DYNAMICAL IMPLANTATION OF OBJECTS IN THE KUIPER BELT

Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at [<, ~]35 AU to reach the orbital...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 148; no. 3; pp. 1 - 9
Main Authors Brasil, P I O, NESVORNY, D, Gomes, R S
Format Journal Article
LanguageEnglish
Published United States 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at [<, ~]35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolution at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from [<, ~]35 AU to [> ~]40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.
AbstractList Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at [<, ~]35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolution at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from [<, ~]35 AU to [> ~]40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.
Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at ≲ 35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolution at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from ≲ 35 AU to >40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.
Author NESVORNY, D
Brasil, P I O
Gomes, R S
Author_xml – sequence: 1
  givenname: P
  surname: Brasil
  middlename: I O
  fullname: Brasil, P I O
– sequence: 2
  givenname: D
  surname: NESVORNY
  fullname: NESVORNY, D
– sequence: 3
  givenname: R
  surname: Gomes
  middlename: S
  fullname: Gomes, R S
BackLink https://www.osti.gov/biblio/22342258$$D View this record in Osti.gov
BookMark eNqN0D9Pg0AYx_GLqYlt9Q04kbi4IPeHO-5GWqlFKTRKB6cLPR4ipoXK0cF3b0mNs9OzfPJ7ku8EjZq2AYRuCX4gWEoPY-y7gnLhEV96zOPiAo0JZ9JlUpIRGv-BKzSx9hNjQiT2x8h_fE_DVTwPEyderZMwzcM8zlInWzjZ7Dma529OnDr5MnJeNvE6enVmUZJfo8uq2Fm4-b1TtFlE-XzpJtnTMOUaJnnvUimBAVSqrHwwIih5xUwgfcUUMxhXdGtwsIWyYiUYICVVguMgAKaCUhRA2RTdnXdb29famroH82HapgHTa0qZTymXJ3V_Voeu_TqC7fW-tgZ2u6KB9mg1EUJJpYhk_6HYp1yp4Tc9U9O11nZQ6UNX74vuWxOsh-Z6SKqHpPrUXDPNBfsBpl5vGw
CitedBy_id crossref_primary_10_1007_s10569_020_09969_1
crossref_primary_10_1093_mnras_stx529
crossref_primary_10_1016_j_pss_2018_06_004
crossref_primary_10_1016_j_icarus_2020_114121
crossref_primary_10_3847_2041_8205_825_1_L13
crossref_primary_10_1007_s10569_022_10106_3
crossref_primary_10_1093_mnras_stz776
crossref_primary_10_1016_j_rinp_2021_104961
crossref_primary_10_1088_0004_6256_150_3_73
crossref_primary_10_1007_s11075_019_00674_1
crossref_primary_10_1051_0004_6361_202040267
crossref_primary_10_1016_j_icarus_2015_11_015
Cites_doi 10.1126/science.276.5319.1670
10.1088/0004-637X/750/1/43
10.1088/0004-637X/782/2/100
10.1046/j.1365-8711.2001.04159.x
10.1038/365819a0
10.1016/j.icarus.2012.05.025
10.1038/nature03676
10.1016/0019-1035(84)90101-5
10.1088/0004-637X/738/1/13
10.1007/s10569-004-4623-y
10.1006/icar.1997.5745
10.1051/0004-6361/201322041
10.1093/mnras/109.5.600
10.1051/0004-6361/200912876
10.1086/320391
10.1088/2041-8205/722/2/L204
10.1086/319420
10.1086/300541
10.1006/icar.2002.6860
10.1023/B:MOON.0000031922.78588.6d
10.1086/300335
10.1086/108790
10.1016/j.icarus.2007.11.035
10.1086/316816
10.1016/j.icarus.2011.08.002
10.1006/icar.1999.6166
10.1088/0004-6256/140/5/1391
10.1088/2041-8205/744/1/L3
10.1046/j.1365-8711.1999.02379.x
10.1051/0004-6361/200912878
10.1038/nature03539
10.1038/nature03540
10.1088/2041-8205/742/2/L22
10.1088/0004-6256/144/4/117
10.1086/117532
10.1006/icar.1994.1039
10.1086/452638
10.1016/S0019-1035(02)00056-8
10.1086/300969
10.1086/422919
10.1088/0004-637X/768/1/45
10.1038/nature02120
10.1073/pnas.37.1.1
10.1038/362730a0
ContentType Journal Article
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.1088/0004-6256/148/3/56
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
EndPage 9
ExternalDocumentID 22342258
10_1088_0004_6256_148_3_56
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
AAYXX
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
UPT
WH7
~02
7TG
AETEA
KL.
8FD
H8D
L7M
AFDAS
OTOTI
ID FETCH-LOGICAL-c385t-288e3eef9df4ec67d5f3c7849393c00f2bc07bedf3dece1d2965077e397d6ae23
ISSN 0004-6256
1538-3881
IngestDate Fri May 19 00:37:04 EDT 2023
Thu Jul 25 10:10:18 EDT 2024
Fri Aug 16 08:48:03 EDT 2024
Thu Sep 26 19:11:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-288e3eef9df4ec67d5f3c7849393c00f2bc07bedf3dece1d2965077e397d6ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iopscience.iop.org/article/10.1088/0004-6256/148/3/56/pdf
PQID 1660425992
PQPubID 23462
PageCount 9
ParticipantIDs osti_scitechconnect_22342258
proquest_miscellaneous_1669899183
proquest_miscellaneous_1660425992
crossref_primary_10_1088_0004_6256_148_3_56
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Astronomical journal
PublicationYear 2014
References 22
24
Kozai (28) 1985; 36
Fraser (13) 2014; 783
Levison (34) 2001; 121
Malhotra (37) 1998; 29
47
Batygin (2) 2011; 738
48
27
29
Dawson (8) 2012; 750
Morbidelli (39) 2010; 140
Nesvorný (43) 2011; 742
Jewitt (25) 1998; 115
Brown (6) 2001; 121
Nesvorný (45) 2013; 768
Batygin (1) 2012; 744
31
32
11
33
12
35
14
36
15
Gomes (18) 2000; 120
16
Kuiper (30) 1974; 9
38
17
Hahn (23) 2005; 130
19
Nesvorný (44) 2012; 144
Gomes (21) 2008
Kenyon (26) 1999; 118
Bernstein (3) 2004; 128
4
Parker (46) 2010; 722
5
7
9
40
41
Duncan (10) 1998; 116
20
42
References_xml – ident: 9
  doi: 10.1126/science.276.5319.1670
– volume: 36
  start-page: 47
  year: 1985
  ident: 28
  publication-title: CeMec
  contributor:
    fullname: Kozai
– volume: 750
  start-page: 43
  issn: 0004-637X
  year: 2012
  ident: 8
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/43
  contributor:
    fullname: Dawson
– volume: 783
  start-page: 100
  year: 2014
  ident: 13
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/100
  contributor:
    fullname: Fraser
– ident: 38
  doi: 10.1046/j.1365-8711.2001.04159.x
– ident: 35
  doi: 10.1038/365819a0
– ident: 14
  doi: 10.1016/j.icarus.2012.05.025
– ident: 17
  doi: 10.1038/nature03676
– ident: 12
  doi: 10.1016/0019-1035(84)90101-5
– volume: 738
  start-page: 13
  issn: 0004-637X
  year: 2011
  ident: 2
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/13
  contributor:
    fullname: Batygin
– ident: 22
  doi: 10.1007/s10569-004-4623-y
– ident: 42
  doi: 10.1006/icar.1997.5745
– ident: 4
  doi: 10.1051/0004-6361/201322041
– ident: 11
  doi: 10.1093/mnras/109.5.600
– ident: 40
  doi: 10.1051/0004-6361/200912876
– volume: 121
  start-page: 2804
  issn: 1538-3881
  year: 2001
  ident: 6
  publication-title: AJ
  doi: 10.1086/320391
  contributor:
    fullname: Brown
– volume: 722
  start-page: L204
  issn: 0004-637X
  year: 2010
  ident: 46
  publication-title: ApJL
  doi: 10.1088/2041-8205/722/2/L204
  contributor:
    fullname: Parker
– volume: 121
  start-page: 1730
  issn: 1538-3881
  year: 2001
  ident: 34
  publication-title: AJ
  doi: 10.1086/319420
  contributor:
    fullname: Levison
– volume: 116
  start-page: 2067
  issn: 1538-3881
  year: 1998
  ident: 10
  publication-title: AJ
  doi: 10.1086/300541
  contributor:
    fullname: Duncan
– ident: 15
  doi: 10.1006/icar.2002.6860
– ident: 16
  doi: 10.1023/B:MOON.0000031922.78588.6d
– volume: 115
  start-page: 2125
  issn: 1538-3881
  year: 1998
  ident: 25
  publication-title: AJ
  doi: 10.1086/300335
  contributor:
    fullname: Jewitt
– ident: 27
  doi: 10.1086/108790
– ident: 33
  doi: 10.1016/j.icarus.2007.11.035
– volume: 120
  start-page: 2695
  issn: 1538-3881
  year: 2000
  ident: 18
  publication-title: AJ
  doi: 10.1086/316816
  contributor:
    fullname: Gomes
– ident: 20
  doi: 10.1016/j.icarus.2011.08.002
– ident: 47
  doi: 10.1006/icar.1999.6166
– volume: 140
  start-page: 1391
  issn: 1538-3881
  year: 2010
  ident: 39
  publication-title: AJ
  doi: 10.1088/0004-6256/140/5/1391
  contributor:
    fullname: Morbidelli
– volume: 744
  start-page: L3
  issn: 0004-637X
  year: 2012
  ident: 1
  publication-title: ApJL
  doi: 10.1088/2041-8205/744/1/L3
  contributor:
    fullname: Batygin
– ident: 7
  doi: 10.1046/j.1365-8711.1999.02379.x
– volume: 29
  start-page: 1476
  year: 1998
  ident: 37
  publication-title: Lunar and Planetary Institute Science Conference Abstracts
  contributor:
    fullname: Malhotra
– start-page: 259
  year: 2008
  ident: 21
  publication-title: The Solar System Beyond Neptune
  contributor:
    fullname: Gomes
– ident: 5
  doi: 10.1051/0004-6361/200912878
– ident: 48
  doi: 10.1038/nature03539
– ident: 41
  doi: 10.1038/nature03540
– volume: 742
  start-page: L22
  issn: 0004-637X
  year: 2011
  ident: 43
  publication-title: ApJL
  doi: 10.1088/2041-8205/742/2/L22
  contributor:
    fullname: Nesvorný
– volume: 144
  start-page: 117
  issn: 1538-3881
  year: 2012
  ident: 44
  publication-title: AJ
  doi: 10.1088/0004-6256/144/4/117
  contributor:
    fullname: Nesvorný
– ident: 36
  doi: 10.1086/117532
– ident: 31
  doi: 10.1006/icar.1994.1039
– volume: 130
  start-page: 2392
  issn: 1538-3881
  year: 2005
  ident: 23
  publication-title: AJ
  doi: 10.1086/452638
  contributor:
    fullname: Hahn
– ident: 19
  doi: 10.1016/S0019-1035(02)00056-8
– volume: 118
  start-page: 1101
  issn: 1538-3881
  year: 1999
  ident: 26
  publication-title: AJ
  doi: 10.1086/300969
  contributor:
    fullname: Kenyon
– volume: 128
  start-page: 1364
  issn: 1538-3881
  year: 2004
  ident: 3
  publication-title: AJ
  doi: 10.1086/422919
  contributor:
    fullname: Bernstein
– volume: 768
  start-page: 45
  issn: 0004-637X
  year: 2013
  ident: 45
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/1/45
  contributor:
    fullname: Nesvorný
– volume: 9
  start-page: 321
  year: 1974
  ident: 30
  publication-title: CeMec
  contributor:
    fullname: Kuiper
– ident: 32
  doi: 10.1038/nature02120
– ident: 29
  doi: 10.1073/pnas.37.1.1
– ident: 24
  doi: 10.1038/362730a0
SSID ssj0011804
Score 2.2663932
Snippet Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short)....
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 1
SubjectTerms ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
AUGMENTATION
CAPTURE
Computer simulation
COMPUTERIZED SIMULATION
DISTANCE
DISTRIBUTION
EFFICIENCY
EVOLUTION
INCLINATION
INSTABILITY
JUPITER PLANET
MASS
Mathematical models
MIGRATION
Neptune
NEPTUNE PLANET
Orbitals
ORBITS
Perihelions
Planet formation
RESOLUTION
RESONANCE
SOLAR SYSTEM
Title DYNAMICAL IMPLANTATION OF OBJECTS IN THE KUIPER BELT
URI https://search.proquest.com/docview/1660425992
https://search.proquest.com/docview/1669899183
https://www.osti.gov/biblio/22342258
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKuXBBjA-tYyBPQlyipElsJ_ax21oW6JpqtNI4RY3jHBO0pkjw1_Nsp1nEBtq4RJGbvFR-P70Pvy-EPuQlaE3FNm5EuXRpzH03L3VmThCrqAh9lge6GvlyEV2s6edrdj0YzHtZS7sm9-Sve-tK_oersAZ81VWyj-BsRxQW4B74C1fgMFwfxOPzb4uJbWiQXC7nk8XKztBJZ05qxpjo8mCT0_NlnSynV87pdL7qW6NmIvNWH4bXtmtA_6s20L61Z8RLz0k8J_V6caUf9U2lw-yn50ZudT99qtsahyvP-er1TxUC2qVN3UpK6oJv1LapvhWOhNsRK530pLwHE9KThfbdOyIaxJrNabT0TcG_XtENJNg9XbH_0FZdDqGJnnOuo-c005TAi-EZyVj0BD0NY8G0K56kyy6mFHDf9uRuv9yWUAGNcbc2BhpjMtbjzHtmyrAGcXtHWRsLZPUCPW9dBzyxODhAA1W9RId7_v3EH7G5t2dV21eIdvDAfXjgdIZbeOBkgQEe2MIDa3i8RuvZdHV24bZDMlxJOGvckHNFlCpFUVIlo7hgJZExp4IIIn2_DHPpx7kqSlIoqYIiFGCTx7ECO7SINiokb9Cwqit1iDALFdi7UtA4B6ecRHxjGrlywUgOcp2NkLPfk-y77YWS_Z0LI3Ssty0DS063I5Y6b0s2GZijFHQIH6GT_XZmINF0mGpTqXq3zYIo0ppEiPCfzwgOrg0nR4_6U2_Rsw7t_jEaNjc79Q6syiZ_b8DyG5SRYZI
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DYNAMICAL+IMPLANTATION+OF+OBJECTS+IN+THE+KUIPER+BELT&rft.jtitle=The+Astronomical+journal&rft.au=Brasil%2C+P.+I.+O.&rft.au=Nesvorn%C3%BD%2C+D.&rft.au=Gomes%2C+R.+S.&rft.date=2014-09-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=148&rft.issue=3&rft.spage=56&rft_id=info:doi/10.1088%2F0004-6256%2F148%2F3%2F56&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0004_6256_148_3_56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon