Based Cold Start for Adaptive SSVEP-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3245654 – volume: 101 start-page: 102006 year: 2024 ident: ref_38 article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102006 – volume: 6 start-page: 326 year: 1998 ident: ref_11 article-title: EEG-based communication: Improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.712231 – volume: 30 start-page: 1870 year: 2022 ident: ref_43 article-title: Reducing the calibration time in somatosensory BCI by using tactile ERD publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3184402 – volume: 9 start-page: 036008 year: 2012 ident: ref_32 article-title: Stimulus specificity of a steady-state visual-evoked potential-based brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/3/036008 |
SSID | ssj0065961 |
Score | 2.288916 |
Snippet | Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 502 |
SubjectTerms | Accuracy Algorithms Analysis Brain research brain–computer interface Calibration Communication Consciousness discomfort index Electroencephalography Frequency ranges frequency selection algorithm Human-computer interface personal response Power Signal to noise ratio Spinal cord injuries steady-state visually evoked potentials Stimulation Usability User experience User interface User satisfaction User training visual stimulation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtvcbXKIoKn0N3NY5NjKy1FUIRtpbeQ14oHW6nbg__eyT6KPYgXr9nsMsxkMt9kJ_MhdKu5o9YbjnPOKaY8ybG0mcUlKzOZlsbquk_34xOfzOjDnM1_UH2FmrCmPXCjuL513jFpqCjDTyuITiZLS5kIy2HxUFrfI09k0iVTzR7MmeRp00eIQFLf14BrAEi0Zydd9Kmb9P-2FdfxZXyI9ltgGA8agY7Qjl8co4OOdCFuffAETQfrahlg5uI1Lqq395Z-Kx6vmqLor7ioqW3CGADSuCheRs94CMHKxcPAB4E336xPA8tQk3WKZuPR9H6CW2oEbIlgFSbEO9BMnlJDEukAdWRWZ8R5YUgKECvLjBGZdp5yYUDjifdaWmaZ4Ba80JMztLtYLvw5ijnNPfeOl8QRSrzUWhNrpPcpg3eEi9BNpzL10XTAUJA5BL2qjV4jNAzK3EwITavrATClak2p_jJlhO6CKVRwrWqlrW5vCICcoUmVGuQB7kDCxCLU25oJLmG3H3fGVK1LfirILAHaAB7kF_8h7CXaC8zzTV1fD-1Wq7W_AnxSmet6KX4DwcHiHw priority: 102 providerName: Directory of Open Access Journals |
Title | Automating Stimulation Frequency Selection for SSVEP-Based Brain-Computer Interfaces |
URI | https://www.proquest.com/docview/2892938396 https://doaj.org/article/cded59b48f0043129b21f908c6319447 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be-HCG7FQVhFC4mR1Ez9in9Au2qVCoqrYFvVm-ZWqB3bLNj3w75lxnEU9wNVOImvsmflmPJkP4INTUYTkFWuVEkyoWctMaALrZNeYuvPB5T7d307VyYX4eikvS8LttpRVjjYxG-q4DZQjP8bAAD0TunP16eYXI9Youl0tFBoP4bBGT0PnXK--jJZYSaPqoZsQx9D-2CG6QThRMiijD8qt-v9lkLOXWT2FxwUeVvNhP5_Bg7R5Dk9G6oWqaOILOJ_f9VsCm5urat1f_ywkXNVqN5RG_67WmeCGxhCWVuv1j-UZW6DLitWCWCHY_ps5J9hRZdZLuFgtzz-fsEKQwALXsmecpxhiamvh-cxExB5NcA2PSXteI9BqGu9142ISSnuU-ywlZ4IMUquAupj4KzjYbDfpNVRKtEmlqDoeueDJOOd48CalWuI7Ok7g_SgyezP0wbAYP5Bc7V6uE1iQMPcPUOvqPLDdXdmiCRYXHKXxQnd0C4lwwzd1Z2Y6KLQGQrQT-EhbYUnB-p0LrvwngOukVlV23hLowbBJTuDo3pOoGOH-9LiZtijmrf17jN78f_otPCJm-aFu7wgO-t1deof4o_fTfMimcLhYnp59n-Yo_g-4oN1M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAX3oi0BVYIxMnqru31rg8VSiBRStuoIinqzfi1FYcmbboV6p_qb2S86w3qAW692ruWNZ7HZ3s8H8AHLRy33ghSCMEJF2lBpKWWVHlFZVYZq5s63UdTMTnh307z0w247d7ChLTKzic2jtotbTgj38WNAUYmDOfi88UlCaxR4Xa1o9Bo1eLA3_zGLdvV3v5XXN-PlI5H8y8TElkFiGVlXhPGvLPOFxk3LJUOAza1mjLnS8MyRCeUGlNS7TwXpcHJpt5raXObl8KiAnuG4z6ATR5etPZgcziaHn_vfL_Ipcja-kWMyXRXI55CABPPbLqo15AD_CsENHFt_BQeR0CaDFoNegYbfvEcnnRkD0m0_RcwH1zXywBvF2fJrP51Hmm_kvGqTca-SWYNpU5oQyCczGY_RsdkiEHSJcPAQ0HWYzankFXIBXsJJ_civFfQWywX_jUkghdeeCcq5hhnXmqtmTXS-yzHf0rXh_edyNRFW3lD4Y4lyFWt5dqHYRDm-oNQLLtpWK7OVLQ9hRN2uTS8rMK9JwIcQ7NKpqUV6H84L_rwKSyFCiZdr7TV8WUCzjMUx1KDIsAs3Kjlfdi58yWaor3b3S2miq7gSv1V3K3_d7-Dh5P50aE63J8ebMOjwGvfZg3uQK9eXfs3iH5q8zaqXAI_71vL_wDxGhpL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvBELpVgIxMnaxK_EB1Tttg0tharStqg341cqDuyWbSrUv8av6ziPRT3ArVc7sazxeOYbezwfwDurgvDRKVooJahQWUG1Z57WsmY6r523bZ3ur4dq70R8PpWna_BneAuT0ioHm9ga6rDw6Yx8jIEBeiZ052pc92kRRzvV1vkvmhik0k3rQKfRqchBvPqN4dvFx_0dXOv3jFW7x9t7tGcYoJ6XsqGcx-BDLHLheKYDOm_mLeMhlo7niFQYc65kNkShSocTz2K02ksvS-VRmSPHce_A3YIXOgV-ZfVp8AJKapV3lYw419nYIrJCKNOf3gz-r6UJ-JczaD1c9Qge9NCUTDpdegxrcf4EHg60D6S3Ak_heHLZLBLQnZ-RWfPjZ08ARqpll5Z9RWYtuU5qQ0hMZrNvu0d0iu4ykGlipKCrMdvzyDplhT2Dk1sR3XNYny_m8QUQJYqoYlA1D1zwqK213DsdYy7xnzKM4O0gMnPe1eAwGLskuZqVXEcwTcJcfZDKZrcNi-WZ6XehwQkHqZ0o63QDilDHsbzWWekVWiIhihF8SEth0uZultbb_o0CzjOVyTKTIgEuDNnkCDZufImb0t_sHhbT9EbhwvxV4Zf_734D91C3zZf9w4NXcD8R3Hfpgxuw3iwv42uEQY3bbPWNwPfbVvBr7yodGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+Stimulation+Frequency+Selection+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=Algorithms&rft.au=Kozin%2C+Alexey&rft.au=Gerasimov%2C+Anton&rft.au=Bakaev%2C+Maxim&rft.au=Pashkov%2C+Anton&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=11&rft_id=info:doi/10.3390%2Fa16110502&rft.externalDocID=A774316425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |