A comparison of methods for clustering longitudinal data with slowly changing trends
Longitudinal clustering provides a detailed yet comprehensible description of time profiles among subjects. With several approaches that are commonly used for this purpose, it remains unclear under which conditions a method is preferred over another method. We investigated the performance of five me...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 52; no. 3; pp. 621 - 648 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Longitudinal clustering provides a detailed yet comprehensible description of time profiles among subjects. With several approaches that are commonly used for this purpose, it remains unclear under which conditions a method is preferred over another method. We investigated the performance of five methods using Monte Carlo simulations on synthetic datasets, representing various scenarios involving polynomial time profiles. The performance was evaluated on two aspects: The agreement of the group assignment to the simulated reference, as measured by the split-join distance, and the trend estimation error, as measured by a weighted minimum of the mean squared error (WMMSE). Growth mixture modeling (GMM) was found to achieve the best overall performance, followed closely by a two-step approach using growth curve modeling and k-means (GCKM). Considering the model similarities between GMM and GCKM, the latter is preferred for large datasets for its computational efficiency. Longitudinal k-means (KML) and group-based trajectory modeling were found to have practically identical solutions in the case that the group trajectory model of the latter method is correctly specified. Both methods performed less than GMM and GCKM in most settings. |
---|---|
AbstractList | Longitudinal clustering provides a detailed yet comprehensible description of time profiles among subjects. With several approaches that are commonly used for this purpose, it remains unclear under which conditions a method is preferred over another method. We investigated the performance of five methods using Monte Carlo simulations on synthetic datasets, representing various scenarios involving polynomial time profiles. The performance was evaluated on two aspects: The agreement of the group assignment to the simulated reference, as measured by the split-join distance, and the trend estimation error, as measured by a weighted minimum of the mean squared error (WMMSE). Growth mixture modeling (GMM) was found to achieve the best overall performance, followed closely by a two-step approach using growth curve modeling and k-means (GCKM). Considering the model similarities between GMM and GCKM, the latter is preferred for large datasets for its computational efficiency. Longitudinal k-means (KML) and group-based trajectory modeling were found to have practically identical solutions in the case that the group trajectory model of the latter method is correctly specified. Both methods performed less than GMM and GCKM in most settings. |
Author | Den Teuling, N. G. P. van den Heuvel, E. R. Pauws, S. C. |
Author_xml | – sequence: 1 givenname: N. G. P. orcidid: 0000-0003-1026-5080 surname: Den Teuling fullname: Den Teuling, N. G. P. organization: Philips Research – sequence: 2 givenname: S. C. surname: Pauws fullname: Pauws, S. C. organization: Department Communication and Cognition, Tilburg University – sequence: 3 givenname: E. R. orcidid: 0000-0001-9157-7224 surname: van den Heuvel fullname: van den Heuvel, E. R. organization: Department of Mathematics and Computer Science, Eindhoven University of Technology |
BookMark | eNqFkE1rAjEURUNpoWr7EwqBrsfmazKRbirSLxC6sesQk4xGYmKTiPjvO4N200W7evDeuZfHGYLLEIMF4A6jMUYCPSDKMZpgMSaIdCvBMePsAgxwTUnFMMOXYNAzVQ9dg2HOG4QQFUwMwGIKddzuVHI5BhhbuLVlHU2GbUxQ-30uNrmwgj6GlSt744Ly0Kii4MGVNcw-HvwR6rXqzh1Wkg0m34CrVvlsb89zBD5fnhezt2r-8fo-m84rTUVdKqKJsMjyJUdUCUXEkpplyxvGTdNSgWtuETGWNZqZVtsGCYEUp4Sr5cTUhNMRuD_17lL82ttc5CbuU_dhlqQRiOOGEdJR9YnSKeacbCt3yW1VOkqMZC9Q_giUvUB5FtjlHn_ltCuquBhKUs7_m346pV3oVG7VISZvZFFHH1ObVNAuS_p3xTdRUIuW |
CitedBy_id | crossref_primary_10_1186_s12889_023_17122_4 crossref_primary_10_1001_jamapsychiatry_2023_0041 crossref_primary_10_1080_01634372_2024_2339982 crossref_primary_10_1001_jamasurg_2024_4691 crossref_primary_10_1093_bioinformatics_btae137 crossref_primary_10_1007_s11192_024_05105_0 crossref_primary_10_1016_j_apmr_2024_09_005 crossref_primary_10_1002_sim_9917 crossref_primary_10_1097_CCM_0000000000006600 crossref_primary_10_1021_acs_est_3c04043 crossref_primary_10_1007_s40299_024_00851_4 crossref_primary_10_1212_WNL_0000000000209427 crossref_primary_10_1371_journal_pone_0312248 crossref_primary_10_5964_meth_7143 crossref_primary_10_1007_s42979_021_00822_2 crossref_primary_10_1108_SEJ_08_2023_0102 crossref_primary_10_1007_s12325_022_02290_3 |
Cites_doi | 10.1037/met0000048 10.1093/biostatistics/3.4.459 10.1177/0049124106292292 10.1080/10705511.2016.1247646 10.1007/s10940-010-9113-7 10.1037/1082-989X.4.2.139 10.1007/s12160-008-9052-9 10.2307/271063 10.1007/s00180-009-0178-4 10.1007/s00357-017-9233-y 10.18637/jss.v078.i02 10.1037/a0025814 10.1177/1073191119873714 10.1111/j.1745-9125.1993.tb01133.x 10.1093/acprof:oso/9780195173444.001.0001 10.1080/10705510701575396 10.1201/b16018 10.1111/j.1745-9125.2005.00026.x 10.1080/10705511.2014.936340 10.1002/sim.2673 10.1016/j.adolescence.2016.03.012 10.1016/j.jclinepi.2012.04.010 10.1177/0011000016658097 10.1080/03610918.2018.1468458 10.1080/00273171.2014.958211 10.1146/annurev.clinpsy.121208.131413 10.1037/a0021813 10.1080/10705511.2012.659618 10.1037/a0014851 10.1198/106186002853 10.1007/s10940-007-9036-0 10.3109/10826084.2015.1126747 10.1111/j.0006-341x.1999.00463.x 10.1093/sleep/30.6.711 10.1080/10705511.2012.634722 10.1080/00273170701710338 10.1111/j.1745-9125.2010.00185.x 10.1198/jcgs.2010.09094 10.1145/272991.272995 10.18637/jss.v065.i04 10.2307/2529876 10.1111/j.1751-9004.2007.00054.x 10.1080/01621459.1996.10476679 10.1007/978-3-642-51175-2_20 10.1002/sim.4420 10.1177/0002716205280900 |
ContentType | Journal Article |
Copyright | 2021 Koninklijke Philips N.V. Published with license by Taylor and Francis Group, LLC 2021 2021 Koninklijke Philips N.V. Published with license by Taylor and Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 Koninklijke Philips N.V. Published with license by Taylor and Francis Group, LLC 2021 – notice: 2021 Koninklijke Philips N.V. Published with license by Taylor and Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2020.1861464 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 648 |
ExternalDocumentID | 10_1080_03610918_2020_1861464 1861464 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 0YH 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c385t-2c28e0e6b603a8a28b3dbf6746d7f38156e02de47c4dfce70880a6326ab9d5263 |
IEDL.DBID | 0YH |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 06:16:44 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 02:09:42 EDT 2025 Wed Dec 25 09:05:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-2c28e0e6b603a8a28b3dbf6746d7f38156e02de47c4dfce70880a6326ab9d5263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1026-5080 0000-0001-9157-7224 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1861464 |
PQID | 2780617422 |
PQPubID | 186203 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1080_03610918_2020_1861464 informaworld_taylorfrancis_310_1080_03610918_2020_1861464 proquest_journals_2780617422 crossref_primary_10_1080_03610918_2020_1861464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-04 |
PublicationDateYYYYMMDD | 2023-03-04 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 Tolvanen A. (CIT0045) 2007 CIT0032 CIT0031 CIT0034 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 MacQueen J. (CIT0020) 1967; 1 CIT0042 CIT0001 CIT0044 CIT0003 CIT0047 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 Muthén B. (CIT0024) 2009 CIT0052 CIT0051 CIT0010 CIT0054 Verbeke G. (CIT0050) 2000 CIT0053 CIT0012 CIT0011 Pelleg D. (CIT0033) 2000; 1 Arthur D. (CIT0002) 2007 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 R Core Team (CIT0036) 2017 CIT0019 CIT0021 CIT0023 CIT0022 CIT0025 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0006 doi: 10.1037/met0000048 – ident: CIT0025 doi: 10.1093/biostatistics/3.4.459 – ident: CIT0018 doi: 10.1177/0049124106292292 – ident: CIT0047 doi: 10.1080/10705511.2016.1247646 – ident: CIT0048 – ident: CIT0030 doi: 10.1007/s10940-010-9113-7 – ident: CIT0027 doi: 10.1037/1082-989X.4.2.139 – ident: CIT0001 doi: 10.1007/s12160-008-9052-9 – start-page: 143 volume-title: Longitudinal data analysis, year: 2009 ident: CIT0024 – start-page: 1027 volume-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms year: 2007 ident: CIT0002 – volume-title: R: A language and environment for statistical computing year: 2017 ident: CIT0036 – ident: CIT0037 doi: 10.2307/271063 – ident: CIT0012 doi: 10.1007/s00180-009-0178-4 – ident: CIT0023 doi: 10.1007/s00357-017-9233-y – ident: CIT0035 doi: 10.18637/jss.v078.i02 – volume: 1 start-page: 281 volume-title: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability year: 1967 ident: CIT0020 – ident: CIT0044 doi: 10.1037/a0025814 – ident: CIT0007 doi: 10.1177/1073191119873714 – ident: CIT0028 doi: 10.1111/j.1745-9125.1993.tb01133.x – ident: CIT0051 doi: 10.1093/acprof:oso/9780195173444.001.0001 – ident: CIT0032 doi: 10.1080/10705510701575396 – ident: CIT0010 doi: 10.1201/b16018 – volume-title: Linear mixed models for longitudinal analysis year: 2000 ident: CIT0050 – ident: CIT0031 doi: 10.1111/j.1745-9125.2005.00026.x – volume: 1 start-page: 727 volume-title: Proceedings of the Seventeenth International Conference on Machine Learning year: 2000 ident: CIT0033 – ident: CIT0021 doi: 10.1080/10705511.2014.936340 – ident: CIT0005 doi: 10.1002/sim.2673 – ident: CIT0053 doi: 10.1016/j.adolescence.2016.03.012 – ident: CIT0046 doi: 10.1016/j.jclinepi.2012.04.010 – ident: CIT0009 doi: 10.1177/0011000016658097 – ident: CIT0054 doi: 10.1080/03610918.2018.1468458 – ident: CIT0003 doi: 10.1080/00273171.2014.958211 – volume-title: Latent growth mixture modeling: A simulation study year: 2007 ident: CIT0045 – ident: CIT0029 doi: 10.1146/annurev.clinpsy.121208.131413 – ident: CIT0040 doi: 10.1037/a0021813 – ident: CIT0034 doi: 10.1080/10705511.2012.659618 – ident: CIT0008 doi: 10.1037/a0014851 – ident: CIT0039 doi: 10.1198/106186002853 – ident: CIT0015 doi: 10.1007/s10940-007-9036-0 – ident: CIT0017 doi: 10.3109/10826084.2015.1126747 – ident: CIT0026 doi: 10.1111/j.0006-341x.1999.00463.x – ident: CIT0052 doi: 10.1093/sleep/30.6.711 – ident: CIT0041 doi: 10.1080/10705511.2012.634722 – ident: CIT0004 doi: 10.1080/00273170701710338 – ident: CIT0042 doi: 10.1111/j.1745-9125.2010.00185.x – ident: CIT0043 doi: 10.1198/jcgs.2010.09094 – ident: CIT0022 doi: 10.1145/272991.272995 – ident: CIT0011 doi: 10.18637/jss.v065.i04 – ident: CIT0016 doi: 10.2307/2529876 – ident: CIT0014 doi: 10.1111/j.1751-9004.2007.00054.x – ident: CIT0049 doi: 10.1080/01621459.1996.10476679 – ident: CIT0013 doi: 10.1007/978-3-642-51175-2_20 – ident: CIT0019 doi: 10.1002/sim.4420 – ident: CIT0038 doi: 10.1177/0002716205280900 |
SSID | ssj0003848 |
Score | 2.4447029 |
Snippet | Longitudinal clustering provides a detailed yet comprehensible description of time profiles among subjects. With several approaches that are commonly used for... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 621 |
SubjectTerms | Clustering Datasets Error analysis Group-based trajectory modeling Growth mixture modeling Intensive longitudinal data Latent class analysis Latent-class trajectory modeling Longitudinal clustering Modelling Performance evaluation Polynomials Simulation study |
Title | A comparison of methods for clustering longitudinal data with slowly changing trends |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1861464 https://www.proquest.com/docview/2780617422 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgLGXgUUAUCvLAGkhtx3HGClFVSHRqJZgiP6eoRSQV4u_xdR6iQqgDS4Yo14pyfR92js9B6I5x5tv0bBxxyWjE4CehkJZHLjNM-ZJojQxsn3M-W7Ln16RFE5YNrBLW0K4migi5GoJbqrJFxD34pAt0lgDMIv6W8BWGs310QGC2-ikdv826ZExFENACkwhs2kM8fw2zVZ62yEt_JetQgaYn6KhpHfGk9vUp2rOrATpuZRlwE6UDdPjSUbGWA9SHdrJmYz5DiwnWnfAgXjtcC0iX2L8A1sUGWBN8LcPFGmSMNgYkszCASDHs1-KyWH8WXzgcFobHqgCoPUfL6dPicRY1ugqRpiKpIqKJsLHlisdUCkmEokY5njJuUkeBPsbGxFiWamactqlPRLHkvs-TKjMJ4fQC9Vbrlb1EOPM1UCeMaUUM4zyVifSrcxkTZ-OUGDFErP2cuW5Ix0H7osjHLTdp44UcvJA3Xhii-87svWbd2GWQ_fRVXoXtDldrk-R0h-2odWzeBHCZk1RAc8cIufrH0NeoD_L0AbPGRqhXfWzsjW9iKnUbpqm_0nj-DX1e5RQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED3kY0gyJKmTomnzwaGrHIWkKGo0ghpOa3tygGwEv7REsItaRtH8-vIoybBTFBmySjpCosh3J-rxPYCvXPBQphd3idCcJRx_EkrtRVIWjpuQEr3TUe1zKkaP_PtT9rSxFwZplfgNXTZCERGrcXLjYnRHibsNqIt6lsjMouGQDClG8F3YzwqRo4sBS6drNGYyOmhhSIIx3S6e_zWzlZ-21Ev_QeuYgoYnYLubb5gnz_1Vbfr25ZWu4_ue7hSO2wqVDJoh9QF2_LwHJ537A2nBoAdHk7Xi67IHh1i1NqLPZzAbELv2NySLkjQ-1UsSHpPYaoXiDCFlkmqBbkkrh85cBLmqBJeFybJa_K7-kLgnGS-rI2_3HB6H32b3o6S1b0gsk1mdUEulT70wImVaaioNc6YUORcuLxmq1PiUOs9zy11pfR7wLtUilJPaFC6jgn2Evfli7j8BKUKqtRnn1lDHhch1pr1hOqWlT3Pq5AXw7qUp22qbo8VGpe46CdS2UxV2qmo79QL667CfjbjHWwHF5ohQdVxVKRsLFMXeiL3sho9qcWKpaC6xhuSUfn5H0zdwMJpNxmr8MP3xBQ7DKRZpcvwS9upfK38V6qbaXMeJ8RfVdgfH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CIqHtwKAw0bGBD1xTMttxnGMFq8qvisMmcbP880LUTiTVtP3183OSioLQDr0meVbi2N97cT5_H8B7Lngs06vzTGjOMo4_CaX2IguV4yamRO90UvtcisUV__KzGNiETU-rxG_o0AlFJKzGyX3twsCI-xBBF-UskZhF4yEZM4zgj-GJQPFw3MWRL7dgzGQy0MKQDGOGTTz_a2YnPe2Il_4D1ikDzY_ADPfeEU9-TTetmdq7v2Qd93q45_Csr0_JrBtQL-CRX43haPB-ID0UjOHw-1bvtRnDAdasneTzS7icEbt1NyTrQDqX6obEpyS23qA0Q0yYpF6jV9LGoS8XQaYqwUVh0tTrm_qWpB3JeFmbWLuv4Gp-cflxkfXmDZllsmgzaqn0uRdG5ExLTaVhzgRRcuHKwFCjxufUeV5a7oL1ZUS7XItYTGpTuYIKdgyj1XrlXwOpYqK1BefWUMeFKHWhvWE6p8HnJXVyAnx4Z8r2yuZosFGr80EAte9UhZ2q-k6dwHQbdt1JezwUUP05IFSb1lRCZ4Ci2AOxp8PoUT1KNIqWEitITunJHk2_g6c_Ps3Vt8_Lr2_gIJ5hiSPHT2HU_t74s1g0teZtmhb3ggoGaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+methods+for+clustering+longitudinal+data+with+slowly+changing+trends&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Den+Teuling%2C+N.+G.+P.&rft.au=Pauws%2C+S.+C.&rft.au=van+den+Heuvel%2C+E.+R.&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=3&rft.spage=621&rft.epage=648&rft_id=info:doi/10.1080%2F03610918.2020.1861464&rft.externalDBID=0YH&rft.externalDocID=1861464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |