Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes

We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower wor...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 14
Main Authors Yamaguchi, Hisato, Yusa, Ryunosuke, Wang, Gaoxue, Pettes, Michael T., Liu, Fangze, Tsuda, Yasutaka, Yoshigoe, Akitaka, Abukawa, Tadashi, Moody, Nathan A., Ogawa, Shuichi
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 03.04.2023
American Institute of Physics (AIP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB6 (100) compared to graphene coated LaB6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB6.
AbstractList We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB6 (100) compared to graphene coated LaB6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB6.
We report a lowering of work function for lanthanum hexaboride (LaB 6 ) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB 6 (100) single crystal has a lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A broad and uniform brighter image of the hBN coated region in PEEM was quantitatively supported by a 0.4 eV decrease in the work function in photoelectron spectra compared to the bare region. TEEM results were consistent in that the hBN coated region exhibited thermionic emission at 905 °C, whereas the bare and graphene coated regions did not. A larger decrease in the work function for hBN coated LaB 6 (100) compared to graphene coated LaB 6 (100) was qualitatively supported by our density functional theory calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation x-ray photoelectron spectroscopy and confirmed the presence of an oxide layer on our LaB 6 .
Author Tsuda, Yasutaka
Wang, Gaoxue
Abukawa, Tadashi
Yamaguchi, Hisato
Ogawa, Shuichi
Yusa, Ryunosuke
Yoshigoe, Akitaka
Moody, Nathan A.
Pettes, Michael T.
Liu, Fangze
Author_xml – sequence: 1
  givenname: Hisato
  surname: Yamaguchi
  fullname: Yamaguchi, Hisato
  organization: Los Alamos National Laboratory
– sequence: 2
  givenname: Ryunosuke
  surname: Yusa
  fullname: Yusa, Ryunosuke
  organization: Tohoku University
– sequence: 3
  givenname: Gaoxue
  surname: Wang
  fullname: Wang, Gaoxue
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Michael T.
  surname: Pettes
  fullname: Pettes, Michael T.
  organization: Los Alamos National Laboratory
– sequence: 5
  givenname: Fangze
  surname: Liu
  fullname: Liu, Fangze
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Yasutaka
  surname: Tsuda
  fullname: Tsuda, Yasutaka
  organization: Materials Sciences Research Center, Japan Atomic Energy Agency
– sequence: 7
  givenname: Akitaka
  surname: Yoshigoe
  fullname: Yoshigoe, Akitaka
  organization: Materials Sciences Research Center, Japan Atomic Energy Agency
– sequence: 8
  givenname: Tadashi
  surname: Abukawa
  fullname: Abukawa, Tadashi
  organization: Tohoku University
– sequence: 9
  givenname: Nathan A.
  surname: Moody
  fullname: Moody, Nathan A.
  organization: Los Alamos National Laboratory
– sequence: 10
  givenname: Shuichi
  surname: Ogawa
  fullname: Ogawa, Shuichi
  organization: Tohoku University
BackLink https://www.osti.gov/servlets/purl/2441364$$D View this record in Osti.gov
BookMark eNp90EFvFCEUB3BiauK2evAbED1pMi0MMMMctVFrsomXJh4Jwzw61FneCmzrfnvZbLWJGk-E5Pf_w3un5CRiBEJecnbOWScu1DnjslUDf0JWnPV9IzjXJ2TFGBNNNyj-jJzmfFuvqhViRe6_YvpG_S66EjDSBe8hhXhD0dO1fd_RcU83GHGxe0h0hh_2BqNd6Iip6hhKChNQh7YcQh4TDZttwjuY6HbGgg21caJlhrSp9cE1zpYZJ8jPyVNvlwwvHs4zcv3xw_XlVbP-8unz5bt144RWpWk7paGXcmJOs5Zx1nbdYJWyDHrNem9HDtYKDdr30IGc-CCZ77Ud5dhyJc7Iq2Mt5hJMdqGAmx3GCK6YVkouOlnR6yOqP_--g1zMLe5SHTObth8Uky3Xoqo3R-US5pzAm20KG5v2hjNz2L1R5mH31V78YevL9rDhkmxY_pl4e0zkX_J3_R2mR2i2k_8f_rv5J-JKo6Y
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_diamond_2023_110512
crossref_primary_10_1038_s41598_024_70302_z
crossref_primary_10_15407_ujpe68_8_549
crossref_primary_10_1016_j_apsusc_2024_160478
crossref_primary_10_1063_5_0211701
Cites_doi 10.1103/PhysRev.112.114
10.1038/srep03282
10.1016/0168-9002(92)91085-N
10.1039/C6RA03046G
10.1063/1.4711212
10.1021/jp807380s
10.1063/1.4974738
10.1038/nature12385
10.1002/aenm.201300986
10.1038/s41699-018-0062-6
10.1021/acsaelm.0c00601
10.1103/PhysRevMaterials.4.024001
10.1103/PhysRevLett.97.187401
10.1039/C9CP04187G
10.1021/jz3007029
10.1126/science.1171245
10.1063/1.112993
10.1103/PhysRevAccelBeams.20.073401
10.1103/PhysRevLett.77.3865
10.1063/1.121851
10.1021/jz2015555
10.1103/PhysRevLett.101.026803
10.1016/0039-6028(95)00989-2
10.1103/PhysRevB.79.195425
10.1016/0927-0256(96)00008-0
10.1063/1.88907
10.1021/nn102519b
10.1063/1.4868091
10.1016/0168-9002(94)01425-6
10.1103/PhysRevB.59.1758
10.1063/1.103290
10.1126/science.aac9439
10.1016/0039-6028(82)90660-4
10.1002/smll.201001628
10.1039/C6CP08903H
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1063/5.0142591
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef

Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 2441364
10_1063_5_0142591
apl
GrantInformation_xml – fundername: Office of Science
  funderid: 10.13039/100006132
– fundername: Los Alamos National Laboratory
  funderid: 10.13039/100008902
– fundername: KAKENHI
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c385t-2658e744d0c8020102669a55a0e7807fab1eaa38e8f7e6e4d1940f78ab4b2153
IEDL.DBID AJDQP
ISSN 0003-6951
IngestDate Mon Jan 13 02:27:09 EST 2025
Sun Jun 29 13:20:15 EDT 2025
Thu Jul 03 08:23:48 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Tue Jul 04 19:18:48 EDT 2023
Fri Jun 21 00:13:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Published open access through an agreement with Alamos National Laboratory 5112
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-2658e744d0c8020102669a55a0e7807fab1eaa38e8f7e6e4d1940f78ab4b2153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Japan Society for the Promotion of Science (JSPS) (KAKENHI)
USDOE Office of Science (SC), High Energy Physics (HEP)
89233218CNA000001; JP17KK0125; JPMXP09A21AE0013; JPMXP09A21AE0042
USDOE Laboratory Directed Research and Development (LDRD) Program
Ministry of Education, Culture, Sports, Science and Technology (MEXT)
LA-UR-23-20698
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-4992-6237
0000-0001-6862-6841
0000-0001-6568-7841
0000-0002-6625-7904
0000-0003-4812-7257
0000-0003-3114-5280
0000-0002-6703-8826
0000000348127257
0000000266257904
0000000168626841
0000000267038826
0000000349926237
0000000165687841
0000000331145280
OpenAccessLink http://dx.doi.org/10.1063/5.0142591
PQID 2795042183
PQPubID 2050678
PageCount 7
ParticipantIDs osti_scitechconnect_2441364
crossref_citationtrail_10_1063_5_0142591
proquest_journals_2795042183
crossref_primary_10_1063_5_0142591
scitation_primary_10_1063_5_0142591
PublicationCentury 2000
PublicationDate 20230403
2023-04-03
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: 20230403
  day: 03
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References Kresse, Joubert (c33) 1999
O'Shea, Lancaster, Sachtschale, Jones (c19) 1998
Kong, Kinross-Wright, Nguyen, Sheffield (c17) 1995
Uchida, Kawahara, Fukamachi, Ago (c22) 2020
Kresse, Furthmüller (c34) 1996
Perdew, Burke, Ernzerhof (c35) 1996
Liu, Moody, Jensen, Pavlenko, Villarrubia, Mohite, Gupta (c5) 2017
Giovannetti, Khomyakov, Brocks, Karpan, van den Brink, Kelly (c12) 2008
Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (c29) 2006
Wang, Yang, Moody, Batista (c10) 2018
Conde, Kwon, Young, Leung, Kim (c18) 1994
Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (c21) 2009
Yamaguchi, Granstrom, Nie, Sojoudi, Fujita, Voiry, Chen, Gupta, Mohite, Graham, Chhowalla (c4) 2014
Patil, Pawbake, Machuno, Gelamo, Jadkar, Rout, Late (c7) 2016
Nishitani, Oshima, Aono, Tanaka, Kawai, Iwasaki, Nakamura (c14) 1982
Geim, Grigorieva (c2) 2013
Torgasin, Morita, Zen, Masuda, Katsurayama, Murata, Suphakul, Yamashita, Nogi, Kii, Nagasaki, Ohgaki (c20) 2017
Yamauchi, Takagi, Yuito, Kawabe (c36) 1976
Khomyakov, Giovannetti, Rusu, Brocks, van den Brink, Kelly (c9) 2009
Li, Zhou, Pang, Zhu, Vovk, Cong, van Bavel, Li, Yang (c31) 2019
Ago, Ito, Mizuta, Yoshida, Hu, Orofeo, Tsuji, Ikeda, Mizuno (c25) 2010
Reina, Son, Jiao, Fan, Dresselhaus, Liu, Kong (c27) 2008
Oettinger (c15) 1990
Mitrovic, Althobaiti, Weerakkody, Dhanak, Linhart, Veal, Sedghi, Hall, Chalker, Tsoutsou, Dimoulas (c32) 2014
Rout, Joshi, Kashid, Joag, More, Simbeck, Washington, Nayak, Late (c6) 2013
Novoselov, Mishchenko, Carvalho, Castro Neto (c3) 2016
Ogawa, Hu, Orofeo, Tsuji, Ikeda, Mizuno, Hibino, Ago (c24) 2012
Spicer (c1) 1958
Ago, Ogawa, Tsuji, Mizuno, Hibino (c26) 2012
Wang, Yang, Batista (c11) 2020
Bamford, Bakshi, Deacon (c16) 1992
Uchida, Iwaizako, Mizuno, Tsuji, Ago (c23) 2017
Starodub, Bartelt, McCarty (c8) 2012
Gorbachev, Riaz, Nair, Jalil, Britnell, Belle, Hill, Novoselov, Watanabe, Taniguchi, Geim, Blake (c28) 2011
Yamamoto, Rokuta, Hasegawa, Nagao, Trenary, Oshima, Otani (c30) 1996
(2023081106022128100_c25) 2010; 4
(2023081106022128100_c30) 1996; 348
(2023081106022128100_c11) 2020; 4
(2023081106022128100_c20) 2017; 20
(2023081106022128100_c29) 2006; 97
(2023081106022128100_c1) 1958; 112
(2023081106022128100_c8) 2012; 100
(2023081106022128100_c16) 1992; 318
(2023081106022128100_c22) 2020; 2
(2023081106022128100_c26) 2012; 3
(2023081106022128100_c19) 1998; 73
(2023081106022128100_c21) 2009; 324
(2023081106022128100_c27) 2008; 112
(2023081106022128100_c14) 1982; 115
(2023081106022128100_c12) 2008; 101
(2023081106022128100_c9) 2009; 79
(2023081106022128100_c32) 2014; 115
(2023081106022128100_c36) 1976; 29
(2023081106022128100_c28) 2011; 7
(2023081106022128100_c18) 1994; 65
(2023081106022128100_c7) 2016; 6
(2023081106022128100_c15) 1990; 56
(2023081106022128100_c24) 2012; 3
(2023081106022128100_c33) 1999; 59
(2023081106022128100_c3) 2016; 353
(2023081106022128100_c4) 2014; 4
(2023081106022128100_c13) 1980
(2023081106022128100_c17) 1995; 358
(2023081106022128100_c35) 1996; 77
(2023081106022128100_c10) 2018; 2
(2023081106022128100_c34) 1996; 6
(2023081106022128100_c5) 2017; 110
(2023081106022128100_c2) 2013; 499
(2023081106022128100_c31) 2019; 21
(2023081106022128100_c23) 2017; 19
(2023081106022128100_c6) 2013; 3
References_xml – start-page: 17
  year: 2018
  ident: c10
  publication-title: NPJ 2D Mater. Applicat.
– start-page: 026803
  year: 2008
  ident: c12
  publication-title: Phys. Rev. Lett.
– start-page: 411
  year: 1998
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 419
  year: 2013
  ident: c2
  publication-title: Nature
– start-page: 465
  year: 2011
  ident: c28
  publication-title: Small
– start-page: 48
  year: 1982
  ident: c14
  publication-title: Surf. Sci.
– start-page: 377
  year: 1992
  ident: c16
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip.
– start-page: 219
  year: 2012
  ident: c24
  publication-title: J. Phys. Chem. Lett.
– start-page: 17741
  year: 2008
  ident: c27
  publication-title: J. Phys. Chem. C
– start-page: 22351
  year: 2019
  ident: c31
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 1300986
  year: 2014
  ident: c4
  publication-title: Adv. Energy Mater.
– start-page: 041607
  year: 2017
  ident: c5
  publication-title: Appl. Phys. Lett.
– start-page: 195425
  year: 2009
  ident: c9
  publication-title: Phys. Rev. B
– start-page: 48843
  year: 2016
  ident: c7
  publication-title: RSC Adv.
– start-page: aac9439
  year: 2016
  ident: c3
  publication-title: Science
– start-page: 638
  year: 1976
  ident: c36
  publication-title: Appl. Phys. Lett.
– start-page: 3282
  year: 2013
  ident: c6
  publication-title: Sci. Rep.
– start-page: 272
  year: 1995
  ident: c17
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip.
– start-page: 8230
  year: 2017
  ident: c23
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 133
  year: 1996
  ident: c30
  publication-title: Surf. Sci.
– start-page: 024001
  year: 2020
  ident: c11
  publication-title: Phys. Rev. Mater.
– start-page: 3865
  year: 1996
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 1312
  year: 2009
  ident: c21
  publication-title: Science
– start-page: 181604
  year: 2012
  ident: c8
  publication-title: Appl. Phys. Lett.
– start-page: 1758
  year: 1999
  ident: c33
  publication-title: Phys. Rev. B
– start-page: 2228
  year: 2012
  ident: c26
  publication-title: J. Phys. Chem. Lett.
– start-page: 187401
  year: 2006
  ident: c29
  publication-title: Phys. Rev. Lett.
– start-page: 114102
  year: 2014
  ident: c32
  publication-title: J. Appl. Phys.
– start-page: 073401
  year: 2017
  ident: c20
  publication-title: Phys. Rev. Accel. Beams
– start-page: 333
  year: 1990
  ident: c15
  publication-title: Appl. Phys. Lett.
– start-page: 114
  year: 1958
  ident: c1
  publication-title: Phys. Rev.
– start-page: 15
  year: 1996
  ident: c34
  publication-title: Comput. Mater. Sci.
– start-page: 3270
  year: 2020
  ident: c22
  publication-title: ACS Appl. Electron. Mater.
– start-page: 7407
  year: 2010
  ident: c25
  publication-title: ACS Nano
– start-page: 2660
  year: 1994
  ident: c18
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 114
  year: 1958
  ident: 2023081106022128100_c1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.114
– volume: 3
  start-page: 3282
  year: 2013
  ident: 2023081106022128100_c6
  publication-title: Sci. Rep.
  doi: 10.1038/srep03282
– volume: 318
  start-page: 377
  year: 1992
  ident: 2023081106022128100_c16
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip.
  doi: 10.1016/0168-9002(92)91085-N
– volume: 6
  start-page: 48843
  year: 2016
  ident: 2023081106022128100_c7
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03046G
– volume: 100
  start-page: 181604
  year: 2012
  ident: 2023081106022128100_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4711212
– volume: 112
  start-page: 17741
  year: 2008
  ident: 2023081106022128100_c27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp807380s
– volume: 110
  start-page: 041607
  year: 2017
  ident: 2023081106022128100_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4974738
– volume: 499
  start-page: 419
  year: 2013
  ident: 2023081106022128100_c2
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 4
  start-page: 1300986
  year: 2014
  ident: 2023081106022128100_c4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300986
– volume: 2
  start-page: 17
  year: 2018
  ident: 2023081106022128100_c10
  publication-title: NPJ 2D Mater. Applicat.
  doi: 10.1038/s41699-018-0062-6
– volume: 2
  start-page: 3270
  year: 2020
  ident: 2023081106022128100_c22
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00601
– volume: 4
  start-page: 024001
  year: 2020
  ident: 2023081106022128100_c11
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.4.024001
– volume: 97
  start-page: 187401
  year: 2006
  ident: 2023081106022128100_c29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 21
  start-page: 22351
  year: 2019
  ident: 2023081106022128100_c31
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP04187G
– volume-title: Photoemissive Materials
  year: 1980
  ident: 2023081106022128100_c13
– volume: 3
  start-page: 2228
  year: 2012
  ident: 2023081106022128100_c26
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3007029
– volume: 324
  start-page: 1312
  year: 2009
  ident: 2023081106022128100_c21
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 65
  start-page: 2660
  year: 1994
  ident: 2023081106022128100_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112993
– volume: 20
  start-page: 073401
  year: 2017
  ident: 2023081106022128100_c20
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.20.073401
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023081106022128100_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 73
  start-page: 411
  year: 1998
  ident: 2023081106022128100_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121851
– volume: 3
  start-page: 219
  year: 2012
  ident: 2023081106022128100_c24
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2015555
– volume: 101
  start-page: 026803
  year: 2008
  ident: 2023081106022128100_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.026803
– volume: 348
  start-page: 133
  year: 1996
  ident: 2023081106022128100_c30
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(95)00989-2
– volume: 79
  start-page: 195425
  year: 2009
  ident: 2023081106022128100_c9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.195425
– volume: 6
  start-page: 15
  year: 1996
  ident: 2023081106022128100_c34
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 29
  start-page: 638
  year: 1976
  ident: 2023081106022128100_c36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.88907
– volume: 4
  start-page: 7407
  year: 2010
  ident: 2023081106022128100_c25
  publication-title: ACS Nano
  doi: 10.1021/nn102519b
– volume: 115
  start-page: 114102
  year: 2014
  ident: 2023081106022128100_c32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4868091
– volume: 358
  start-page: 272
  year: 1995
  ident: 2023081106022128100_c17
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip.
  doi: 10.1016/0168-9002(94)01425-6
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2023081106022128100_c33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 56
  start-page: 333
  year: 1990
  ident: 2023081106022128100_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103290
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 2023081106022128100_c3
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 115
  start-page: 48
  year: 1982
  ident: 2023081106022128100_c14
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90660-4
– volume: 7
  start-page: 465
  year: 2011
  ident: 2023081106022128100_c28
  publication-title: Small
  doi: 10.1002/smll.201001628
– volume: 19
  start-page: 8230
  year: 2017
  ident: 2023081106022128100_c23
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08903H
SSID ssj0005233
Score 2.4556801
Snippet We report a lowering of work function for lanthanum hexaboride (LaB6) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy...
We report a lowering of work function for lanthanum hexaboride (LaB 6 ) by monolayer hexagonal boron nitride (hBN) coating. Photoemission electron microcopy...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms accelerator
Applied physics
Boron nitride
Density functional theory
electron source
Graphene
hexagonal boron nitride
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lanthanum
lanthanum hexaboride
Mathematical analysis
Monolayers
photocathode
Photoelectric emission
Photoelectrons
Single crystals
Spectrum analysis
Synchrotrons
thermionic
Thermionic emission
work function
Work functions
Title Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes
URI http://dx.doi.org/10.1063/5.0142591
https://www.proquest.com/docview/2795042183
https://www.osti.gov/servlets/purl/2441364
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_kpNg-FKstXrUyqA99CU2ym2Tv0daKiEqLFnxb9tMT9HLcpdX-9525S_QEW_oYmOzCzszObz52BmDPxZgWIeaJLHOXSOFiYjOb0mdl-Sm6zDyHBk7PyqMf8viyuFyC3b9k8EvxidtqkmDxC_XlnMCx6sHy_vHB928LlRxCdIPxSkIMXQOhxZ-fmJ1eTerzBFKukL2Zp74XrMvhKrxuYSHuz_n4BpbCaA1eLTQLXIMXs2JNN12HO45wI1skXgpveNAZkWAd8cR8LtH-RhIu8lkJTuMw3JsrhttouVkBkgpPrn1AVxuueEYCrXg9iywEj-Nh3dQJmpFHBoa3HKx1Cbd2rX2YvoWLw68XX46SdoBC4oQqmiQneBEqKX3qVMppb7LGA1MUJg2VSqtobBaMESqoWIUySJ8NZBorZay0BAXEO-iN6lHYAOTUbl6onFxvJW2IykZjYuXJ33EDa1UfPnbHq7uT5BkXN3qW5C6FLnTLiT7sPJCO5x01niPaZB5pZktwQ8dFP67RhEUyUco-bHWs063KTXVeDQq6geiK6sPuAzv_tcUzVL_qySOFHvv4_r_W2oSXPIZ-VtEjtqDXTH6GDwRWGrtNwnpwenK-3QrtHyTR5eg
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-hTmjwgMYAUbaBBTzwYpbEjuM-jo2pjG4CqUh7s2zHppVKE7UZH_89d22yddKEeIx0cSKf7fvdh38H8NbHmOQhZlyqzHMpfOQudQk-Fo6uosu0pNDA-YUafpNnl_llW5tDd2HwJ5bv7bReUwTXs8N2AvkMMedVfUM4oMQhEW7ikqO761vojSvdg62js5OvXzZqPIToWuYpxBIdtdDmy7cMUq_CjXULbG6jJVonxTfszukOPGoBIzta_-BjuBfmu_Bwg0ZwF-6vyjj98gn8otg3I1tFQ7EZtUBDEVZFNrIfFHN_GC479GYRaLNJ-G2_ExBnjmgMGG7uxbQMzFeWaqEZwlk2XcUcQsnqSdVUnNl5yQgy_qAwrudE-lqVYfkUxqcfx8dD3rZW4F7ovOEZAo9QSFkmXieUEEc7PbB5bpNQ6KSI1qXBWqGDjkVQQZbpQCax0NZJhyBBPIPevJqH58Ao6ZvlOkOnXEsXonbR2liU6An5gXO6D--66TXdTFL3i5lZpb-VMLlpNdGH19ei9Zpr4y6hPdKRIbUEP_FUDuQbgyglFUr2Yb9TnWk349JkxSDHswkPrz68uVbnvz5xh9TPanEjYeoyvvivsV7B9nB8PjKjTxef9-ABNatf1f2Ifeg1i6twgJCmcS_bhfsXI3rxVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Work+function+lowering+of+LaB6+by+monolayer+hexagonal+boron+nitride+coating+for+improved+photo-+and+thermionic-cathodes&rft.jtitle=Applied+physics+letters&rft.au=Yamaguchi+Hisato&rft.au=Yusa+Ryunosuke&rft.au=Wang+Gaoxue&rft.au=Pettes%2C+Michael+T&rft.date=2023-04-03&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=14&rft_id=info:doi/10.1063%2F5.0142591&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon