Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis

Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various hyperparameter...

Full description

Saved in:
Bibliographic Details
Published inInformatics (Basel) Vol. 8; no. 4; p. 79
Main Authors Elgeldawi, Enas, Sayed, Awny, Galal, Ahmed R., Zaki, Alaa M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2227-9709
2227-9709
DOI10.3390/informatics8040079

Cover

Loading…
Abstract Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various hyperparameter tuning techniques is performed; these are Grid Search, Random Search, Bayesian Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). They are used to optimize the accuracy of six machine learning algorithms, namely, Logistic Regression (LR), Ridge Classifier (RC), Support Vector Machine Classifier (SVC), Decision Tree (DT), Random Forest (RF), and Naive Bayes (NB) classifiers. To test the performance of each hyperparameter tuning technique, the machine learning models are used to solve an Arabic sentiment classification problem. Sentiment analysis is the process of detecting whether a text carries a positive, negative, or neutral sentiment. However, extracting such sentiment from a complex derivational morphology language such as Arabic has been always very challenging. The performance of all classifiers is tested using our constructed dataset both before and after the hyperparameter tuning process. A detailed analysis is described, along with the strengths and limitations of each hyperparameter tuning technique. The results show that the highest accuracy was given by SVC both before and after the hyperparameter tuning process, with a score of 95.6208 obtained when using Bayesian Optimization.
AbstractList Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various hyperparameter tuning techniques is performed; these are Grid Search, Random Search, Bayesian Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). They are used to optimize the accuracy of six machine learning algorithms, namely, Logistic Regression (LR), Ridge Classifier (RC), Support Vector Machine Classifier (SVC), Decision Tree (DT), Random Forest (RF), and Naive Bayes (NB) classifiers. To test the performance of each hyperparameter tuning technique, the machine learning models are used to solve an Arabic sentiment classification problem. Sentiment analysis is the process of detecting whether a text carries a positive, negative, or neutral sentiment. However, extracting such sentiment from a complex derivational morphology language such as Arabic has been always very challenging. The performance of all classifiers is tested using our constructed dataset both before and after the hyperparameter tuning process. A detailed analysis is described, along with the strengths and limitations of each hyperparameter tuning technique. The results show that the highest accuracy was given by SVC both before and after the hyperparameter tuning process, with a score of 95.6208 obtained when using Bayesian Optimization.
Author Sayed, Awny
Elgeldawi, Enas
Galal, Ahmed R.
Zaki, Alaa M.
Author_xml – sequence: 1
  givenname: Enas
  orcidid: 0000-0003-4246-6901
  surname: Elgeldawi
  fullname: Elgeldawi, Enas
– sequence: 2
  givenname: Awny
  surname: Sayed
  fullname: Sayed, Awny
– sequence: 3
  givenname: Ahmed R.
  surname: Galal
  fullname: Galal, Ahmed R.
– sequence: 4
  givenname: Alaa M.
  orcidid: 0000-0002-2472-9774
  surname: Zaki
  fullname: Zaki, Alaa M.
BookMark eNp9UU1rGzEQFSWFpmn-QE8LPbvVjqSVdDShbQIOOTSB3sSsdtaR2ZVcaX3wv69it1Ba6BxmHsN7j_l4yy5iisTY-5Z_FMLyTyGOKc-4BF8Ml5xr-4pdAoBeWc3txR_4DbsuZcdr2FYYoS_Z99vjnvIeM860UG4eDzHEbVMNm3v0zyFSsyHMp-Z62qYclue5NE-FhhNpnbEPvvlGcQlzTc064nQsobxjr0ecCl3_qlfs6cvnx5vb1ebh693NerPywqhlJQA1H6yylpMG6hQYI1U3dp7LsRcaANGOHYleVQQW9aCgH0D3svVKorhid2ffIeHO7XOYMR9dwuBOjZS3DnM9zUQO-KBtq8zQA8qWewvYoVRaKCuBSFavD2evfU4_DlQWt0uHXBcqDroWtOm0sZVlziyfUymZRufDUq-f4pIxTK7l7uUt7t-3VCn8Jf098H9EPwFh_5XU
CitedBy_id crossref_primary_10_1007_s00170_022_10348_3
crossref_primary_10_1080_17470919_2023_2242094
crossref_primary_10_1007_s00704_024_05321_x
crossref_primary_10_1016_j_procs_2023_12_125
crossref_primary_10_1016_j_jenvman_2023_118368
crossref_primary_10_1145_3638285
crossref_primary_10_1016_j_csbj_2025_01_020
crossref_primary_10_3390_bioengineering10010045
crossref_primary_10_1016_j_jenvman_2022_115923
crossref_primary_10_1016_j_tust_2022_104759
crossref_primary_10_3390_electronics12010212
crossref_primary_10_1007_s41870_024_02038_y
crossref_primary_10_1007_s13278_022_01005_4
crossref_primary_10_1016_j_jenvman_2023_119727
crossref_primary_10_1155_2022_2439205
crossref_primary_10_1080_10298436_2024_2424381
crossref_primary_10_1007_s12518_024_00560_z
crossref_primary_10_1016_j_heliyon_2024_e33082
crossref_primary_10_3390_su16104055
crossref_primary_10_3390_bdcc6020048
crossref_primary_10_48084_etasr_7238
crossref_primary_10_3390_rs15082155
crossref_primary_10_1016_j_jwpe_2024_106064
crossref_primary_10_1016_j_cmpb_2024_108098
crossref_primary_10_23939_mmc2023_02_511
crossref_primary_10_3390_app13085012
crossref_primary_10_1002_btm2_10641
crossref_primary_10_1186_s40537_022_00635_x
crossref_primary_10_3390_su16177532
crossref_primary_10_1155_2022_9882288
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1016_j_marpolbul_2024_117036
crossref_primary_10_1016_j_scp_2025_101915
crossref_primary_10_3390_app12136424
crossref_primary_10_1108_ACI_12_2021_0338
crossref_primary_10_1287_mnsc_2023_4782
crossref_primary_10_1007_s00521_024_10171_9
crossref_primary_10_1007_s11269_024_03940_7
crossref_primary_10_1016_j_energy_2024_130674
crossref_primary_10_1109_ACCESS_2024_3429073
crossref_primary_10_3390_aerospace10020149
crossref_primary_10_1016_j_jksuci_2023_101691
crossref_primary_10_1016_j_cageo_2024_105712
crossref_primary_10_4018_JCIT_356504
crossref_primary_10_1016_j_carbpol_2023_121338
crossref_primary_10_3390_architecture5010004
crossref_primary_10_4236_jcc_2023_119006
crossref_primary_10_7717_peerj_cs_1538
crossref_primary_10_3390_pr11020349
crossref_primary_10_1016_j_engfracmech_2024_110062
crossref_primary_10_1145_3626319
crossref_primary_10_1007_s11042_024_18246_4
crossref_primary_10_7717_peerj_cs_1894
crossref_primary_10_1007_s10661_024_12700_4
crossref_primary_10_1016_j_compag_2023_108387
crossref_primary_10_1016_j_neucom_2025_129455
crossref_primary_10_1016_j_lwt_2024_115983
crossref_primary_10_1016_j_cej_2023_144671
crossref_primary_10_1029_2024JD041822
crossref_primary_10_3390_diagnostics12102536
crossref_primary_10_4108_eetinis_v11i3_5237
crossref_primary_10_32604_iasc_2023_039949
crossref_primary_10_29407_intensif_v8i2_22280
crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_3390_bioengineering11040314
crossref_primary_10_1016_j_watres_2022_119422
crossref_primary_10_29121_shodhkosh_v5_i5_2024_1889
crossref_primary_10_1016_j_biteb_2024_101993
crossref_primary_10_1088_2631_8695_ad979f
crossref_primary_10_1007_s13369_024_09086_3
crossref_primary_10_1016_j_asoc_2023_110740
crossref_primary_10_1371_journal_pone_0274395
crossref_primary_10_1007_s12145_023_01099_0
crossref_primary_10_3389_feart_2023_1223154
crossref_primary_10_3390_math13071041
crossref_primary_10_2139_ssrn_4093473
crossref_primary_10_3390_s24175652
crossref_primary_10_1016_j_jclepro_2022_135671
crossref_primary_10_1021_acsomega_4c09603
crossref_primary_10_3390_w14223647
crossref_primary_10_1038_s41598_024_54515_w
crossref_primary_10_3390_info14080451
crossref_primary_10_3390_en15228757
crossref_primary_10_1109_TETCI_2023_3246559
crossref_primary_10_2139_ssrn_4178869
crossref_primary_10_2478_ijcss_2024_0007
crossref_primary_10_3390_app14166868
crossref_primary_10_47134_ijat_v1i2_3045
crossref_primary_10_1016_j_slast_2024_100129
crossref_primary_10_1038_s41598_024_71169_w
crossref_primary_10_1007_s42979_024_03628_0
crossref_primary_10_24017_Science_2022_2_10
crossref_primary_10_1007_s11107_023_00993_3
crossref_primary_10_3390_su15021169
crossref_primary_10_1016_j_envsoft_2022_105536
crossref_primary_10_14710_j_gauss_12_3_372_381
crossref_primary_10_1016_j_neuroscience_2023_01_029
crossref_primary_10_3390_math11173765
crossref_primary_10_4236_jamp_2024_125115
crossref_primary_10_1007_s13201_024_02301_4
crossref_primary_10_3389_fphys_2023_1266084
crossref_primary_10_1016_j_jer_2023_100061
crossref_primary_10_3390_ijgi12110456
crossref_primary_10_1016_j_dscb_2024_100168
crossref_primary_10_3390_forecast6020026
crossref_primary_10_3390_s22218245
crossref_primary_10_1007_s11227_024_06036_6
crossref_primary_10_1016_j_eswa_2023_122682
crossref_primary_10_1016_j_ijhydene_2025_01_502
crossref_primary_10_1109_ACCESS_2022_3205587
crossref_primary_10_1155_js_5295932
crossref_primary_10_1016_j_jconhyd_2024_104307
crossref_primary_10_1016_j_envres_2023_117755
crossref_primary_10_1016_j_geoen_2023_212086
crossref_primary_10_1007_s12145_025_01784_2
crossref_primary_10_1080_14786451_2024_2364226
crossref_primary_10_1109_ACCESS_2024_3486731
crossref_primary_10_32604_cmc_2023_032838
crossref_primary_10_3390_s22082976
crossref_primary_10_1002_hsr2_2037
crossref_primary_10_32604_cmes_2022_021713
crossref_primary_10_1007_s00521_024_10055_y
crossref_primary_10_1016_j_ijmedinf_2023_105026
crossref_primary_10_3390_app14083254
crossref_primary_10_1016_j_sciaf_2024_e02171
crossref_primary_10_3390_su16188015
crossref_primary_10_1088_1755_1315_1288_1_012024
crossref_primary_10_1007_s11277_024_11188_y
crossref_primary_10_1016_j_envpol_2023_122456
crossref_primary_10_1016_j_prevetmed_2023_105932
crossref_primary_10_3390_f14010156
crossref_primary_10_3390_su151914320
crossref_primary_10_3390_drones8100585
crossref_primary_10_3389_fphys_2023_1100570
crossref_primary_10_1002_ehf2_14593
crossref_primary_10_1007_s12524_024_01986_z
crossref_primary_10_1007_s12665_022_10578_4
crossref_primary_10_3390_en17061326
crossref_primary_10_1080_10298436_2024_2337916
crossref_primary_10_3390_app13063945
crossref_primary_10_1142_S1469026823500189
crossref_primary_10_3390_biomimetics9100649
crossref_primary_10_3390_s22093592
crossref_primary_10_1016_j_eswa_2022_117580
crossref_primary_10_3390_jmse12020356
crossref_primary_10_1038_s41598_024_72663_x
crossref_primary_10_1109_ACCESS_2024_3441323
crossref_primary_10_1111_exsy_13641
crossref_primary_10_32604_cmc_2022_030934
crossref_primary_10_1186_s40510_024_00535_1
crossref_primary_10_2166_h2oj_2022_240
crossref_primary_10_1007_s13369_024_08767_3
crossref_primary_10_1016_j_renene_2024_120865
crossref_primary_10_3390_w16121666
crossref_primary_10_1142_S0218488525500035
crossref_primary_10_3390_app122111127
crossref_primary_10_3390_rs14030541
Cites_doi 10.1109/ITNEC.2019.8729510
10.1016/S1532-0464(03)00034-0
10.1016/j.neucom.2020.07.061
10.1109/ITCE48509.2020.9047822
10.1109/ACCESS.2019.2924314
10.1109/ICNC.2007.746
10.1109/FiCloud.2014.100
10.1109/ASAR.2018.8480191
10.1007/978-3-319-67621-0_12
10.1016/j.asej.2017.04.007
10.1145/3416508.3417121
10.1109/GLOBECOM46510.2021.9685951
10.1177/0165551514534143
10.1109/IJCNN.2018.8489520
10.1007/BFb0040753
10.15439/2019F183
10.3390/su13031551
10.1109/AIKE.2019.00060
10.1007/978-3-540-31856-9_4
10.3390/app11104443
10.1109/ICACCP.2019.8882943
10.1016/j.chb.2015.05.045
10.1007/s11390-017-1714-2
10.3390/app10031125
10.1109/ITCE48509.2020.9047790
10.1109/ACCESS.2020.3002725
10.1109/21.286385
10.1145/2512938.2512951
10.1145/3071178.3071208
10.1109/CEC.2014.6900591
10.15837/ijccc.2020.2.3868
10.1007/978-3-030-58669-0_45
10.1109/41.538609
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/informatics8040079
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2227-9709
ExternalDocumentID oai_doaj_org_article_20d79158db2a410c92a6a45735942ee4
10_3390_informatics8040079
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c385t-32a70d95990e72e65288456f6c04fb3722aa9f6e3b52aa29a7d52bd27b41c54a3
IEDL.DBID 8FG
ISSN 2227-9709
IngestDate Wed Aug 27 01:31:32 EDT 2025
Sun Jul 13 05:29:54 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Tue Jul 01 00:56:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-32a70d95990e72e65288456f6c04fb3722aa9f6e3b52aa29a7d52bd27b41c54a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4246-6901
0000-0002-2472-9774
OpenAccessLink https://www.proquest.com/docview/2612786789?pq-origsite=%requestingapplication%
PQID 2612786789
PQPubID 2032385
ParticipantIDs doaj_primary_oai_doaj_org_article_20d79158db2a410c92a6a45735942ee4
proquest_journals_2612786789
crossref_citationtrail_10_3390_informatics8040079
crossref_primary_10_3390_informatics8040079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Informatics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bergstra (ref_10) 2012; 13
Dreiseitl (ref_45) 2002; 35
ref_13
ref_12
ref_11
ref_18
ref_17
Srinivas (ref_34) 1994; 24
Elgeldawi (ref_3) 2014; 4
Wicaksono (ref_16) 2018; 9
Yan (ref_42) 2017; 32
Yang (ref_36) 2020; 415
Man (ref_31) 1996; 43
ref_24
ref_22
ref_20
Friedrich (ref_32) 2017; 21
ref_29
ref_28
ref_27
ref_26
Rauf (ref_43) 2020; 8
Syarif (ref_15) 2016; 14
ref_35
ref_33
Buccafurri (ref_1) 2015; 52
ref_30
ref_39
ref_38
ref_37
ref_47
ref_46
ref_44
Madhyastha (ref_2) 2014; 4
ref_41
ref_40
Sumathi (ref_23) 2021; 12
(ref_19) 2019; 7
Duwairi (ref_21) 2014; 40
ref_49
Boudad (ref_25) 2018; 9
ref_48
ref_9
ref_8
Probst (ref_14) 2019; 20
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_41
  doi: 10.1109/ITNEC.2019.8729510
– volume: 35
  start-page: 352
  year: 2002
  ident: ref_45
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– ident: ref_49
– volume: 415
  start-page: 295
  year: 2020
  ident: ref_36
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– ident: ref_6
  doi: 10.1109/ITCE48509.2020.9047822
– ident: ref_39
– volume: 12
  start-page: 3216
  year: 2021
  ident: ref_23
  article-title: Genetic Algorithm Based Hybrid Model Of Convolutional Neural Network And Random Forest Classifier For Sentiment Classification
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 20
  start-page: 53:1
  year: 2019
  ident: ref_14
  article-title: Tunability: Importance of Hyperparameters of Machine Learning Algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 84122
  year: 2019
  ident: ref_19
  article-title: Surface and Deep Features Ensemble for Sentiment Analysis of Arabic Tweets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924314
– volume: 13
  start-page: 281
  year: 2012
  ident: ref_10
  article-title: Random Search for Hyper-Parameter Optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_40
  doi: 10.1109/ICNC.2007.746
– ident: ref_20
  doi: 10.1109/FiCloud.2014.100
– ident: ref_18
  doi: 10.1109/ASAR.2018.8480191
– ident: ref_26
  doi: 10.1007/978-3-319-67621-0_12
– volume: 9
  start-page: 2479
  year: 2018
  ident: ref_25
  article-title: Sentiment analysis in Arabic: A review of the literature
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.04.007
– volume: 14
  start-page: 1502
  year: 2016
  ident: ref_15
  article-title: SVM parameter optimization using grid search and genetic algorithm to improve classification performance
  publication-title: Telecommun. Comput. Electron. Control
– ident: ref_12
  doi: 10.1145/3416508.3417121
– ident: ref_4
  doi: 10.1109/GLOBECOM46510.2021.9685951
– volume: 40
  start-page: 501
  year: 2014
  ident: ref_21
  article-title: A study of the effects of preprocessing strategies on sentiment analysis for Arabic text
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551514534143
– ident: ref_33
  doi: 10.1109/IJCNN.2018.8489520
– ident: ref_38
  doi: 10.1007/BFb0040753
– ident: ref_30
– ident: ref_17
  doi: 10.15439/2019F183
– ident: ref_24
– volume: 4
  start-page: 63
  year: 2014
  ident: ref_2
  article-title: Pinterest Attraction between Users and Spammers
  publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res.
– ident: ref_11
– ident: ref_5
  doi: 10.3390/su13031551
– ident: ref_29
  doi: 10.1109/AIKE.2019.00060
– ident: ref_28
  doi: 10.1007/978-3-540-31856-9_4
– ident: ref_37
– ident: ref_44
– volume: 9
  start-page: 263
  year: 2018
  ident: ref_16
  article-title: Hyper Parameter Optimization using Genetic Algorithm on Machine Learning Methods for Online News Popularity Prediction
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_22
  doi: 10.3390/app11104443
– volume: 4
  start-page: 21
  year: 2014
  ident: ref_3
  article-title: Detection and Characterization of Fake Accounts on the Pinterest Social Networks
  publication-title: Int. J. Comput. Netw. Wirel. Mob. Commun.
– ident: ref_9
  doi: 10.1109/ICACCP.2019.8882943
– volume: 52
  start-page: 87
  year: 2015
  ident: ref_1
  article-title: Comparing Twitter and Facebook User Behavior
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2015.05.045
– volume: 32
  start-page: 340
  year: 2017
  ident: ref_42
  article-title: A Novel Hardware/Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-017-1714-2
– ident: ref_47
  doi: 10.3390/app10031125
– ident: ref_46
– ident: ref_7
  doi: 10.1109/ITCE48509.2020.9047790
– volume: 8
  start-page: 110535
  year: 2020
  ident: ref_43
  article-title: Particle Swarm Optimization With Probability Sequence for Global Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002725
– volume: 24
  start-page: 656
  year: 1994
  ident: ref_34
  article-title: Adaptive probabilities of crossover and mutation in genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.286385
– ident: ref_48
  doi: 10.1145/2512938.2512951
– ident: ref_27
  doi: 10.1145/3071178.3071208
– volume: 21
  start-page: 477
  year: 2017
  ident: ref_32
  article-title: The Compact Genetic Algorithm is Efficient Under Extreme Gaussian Noise
  publication-title: IEEE Trans. Evol. Comput.
– ident: ref_35
  doi: 10.1109/CEC.2014.6900591
– ident: ref_13
  doi: 10.15837/ijccc.2020.2.3868
– ident: ref_8
  doi: 10.1007/978-3-030-58669-0_45
– volume: 43
  start-page: 519
  year: 1996
  ident: ref_31
  article-title: Genetic algorithms: Concepts and applications [in engineering design]
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.538609
SSID ssj0000913837
Score 2.6038096
Snippet Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 79
SubjectTerms Arabic language
Arabic sentiment analysis
Bayesian analysis
Classifiers
Data mining
Datasets
Decision trees
Genetic algorithms
hyperparameter tuning
Machine learning
Particle swarm optimization
Sentiment analysis
Support vector machines
Tuning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykxfxJ043yUG8SLHNjzY5TnFMQS9usFtJk3QOtk667v83L83GQNCLt1JeaEle8r0Xvvc9hG6JtqmwXETOQUTEiNGRTJMisjEEp8IUXHu2xXs6mrDXKZ_utfoCTlgrD9xOnEvOTSYTGEUUS2ItiUoV4xnlkhFrvRKow7y9ZMqfwTKB1KutkqEur38IOqSgfSzAcYG7tYdEXrD_x3nsQWZ4jI5CdIgH7V-doANbnaJ-qC3Ad_il2hUb4rArz9B05HLJGjS8l8BtweMN3HVgZ4nfPFXS4qCiOsODxWxVz5vP5RpP1tZ4o0GtirnGH8AbgrtCvBUqOUeT4fP4aRSFhgmRpoI3ESUqi43kDmFsRmzKiRAuQCpTHbOyoBkhSskytbTg7olIlRlOCkOygiWaM0UvUKdaVfYSYZ4YG2uolKeclQ6zHLAzq1QJbcOpkV2UbCcv10FNHJpaLHKXVcCE5z8nvIvud2O-Wi2NX60fYU12lqCD7V8478iDd-R_eUcX9bYrmofNuc5BNS0TDqXl1X984xodEiC6eI5LD3WaemP7LlJpihvvlN_uD-aK
  priority: 102
  providerName: Directory of Open Access Journals
Title Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis
URI https://www.proquest.com/docview/2612786789
https://doaj.org/article/20d79158db2a410c92a6a45735942ee4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86L17ET5zOkYN4kbI2H21ykinOKSiiG-xW0iSdwj50nf-_eVk6BcFbaV8PTV7eV3_v9xA6J9qmwnIROQURESNGRzJNisjGEJwKU3Dt0RZPaX_IHkZ8FApuVYBV1jbRG2oz11Aj7wDVVSacaZVXH58RTI2Cv6thhMYm2kqcpwENF727dY0FOC9dArbqlaEuu-8ENlJgQBagvoDg-uWPPG3_H6vsXU1vF-2EGBF3V5u6hzbsbB-dhQ4DfIHvZ-uWQxzO5gEa9V1GuQAm7ykgXPDgCyoe2EniRw-YtDhwqY5xdzJ2n7Z8m1Z4WFnjhboLVbxr_AroIagY4pqu5BANe7eDm34UxiZEmgq-jChRWWwkd37GZsSmnAjhwqQy1TErC5oRopQsU0sL7q6IVJnhpDAkK1iiOVP0CDVm85k9RpgnxsYa-uUpZ6XzXM69M6tUCcPDqZFNlNSLl-vAKQ6jLSa5yy1gwfO_C95El-t3PlaMGv9KX8OerCWBDdvfmC_GeThcOYlNJhPQLKJYEmtJVKoYzyiXjFjLmqhV72gejmiV_yjUyf-PT9E2ASCLx7C0UGO5-LJnLhJZFm2vbm20dX379PzS9vn8N9Xy4cU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL4ikCLewBuCCr9j7s3QNC4RES-riQSLmZ9e46RWqTkqRC_Cl-IzObdUCq1Ftvlj32YXZ2HutvvgF4xV0odVA6QwPRmeTeZaYsmizklJxq3ygX0RYn5XAiv07VdAf-dL0wBKvsfGJ01H7h6Iz8gKiuKo2u1by_-JnR1Cj6u9qN0NiYxWH4_QtLttW70Sdc39ecDz6PPw6zNFUgc0KrdSa4rXJvFLrhUPFQKq41ZhFt6XLZNqLi3FrTlkE0Cq-4sZVXvPG8amThlLQCv3sLbkshDEEI9eDL9kyHODax4Nv05uDz_CCxnxLjsqbtQoix_-JfHBNwJQrE0Da4D_dSTsr6GyN6ADth_hD2U0cDe8NG822LI0u-4BFMh1jBLok5_JwQNWx8SScsDCXZcQRoBpa4W2esfzZDVa5Pz1dssgo-CvWXtvnh2DdCK9EJJevoUR7D5EYU-gR254t5eApMFT7kjvrzhZItRkpMJ2SwtqVh5cKbHhSd8mqXOMxplMZZjbUMKby-qvAevN2-c7Fh8LhW-gOtyVaS2LfjjcVyVqfNXPPcV6YgS-ZWFrkz3JZWqkooI3kIsgd73YrWySWs6n8G_Oz6xy_hznB8fFQfjU4On8NdTiCaiJ_Zg9318jLsYxa0bl5E02Pw_aZt_S9m7xs3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVkJcEC0gAi34ULigVXb9WNsHVIWWNKFQIdFIuS1e25sitUlJUqH-NX4dHscbkCr11ttqd3YP4_E8vN98A7BPrS-VFyoLBqIyTp3NdFnUmc8xOVWuFjaiLU7LwYh_HovxBvxpe2EQVtn6xOio3cziGXkXqa6kCq5Vd5sEi_h21D-4-pXhBCn809qO01iZyIm_-R3Kt8WH4VFY67eU9j-dHQ6yNGEgs0yJZcaokbnTIrhkL6kvBVUqZBRNaXPe1ExSaoxuSs9qEa6oNtIJWjsqa15YwQ0L330AW5KpHKcnqP7x-nwH-TZD8bfq02FM593EhIrsywq3DqLH_ouFcWTArYgQw1z_CTxO-SnprQxqGzb8dAf2UncDeUeG03W7I0l-4SmMB6GanSOL-CWia8jZNZ62kCBJvkawpieJx3VCeheToMrl-eWCjBbeRaHe3NQ_LfmOyCU8rSQtVcozGN2LQp_D5nQ29S-AiML53GKvPhO8CVEzpBbcG9Pg4HLmdAeKVnmVTXzmOFbjogp1DSq8uq3wDrxfv3O1YvO4U_ojrslaEpm4443ZfFKljV3R3EldoFVTw4vcampKw4VkQnPqPe_AbruiVXIPi-qfMb-8-_EbeBisvPoyPD15BY8o4mkilGYXNpfza78XEqJl_TpaHoEf923qfwE3lx9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+Tuning+for+Machine+Learning+Algorithms+Used+for+Arabic+Sentiment+Analysis&rft.jtitle=Informatics+%28Basel%29&rft.au=Elgeldawi%2C+Enas&rft.au=Sayed%2C+Awny&rft.au=Galal%2C+Ahmed+R.&rft.au=Zaki%2C+Alaa+M.&rft.date=2021-12-01&rft.issn=2227-9709&rft.eissn=2227-9709&rft.volume=8&rft.issue=4&rft.spage=79&rft_id=info:doi/10.3390%2Finformatics8040079&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_informatics8040079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9709&client=summon