Performance guarantees of transformed Schatten-1 regularization for exact low-rank matrix recovery

Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compressive sensing, the rank minimization can be relaxed to nuclear...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 12; no. 12; pp. 3379 - 3395
Main Authors Wang, Zhi, Hu, Dong, Luo, Xiaohu, Wang, Wendong, Wang, Jianjun, Chen, Wu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compressive sensing, the rank minimization can be relaxed to nuclear norm minimization. However, such a method treats all singular values of target matrix equally. To address this issue, recently the transformed Schatten-1 (TS1) penalty function was proposed and utilized to construct low-rank matrix recovery models. Unfortunately, the method for TS1-based models cannot provide both convergence accuracy and convergence speed. To alleviate such problems, this paper further investigates the basic properties of TS1 penalty function. And we describe a novel algorithm, which we called ATS1PGA, that is highly efficient in solving low-rank matrix recovery problems at a convergence rate of O (1/ N ), where N denotes the iterate count. In addition, we theoretically prove that the original rank minimization problem can be equivalently transformed into the TS1 optimization problem under certain conditions. Finally, extensive experimental results on real image data sets show that our proposed algorithm outperforms state-of-the-art methods in both accuracy and efficiency. In particular, our proposed algorithm is about 30 times faster than TS1 algorithm in solving low-rank matrix recovery problems.
AbstractList Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compressive sensing, the rank minimization can be relaxed to nuclear norm minimization. However, such a method treats all singular values of target matrix equally. To address this issue, recently the transformed Schatten-1 (TS1) penalty function was proposed and utilized to construct low-rank matrix recovery models. Unfortunately, the method for TS1-based models cannot provide both convergence accuracy and convergence speed. To alleviate such problems, this paper further investigates the basic properties of TS1 penalty function. And we describe a novel algorithm, which we called ATS1PGA, that is highly efficient in solving low-rank matrix recovery problems at a convergence rate of O(1/N), where N denotes the iterate count. In addition, we theoretically prove that the original rank minimization problem can be equivalently transformed into the TS1 optimization problem under certain conditions. Finally, extensive experimental results on real image data sets show that our proposed algorithm outperforms state-of-the-art methods in both accuracy and efficiency. In particular, our proposed algorithm is about 30 times faster than TS1 algorithm in solving low-rank matrix recovery problems.
Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compressive sensing, the rank minimization can be relaxed to nuclear norm minimization. However, such a method treats all singular values of target matrix equally. To address this issue, recently the transformed Schatten-1 (TS1) penalty function was proposed and utilized to construct low-rank matrix recovery models. Unfortunately, the method for TS1-based models cannot provide both convergence accuracy and convergence speed. To alleviate such problems, this paper further investigates the basic properties of TS1 penalty function. And we describe a novel algorithm, which we called ATS1PGA, that is highly efficient in solving low-rank matrix recovery problems at a convergence rate of O (1/ N ), where N denotes the iterate count. In addition, we theoretically prove that the original rank minimization problem can be equivalently transformed into the TS1 optimization problem under certain conditions. Finally, extensive experimental results on real image data sets show that our proposed algorithm outperforms state-of-the-art methods in both accuracy and efficiency. In particular, our proposed algorithm is about 30 times faster than TS1 algorithm in solving low-rank matrix recovery problems.
Author Wang, Wendong
Chen, Wu
Luo, Xiaohu
Hu, Dong
Wang, Zhi
Wang, Jianjun
Author_xml – sequence: 1
  givenname: Zhi
  orcidid: 0000-0002-2167-830X
  surname: Wang
  fullname: Wang, Zhi
  email: chiw@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University
– sequence: 2
  givenname: Dong
  surname: Hu
  fullname: Hu, Dong
  organization: College of Computer and Information Science, Southwest University
– sequence: 3
  givenname: Xiaohu
  surname: Luo
  fullname: Luo, Xiaohu
  organization: College of Computer and Information Science, Southwest University
– sequence: 4
  givenname: Wendong
  surname: Wang
  fullname: Wang, Wendong
  organization: College of Artificial Intelligence, Southwest University
– sequence: 5
  givenname: Jianjun
  surname: Wang
  fullname: Wang, Jianjun
  organization: School of Mathematics and Statistics, Southwest University
– sequence: 6
  givenname: Wu
  surname: Chen
  fullname: Chen, Wu
  email: chenwu@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University
BookMark eNp9kE1LAzEQhoMoWGv_gKeA52gm2WbjUYpfUFBQwVvIZrN163ZTk6y2_nqzrSh4aC4ZyPPMTN4jtN-61iJ0AvQMKM3PA3CaMUIZEApcAIE9NAApJJFUvuz_1jkcolEIc5qOoJxTNkDFg_WV8wvdGotnnfa6jdYG7CocUx36N1viR_OqY7QtAeztrGu0r790rF2LE4DtSpuIG_dJkvKGFzr6epVA4z6sXx-jg0o3wY5-7iF6vr56mtyS6f3N3eRySgyX40g4o0aborKVGEtOC8ZzGDOQWkowgrGClZIXALrHGRNCizLTNBMllMJWwIfodNt36d17Z0NUc9f5No1U7IJRkBnPZaLYljLeheBtpZa-Xmi_VkBVH6faxqlSnGoTp-pby3-SqePm_ymkutmt8q0a0px2Zv3fVjusb97KjBI
CitedBy_id crossref_primary_10_1016_j_sigpro_2023_108959
crossref_primary_10_1587_transinf_2023EDP7265
crossref_primary_10_1155_2022_2054546
crossref_primary_10_1016_j_knosys_2024_112538
crossref_primary_10_1016_j_eswa_2023_119977
crossref_primary_10_1016_j_ins_2023_119699
crossref_primary_10_1155_2023_8813500
crossref_primary_10_1109_TCSVT_2024_3382306
crossref_primary_10_1186_s13634_023_01027_w
crossref_primary_10_1109_LGRS_2023_3307411
Cites_doi 10.1007/s10589-017-9898-5
10.1214/09-AOS729
10.1007/s10107-009-0306-5
10.1137/090771806
10.1007/s00041-008-9045-x
10.1137/080738970
10.1016/j.sigpro.2020.107510
10.1007/s10107-018-1236-x
10.1109/TCYB.2017.2685521
10.1561/2400000003
10.1109/CVPR.2014.366
10.4310/CMS.2017.v15.n2.a9
10.1109/TIP.2014.2363734
10.1137/070697835
10.1145/1401890.1401944
10.1016/j.neucom.2017.09.052
10.1109/TNNLS.2015.2490080
10.1198/016214501753382273
10.1109/TIP.2015.2511584
10.1109/TNNLS.2015.2415257
10.1016/j.neucom.2018.05.092
10.1109/TPAMI.2017.2677440
10.1016/j.neucom.2018.10.065
10.1109/TPAMI.2018.2858249
10.1016/j.neucom.2017.05.074
10.1007/s13042-020-01121-7
10.1109/ICDM.2015.15
10.1137/130934271
10.1609/aaai.v32i1.11802
10.4310/CMS.2017.v15.n3.a12
10.1109/TNNLS.2021.3059711
10.1049/el:20080522
10.1109/TSP.2016.2586753
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s13042-021-01361-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 3395
ExternalDocumentID 10_1007_s13042_021_01361_1
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: SWU120036
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 11901476
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c385t-320cacbfef65830b23715218a881c622b2d83b11ac3852266a6d4a046d1d6ef13
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Sun Jul 13 05:12:12 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Tue Jul 01 03:51:01 EDT 2025
Fri Feb 21 02:47:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Nonconvex model
Equivalence
Transformed Schatten-1 penalty function
Low-rank matrix recovery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-320cacbfef65830b23715218a881c622b2d83b11ac3852266a6d4a046d1d6ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2167-830X
PQID 2920184378
PQPubID 2043904
PageCount 17
ParticipantIDs proquest_journals_2920184378
crossref_primary_10_1007_s13042_021_01361_1
crossref_citationtrail_10_1007_s13042_021_01361_1
springer_journals_10_1007_s13042_021_01361_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2862–2869
ThuQGhanbariMScope of validity of PSNR in image/video quality assessmentElectron Lett2008441380080110.1049/el:20080522
Liu G, Liu Q, Yuan X (2017) A new theory for matrix completion. In: Proceedings of the advances in neural information processing systems, pp 785–794
Wang Z, Liu Y, Luo X, Wang J, Gao C, Peng D, Chen W (2021) Large-scale affine matrix rank minimization with a novel nonconvex regularizer. IEEE Trans Neural Netw Learn Syst (to be published)
HalkoNMartinssonPTroppJFinding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev2011532217288280663710.1137/090771806
WangZWangWWangJChenSFast and efficient algorithm for matrix completion via closed-form 2/3-thresholding operatorNeurocomputing201933021222210.1016/j.neucom.2018.10.065
LuoXZhouMLiSXiaYYouZZhuQLeungHIncorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS dataIEEE Trans Cybern20184841216122810.1109/TCYB.2017.2685521
ParikhNBoydSProximal algorithmsFound Trends Optim20141312723910.1561/2400000003
MaSGoldfarbDChenLFixed point and Bregman iterative methods for matrix rank minimizationMath Progr20111281–2321353281096110.1007/s10107-009-0306-5
CuiAPengJLiHExact recovery low-rank matrix via transformed affine matrix rank minimizationNeurocomputing201831911210.1016/j.neucom.2018.05.092
RechtBFazelMParriloPGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev2010523471501268054310.1137/070697835
ChenBYangZYangZAn algorithm for low-rank matrix factorization and its applicationsNeurocomputing20182751012102010.1016/j.neucom.2017.09.052
ZhangSXinJMinimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document} penalty: closed form representation and iterative thresholding algorithmsCommun Math Sci2017152511537362056710.4310/CMS.2017.v15.n2.a9
Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Stanford University
Kang Z, Peng C, Cheng Q (2015) Robust PCA via nonconvex rank approximation. In: Proceedings of IEEE international conference on data mining, pp 211–220
LvJFanYA unified approach to model selection and sparse recovery using regularized least squaresAnn Stat20093763498352825495671369.62156
Yao Q, Kwok J (2015) Accelerated inexact soft-impute for fast large scale matrix completion. In: Proceedings of the international joint conference on artificial intelligence, pp 4002–4008
Li Q, Zhou Y, Liang Y, Varshney P (2017) Convergence analysis of proximal gradient with momentum for nonconvex optimization. In: Proceedings of the 34th international conference on machine learning, pp 2111–2119
OhTMatsushitaYTaiYKweonIFast randomized singular value thresholding for low-rank optimizationIEEE Trans Pattern Anal Mach Intell201840237639110.1109/TPAMI.2017.2677440
Schmidt M, Roux N, Bach F (2011) Convergence rates of inexact proximal gradient methods for convex optimization. In: Proceedings of the advances in neural information processing systems, pp 1458–1466
NesterovYA method for solving the convex programming problem with convergence rate O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/k^{2})$$\end{document}Dokl Akad Nauk SSSR1983272543547
WangZGaoCLuoXTangMWangJChenWAccelerated inexact matrix completion algorithm via closed-form q-thresholding (q=1/2,2/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q=1/2,2/3)$$\end{document} operatorInt J Mach Learn Cybern2020112327233910.1007/s13042-020-01121-7
YaoQKwokJWangTLiuTLarge-scale low-rank matrix learning with nonconvex regularizersIEEE Trans Pattern Anal Mach Intell201941112628264310.1109/TPAMI.2018.2858249
TohK-CYunSAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problemsPac. J Optim20106361564027430471205.90218
Gu B, Huo Z, Huang H (2018) Inexact proximal gradient methods for non-convex and non-smooth optimization. In: Proceedings of the twenty-second AAAI conference on artificial intelligence, pp 3093–3100
ZhangSXinJMinimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document} penalty: theory, difference of convex function algorithm, and robust application in compressed sensingMath Progr20181691–230733610.1007/s10107-018-1236-x
WangZLaiMLuZFanWDavulcuHYeJOrthogonal rank-one matrix pursuit for low rank matrix completionSIAM J Sci Comput2015371A488A514331383210.1137/130934271
CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM J Optim201020419561982260024810.1137/080738970
Li H, Lin Z (2015) Accelerated proximal gradient methods for nonconvex programming. In: Proceedings of the advances in neural information processing systems, pp 379–387
FanJChowTDeep learning based matrix completionNeurocomputing201726679180310.1016/j.neucom.2017.05.074
PengDXiuNYuJS1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{1/2}$$\end{document} regularization methods and fixed point algorithms for affine rank minimization problemsComput Optim Appl201767543569365418510.1007/s10589-017-9898-5
CandèsEJWakinMBoydSEnhancing sparsity by reweighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} minimizationJ Fourier Anal Appl200814877905246161110.1007/s00041-008-9045-x
PengXZhangYTangHA unified framework for representation-based subspace clustering of out-of-sample and large-scale dataIEEE Trans Neural Netw Learn Syst2016271224992512357931310.1109/TNNLS.2015.2490080
LuoXZhouMLiSYouZXiaYZhuQA non-negative latent factor model for large-scale sparse matrices in recommender systems via alternating direction methodIEEE Trans Neural Netw Learn Syst2016273579592346565810.1109/TNNLS.2015.2415257
LiuGLiuQLiPLow-rank matrix completion in the presence of high coherenceIEEE Trans Signal Process2016642156235633354875610.1109/TSP.2016.2586753
LuCTangJYanSLinZNonconvex nonsmooth low rank minimization via iteratively reweighted nuclear normIEEE Trans Image Process2016251829839345544910.1109/TIP.2015.2511584
ZhaoFPengJCuiADesign strategy of thresholding operator for low-rank matrix recovery problemSignal Process202017111010.1016/j.sigpro.2020.107510
HuangCDingXFangCWenDRobust image restoration via adaptive low-rank approximation and joint kernel regressionIEEE Trans Image Process2014231252845297327507010.1109/TIP.2014.2363734
ZhangCNearly unbiased variable selection under minimax concave penaltyAnn Stat2010382894942260470110.1214/09-AOS729
FanJLiRVariable selection via nonconcal penalized likelihood and its oracle propertiesJ Am Stat Assoc2001964561348136010.1198/016214501753382273
Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 426–434
ZhangSYinPXinJTransformed Schatten-1 iterative thresholding algorithms for low rank matrix completionCommun Math Sci2017153839862362060610.4310/CMS.2017.v15.n3.a12
X Luo (1361_CR2) 2016; 27
1361_CR19
1361_CR18
F Zhao (1361_CR5) 2020; 171
1361_CR15
N Parikh (1361_CR32) 2014; 1
S Zhang (1361_CR30) 2018; 169
1361_CR11
1361_CR33
J-F Cai (1361_CR13) 2010; 20
1361_CR35
Z Wang (1361_CR36) 2015; 37
C Huang (1361_CR3) 2014; 23
1361_CR34
Q Yao (1361_CR25) 2019; 41
J Fan (1361_CR20) 2001; 96
EJ Candès (1361_CR22) 2008; 14
S Zhang (1361_CR26) 2017; 15
Z Wang (1361_CR16) 2019; 330
Z Wang (1361_CR17) 2020; 11
T Oh (1361_CR38) 2018; 40
D Peng (1361_CR23) 2017; 67
C Lu (1361_CR24) 2016; 25
A Cui (1361_CR31) 2018; 319
J Lv (1361_CR27) 2009; 37
S Zhang (1361_CR29) 2017; 15
X Luo (1361_CR6) 2018; 48
G Liu (1361_CR10) 2016; 64
1361_CR28
N Halko (1361_CR37) 2011; 53
B Recht (1361_CR12) 2010; 52
1361_CR40
1361_CR9
C Zhang (1361_CR21) 2010; 38
B Chen (1361_CR4) 2018; 275
S Ma (1361_CR41) 2011; 128
X Peng (1361_CR8) 2016; 27
Y Nesterov (1361_CR39) 1983; 27
K-C Toh (1361_CR14) 2010; 6
1361_CR1
Q Thu (1361_CR42) 2008; 44
J Fan (1361_CR7) 2017; 266
References_xml – reference: RechtBFazelMParriloPGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev2010523471501268054310.1137/070697835
– reference: WangZWangWWangJChenSFast and efficient algorithm for matrix completion via closed-form 2/3-thresholding operatorNeurocomputing201933021222210.1016/j.neucom.2018.10.065
– reference: WangZGaoCLuoXTangMWangJChenWAccelerated inexact matrix completion algorithm via closed-form q-thresholding (q=1/2,2/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q=1/2,2/3)$$\end{document} operatorInt J Mach Learn Cybern2020112327233910.1007/s13042-020-01121-7
– reference: Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Stanford University
– reference: PengXZhangYTangHA unified framework for representation-based subspace clustering of out-of-sample and large-scale dataIEEE Trans Neural Netw Learn Syst2016271224992512357931310.1109/TNNLS.2015.2490080
– reference: ZhangSXinJMinimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document} penalty: theory, difference of convex function algorithm, and robust application in compressed sensingMath Progr20181691–230733610.1007/s10107-018-1236-x
– reference: ChenBYangZYangZAn algorithm for low-rank matrix factorization and its applicationsNeurocomputing20182751012102010.1016/j.neucom.2017.09.052
– reference: TohK-CYunSAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problemsPac. J Optim20106361564027430471205.90218
– reference: Li Q, Zhou Y, Liang Y, Varshney P (2017) Convergence analysis of proximal gradient with momentum for nonconvex optimization. In: Proceedings of the 34th international conference on machine learning, pp 2111–2119
– reference: ZhaoFPengJCuiADesign strategy of thresholding operator for low-rank matrix recovery problemSignal Process202017111010.1016/j.sigpro.2020.107510
– reference: ParikhNBoydSProximal algorithmsFound Trends Optim20141312723910.1561/2400000003
– reference: LuCTangJYanSLinZNonconvex nonsmooth low rank minimization via iteratively reweighted nuclear normIEEE Trans Image Process2016251829839345544910.1109/TIP.2015.2511584
– reference: ThuQGhanbariMScope of validity of PSNR in image/video quality assessmentElectron Lett2008441380080110.1049/el:20080522
– reference: ZhangSXinJMinimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document} penalty: closed form representation and iterative thresholding algorithmsCommun Math Sci2017152511537362056710.4310/CMS.2017.v15.n2.a9
– reference: LuoXZhouMLiSXiaYYouZZhuQLeungHIncorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS dataIEEE Trans Cybern20184841216122810.1109/TCYB.2017.2685521
– reference: LuoXZhouMLiSYouZXiaYZhuQA non-negative latent factor model for large-scale sparse matrices in recommender systems via alternating direction methodIEEE Trans Neural Netw Learn Syst2016273579592346565810.1109/TNNLS.2015.2415257
– reference: Gu B, Huo Z, Huang H (2018) Inexact proximal gradient methods for non-convex and non-smooth optimization. In: Proceedings of the twenty-second AAAI conference on artificial intelligence, pp 3093–3100
– reference: CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM J Optim201020419561982260024810.1137/080738970
– reference: Kang Z, Peng C, Cheng Q (2015) Robust PCA via nonconvex rank approximation. In: Proceedings of IEEE international conference on data mining, pp 211–220
– reference: MaSGoldfarbDChenLFixed point and Bregman iterative methods for matrix rank minimizationMath Progr20111281–2321353281096110.1007/s10107-009-0306-5
– reference: LiuGLiuQLiPLow-rank matrix completion in the presence of high coherenceIEEE Trans Signal Process2016642156235633354875610.1109/TSP.2016.2586753
– reference: Li H, Lin Z (2015) Accelerated proximal gradient methods for nonconvex programming. In: Proceedings of the advances in neural information processing systems, pp 379–387
– reference: Yao Q, Kwok J (2015) Accelerated inexact soft-impute for fast large scale matrix completion. In: Proceedings of the international joint conference on artificial intelligence, pp 4002–4008
– reference: NesterovYA method for solving the convex programming problem with convergence rate O(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/k^{2})$$\end{document}Dokl Akad Nauk SSSR1983272543547
– reference: Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 426–434
– reference: FanJLiRVariable selection via nonconcal penalized likelihood and its oracle propertiesJ Am Stat Assoc2001964561348136010.1198/016214501753382273
– reference: LvJFanYA unified approach to model selection and sparse recovery using regularized least squaresAnn Stat20093763498352825495671369.62156
– reference: YaoQKwokJWangTLiuTLarge-scale low-rank matrix learning with nonconvex regularizersIEEE Trans Pattern Anal Mach Intell201941112628264310.1109/TPAMI.2018.2858249
– reference: OhTMatsushitaYTaiYKweonIFast randomized singular value thresholding for low-rank optimizationIEEE Trans Pattern Anal Mach Intell201840237639110.1109/TPAMI.2017.2677440
– reference: CandèsEJWakinMBoydSEnhancing sparsity by reweighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} minimizationJ Fourier Anal Appl200814877905246161110.1007/s00041-008-9045-x
– reference: CuiAPengJLiHExact recovery low-rank matrix via transformed affine matrix rank minimizationNeurocomputing201831911210.1016/j.neucom.2018.05.092
– reference: ZhangCNearly unbiased variable selection under minimax concave penaltyAnn Stat2010382894942260470110.1214/09-AOS729
– reference: WangZLaiMLuZFanWDavulcuHYeJOrthogonal rank-one matrix pursuit for low rank matrix completionSIAM J Sci Comput2015371A488A514331383210.1137/130934271
– reference: PengDXiuNYuJS1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{1/2}$$\end{document} regularization methods and fixed point algorithms for affine rank minimization problemsComput Optim Appl201767543569365418510.1007/s10589-017-9898-5
– reference: HalkoNMartinssonPTroppJFinding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev2011532217288280663710.1137/090771806
– reference: HuangCDingXFangCWenDRobust image restoration via adaptive low-rank approximation and joint kernel regressionIEEE Trans Image Process2014231252845297327507010.1109/TIP.2014.2363734
– reference: Wang Z, Liu Y, Luo X, Wang J, Gao C, Peng D, Chen W (2021) Large-scale affine matrix rank minimization with a novel nonconvex regularizer. IEEE Trans Neural Netw Learn Syst (to be published)
– reference: ZhangSYinPXinJTransformed Schatten-1 iterative thresholding algorithms for low rank matrix completionCommun Math Sci2017153839862362060610.4310/CMS.2017.v15.n3.a12
– reference: Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2862–2869
– reference: FanJChowTDeep learning based matrix completionNeurocomputing201726679180310.1016/j.neucom.2017.05.074
– reference: Schmidt M, Roux N, Bach F (2011) Convergence rates of inexact proximal gradient methods for convex optimization. In: Proceedings of the advances in neural information processing systems, pp 1458–1466
– reference: Liu G, Liu Q, Yuan X (2017) A new theory for matrix completion. In: Proceedings of the advances in neural information processing systems, pp 785–794
– volume: 67
  start-page: 543
  year: 2017
  ident: 1361_CR23
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-017-9898-5
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 1361_CR21
  publication-title: Ann Stat
  doi: 10.1214/09-AOS729
– volume: 128
  start-page: 321
  issue: 1–2
  year: 2011
  ident: 1361_CR41
  publication-title: Math Progr
  doi: 10.1007/s10107-009-0306-5
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 1361_CR37
  publication-title: SIAM Rev
  doi: 10.1137/090771806
– volume: 14
  start-page: 877
  year: 2008
  ident: 1361_CR22
  publication-title: J Fourier Anal Appl
  doi: 10.1007/s00041-008-9045-x
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 1361_CR13
  publication-title: SIAM J Optim
  doi: 10.1137/080738970
– volume: 171
  start-page: 1
  year: 2020
  ident: 1361_CR5
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2020.107510
– ident: 1361_CR11
– volume: 169
  start-page: 307
  issue: 1–2
  year: 2018
  ident: 1361_CR30
  publication-title: Math Progr
  doi: 10.1007/s10107-018-1236-x
– volume: 48
  start-page: 1216
  issue: 4
  year: 2018
  ident: 1361_CR6
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2685521
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 1361_CR32
  publication-title: Found Trends Optim
  doi: 10.1561/2400000003
– ident: 1361_CR19
  doi: 10.1109/CVPR.2014.366
– volume: 15
  start-page: 511
  issue: 2
  year: 2017
  ident: 1361_CR29
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2017.v15.n2.a9
– volume: 37
  start-page: 3498
  issue: 6
  year: 2009
  ident: 1361_CR27
  publication-title: Ann Stat
– volume: 23
  start-page: 5284
  issue: 12
  year: 2014
  ident: 1361_CR3
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2363734
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 1361_CR12
  publication-title: SIAM Rev
  doi: 10.1137/070697835
– ident: 1361_CR15
– ident: 1361_CR40
– ident: 1361_CR1
  doi: 10.1145/1401890.1401944
– volume: 275
  start-page: 1012
  year: 2018
  ident: 1361_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.052
– volume: 27
  start-page: 2499
  issue: 12
  year: 2016
  ident: 1361_CR8
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2490080
– volume: 6
  start-page: 615
  issue: 3
  year: 2010
  ident: 1361_CR14
  publication-title: Pac. J Optim
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 1361_CR20
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 27
  start-page: 543
  issue: 2
  year: 1983
  ident: 1361_CR39
  publication-title: Dokl Akad Nauk SSSR
– volume: 25
  start-page: 829
  issue: 1
  year: 2016
  ident: 1361_CR24
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2511584
– volume: 27
  start-page: 579
  issue: 3
  year: 2016
  ident: 1361_CR2
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2415257
– volume: 319
  start-page: 1
  year: 2018
  ident: 1361_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.092
– volume: 40
  start-page: 376
  issue: 2
  year: 2018
  ident: 1361_CR38
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2677440
– volume: 330
  start-page: 212
  year: 2019
  ident: 1361_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.065
– ident: 1361_CR35
– volume: 41
  start-page: 2628
  issue: 11
  year: 2019
  ident: 1361_CR25
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858249
– volume: 266
  start-page: 791
  year: 2017
  ident: 1361_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.074
– volume: 11
  start-page: 2327
  year: 2020
  ident: 1361_CR17
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01121-7
– ident: 1361_CR28
  doi: 10.1109/ICDM.2015.15
– ident: 1361_CR33
– volume: 37
  start-page: A488
  issue: 1
  year: 2015
  ident: 1361_CR36
  publication-title: SIAM J Sci Comput
  doi: 10.1137/130934271
– ident: 1361_CR9
– ident: 1361_CR34
  doi: 10.1609/aaai.v32i1.11802
– volume: 15
  start-page: 839
  issue: 3
  year: 2017
  ident: 1361_CR26
  publication-title: Commun Math Sci
  doi: 10.4310/CMS.2017.v15.n3.a12
– ident: 1361_CR18
  doi: 10.1109/TNNLS.2021.3059711
– volume: 44
  start-page: 800
  issue: 13
  year: 2008
  ident: 1361_CR42
  publication-title: Electron Lett
  doi: 10.1049/el:20080522
– volume: 64
  start-page: 5623
  issue: 21
  year: 2016
  ident: 1361_CR10
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2586753
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.297634
Snippet Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in various real world applications, such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3379
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Convergence
Engineering
Guarantees
Image processing
Mathematical analysis
Mechatronics
Optimization
Original Article
Pattern Recognition
Penalty function
Recommender systems
Recovery
Regularization
Regularization methods
Robotics
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVgQ5SEKBXlgAIFFHLuJmRCgVhUSVQVU6hbFj8BQktIGUf49vsRpBBJsUXLxcA_fnX33HUIngps4pjog3JoD4QllRIqEkqvExvdBCD4SEsWHYTAY8_tJd-IO3BaurLLaE4uNWmcKzsgvYaoSzCYJxfXsncDUKLhddSM01lHTbsFCNFDztjccPVYaxShgrdQOlzFeYE6tTmG8wL4rCxNFIACZl7rOmrK_DpJ9AlUMAG1GCf3pveqQ9NctauGc-lto00WV-KZUgxZaM-k2ajm7XeBTBy59toPkqO4UwC9WP4CzliRLcF7FsEbjJ_UKwJspoXheTKufu35NbAmwWcYqx9Psk8DId_wGMP9LDLm1NYyvXTTu957vBsTNWSCKiW5OmO-pWMnEJDYcYZ70WQheXcRCUBX4vvS1YJLSGMhtuBbEgeaxTay1FbKx4t1DjTRLzT7CnCqqmVGAtMil15XdRApOQ20fId5oI1rxL1IOhBxmYUyjGj4ZeB5ZnkcFzyPaRuerf2YlBMe_1J1KLJEzx0VUK08bXVSiqj__vdrB_6sdog0ftKMob-mgRj7_MEc2SMnlsdPEb_pG3TQ
  priority: 102
  providerName: ProQuest
Title Performance guarantees of transformed Schatten-1 regularization for exact low-rank matrix recovery
URI https://link.springer.com/article/10.1007/s13042-021-01361-1
https://www.proquest.com/docview/2920184378
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XOCAeIrxmHLgAIJIS5N24bihDQRiQsAkOFVNmsIBNrQVAf8eu0spIEDilKp1Wyl26s-N_RlgRyuXJCKNuMLlwFUmJDc6E_wwQ3wfNclHUqB43otO-ur0JrzxRWHjMtu93JIsvtRVsRtF3pxSCohnTHCMeWZDjN0pkasftEorkoL4VSonK6UqeKY-_rw0Ijw3SUbUkSY2XuGraX5-zVePVcHQbzunhUPqLsKCR5KsNVH9Eky5wTLMf-IXXIYlv3LHbNfTS--tgLmoagXYHVoIzS2KDDOWlyjWpezK3hP15oALNir61Y98xSZDAeZeE5uzh-ELp6bv7JGI_l8ZRde4NN5Wod_tXB-dcN9pgVupw5zLoGETazKXISCRDRPIJvl1nWgtbBQEJki1NEIkJI6ALUqiVCUYWqeoZocKXoOZwXDg1oEpYUUqnSWuRWUaoQkzo5VopnhIiKMGopzN2HoacuqG8RBXBMqkgRg1EBcaiEUN9j_ueZqQcPwpvVUqKfYLchxTUy5qbdPUNTgoFVdd_v1pG_8T34S5gGynSHjZgpl89Oy2Ebbkpg7Tuntch9lWt93u0Xh8e9bBsd3pXVzWCxt-BxpZ4qY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCGA8xnjmABIKIpcm6cEAIAWM8hpAAiVtp0hQOsAErgv0pfiN2H6tAghu3qnUjxY_YSezPAKtauTAUkc8VmgNXsZDc6FjwnRjje79BPpI2iu0Lv3WjTm_rt0PwWdTCUFplsSamC3XUtXRGvk1dlag3SUPvPb9w6hpFt6tFC41MLc5c_x23bL3dk0OU75rnNY-uD1o87yrArdT1hEuvZkNrYhej85U148kG-TAdai2s73nGi7Q0QoREjsGJH_qRCnEbGeGUHE4Gxx2GUSXRk1NlevO40F8pCNmldO9SqhThanDmU_PxXZYGqX1NOMAir-PJqvnoaIFTzgQBqQkuvvvKMgD-cWebusLmJEzkMSzbz5SuAkOuMwWVfJXosfUcynpjGsxlWZfA7lEbSY5I0o1ZUkTMLmJX9oFgPjtcsFd3T4mxeXUoQwLmPkKbsMfuO6cG8-yJmgp8MNrJoxn2Z-DmX_g_CyOdbsfNAVPCikg6S7iOytTqph4brUQjwkeKbqogCv4FNoc8p84bj0EJ1kw8D5DnQcrzQFRhc_DPcwb48Sf1YiGWIDf-XlCqahW2ClGVn38fbf7v0VZgrHXdPg_OTy7OFmDcI01JE2sWYSR5fXNLGB4lZjnVSQZ3_20EXzKIF40
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA6iIPogbipOp-bBB0XDliZr4-NQx_w1BjrYW2nSVB9mN7aK87_3rmvXKSr4VtpLC7k77rvm7jtCjpW0QcBDl0lwByYjLphWEWcXEeB718MYiYniQ8dt9-Rtv9Ff6OJPq93zI8lZTwOyNMVJbRRGtaLxDbNwhuUFyDnGGeQ_KxK7gcGie04ztyjBkWulCLhCyJRzav4Xpu7CvVlhonIVMvPyrLPm5898jV4FJP12ipoGp9Ym2chQJW3OzKBElmxcJusLXINlUsq8eEJPMqrp0y2iu0XfAH0Ga8F9BpFhRJMc0dqQPpoXpOGMGafjdHb9OOvepCBA7TQwCR0M3xkOgKevSPo_pZhpg5t8bJNe6_rpss2yqQvMCNVIGGyiCYyObATgRNS1IzyM8SpQihvXcbQTKqE5D1AcwJsbuKEMIM0OQeUWlL1DluNhbHcJldzwUFiDvItS1xu6EWkluRfCJaKPCuH5bvomoyTHyRgDvyBTRg34oAE_1YDPK-RsvmY0I-T4U7qaK8nPnHPi44AuHHPjqQo5zxVXPP79bXv_Ez8iq92rln9_07nbJ2sOmlFaB1Mly8n4zR4Amkn0YWqwn7Qy5Dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+guarantees+of+transformed+Schatten-1+regularization+for+exact+low-rank+matrix+recovery&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Wang%2C+Zhi&rft.au=Hu%2C+Dong&rft.au=Luo%2C+Xiaohu&rft.au=Wang%2C+Wendong&rft.date=2021-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=12&rft.spage=3379&rft.epage=3395&rft_id=info:doi/10.1007%2Fs13042-021-01361-1&rft.externalDocID=10_1007_s13042_021_01361_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon