Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease
This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. F...
Saved in:
Published in | Electronics (Basel) Vol. 8; no. 2; p. 119 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics8020119 |
Cover
Abstract | This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. For classification based on these features, we compared random forest, multilayer perceptron, hidden Markov models, and deep neural networks. These algorithms were evaluated using a leave-one-subject-out (LOSO) cross validation to match the situation where a system is being constructed for patients for whom there is no training data. This evaluation was performed using the Daphnet dataset, which includes recordings from ten patients using three accelerometers situated on the ankle, knee, and lower back. We obtained a reduction from 17.3% to 12.5% of the equal error rate compared to the previous best results using this dataset and LOSO testing. For high levels of sensitivity (such as 0.95), the specificity increased from 0.63 to 0.75. The biggest improvement across all of the feature sets and algorithms tested in this study was obtained by integrating information from longer periods of time in a deep neural network with convolutional layers. |
---|---|
AbstractList | This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. For classification based on these features, we compared random forest, multilayer perceptron, hidden Markov models, and deep neural networks. These algorithms were evaluated using a leave-one-subject-out (LOSO) cross validation to match the situation where a system is being constructed for patients for whom there is no training data. This evaluation was performed using the Daphnet dataset, which includes recordings from ten patients using three accelerometers situated on the ankle, knee, and lower back. We obtained a reduction from 17.3% to 12.5% of the equal error rate compared to the previous best results using this dataset and LOSO testing. For high levels of sensitivity (such as 0.95), the specificity increased from 0.63 to 0.75. The biggest improvement across all of the feature sets and algorithms tested in this study was obtained by integrating information from longer periods of time in a deep neural network with convolutional layers. |
Author | San-Segundo, Rubén Hodgins, Jessica De la Torre, Fernando Navarro-Hellín, Honorio Torres-Sánchez, Roque |
Author_xml | – sequence: 1 givenname: Rubén orcidid: 0000-0001-9659-5464 surname: San-Segundo fullname: San-Segundo, Rubén – sequence: 2 givenname: Honorio surname: Navarro-Hellín fullname: Navarro-Hellín, Honorio – sequence: 3 givenname: Roque orcidid: 0000-0002-8205-8518 surname: Torres-Sánchez fullname: Torres-Sánchez, Roque – sequence: 4 givenname: Jessica surname: Hodgins fullname: Hodgins, Jessica – sequence: 5 givenname: Fernando surname: De la Torre fullname: De la Torre, Fernando |
BookMark | eNp9kE1OwzAUhC1UJErpBVhFYh3wT9LYS9TSUqkSiJ915DjP4BLsYrsLWHENrsdJcFQWCCTeZmbxzTxpDtHAOgsIHRN8ypjAZ9CBit5ZowLHFBMi9tCQ4krkggo6-OEP0DiENU4nCOMMD9Ht0ioPMhj7kN24ZhuihRAyY7P4CNkMYqo2zmZOZ3MP8NZzyS-kiT10Lf2TscHZz_ePkM1MSFVwhPa17AKMv3WE7ucXd9PLfHW1WE7PV7livIw51Rpko3QpZNEURdkCLRRTjWZKt6xS1URDxTFrJ7RqQWiGsSYlg4LTUoPmbIROdr0b7162EGK9dltv08ualgUviGCCJoruKOVdCB50vfHmWfrXmuC636_-u18K8V8hZaLsl4hemu6_6BcnxH2k |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3117543 crossref_primary_10_1142_S0218001424400019 crossref_primary_10_1016_j_eswa_2024_124522 crossref_primary_10_3390_s23094426 crossref_primary_10_3390_electronics8080907 crossref_primary_10_3390_s20071895 crossref_primary_10_3389_fnagi_2025_1567706 crossref_primary_10_1002_brb3_70206 crossref_primary_10_3390_w12020548 crossref_primary_10_3389_fnagi_2024_1437707 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_1016_j_engappai_2020_103679 crossref_primary_10_1177_1877718X241302766 crossref_primary_10_1109_ACCESS_2022_3156659 crossref_primary_10_32604_cmc_2022_020531 crossref_primary_10_2196_71560 crossref_primary_10_3390_s21196446 crossref_primary_10_1007_s10072_023_07017_y crossref_primary_10_1016_j_jbi_2021_103935 crossref_primary_10_1186_s12883_022_02732_z crossref_primary_10_1007_s12652_020_02889_w crossref_primary_10_1016_j_engappai_2022_105482 crossref_primary_10_1016_j_eswa_2023_120541 crossref_primary_10_3390_computers11050058 crossref_primary_10_3389_fnagi_2022_916971 crossref_primary_10_3390_electronics9111919 crossref_primary_10_3389_fneur_2023_1306129 crossref_primary_10_3390_s24123959 crossref_primary_10_1016_j_mlwa_2024_100553 crossref_primary_10_1038_s41467_024_49027_0 crossref_primary_10_1186_s12984_022_00992_x crossref_primary_10_1016_j_compbiomed_2019_04_031 crossref_primary_10_3390_electronics11233879 crossref_primary_10_3389_fmed_2024_1453743 crossref_primary_10_3390_rs12152359 crossref_primary_10_1109_TIM_2025_3544381 crossref_primary_10_3389_fnagi_2023_1119956 crossref_primary_10_1007_s11760_024_03719_8 crossref_primary_10_3390_s21165437 crossref_primary_10_1007_s11071_022_07832_6 crossref_primary_10_3390_electronics9060919 crossref_primary_10_1007_s11063_021_10611_w crossref_primary_10_1093_jcde_qwab054 |
Cites_doi | 10.1016/j.neuropsychologia.2016.04.034 10.1002/mds.22340 10.1016/j.bspc.2014.11.008 10.1002/9780470033005 10.1109/BSN.2016.7516235 10.1046/j.1468-1331.2003.00611.x 10.1016/j.engappai.2018.04.002 10.1007/978-3-642-18167-2_20 10.1016/j.jneumeth.2007.08.023 10.1109/TITB.2009.2036165 10.1016/j.sigpro.2015.09.029 10.1016/S1474-4422(11)70143-0 10.1371/journal.pone.0009675 10.1016/j.robot.2007.07.009 10.1016/j.bspc.2015.02.002 10.1002/mds.21659 10.1145/2676629.2676630 10.1016/j.bspc.2016.08.022 10.1148/radiology.143.1.7063747 10.1007/978-3-642-39712-7_11 10.1145/2493988.2494353 10.4108/icst.pervasivehealth.2012.248680 10.1016/j.pmcj.2016.01.004 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics8020119 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics8020119 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-2ffeabcf59a4b445de24c3cbf3cfd37c76fe7803d627de9f300f153e4825fef83 |
IEDL.DBID | 8FG |
ISSN | 2079-9292 |
IngestDate | Sun Jul 13 04:56:32 EDT 2025 Tue Jul 01 01:59:55 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-2ffeabcf59a4b445de24c3cbf3cfd37c76fe7803d627de9f300f153e4825fef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9659-5464 0000-0002-8205-8518 |
OpenAccessLink | https://www.proquest.com/docview/2548419392?pq-origsite=%requestingapplication% |
PQID | 2548419392 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2548419392 crossref_primary_10_3390_electronics8020119 crossref_citationtrail_10_3390_electronics8020119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Blunck (ref_28) 2018; 72 Goetz (ref_10) 2008; 23 Hanley (ref_29) 1982; 143 Nutt (ref_6) 2011; 10 ref_12 (ref_2) 2007; 55 Yi (ref_14) 2015; 18 ref_19 Montero (ref_25) 2016; 120 ref_18 ref_17 Schaafsma (ref_7) 2003; 10 Moore (ref_5) 2007; 22 Pardo (ref_24) 2016; 30 Su (ref_15) 2015; 18 ref_23 Young (ref_9) 2016; 87 Wu (ref_16) 2017; 31 ref_22 Richard (ref_11) 2005; 1 ref_21 ref_1 ref_3 ref_27 ref_26 ref_8 Plotnik (ref_13) 2010; 14 ref_4 Moore (ref_20) 2008; 167 |
References_xml | – volume: 87 start-page: 54 year: 2016 ident: ref_9 article-title: Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: Action-relevance or cue-continuity? publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2016.04.034 – volume: 23 start-page: 2129 year: 2008 ident: ref_10 article-title: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (mds-updrs): Scale presentation and clinimetric testing results publication-title: Mov. Disord. doi: 10.1002/mds.22340 – volume: 18 start-page: 56 year: 2015 ident: ref_15 article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.11.008 – ident: ref_26 doi: 10.1002/9780470033005 – ident: ref_3 – ident: ref_23 doi: 10.1109/BSN.2016.7516235 – volume: 10 start-page: 391 year: 2003 ident: ref_7 article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease publication-title: Eur. J. Neurol. doi: 10.1046/j.1468-1331.2003.00611.x – volume: 72 start-page: 190 year: 2018 ident: ref_28 article-title: Robust human activity recognition using smartwatches and smartphones publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.002 – ident: ref_1 – ident: ref_4 doi: 10.1007/978-3-642-18167-2_20 – volume: 167 start-page: 340 year: 2008 ident: ref_20 article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.08.023 – volume: 14 start-page: 436 year: 2010 ident: ref_13 article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2036165 – volume: 120 start-page: 359 year: 2016 ident: ref_25 article-title: Frequency extraction from smartphone inertial signals for human activity segmentation publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.09.029 – volume: 10 start-page: 734 year: 2011 ident: ref_6 article-title: Freezing of gait: Moving forward on a mysterious clinical phenomenon publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70143-0 – ident: ref_8 doi: 10.1371/journal.pone.0009675 – ident: ref_27 – volume: 55 start-page: 892 year: 2007 ident: ref_2 article-title: Development of intelligent multisensor surveillance systems with agents publication-title: Robot. Auton. Sys. doi: 10.1016/j.robot.2007.07.009 – ident: ref_12 – volume: 18 start-page: 254 year: 2015 ident: ref_14 article-title: Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.02.002 – volume: 22 start-page: 2192 year: 2007 ident: ref_5 article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait publication-title: Mov. Disord. doi: 10.1002/mds.21659 – ident: ref_21 doi: 10.1145/2676629.2676630 – volume: 31 start-page: 265 year: 2017 ident: ref_16 article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.022 – volume: 143 start-page: 29 year: 1982 ident: ref_29 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – ident: ref_18 doi: 10.1007/978-3-642-39712-7_11 – ident: ref_19 – ident: ref_17 doi: 10.1145/2493988.2494353 – ident: ref_22 doi: 10.4108/icst.pervasivehealth.2012.248680 – volume: 30 start-page: 84 year: 2016 ident: ref_24 article-title: Segmenting human activities based on HMMs using smartphone inertial sensors publication-title: Pervasive Mobile Comput. doi: 10.1016/j.pmcj.2016.01.004 – volume: 1 start-page: 261 year: 2005 ident: ref_11 article-title: Mood fluctuations in Parkinson’s disease: A pilot study comparing the effects of intravenous and oral levodopa administration publication-title: Neuropsychiatr. Dis. Treat. |
SSID | ssj0000913830 |
Score | 2.3659925 |
Snippet | This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 119 |
SubjectTerms | Accelerometers Algorithms Artificial neural networks Classification Datasets Decision trees Evaluation Experiments Gait Markov chains Multilayer perceptrons Neural networks Parkinson's disease Patients Principal components analysis Quality assessment Robustness Sensors Signal processing Speech processing Supervision |
Title | Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease |
URI | https://www.proquest.com/docview/2548419392 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqI8Kg9sKGoaO4k9IaAvIahQS6VuUWyfpUooKU1YmPgb_D1-CXaStlRInZIoZw9n-17-7g6ha6NhBfiSOT6h0qHaU07MY-ZIaPEYqFBMFwDZQdAf08eJP6kCblkFq1zIxEJQq1TaGHnTODKMGmuDe7ezd8d2jbK3q1ULjW1UaxlNY_c56_aWMRZb85IRt8yVIca7b656y2TMtbqPr-ujdXFc6JjuAdqvjEN8V67mIdqC5Ajt_SkZeIxG5kBbHLn5wMNUfGS5lVV4mmBjyeE25AW0KsGpxt05wKelM--9eJpbIpvkXOR7_Xx9Z7hd3s6coHG38_rQd6rGCI4kzM8dT2uIhdQ-j6mg1FfgUUmk0ERqRUIZBhpC5hIVeKECronraiPZgBp3UINm5BTtJGkCZwjLoAVhrBjTfkCFsOW5FAAPGKeeIFTUUWvBnkhWVcNt84q3yHgPlqXRf5bW0c1yzKysmbGR-nLB9ag6P1m0Wu3zzb8v0K6ZhZc46ku0k88_4MqYCbloFHuhgWp37eenkXnedwYvw18p-MWI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6l6YFyQECpWgiwBzghK453be8eECqkISEhQiGVenO9u7NSJOSU2BGCE6_Rl-hD9UnY9U_bCCm33mx5vIfxeL6Z3W9mAN5YhJUYKu6FlCmPmUB7qUi5p7AnUmRSc1MSZKfR8JR9OQvPWnDV1MI4WmXjE0tHrZfK7ZF3bSLDmY02RPDh4qfnpka509VmhEZlFmP8_cumbPn7Ud9-37dBMDiZfxp69VQBT1EeFl5gDKZSmVCkTDIWagyYokoaqoymsYojgzH3qY6CWKMw1PeNdQvIbC5l0HBq192BXeYqWtuw-_Fk-m12s6vjumxy6lfVOZQKv3s7zSbnvkNbsYmAmwBQotrgMTyqw1FyXNnPE2hh9hQe3mlSuA_frQtxzHV7Q2ZLuc4L5x3JIiM2diR9LEoyV0aWhgxWiH-cnL3-nC4KJ-TKqssKs-u_lznpV-dBz-D0XpR2AO1smeEhEBX1ME415yaMmJSuIZhGFBEXLJCUySPoNepJVN2n3I3L-JHYfMWpNPlfpUfw7uadi6pLx1bpTqP1pP5j8-TWvp5vf_waHgznXyfJZDQdv4A9u6KoWNwdaBerNb60QUohX9WWQeD8vo3xH5oJAuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NattAEB4cB0pyKE2akKRuu4f0VIRl7UraPYRS6sr5Kaa0MeSmaHdnwRDkxJIp7amvkVfp4-RJsqufuCaQW24SGu1h9Gl-dr-ZATi0HlZiqLgXUqY8ZgLtZSLjnsKByJBJzU1FkB1HxxN2ehFedOBfWwvjaJWtTawMtZ4pt0fet4kMZzbaEEHfNLSI78Pk0_WN5yZIuZPWdpxGDZEz_P3Lpm_F0cnQfusPQZB8Pf9y7DUTBjxFeVh6gTGYSWVCkTHJWKgxYIoqaagymsYqjgzG3Kc6CmKNwlDfN9ZEILN5lUHDqV13DdZjGguX-PFk9LC_4_ptcurXdTqUCr-_nGtTcN_5XbHqC1ddQeXfklfwsglMyecaSVvQwXwbNv9rV_gaflpj4jjs9ob8mMlFUTo7SaY5sVEkGWJZ0bpyMjMkmSP-cXL2epRNSyfkCqyrWrO7v7cFGdYnQzsweRaV7UI3n-W4B0RFA4wzzbkJIyalaw2mEUXEBQskZXIfBq16UtV0LHeDM65Sm7k4laaPVboPHx_eua77dTwp3Wu1njb_bpEukXbw9OP38MJCMP12Mj57Axt2QVHTuXvQLecLfGujlVK-q2BB4PK5cXgPiSEFvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Robustness+in+the+Detection+of+Freezing+of+Gait+in+Parkinson%E2%80%99s+Disease&rft.jtitle=Electronics+%28Basel%29&rft.au=San-Segundo%2C+Rub%C3%A9n&rft.au=Navarro-Hell%C3%ADn%2C+Honorio&rft.au=Torres-S%C3%A1nchez%2C+Roque&rft.au=Hodgins%2C+Jessica&rft.date=2019-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=8&rft.issue=2&rft.spage=119&rft_id=info:doi/10.3390%2Felectronics8020119&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics8020119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |