Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes
We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower wor...
Saved in:
Published in | Applied physics letters Vol. 122; no. 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
03.04.2023
American Institute of Physics (AIP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB6 (100) compared to graphene coated LaB6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB6. |
---|---|
AbstractList | We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB6 (100) compared to graphene coated LaB6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB6. We report a lowering of work function for lanthanum hexaboride (LaB 6 ) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB 6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB 6 (100) compared to graphene coated LaB 6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB 6 . |
Author | Tsuda, Yasutaka Wang, Gaoxue Abukawa, Tadashi Yamaguchi, Hisato Ogawa, Shuichi Yusa, Ryunosuke Yoshigoe, Akitaka Moody, Nathan A. Pettes, Michael T. Liu, Fangze |
Author_xml | – sequence: 1 givenname: Hisato surname: Yamaguchi fullname: Yamaguchi, Hisato organization: Los Alamos National Laboratory – sequence: 2 givenname: Ryunosuke surname: Yusa fullname: Yusa, Ryunosuke organization: Tohoku University – sequence: 3 givenname: Gaoxue surname: Wang fullname: Wang, Gaoxue organization: Los Alamos National Laboratory – sequence: 4 givenname: Michael T. surname: Pettes fullname: Pettes, Michael T. organization: Los Alamos National Laboratory – sequence: 5 givenname: Fangze surname: Liu fullname: Liu, Fangze organization: Beijing Institute of Technology – sequence: 6 givenname: Yasutaka surname: Tsuda fullname: Tsuda, Yasutaka organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 7 givenname: Akitaka surname: Yoshigoe fullname: Yoshigoe, Akitaka organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 8 givenname: Tadashi surname: Abukawa fullname: Abukawa, Tadashi organization: Tohoku University – sequence: 9 givenname: Nathan A. surname: Moody fullname: Moody, Nathan A. organization: Los Alamos National Laboratory – sequence: 10 givenname: Shuichi surname: Ogawa fullname: Ogawa, Shuichi organization: Tohoku University |
BackLink | https://www.osti.gov/servlets/purl/2441364$$D View this record in Osti.gov |
BookMark | eNp90EFvFCEUB3BiauK2evAbED1pMi0MMMMctVFrsomXJh4Jwzw61FneCmzrfnvZbLWJGk-E5Pf_w3un5CRiBEJecnbOWScu1DnjslUDf0JWnPV9IzjXJ2TFGBNNNyj-jJzmfFuvqhViRe6_YvpG_S66EjDSBe8hhXhD0dO1fd_RcU83GHGxe0h0hh_2BqNd6Iip6hhKChNQh7YcQh4TDZttwjuY6HbGgg21caJlhrSp9cE1zpYZJ8jPyVNvlwwvHs4zcv3xw_XlVbP-8unz5bt144RWpWk7paGXcmJOs5Zx1nbdYJWyDHrNem9HDtYKDdr30IGc-CCZ77Ud5dhyJc7Iq2Mt5hJMdqGAmx3GCK6YVkouOlnR6yOqP_--g1zMLe5SHTObth8Uky3Xoqo3R-US5pzAm20KG5v2hjNz2L1R5mH31V78YevL9rDhkmxY_pl4e0zkX_J3_R2mR2i2k_8f_rv5J-JKo6Y |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_diamond_2023_110512 crossref_primary_10_1038_s41598_024_70302_z crossref_primary_10_15407_ujpe68_8_549 crossref_primary_10_1016_j_apsusc_2024_160478 crossref_primary_10_1063_5_0211701 |
Cites_doi | 10.1103/PhysRev.112.114 10.1038/srep03282 10.1016/0168-9002(92)91085-N 10.1039/C6RA03046G 10.1063/1.4711212 10.1021/jp807380s 10.1063/1.4974738 10.1038/nature12385 10.1002/aenm.201300986 10.1038/s41699-018-0062-6 10.1021/acsaelm.0c00601 10.1103/PhysRevMaterials.4.024001 10.1103/PhysRevLett.97.187401 10.1039/C9CP04187G 10.1021/jz3007029 10.1126/science.1171245 10.1063/1.112993 10.1103/PhysRevAccelBeams.20.073401 10.1103/PhysRevLett.77.3865 10.1063/1.121851 10.1021/jz2015555 10.1103/PhysRevLett.101.026803 10.1016/0039-6028(95)00989-2 10.1103/PhysRevB.79.195425 10.1016/0927-0256(96)00008-0 10.1063/1.88907 10.1021/nn102519b 10.1063/1.4868091 10.1016/0168-9002(94)01425-6 10.1103/PhysRevB.59.1758 10.1063/1.103290 10.1126/science.aac9439 10.1016/0039-6028(82)90660-4 10.1002/smll.201001628 10.1039/C6CP08903H |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M OIOZB OTOTI |
DOI | 10.1063/5.0142591 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 2441364 10_1063_5_0142591 apl |
GrantInformation_xml | – fundername: Office of Science funderid: 10.13039/100006132 – fundername: Los Alamos National Laboratory funderid: 10.13039/100008902 – fundername: KAKENHI |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c385t-2658e744d0c8020102669a55a0e7807fab1eaa38e8f7e6e4d1940f78ab4b2153 |
IEDL.DBID | AJDQP |
ISSN | 0003-6951 |
IngestDate | Mon Jan 13 02:27:09 EST 2025 Sun Jun 29 13:20:15 EDT 2025 Thu Jul 03 08:23:48 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Tue Jul 04 19:18:48 EDT 2023 Fri Jun 21 00:13:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Published open access through an agreement with Alamos National Laboratory 5112 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-2658e744d0c8020102669a55a0e7807fab1eaa38e8f7e6e4d1940f78ab4b2153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Japan Society for the Promotion of Science (JSPS) (KAKENHI) USDOE Office of Science (SC), High Energy Physics (HEP) 89233218CNA000001; JP17KK0125; JPMXP09A21AE0013; JPMXP09A21AE0042 USDOE Laboratory Directed Research and Development (LDRD) Program Ministry of Education, Culture, Sports, Science and Technology (MEXT) LA-UR-23-20698 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0003-4992-6237 0000-0001-6862-6841 0000-0001-6568-7841 0000-0002-6625-7904 0000-0003-4812-7257 0000-0003-3114-5280 0000-0002-6703-8826 0000000348127257 0000000266257904 0000000168626841 0000000267038826 0000000349926237 0000000165687841 0000000331145280 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0142591 |
PQID | 2795042183 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_2441364 crossref_citationtrail_10_1063_5_0142591 proquest_journals_2795042183 crossref_primary_10_1063_5_0142591 scitation_primary_10_1063_5_0142591 |
PublicationCentury | 2000 |
PublicationDate | 20230403 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230403 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics American Institute of Physics (AIP) |
Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) |
References | Kresse, Joubert (c33) 1999 O'Shea, Lancaster, Sachtschale, Jones (c19) 1998 Kong, Kinross-Wright, Nguyen, Sheffield (c17) 1995 Uchida, Kawahara, Fukamachi, Ago (c22) 2020 Kresse, Furthmüller (c34) 1996 Perdew, Burke, Ernzerhof (c35) 1996 Liu, Moody, Jensen, Pavlenko, Villarrubia, Mohite, Gupta (c5) 2017 Giovannetti, Khomyakov, Brocks, Karpan, van den Brink, Kelly (c12) 2008 Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (c29) 2006 Wang, Yang, Moody, Batista (c10) 2018 Conde, Kwon, Young, Leung, Kim (c18) 1994 Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (c21) 2009 Yamaguchi, Granstrom, Nie, Sojoudi, Fujita, Voiry, Chen, Gupta, Mohite, Graham, Chhowalla (c4) 2014 Patil, Pawbake, Machuno, Gelamo, Jadkar, Rout, Late (c7) 2016 Nishitani, Oshima, Aono, Tanaka, Kawai, Iwasaki, Nakamura (c14) 1982 Geim, Grigorieva (c2) 2013 Torgasin, Morita, Zen, Masuda, Katsurayama, Murata, Suphakul, Yamashita, Nogi, Kii, Nagasaki, Ohgaki (c20) 2017 Yamauchi, Takagi, Yuito, Kawabe (c36) 1976 Khomyakov, Giovannetti, Rusu, Brocks, van den Brink, Kelly (c9) 2009 Li, Zhou, Pang, Zhu, Vovk, Cong, van Bavel, Li, Yang (c31) 2019 Ago, Ito, Mizuta, Yoshida, Hu, Orofeo, Tsuji, Ikeda, Mizuno (c25) 2010 Reina, Son, Jiao, Fan, Dresselhaus, Liu, Kong (c27) 2008 Oettinger (c15) 1990 Mitrovic, Althobaiti, Weerakkody, Dhanak, Linhart, Veal, Sedghi, Hall, Chalker, Tsoutsou, Dimoulas (c32) 2014 Rout, Joshi, Kashid, Joag, More, Simbeck, Washington, Nayak, Late (c6) 2013 Novoselov, Mishchenko, Carvalho, Castro Neto (c3) 2016 Ogawa, Hu, Orofeo, Tsuji, Ikeda, Mizuno, Hibino, Ago (c24) 2012 Spicer (c1) 1958 Ago, Ogawa, Tsuji, Mizuno, Hibino (c26) 2012 Wang, Yang, Batista (c11) 2020 Bamford, Bakshi, Deacon (c16) 1992 Uchida, Iwaizako, Mizuno, Tsuji, Ago (c23) 2017 Starodub, Bartelt, McCarty (c8) 2012 Gorbachev, Riaz, Nair, Jalil, Britnell, Belle, Hill, Novoselov, Watanabe, Taniguchi, Geim, Blake (c28) 2011 Yamamoto, Rokuta, Hasegawa, Nagao, Trenary, Oshima, Otani (c30) 1996 (2023081106022128100_c25) 2010; 4 (2023081106022128100_c30) 1996; 348 (2023081106022128100_c11) 2020; 4 (2023081106022128100_c20) 2017; 20 (2023081106022128100_c29) 2006; 97 (2023081106022128100_c1) 1958; 112 (2023081106022128100_c8) 2012; 100 (2023081106022128100_c16) 1992; 318 (2023081106022128100_c22) 2020; 2 (2023081106022128100_c26) 2012; 3 (2023081106022128100_c19) 1998; 73 (2023081106022128100_c21) 2009; 324 (2023081106022128100_c27) 2008; 112 (2023081106022128100_c14) 1982; 115 (2023081106022128100_c12) 2008; 101 (2023081106022128100_c9) 2009; 79 (2023081106022128100_c32) 2014; 115 (2023081106022128100_c36) 1976; 29 (2023081106022128100_c28) 2011; 7 (2023081106022128100_c18) 1994; 65 (2023081106022128100_c7) 2016; 6 (2023081106022128100_c15) 1990; 56 (2023081106022128100_c24) 2012; 3 (2023081106022128100_c33) 1999; 59 (2023081106022128100_c3) 2016; 353 (2023081106022128100_c4) 2014; 4 (2023081106022128100_c13) 1980 (2023081106022128100_c17) 1995; 358 (2023081106022128100_c35) 1996; 77 (2023081106022128100_c10) 2018; 2 (2023081106022128100_c34) 1996; 6 (2023081106022128100_c5) 2017; 110 (2023081106022128100_c2) 2013; 499 (2023081106022128100_c31) 2019; 21 (2023081106022128100_c23) 2017; 19 (2023081106022128100_c6) 2013; 3 |
References_xml | – start-page: 17 year: 2018 ident: c10 publication-title: NPJ 2D Mater. Applicat. – start-page: 026803 year: 2008 ident: c12 publication-title: Phys. Rev. Lett. – start-page: 411 year: 1998 ident: c19 publication-title: Appl. Phys. Lett. – start-page: 419 year: 2013 ident: c2 publication-title: Nature – start-page: 465 year: 2011 ident: c28 publication-title: Small – start-page: 48 year: 1982 ident: c14 publication-title: Surf. Sci. – start-page: 377 year: 1992 ident: c16 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. – start-page: 219 year: 2012 ident: c24 publication-title: J. Phys. Chem. Lett. – start-page: 17741 year: 2008 ident: c27 publication-title: J. Phys. Chem. C – start-page: 22351 year: 2019 ident: c31 publication-title: Phys. Chem. Chem. Phys. – start-page: 1300986 year: 2014 ident: c4 publication-title: Adv. Energy Mater. – start-page: 041607 year: 2017 ident: c5 publication-title: Appl. Phys. Lett. – start-page: 195425 year: 2009 ident: c9 publication-title: Phys. Rev. B – start-page: 48843 year: 2016 ident: c7 publication-title: RSC Adv. – start-page: aac9439 year: 2016 ident: c3 publication-title: Science – start-page: 638 year: 1976 ident: c36 publication-title: Appl. Phys. Lett. – start-page: 3282 year: 2013 ident: c6 publication-title: Sci. Rep. – start-page: 272 year: 1995 ident: c17 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. – start-page: 8230 year: 2017 ident: c23 publication-title: Phys. Chem. Chem. Phys. – start-page: 133 year: 1996 ident: c30 publication-title: Surf. Sci. – start-page: 024001 year: 2020 ident: c11 publication-title: Phys. Rev. Mater. – start-page: 3865 year: 1996 ident: c35 publication-title: Phys. Rev. Lett. – start-page: 1312 year: 2009 ident: c21 publication-title: Science – start-page: 181604 year: 2012 ident: c8 publication-title: Appl. Phys. Lett. – start-page: 1758 year: 1999 ident: c33 publication-title: Phys. Rev. B – start-page: 2228 year: 2012 ident: c26 publication-title: J. Phys. Chem. Lett. – start-page: 187401 year: 2006 ident: c29 publication-title: Phys. Rev. Lett. – start-page: 114102 year: 2014 ident: c32 publication-title: J. Appl. Phys. – start-page: 073401 year: 2017 ident: c20 publication-title: Phys. Rev. Accel. Beams – start-page: 333 year: 1990 ident: c15 publication-title: Appl. Phys. Lett. – start-page: 114 year: 1958 ident: c1 publication-title: Phys. Rev. – start-page: 15 year: 1996 ident: c34 publication-title: Comput. Mater. Sci. – start-page: 3270 year: 2020 ident: c22 publication-title: ACS Appl. Electron. Mater. – start-page: 7407 year: 2010 ident: c25 publication-title: ACS Nano – start-page: 2660 year: 1994 ident: c18 publication-title: Appl. Phys. Lett. – volume: 112 start-page: 114 year: 1958 ident: 2023081106022128100_c1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.112.114 – volume: 3 start-page: 3282 year: 2013 ident: 2023081106022128100_c6 publication-title: Sci. Rep. doi: 10.1038/srep03282 – volume: 318 start-page: 377 year: 1992 ident: 2023081106022128100_c16 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. doi: 10.1016/0168-9002(92)91085-N – volume: 6 start-page: 48843 year: 2016 ident: 2023081106022128100_c7 publication-title: RSC Adv. doi: 10.1039/C6RA03046G – volume: 100 start-page: 181604 year: 2012 ident: 2023081106022128100_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4711212 – volume: 112 start-page: 17741 year: 2008 ident: 2023081106022128100_c27 publication-title: J. Phys. Chem. C doi: 10.1021/jp807380s – volume: 110 start-page: 041607 year: 2017 ident: 2023081106022128100_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4974738 – volume: 499 start-page: 419 year: 2013 ident: 2023081106022128100_c2 publication-title: Nature doi: 10.1038/nature12385 – volume: 4 start-page: 1300986 year: 2014 ident: 2023081106022128100_c4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300986 – volume: 2 start-page: 17 year: 2018 ident: 2023081106022128100_c10 publication-title: NPJ 2D Mater. Applicat. doi: 10.1038/s41699-018-0062-6 – volume: 2 start-page: 3270 year: 2020 ident: 2023081106022128100_c22 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00601 – volume: 4 start-page: 024001 year: 2020 ident: 2023081106022128100_c11 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.024001 – volume: 97 start-page: 187401 year: 2006 ident: 2023081106022128100_c29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 21 start-page: 22351 year: 2019 ident: 2023081106022128100_c31 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP04187G – volume-title: Photoemissive Materials year: 1980 ident: 2023081106022128100_c13 – volume: 3 start-page: 2228 year: 2012 ident: 2023081106022128100_c26 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3007029 – volume: 324 start-page: 1312 year: 2009 ident: 2023081106022128100_c21 publication-title: Science doi: 10.1126/science.1171245 – volume: 65 start-page: 2660 year: 1994 ident: 2023081106022128100_c18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.112993 – volume: 20 start-page: 073401 year: 2017 ident: 2023081106022128100_c20 publication-title: Phys. Rev. Accel. Beams doi: 10.1103/PhysRevAccelBeams.20.073401 – volume: 77 start-page: 3865 year: 1996 ident: 2023081106022128100_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 73 start-page: 411 year: 1998 ident: 2023081106022128100_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121851 – volume: 3 start-page: 219 year: 2012 ident: 2023081106022128100_c24 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2015555 – volume: 101 start-page: 026803 year: 2008 ident: 2023081106022128100_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.026803 – volume: 348 start-page: 133 year: 1996 ident: 2023081106022128100_c30 publication-title: Surf. Sci. doi: 10.1016/0039-6028(95)00989-2 – volume: 79 start-page: 195425 year: 2009 ident: 2023081106022128100_c9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.195425 – volume: 6 start-page: 15 year: 1996 ident: 2023081106022128100_c34 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 29 start-page: 638 year: 1976 ident: 2023081106022128100_c36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.88907 – volume: 4 start-page: 7407 year: 2010 ident: 2023081106022128100_c25 publication-title: ACS Nano doi: 10.1021/nn102519b – volume: 115 start-page: 114102 year: 2014 ident: 2023081106022128100_c32 publication-title: J. Appl. Phys. doi: 10.1063/1.4868091 – volume: 358 start-page: 272 year: 1995 ident: 2023081106022128100_c17 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. doi: 10.1016/0168-9002(94)01425-6 – volume: 59 start-page: 1758 year: 1999 ident: 2023081106022128100_c33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 56 start-page: 333 year: 1990 ident: 2023081106022128100_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.103290 – volume: 353 start-page: aac9439 year: 2016 ident: 2023081106022128100_c3 publication-title: Science doi: 10.1126/science.aac9439 – volume: 115 start-page: 48 year: 1982 ident: 2023081106022128100_c14 publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90660-4 – volume: 7 start-page: 465 year: 2011 ident: 2023081106022128100_c28 publication-title: Small doi: 10.1002/smll.201001628 – volume: 19 start-page: 8230 year: 2017 ident: 2023081106022128100_c23 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP08903H |
SSID | ssj0005233 |
Score | 2.4556801 |
Snippet | We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy... We report a lowering of work function for lanthanum hexaboride (LaB 6 ) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy... |
SourceID | osti proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | accelerator Applied physics Boron nitride Density functional theory electron source Graphene hexagonal boron nitride INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lanthanum lanthanum hexaboride Mathematical analysis Monolayers photocathode Photoelectric emission Photoelectrons Single crystals Spectrum analysis Synchrotrons thermionic Thermionic emission work function Work functions |
Title | Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes |
URI | http://dx.doi.org/10.1063/5.0142591 https://www.proquest.com/docview/2795042183 https://www.osti.gov/servlets/purl/2441364 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_kpNg-FKstXrUyqA99CU2ym2Tv0daKiEqLFnxb9tMT9HLcpdX-9525S_QEW_oYmOzCzszObz52BmDPxZgWIeaJLHOXSOFiYjOb0mdl-Sm6zDyHBk7PyqMf8viyuFyC3b9k8EvxidtqkmDxC_XlnMCx6sHy_vHB928LlRxCdIPxSkIMXQOhxZ-fmJ1eTerzBFKukL2Zp74XrMvhKrxuYSHuz_n4BpbCaA1eLTQLXIMXs2JNN12HO45wI1skXgpveNAZkWAd8cR8LtH-RhIu8lkJTuMw3JsrhttouVkBkgpPrn1AVxuueEYCrXg9iywEj-Nh3dQJmpFHBoa3HKx1Cbd2rX2YvoWLw68XX46SdoBC4oQqmiQneBEqKX3qVMppb7LGA1MUJg2VSqtobBaMESqoWIUySJ8NZBorZay0BAXEO-iN6lHYAOTUbl6onFxvJW2IykZjYuXJ33EDa1UfPnbHq7uT5BkXN3qW5C6FLnTLiT7sPJCO5x01niPaZB5pZktwQ8dFP67RhEUyUco-bHWs063KTXVeDQq6geiK6sPuAzv_tcUzVL_qySOFHvv4_r_W2oSXPIZ-VtEjtqDXTH6GDwRWGrtNwnpwenK-3QrtHyTR5eg |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-hTmjwgMYAUbaBBTzwYpbEjuM-jo2pjG4CqUh7s2zHppVKE7UZH_89d22yddKEeIx0cSKf7fvdh38H8NbHmOQhZlyqzHMpfOQudQk-Fo6uosu0pNDA-YUafpNnl_llW5tDd2HwJ5bv7bReUwTXs8N2AvkMMedVfUM4oMQhEW7ikqO761vojSvdg62js5OvXzZqPIToWuYpxBIdtdDmy7cMUq_CjXULbG6jJVonxTfszukOPGoBIzta_-BjuBfmu_Bwg0ZwF-6vyjj98gn8otg3I1tFQ7EZtUBDEVZFNrIfFHN_GC479GYRaLNJ-G2_ExBnjmgMGG7uxbQMzFeWaqEZwlk2XcUcQsnqSdVUnNl5yQgy_qAwrudE-lqVYfkUxqcfx8dD3rZW4F7ovOEZAo9QSFkmXieUEEc7PbB5bpNQ6KSI1qXBWqGDjkVQQZbpQCax0NZJhyBBPIPevJqH58Ao6ZvlOkOnXEsXonbR2liU6An5gXO6D--66TXdTFL3i5lZpb-VMLlpNdGH19ei9Zpr4y6hPdKRIbUEP_FUDuQbgyglFUr2Yb9TnWk349JkxSDHswkPrz68uVbnvz5xh9TPanEjYeoyvvivsV7B9nB8PjKjTxef9-ABNatf1f2Ifeg1i6twgJCmcS_bhfsXI3rxVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Work+function+lowering+of+LaB6+by+monolayer+hexagonal+boron+nitride+coating+for+improved+photo-+and+thermionic-cathodes&rft.jtitle=Applied+physics+letters&rft.au=Yamaguchi+Hisato&rft.au=Yusa+Ryunosuke&rft.au=Wang+Gaoxue&rft.au=Pettes%2C+Michael+T&rft.date=2023-04-03&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=14&rft_id=info:doi/10.1063%2F5.0142591&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |