Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease

This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. F...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 8; no. 2; p. 119
Main Authors San-Segundo, Rubén, Navarro-Hellín, Honorio, Torres-Sánchez, Roque, Hodgins, Jessica, De la Torre, Fernando
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2019
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics8020119

Cover

Abstract This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. For classification based on these features, we compared random forest, multilayer perceptron, hidden Markov models, and deep neural networks. These algorithms were evaluated using a leave-one-subject-out (LOSO) cross validation to match the situation where a system is being constructed for patients for whom there is no training data. This evaluation was performed using the Daphnet dataset, which includes recordings from ten patients using three accelerometers situated on the ankle, knee, and lower back. We obtained a reduction from 17.3% to 12.5% of the equal error rate compared to the previous best results using this dataset and LOSO testing. For high levels of sensitivity (such as 0.95), the specificity increased from 0.63 to 0.75. The biggest improvement across all of the feature sets and algorithms tested in this study was obtained by integrating information from longer periods of time in a deep neural network with convolutional layers.
AbstractList This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four feature sets, two of which are new features adapted from speech processing: mel frequency cepstral coefficients and quality assessment metrics. For classification based on these features, we compared random forest, multilayer perceptron, hidden Markov models, and deep neural networks. These algorithms were evaluated using a leave-one-subject-out (LOSO) cross validation to match the situation where a system is being constructed for patients for whom there is no training data. This evaluation was performed using the Daphnet dataset, which includes recordings from ten patients using three accelerometers situated on the ankle, knee, and lower back. We obtained a reduction from 17.3% to 12.5% of the equal error rate compared to the previous best results using this dataset and LOSO testing. For high levels of sensitivity (such as 0.95), the specificity increased from 0.63 to 0.75. The biggest improvement across all of the feature sets and algorithms tested in this study was obtained by integrating information from longer periods of time in a deep neural network with convolutional layers.
Author San-Segundo, Rubén
Hodgins, Jessica
De la Torre, Fernando
Navarro-Hellín, Honorio
Torres-Sánchez, Roque
Author_xml – sequence: 1
  givenname: Rubén
  orcidid: 0000-0001-9659-5464
  surname: San-Segundo
  fullname: San-Segundo, Rubén
– sequence: 2
  givenname: Honorio
  surname: Navarro-Hellín
  fullname: Navarro-Hellín, Honorio
– sequence: 3
  givenname: Roque
  orcidid: 0000-0002-8205-8518
  surname: Torres-Sánchez
  fullname: Torres-Sánchez, Roque
– sequence: 4
  givenname: Jessica
  surname: Hodgins
  fullname: Hodgins, Jessica
– sequence: 5
  givenname: Fernando
  surname: De la Torre
  fullname: De la Torre, Fernando
BookMark eNp9kE1OwzAUhC1UJErpBVhFYh3wT9LYS9TSUqkSiJ915DjP4BLsYrsLWHENrsdJcFQWCCTeZmbxzTxpDtHAOgsIHRN8ypjAZ9CBit5ZowLHFBMi9tCQ4krkggo6-OEP0DiENU4nCOMMD9Ht0ioPMhj7kN24ZhuihRAyY7P4CNkMYqo2zmZOZ3MP8NZzyS-kiT10Lf2TscHZz_ePkM1MSFVwhPa17AKMv3WE7ucXd9PLfHW1WE7PV7livIw51Rpko3QpZNEURdkCLRRTjWZKt6xS1URDxTFrJ7RqQWiGsSYlg4LTUoPmbIROdr0b7162EGK9dltv08ualgUviGCCJoruKOVdCB50vfHmWfrXmuC636_-u18K8V8hZaLsl4hemu6_6BcnxH2k
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3117543
crossref_primary_10_1142_S0218001424400019
crossref_primary_10_1016_j_eswa_2024_124522
crossref_primary_10_3390_s23094426
crossref_primary_10_3390_electronics8080907
crossref_primary_10_3390_s20071895
crossref_primary_10_3389_fnagi_2025_1567706
crossref_primary_10_1002_brb3_70206
crossref_primary_10_3390_w12020548
crossref_primary_10_3389_fnagi_2024_1437707
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_1016_j_engappai_2020_103679
crossref_primary_10_1177_1877718X241302766
crossref_primary_10_1109_ACCESS_2022_3156659
crossref_primary_10_32604_cmc_2022_020531
crossref_primary_10_2196_71560
crossref_primary_10_3390_s21196446
crossref_primary_10_1007_s10072_023_07017_y
crossref_primary_10_1016_j_jbi_2021_103935
crossref_primary_10_1186_s12883_022_02732_z
crossref_primary_10_1007_s12652_020_02889_w
crossref_primary_10_1016_j_engappai_2022_105482
crossref_primary_10_1016_j_eswa_2023_120541
crossref_primary_10_3390_computers11050058
crossref_primary_10_3389_fnagi_2022_916971
crossref_primary_10_3390_electronics9111919
crossref_primary_10_3389_fneur_2023_1306129
crossref_primary_10_3390_s24123959
crossref_primary_10_1016_j_mlwa_2024_100553
crossref_primary_10_1038_s41467_024_49027_0
crossref_primary_10_1186_s12984_022_00992_x
crossref_primary_10_1016_j_compbiomed_2019_04_031
crossref_primary_10_3390_electronics11233879
crossref_primary_10_3389_fmed_2024_1453743
crossref_primary_10_3390_rs12152359
crossref_primary_10_1109_TIM_2025_3544381
crossref_primary_10_3389_fnagi_2023_1119956
crossref_primary_10_1007_s11760_024_03719_8
crossref_primary_10_3390_s21165437
crossref_primary_10_1007_s11071_022_07832_6
crossref_primary_10_3390_electronics9060919
crossref_primary_10_1007_s11063_021_10611_w
crossref_primary_10_1093_jcde_qwab054
Cites_doi 10.1016/j.neuropsychologia.2016.04.034
10.1002/mds.22340
10.1016/j.bspc.2014.11.008
10.1002/9780470033005
10.1109/BSN.2016.7516235
10.1046/j.1468-1331.2003.00611.x
10.1016/j.engappai.2018.04.002
10.1007/978-3-642-18167-2_20
10.1016/j.jneumeth.2007.08.023
10.1109/TITB.2009.2036165
10.1016/j.sigpro.2015.09.029
10.1016/S1474-4422(11)70143-0
10.1371/journal.pone.0009675
10.1016/j.robot.2007.07.009
10.1016/j.bspc.2015.02.002
10.1002/mds.21659
10.1145/2676629.2676630
10.1016/j.bspc.2016.08.022
10.1148/radiology.143.1.7063747
10.1007/978-3-642-39712-7_11
10.1145/2493988.2494353
10.4108/icst.pervasivehealth.2012.248680
10.1016/j.pmcj.2016.01.004
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics8020119
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics8020119
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-2ffeabcf59a4b445de24c3cbf3cfd37c76fe7803d627de9f300f153e4825fef83
IEDL.DBID 8FG
ISSN 2079-9292
IngestDate Sun Jul 13 04:56:32 EDT 2025
Tue Jul 01 01:59:55 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-2ffeabcf59a4b445de24c3cbf3cfd37c76fe7803d627de9f300f153e4825fef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9659-5464
0000-0002-8205-8518
OpenAccessLink https://www.proquest.com/docview/2548419392?pq-origsite=%requestingapplication%
PQID 2548419392
PQPubID 2032404
ParticipantIDs proquest_journals_2548419392
crossref_primary_10_3390_electronics8020119
crossref_citationtrail_10_3390_electronics8020119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Blunck (ref_28) 2018; 72
Goetz (ref_10) 2008; 23
Hanley (ref_29) 1982; 143
Nutt (ref_6) 2011; 10
ref_12
(ref_2) 2007; 55
Yi (ref_14) 2015; 18
ref_19
Montero (ref_25) 2016; 120
ref_18
ref_17
Schaafsma (ref_7) 2003; 10
Moore (ref_5) 2007; 22
Pardo (ref_24) 2016; 30
Su (ref_15) 2015; 18
ref_23
Young (ref_9) 2016; 87
Wu (ref_16) 2017; 31
ref_22
Richard (ref_11) 2005; 1
ref_21
ref_1
ref_3
ref_27
ref_26
ref_8
Plotnik (ref_13) 2010; 14
ref_4
Moore (ref_20) 2008; 167
References_xml – volume: 87
  start-page: 54
  year: 2016
  ident: ref_9
  article-title: Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: Action-relevance or cue-continuity?
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2016.04.034
– volume: 23
  start-page: 2129
  year: 2008
  ident: ref_10
  article-title: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (mds-updrs): Scale presentation and clinimetric testing results
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22340
– volume: 18
  start-page: 56
  year: 2015
  ident: ref_15
  article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.11.008
– ident: ref_26
  doi: 10.1002/9780470033005
– ident: ref_3
– ident: ref_23
  doi: 10.1109/BSN.2016.7516235
– volume: 10
  start-page: 391
  year: 2003
  ident: ref_7
  article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease
  publication-title: Eur. J. Neurol.
  doi: 10.1046/j.1468-1331.2003.00611.x
– volume: 72
  start-page: 190
  year: 2018
  ident: ref_28
  article-title: Robust human activity recognition using smartwatches and smartphones
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.002
– ident: ref_1
– ident: ref_4
  doi: 10.1007/978-3-642-18167-2_20
– volume: 167
  start-page: 340
  year: 2008
  ident: ref_20
  article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.08.023
– volume: 14
  start-page: 436
  year: 2010
  ident: ref_13
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2036165
– volume: 120
  start-page: 359
  year: 2016
  ident: ref_25
  article-title: Frequency extraction from smartphone inertial signals for human activity segmentation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.029
– volume: 10
  start-page: 734
  year: 2011
  ident: ref_6
  article-title: Freezing of gait: Moving forward on a mysterious clinical phenomenon
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70143-0
– ident: ref_8
  doi: 10.1371/journal.pone.0009675
– ident: ref_27
– volume: 55
  start-page: 892
  year: 2007
  ident: ref_2
  article-title: Development of intelligent multisensor surveillance systems with agents
  publication-title: Robot. Auton. Sys.
  doi: 10.1016/j.robot.2007.07.009
– ident: ref_12
– volume: 18
  start-page: 254
  year: 2015
  ident: ref_14
  article-title: Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.02.002
– volume: 22
  start-page: 2192
  year: 2007
  ident: ref_5
  article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait
  publication-title: Mov. Disord.
  doi: 10.1002/mds.21659
– ident: ref_21
  doi: 10.1145/2676629.2676630
– volume: 31
  start-page: 265
  year: 2017
  ident: ref_16
  article-title: Measuring signal fluctuations in gait rhythm time series of patients with Parkinson’s disease using entropy parameters
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.022
– volume: 143
  start-page: 29
  year: 1982
  ident: ref_29
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: ref_18
  doi: 10.1007/978-3-642-39712-7_11
– ident: ref_19
– ident: ref_17
  doi: 10.1145/2493988.2494353
– ident: ref_22
  doi: 10.4108/icst.pervasivehealth.2012.248680
– volume: 30
  start-page: 84
  year: 2016
  ident: ref_24
  article-title: Segmenting human activities based on HMMs using smartphone inertial sensors
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2016.01.004
– volume: 1
  start-page: 261
  year: 2005
  ident: ref_11
  article-title: Mood fluctuations in Parkinson’s disease: A pilot study comparing the effects of intravenous and oral levodopa administration
  publication-title: Neuropsychiatr. Dis. Treat.
SSID ssj0000913830
Score 2.3659925
Snippet This paper focuses on detecting freezing of gait in Parkinson’s patients using body-worn accelerometers. In this study, we analyzed the robustness of four...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 119
SubjectTerms Accelerometers
Algorithms
Artificial neural networks
Classification
Datasets
Decision trees
Evaluation
Experiments
Gait
Markov chains
Multilayer perceptrons
Neural networks
Parkinson's disease
Patients
Principal components analysis
Quality assessment
Robustness
Sensors
Signal processing
Speech processing
Supervision
Title Increasing Robustness in the Detection of Freezing of Gait in Parkinson’s Disease
URI https://www.proquest.com/docview/2548419392
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqI8Kg9sKGoaO4k9IaAvIahQS6VuUWyfpUooKU1YmPgb_D1-CXaStlRInZIoZw9n-17-7g6ha6NhBfiSOT6h0qHaU07MY-ZIaPEYqFBMFwDZQdAf08eJP6kCblkFq1zIxEJQq1TaGHnTODKMGmuDe7ezd8d2jbK3q1ULjW1UaxlNY_c56_aWMRZb85IRt8yVIca7b656y2TMtbqPr-ujdXFc6JjuAdqvjEN8V67mIdqC5Ajt_SkZeIxG5kBbHLn5wMNUfGS5lVV4mmBjyeE25AW0KsGpxt05wKelM--9eJpbIpvkXOR7_Xx9Z7hd3s6coHG38_rQd6rGCI4kzM8dT2uIhdQ-j6mg1FfgUUmk0ERqRUIZBhpC5hIVeKECronraiPZgBp3UINm5BTtJGkCZwjLoAVhrBjTfkCFsOW5FAAPGKeeIFTUUWvBnkhWVcNt84q3yHgPlqXRf5bW0c1yzKysmbGR-nLB9ag6P1m0Wu3zzb8v0K6ZhZc46ku0k88_4MqYCbloFHuhgWp37eenkXnedwYvw18p-MWI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6l6YFyQECpWgiwBzghK453be8eECqkISEhQiGVenO9u7NSJOSU2BGCE6_Rl-hD9UnY9U_bCCm33mx5vIfxeL6Z3W9mAN5YhJUYKu6FlCmPmUB7qUi5p7AnUmRSc1MSZKfR8JR9OQvPWnDV1MI4WmXjE0tHrZfK7ZF3bSLDmY02RPDh4qfnpka509VmhEZlFmP8_cumbPn7Ud9-37dBMDiZfxp69VQBT1EeFl5gDKZSmVCkTDIWagyYokoaqoymsYojgzH3qY6CWKMw1PeNdQvIbC5l0HBq192BXeYqWtuw-_Fk-m12s6vjumxy6lfVOZQKv3s7zSbnvkNbsYmAmwBQotrgMTyqw1FyXNnPE2hh9hQe3mlSuA_frQtxzHV7Q2ZLuc4L5x3JIiM2diR9LEoyV0aWhgxWiH-cnL3-nC4KJ-TKqssKs-u_lznpV-dBz-D0XpR2AO1smeEhEBX1ME415yaMmJSuIZhGFBEXLJCUySPoNepJVN2n3I3L-JHYfMWpNPlfpUfw7uadi6pLx1bpTqP1pP5j8-TWvp5vf_waHgznXyfJZDQdv4A9u6KoWNwdaBerNb60QUohX9WWQeD8vo3xH5oJAuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NattAEB4cB0pyKE2akKRuu4f0VIRl7UraPYRS6sr5Kaa0MeSmaHdnwRDkxJIp7amvkVfp4-RJsqufuCaQW24SGu1h9Gl-dr-ZATi0HlZiqLgXUqY8ZgLtZSLjnsKByJBJzU1FkB1HxxN2ehFedOBfWwvjaJWtTawMtZ4pt0fet4kMZzbaEEHfNLSI78Pk0_WN5yZIuZPWdpxGDZEz_P3Lpm_F0cnQfusPQZB8Pf9y7DUTBjxFeVh6gTGYSWVCkTHJWKgxYIoqaagymsYqjgzG3Kc6CmKNwlDfN9ZEILN5lUHDqV13DdZjGguX-PFk9LC_4_ptcurXdTqUCr-_nGtTcN_5XbHqC1ddQeXfklfwsglMyecaSVvQwXwbNv9rV_gaflpj4jjs9ob8mMlFUTo7SaY5sVEkGWJZ0bpyMjMkmSP-cXL2epRNSyfkCqyrWrO7v7cFGdYnQzsweRaV7UI3n-W4B0RFA4wzzbkJIyalaw2mEUXEBQskZXIfBq16UtV0LHeDM65Sm7k4laaPVboPHx_eua77dTwp3Wu1njb_bpEukXbw9OP38MJCMP12Mj57Axt2QVHTuXvQLecLfGujlVK-q2BB4PK5cXgPiSEFvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Robustness+in+the+Detection+of+Freezing+of+Gait+in+Parkinson%E2%80%99s+Disease&rft.jtitle=Electronics+%28Basel%29&rft.au=San-Segundo%2C+Rub%C3%A9n&rft.au=Navarro-Hell%C3%ADn%2C+Honorio&rft.au=Torres-S%C3%A1nchez%2C+Roque&rft.au=Hodgins%2C+Jessica&rft.date=2019-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=8&rft.issue=2&rft.spage=119&rft_id=info:doi/10.3390%2Felectronics8020119&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics8020119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon